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Abstract. In this paper we cryptanalyze two protocols: Grigoriev-
Shpilrain authentication protocol and Wang et al. public key encryption
protocols that use computational hardness of some variations of the
conjugacy search problem in noncommutative monoids. We devise a
practical heuristic algorithm solving those problems. As a conclusion
we claim that these protocols are insecure for the proposed parameter
values.
Keywords and phrases: Group-based cryptography, conjugacy search
problem, matrix monoids, truncated polynomials.
AMS Classification: 94A60, 68W30.

1. Introduction

The conjugacy search problem plays a special role in group-based cryp-
tography ([11, 12]). Most of the cryptosystems based on groups use one or
another variation of that problem. For instance:

• [9] employs conjugacy search problem in braid groups;
• [1, 21] employ simultaneous conjugacy search problem in braid groups;
• [19] employs twisted conjugacy problem;
• [20, 16, 17] employ decomposition problem in different (semi-)groups;
• [15] employs conjugation and exponentiation in matrix groups.

Yet, another protocol based on the conjugacy search problem was recently
proposed in [5] by Grigoriev and Shpilrain, who introduced two authen-
tication protocols: one is called the beta protocol and the other is called
the full protocol. The security of both protocols relies on the hardness of
the conjugacy search problem in a semigroup of of matrices over truncated
polynomials. In this paper we test the following claim ([5, page 199]):

Our platform semigroup might be the first serious candidate
for having generically hard conjugacy search problem.

Informally, generic case complexity is the complexity on “almost all” of the
inputs, see [7, 8]. We prove that the claim is not true and, in fact, the
conjugacy search problem is trivial in most of the cases (see Theorem 3).
Trying to find difficult instances of the problem we modify the method of
key generation. Our modification allows to generate nontrivial instances of
the conjugacy search problem, but even that does not make the protocol
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secure, we show that it can be attacked by a certain heuristic algorithm (see
Section 4).

We also discuss a related work by L. Wang et al. (see [22]) which pro-
poses a non-commutative version of Diffie-Hellman type encryption protocol
which uses conjugation in noncommutative monoids and demonstrate their
inadequacy.

1.1. The Grigoriev-Shpilrain authentication scheme. Here we intro-
duce basic notions and formulate the conjugacy search problem together
with the main security assumptions used in [5]. FixN,m, n, k ∈ N. Grigoriev-
Shpilrain authentication protocol uses a semigroup of n × n matrices over
N -truncated polynomials with coefficients in Zm. An N -truncated polyno-
mial over a ring Zm is an element of the factor algebra

R = Zm[x1, . . . , xk]/〈xi1 · · ·xis | s = N〉.

Let G be the ring of all n×n matrices over truncated k-variable polynomials
over Zm. We say that X ∈ G is invertible if there exists Y ∈ G satisfying
XY = Y X = I, where I is the identity matrix.

Conjugacy search problem (CSP) in a semigroup G: Given elements
A,C ∈ G find an invertible element X satisfying C = X−1AX, provided
that such an element exists.

Public/private keys in Grigoriev-Shpilrain protocol:

• The private key is an invertible element X ∈ G.
• The public key is a pair (A,X−1AX), where A ∈ G.

The key generation procedure is discussed in detail in Section 2. To check
Alice’s identity, Bob runs the following protocol exactly once (cf. Feige-Fiat-
Shamir type protocols, [3]).

Algorithm 1. The Grigoriev-Shpilrain authentication protocol (beta ver-
sion).

1: Bob sends a random B ∈ G to Alice.
2: Alice responds with X−1BX.
3: Bob chooses a random positive word w(x, y) and checks the equality:

trace(w(A,B)) = trace(w(X−1AX,X−1BX)).

4: Authentication is successful if the equality holds.

Obviously this protocol has the completeness property (Alice is able to
prove her identity) of proof-systems. The soundness property (the probabil-
ity of a wrong person proving that (s)he is Alice is negligible) is much less
obvious and probably is not satisfied. The zero knowledge property simply
does not hold, although the authors are aware of that and do not claim it.
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It is stated in [5, page 199] that forgery seems infeasible without finding
the provers private key. This is not completely correct because to break
this protocol it is sufficient to find any conjugator for the pair (A,X−1AX),
i.e., to solve the conjugacy search problem for G. The security of the full
version of the Grigoriev-Shpilrain protocol relies on the difficulty of the same
conjugacy problem, as it has exactly the same public key pair (A,X−1AX).
We omit the description of the full protocol here.

Another claim made in [5, page 199] is:

Our platform semigroup might be the first serious candidate
for having generically hard conjugacy search problem.

This claim is the primary target of this paper. We investigate computational
hardness of the conjugacy search problem for G and prove that it is easy on
most of the inputs under the proposed key distribution.

1.2. Wang-Wang-Cao-Okamoto-Shao cryptosystem. Wang et al. in
[22] propose several public key encryption schemes based on the CSP over
a noncommutative monoid G. The most basic of the protocols works as
follows. Fix A,X ∈ G, with X being invertible, and a number K ∈ N.
Public/private keys in Wang et al. protocol are:

• Alice’s private key is a number s ∈ N.
• Alice’s public key is an element X−sAXs.
• Bob’s private key is a number t ∈ N.
• Bob’s public key is an element X−tAXt.

After exchanging public information Alice and Bob can immediately com-
pute the shared key X−s−tAXs+t. Based on this simple protocol Wang et al.
develop two ElGamal-type public key encryption protocols. Security of this
scheme is based on the difficulty of the following computational problem:

CSP-based computational Diffie-Hellman problem in G: Given el-
ements A, X, X−sAXs, X−tAXt in G, for some random 1 ≤ s, t ≤ K,
compute X−s−tAXs+t.

The value K is the main security parameter here and, hence, should
be sufficiently large to provide a necessary level of security. That implies
that the order of the cyclic subgroup generated by X must be at least K.
Similarly we define the associated decision problem:

CSP-based decision Diffie-Hellman problem in G: Given elements A,
X, X−sAXs, X−tAXt in G, for some 1 ≤ s, t ≤ K, distinguish elements
X−s−tAXs+t and X−lAX l for some random l ∈ [1,K] with probability
cryptographically-significantly better than 1/2.

We discuss Wang’s et al. protocol in Section 3.

1.3. Parameter values. Both papers, [5] and [22], use almost the same set
of parameters. They use the semigroup G of 3×3 matrices of 1000-truncated
polynomials in 10 variables over Z11 (in [5]) and over Z12 (in [22]). To be
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consistent with the notation above, we have n = 3, N = 1000, k = 10 and
m = 11 or m = 12. Precisely, [22, page 11] states:

According to [15], we can choose the parameters as follows:
µ = 3, λ = 1000 and k = 10, while the ring R is instantiated
with Z12.

The citation “[15]” references the Grigoriev-Shpilrain protocol [5] discussed
above. The choice of Z11 or Z12 gives different algebraic structures with,
perhaps, very different algorithmic properties. To have a more complete
picture, we analyze the protocol from [22] for both cases: Z11 and Z12 in
Section 3.

1.4. Our contribution. The main contribution of this paper is a heuristic
algorithm for solving the conjugacy search problem in matrices over a semi-
group of N -truncated polynomials. The heuristics used in the algorithm
allow us to solve the conjugacy search problem on a majority of inputs
generated using the parameters proposed in [5, 22] which invalidates the
security claims. We also argue that the proposed sampling procedure with
high probability generates trivial instances of the conjugacy problem.

In the following sections we argue the validity of the assumptions above
with the main focus on solving the conjugacy search problem in G. In
section 2 we discuss in more detail the sampling procedures proposed in [5]
and emphasize the flaws in the construction of the problem instances. In
Section 3 we show that the protocol of Wang et al. is neither secure nor
feasible for the proposed parameter values. In Section 4 we describe our
heuristic algorithm for the conjugacy search problem in the semigroup of
matrices over truncated polynomials and provide experimental results.

2. Key generation

In this section we discuss the key generation procedures for protocols
mentioned in the introduction. Both use two matrices A and X, where X
is invertible.

The matrix A is somewhat similar to the base element in the Diffie-
Hellman protocol and, in particular, the simpler A the faster the compu-
tations. To make computations more efficient it is suggested in [5] to use
5-sparse polynomials, i.e., polynomials with 5 monomials. A random 5-
sparse polynomial is generated by selecting 5 random monomials of degree
at most N − 1.

The matrix X is generated as a product of matrices:

X = Ei1j1(m1)Ei2j2(m2) · · ·Eiljl(ml),

where Eij(m) is an n× n matrix that differs from the identity matrix I by
one nontrivial off-diagonal polynomial m ∈ R in the position (i, j) (with
i 6= j). We can assume that mi’s used in the generation of X are monomials
because for any 1 ≤ i 6= j ≤ 3 and polynomials m1,m2 ∈ R we have:

Eij(m1 +m2) = Eij(m1) · Eij(m2).
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The monomials ml and indices il, jl are chosen randomly. It is easy to check
that the matrices Eij(m) are invertible and:

Eij(m)−1 = Eij(−m).

Therefore,

X−1 = Eiljl(−ml) · · ·Ei2j2(−m2)Ei1j1(−m1).

In the next subsection we discuss some crucial observations and flaws of the
proposed generation procedure with respect to the assumptions above.

2.1. Sparse truncated polynomials chosen uniformly randomly make
CSP trivial. The original paper [5] does not state explicitly how to gener-
ate random monomials used in the generation of entries for A and Ei,j(m).
On the other hand mentioning the generic case hardness in one of the claims
implies that they are generated uniformly. Hence, each m is a sum of 5
monomials axi1 . . . xis where:

• a is a uniformly chosen from Z11 \ {0};
• xi1 . . . xis is uniformly chosen from the (finite) set of power product

over {x1, . . . , x10} of power up to N = 1000.

Proposition 1. The following hold:

(a) The probability that a uniformly randomly chosen power product has
degree smaller than 500 is 0.00102107974.

(b) The probability that a uniformly randomly chosen 5-sparse polyno-
mial involves a monomial of degree less than 500 is approximately
0.0051.

(c) The probability that a uniformly randomly chosen matrix A involves
a monomial of degree less than 500 is approximately 0.0450.

Proof. The number of power products of degree at most d in k variables is(
d+k
d

)
. Therefore, the number of power products of degree less than N is(

N+k−1
N−1

)
and of degree less then N/2 is

(N/2+k−1
N/2−1

)
and

Pr(deg(m) < N/2) =

(N/2+k−1
N/2−1

)(
N+k−1
N−1

) =

(
509
499

)(
1009
999

) = 0.00102107974.

A randomly generated polynomial p involves 5 uniformly randomly chosen
monomials and hence:

Pr(all monomials in p are of degree ≥ 500) = (1−0.00102107974)5 ≈ 0.9949.

Similarly, a randomly generated matrix A involves 45 uniformly randomly
chosen monomials and hence:

Pr(all monomials in A are of degree ≥ 500) = (1−0.00102107974)45 ≈ 0.9550.

�
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Next observe how conjugation by an elementary matrix E12(m) trans-
forms A:

E−112 (m) ·A · E12(m) =

 1 −m 0
0 1 0
0 0 1

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 1 m 0
0 1 0
0 0 1


=

 a11 −ma21 a12 +m(a11 − a22)−m2a21 a13 −ma23
a21 a22 +ma21 a23
a31 a32 +ma31 a33

 .(1)

Conjugation by other elementary matrices give similar formulae (see Appen-
dix A). These formulae imply the following.

Lemma 2. If the degree of the smallest monomial involved in A is at least
500 and deg(m) ≥ 500, then E−112 (m) ·A · E12(m) = A. �

Theorem 3. The probability that X−1AX = A for randomly chosen matri-
ces A and X is not smaller than 0.90750.

Proof. The matrix A is randomly chosen and involves 45 monomials; then
it is conjugated by 50 random elementary matrices. The probability that at
all steps no monomial of degree less that 500 will appears is:

(1− 0.00102107974)95 ≈ 0.90750.

By Lemma 2 in this event we have X−1AX = A. Since we considered
only a subset of all events that result in equality X−1AX = A the actual
probability of obtaining a trivial conjugacy equation is even higher. �

Therefore, for the suggested generation method the conjugacy search
problem is trivial on most of the inputs. That does not mean that there
are no difficult instances of CSP, but the key generation procedure is bad.
Trying to find hard instances we modified the procedure for generating ran-
dom monomials. Instead of choosing the monomials uniformly, it randomly
uniformly chooses the degree of the monomial and then the required num-
bers of the involved variables are chosen. As above, N − 1 is the maximal
degree of a monomial and k is the number of variables. The procedure is
the following:

Algorithm 2. Monomial generation.

1: Choose the degree s from {1, . . . , N − 1} uniformly randomly.
2: Choose numbers i1, . . . , is from {1, . . . , k} uniformly randomly.
3: Choose a coefficient a from Z11 \ {0} uniformly randomly.
4: Output the monomial axi1xi2 · · ·xis .
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3. Analysis of Wang et al. primitive

In this section we discuss properties of Wang et al. protocols. The first
observation is that the CSP-based Diffie-Hellman problem in G and the CSP
in G are not much related. Indeed, the CSP-based Diffie-Hellman problem in
G is very restrictive because the conjugators come from the cyclic subgroup
generated by X. The problem is only to recognize the power of X used
in conjugation. The DH problem can be reduced to the conjugacy search
problem relative to a subgroup generated by X (cf. [18]), but we do not
see how it can be reduced to the general CSP in G (a general solution
will not work – the centralizer will spoil the answer). Similarly, there is
no way to reduce the general CSP to CSP-based DH problem. Therefore,
computational hardness of any of these problems does not imply hardness
of the other.

The main problem however is with the CSP-based Diffie-Hellman assump-
tion in the semigroup G.

Recall that the order ord(X) of a group element X is the smallest positive
integer m such that Xm = I. All Wang et al. protocols require computation
of powers Xi for large values of i so that i cannot be recovered from the triple
(A,X,X−iAXi) by simple enumeration. The requirement above implies
that the order of the conjugating element X must be large. Indeed, let
ord(X) = m and i > m. We can write i = m · k + r where r < m. Then

Xi = Xm·k+r = (Xm)k ·Xr = Xr.

Therefore, recovering a power Xi by brute-force enumeration is as hard as
computing the power Xm, where m = ord(X).

Next we present empirical evidence that ord(X) is small most of the time.
First of all if we use the uniform random approach of Grigoriev-Shpilrain,
then using the argument similar to Theorem 3 one can show that most of
the instances of X have small (in fact trivial) orders.

More surprisingly similar behaviour is observed when X is generated using
Algorithm 2. We performed a series of experiments and were able to compute
the order of every instance of the matrix X. Moreover, in the case when the
polynomial coefficients were taken from Z11, all instances had orders 11, 121
or 1331 with 121 being the most frequent. Notice that these are all powers
of 11 which is the order of the polynomial coefficients. In the case of Z12 the
orders were more diverse with 31104, 62208 and 124416 being the greatest
but each occurring only once. Orders 72 and 144 were the most frequent
and all values were multiples of 12. One explanation for the relatively small
orders of X is that the terms of the polynomials are eliminated due to the
small finite order of the coefficients.

We have to mention here that, since the monomials are chosen randomly
with the uniform distribution on the degrees, the number of monomials in Xi

grows very fast in terms of i (we can not say exponentially fast, because we
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work with finite, though huge semigroup). So the scheme is neither secure
nor practical regardless of the generation procedure.

One can try to increase the order by introducing different sampling strate-
gies. We performed experiments where monomials from R were chosen ran-
domly with the degree N/5 = 200 at most. The idea is that introducing
smaller degree polynomials will make truncation less common. Indeed, the
size of power matrices became times larger then in the previous experiments.
However, the orders of such matrices were again some small powers of 11.

4. Algorithm for solving the conjugacy problem

In this section we present a heuristic procedure for solving the conjugacy
search problem in G. Recall that our goal is: given two matrices A and
C = X−1AX in G compute a conjugator X. Essentially, our heuristic is
a variation of a length-based attack that has been successfully used several
times in group-based cryptography ([6, 4, 14, 10, 13]).

4.1. General idea of the attack. Since X is generated as a product of
elementary matrices E1E2 · · ·En, the matrix C can be viewed as a result of
a sequence of conjugations by the matrices Ei:

(2)

C0 = A
↓

C1 = E−11 A E1

↓
C2 = E−12 E−11 A E1E2

↓
...

C = Cn = E−1n . . . E−12 E−11 A E1E2 . . . En

The goal is to reverse the sequence (2) and recover each single elementary
matrix Ei one by one. Each Ei is a solution to the CSP for the pair of
matrices (Ci−1, Ci), with Ci−1 unknown. So, we need to solve the following
problem several times:

Recovering Ei: Given a matrix of the form E−1i Ci−1Ei, find Ei.

Clearly, the problem above is not very well defined because any elementary
matrix E could have been used to obtain Ci from the unknown Ci−1. We
find the matrix E which fits the best for the role of the conjugator. This is
done using the concept of a size function.

4.2. Size function attack. The following function will guide our process
of recovery of elementary conjugators.

Definition 4. The size of a polynomial f ∈ R is the total number of mono-
mials in f , denoted size(f). The size of an n × n matrix M is the total
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number of monomials in all entries of M :

size(M) =
∑

1≤i,j≤n
size(Mij).

For polynomials p, q ∈ R define a number σp(q) to be the number of power
products in p that are not present in q. Similarly, for matrices A,B ∈ G
define a number:

σA(B) =
∑
i,j

σaij (bij).

Intuitively, this function indicates how much one matrix is contained in the
other. If two matrices are the same, then σA(B) = σB(A) = 0. The opposite
direction is not necessarily true because we disregard the coefficients of the
polynomials.

Proposition 5. Let A ∈ G and B = Eij(m)−1AEij(m), where m is a
monomial. Then

Pr(σA(B) = 0) ≥ 1− 7 size(A)2

10|BZ10(1000)|
,

where BZ10(1000) is the ball of radius 1000 in the Cayley graph of the free
abelian group Z10.

Proof. Without loss of generality we may assume that i = 1 and j = 2. By
formula (1) on page 6, the matrix B gets new monomials from the products
ma21, m(a11 − a22)−m2a21, etc. Since, obviously,

size(aij) ≤ size(A),

each of those products involves not more than 3 size(A) monomials. The
number σA(B) is positive only if a new monomial cancels out some old
monomial. Therefore, the number of choices for m that induce cancelation of
some old monomial can be bounded above by 7 size(A)2. Since the monomial
m is chosen as a product of a random nonzero coefficient and a random power
product and the total number of random power products is |BZ10(1000)|, it
is easy to get the claimed bound on Pr(σA(B) = 0). �

In fact, in Proposition 5 we proved a stronger result. We proved that
with high probability every new monomial in a conjugate matrix was not
involved in the original matrix. Next, a trivial estimate:

|BZ10(1000)| =
(

1000

11

)
≥ 2 · 1025,

implies the following result.

Corollary 6. Let A ∈ G and B = Eij(m)−1AEij(m). If size(A) ≤ 105,
then Pr(σA(B) = 0) ≥ 1− 10−15. �

Corollary 7. Let A ∈ G and B = Eij(m)−1AEij(m). Suppose that size(A) ≤
105. Then

Pr(A = B or size(A) < size(B)) ≥ 1− 10−15
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Proof. Excluding all events when all the new monomials have power greater
than 999 and, hence, being truncated (the trivial case for conjugacy) we
obtain the same estimate as in Corollary 6. �

We consider size 105 because we think that bigger matrices are not prac-
tical. By Corollary 7 the main assumption of the length based attacks:

size(Eij(m)−1AEij(m)) > size(A)

holds for the majority of elements A,Eij(m) ∈ G. Hence, given a matrix
Ck we find a conjugator as the matrix Eij(m) which gives the least value
size(Eij(m)CkEij(m)−1).

Here we encounter another challenge. The number of the elementary
matrices Eij(m) can be bounded below as 6 · 10 · |BZ10(1000)| ≥ 1027; we
cannot simply enumerate them and test which ones reduce the size of the
current matrix Ci. In the next subsection we discuss a method reducing the
number of the elementary matrices that need to be tested.

4.3. Reducing the number of the elementary matrices for tests. In
this section we show how given a matrix of the form:

Ci = Eij(m)−1Ci−1Eij(m)

to find a small number of candidates for (i, j,m). We perform our procedure
for all different values of i, j separately, so, here we only consider the values
i = 1, j = 2. Other cases are similar.

For a polynomial f ∈ R by Mon(f) denote the set of all monomials
involved in f and for a pair of polynomials f, g ∈ R define Frac(f, g) to be
the set of monomials:

{xs1−t11 . . . xs10−t1010 | xs11 . . . xs1010 ∈ Mon(f), xt11 . . . x
t10
10 ∈ Mon(g), si ≥ ti}.

Let min(f) denote the minimal short-lex degree monomial in f ∈ R. The
next theorem immediately follows from the discussion in Section 4.2.

Proposition 8. If Ci = E12(m)−1Ci−1E12(m), Ci−1 6= Ci and size(Ci−1) ≤
105, then with probability at least 1− 10−15 the monomial m belongs to the
following union:

M12(Ci) = Frac(−c11,min(c21)) ∪ Frac(c12,min(c11)) ∪
Frac(−c12,min(c22)) ∪ Frac(−c13,min(c23)) ∪
Frac(c22,min(c21)) ∪ Frac(c32,min(c31)),

where cst is an element of Ci. �

The size of the set M12(Ci) can be bounded above by

size(c11) + 2 size(c12) + size(c13) + size(c22) + size(c32)

and, therefore, is just linear in terms of size(Ci).
The sets of monomial candidates Mst(Ci) can be obtained in the similar

way for all the other cases. We define these sets explicitly in Appendix B.
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Using the setMst(Ci) we can define the corresponding set of elementary
matrices

Est(Ci) = {Est(u) | u ∈Mst(Ci)}.
Using Proposition 8 it is easy to see that with probability at least 1− 10−15

the true conjugator Est(m) is in the set Mst(Ci).
Some of the matrices in the set Est(Ci) may be eliminated even further if

we impose the condition of Proposition 5

E ′st(Ci) =
{
E ∈ Est(Ci) | σE−1CiE(Ci) = 0

}
.

Finally we combine the sets corresponding to all possible locations of the
monomial in an elementary matrix:

E(Ci) = ∪s,tE ′st(Ci).

E(Ci) is the reduced set of candidate elementary matrices to be considered
in the tests.

4.4. The results. Algorithms 3 and 4 are the two components describing
the heuristic procedure for solving conjugacy search problem in G. This
procedure is similar to the best descent variation of the length-based attack
proposed in [14].

Algorithm 3. Reduction

Input: A matrix B.
Output: Matrix Y with minimal size(Y −1BY ).

1: Let Y = I.
2: loop
3: Compute E(B);
4: if E(B) = ∅ then return Y .

5: Find Ê ∈ E(B) minimizing size(Ê−1BÊ).

6: if size(B)− size(Ê−1BÊ) ≤ 0 then return Y .

7: Set Y = Y · Ê;
8: Set B = Ê−1BÊ;
9: end loop

Algorithm 3 attempts to find the minimal matrix in the conjugacy class
of a given matrix B. If we give the matrix B = X−1AX as the input to
Algorithm 3 then we expect matrix Y to be the best candidate for the solu-
tion to the corresponding conjugacy search problem. However, the matrix
Y may fail to be the solution in the case when A is not minimal, i.e. there
is an elementary matrix that may reduce the size of A itself. One extra step
of reducing the size of A is needed and it is implemented in Algorithm 4
which solves the conjugacy search problem in G.
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Algorithm 4. Conjugacy search.

Input: A pair of matrices A and B = X−1AX for some X.
Output: A matrix Y such that Y −1BY = A or FAIL.

1: Set YA = Reduce(A);
2: Set YB = Reduce(B);
3: if Y −1B BYB = Y −1A AYA then

4: return Y = YB · Y −1A ;
5: else
6: return FAIL.
7: end if

Algorithm 4 receives a pair A, B = X−1AX as the input. If it success-
fully finds a conjugator Y (not necessarily equal to X) then it outputs Y ,
otherwise a failure is reported. We tested the effectiveness of the proce-
dure described above by executing Algorithm 4 on sets of instances of the
conjugacy search problem generated using Algorithm 2.

Algorithms were implemented in C++ using CRyptography And Groups
(CRAG) [2] library. Since the size of input significantly depends on the
number of elementary matrices used to generate the conjugator, experiments
were performed for different lengths of the product. There were 100 instances
generated using each value. Experiments were performed on a desktop PC
with eight core 2.67GHz Intel i7 processor and 6 gigabytes memory.

The results of our experiments are shown in Table 1. From the table
we can see that the attack can successfully break a significant portion of
instances. Almost 30% of instances generated using products of 50 elemen-
tary matrices were broken. This is the most hard case because of the size
of the matrices in the conjugacy search problem. We want to point out
that though we have considered matrices with 105 monomials in our proofs
above, matrices of size 104 are already not very practical. It takes about
103 bits to store a single 1000-truncated monomial in 10 variables. Hence,
public keys obtained using products of 50 elementary matrices will require
several megabits of storage on average.
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Appendix A. Elementary conjugation formulas

E−112 (m) ·A · E12(m) =

 1 −m 0
0 1 0
0 0 1

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 1 m 0
0 1 0
0 0 1


=

 a11 −ma21 a12 +m(a11 − a22)−m2a21 a13 −ma23
a21 a22 +ma21 a23
a31 a32 +ma31 a33



E−113 (m) ·A · E13(m) =

 1 0 −m
0 1 0
0 0 1

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 1 0 m
0 1 0
0 0 1


=

 a11 −ma31 a12 −ma32 a13 +m(a11 − a33)−m2a31
a21 a22 a23 +ma21
a31 a32 a33 +ma31



E−131 (m) ·A · E31(m) =

 1 0 0
0 1 0
−m 0 1

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 1 0 0
0 1 0
m 0 1


=

 a11 +ma13 a12 a13
a21 +ma23 a22 a23
a31 +m(a33 − a11)−m2a13 a32 −ma12 a33 −ma13



E−123 (m) ·A · E23(m) =

 1 0 0
0 1 −m
0 0 1

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 1 0 0
0 1 m
0 0 1


=

 a11 a12 a13 +ma12
a21 −ma31 a22 −ma32 a23 +m(a22 −m33)−m2a32
a31 a32 a33 +ma32



E−121 (m) ·A · E21(m) =

 1 0 0
−m 1 0

0 0 1

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 1 0 0
m 1 0
0 0 1


=

 a11 +ma12 a12 a13
a21 +m(a22 − a11)−m2a12 a22 −ma12 a23 −ma13
a31 +ma32 a32 a33



E−132 (m) ·A · E32(m) =

 1 0 0
0 1 0
0 −m 1

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 1 0 0
0 1 0
0 m 1


=

 a11 a12 +ma13 a13
a21 a22 +ma23 a23
a31 −ma21 a32 +m(a33 − a22)−m2a23 a33 −ma23
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Appendix B. Reduced sets of monomial candidates.

M12(Ci) = Frac(−c11,min(c21)) ∪ Frac(c12,min(c11)) ∪ Frac(−c12,min(c22)) ∪
Frac(−c13,min(c23)) ∪ Frac(c22,min(c21)) ∪ Frac(c32,min(c31)).

M13(Ci) = Frac(−c11,min(c31)) ∪ Frac(−c12,min(c32)) ∪ Frac(c13,min(c11)) ∪
Frac(−c13,min(c33)) ∪ Frac(c23,min(c21)) ∪ Frac(c33,min(c31)).

M31(Ci) = Frac(c11,min(c13)) ∪ Frac(c21,min(c23)) ∪ Frac(c31,min(c33)) ∪
Frac(−c31,min(c11)) ∪ Frac(−c32,min(c12)) ∪ Frac(−c33,min(c13)).

M23(Ci) = Frac(−c21,min(c31)) ∪ Frac(−c22,min(c32)) ∪ Frac(c13,min(c12)) ∪
Frac(c23,min(c22)) ∪ Frac(−c23,min(c33)) ∪ Frac(c33,min(c32)).

M21(Ci) = Frac(c11,min(c12)) ∪ Frac(c21,min(c22)) ∪ Frac(−c21,min(c11)) ∪
Frac(c31,min(c32)) ∪ Frac(−c22,min(c12)) ∪ Frac(−c23,min(c13)).

M32(Ci) = Frac(−c31,min(c21)) ∪ Frac(c12,min(c13)) ∪ Frac(c22,min(c23)) ∪
Frac(c32,min(c33)) ∪ Frac(−c32,min(c22)) ∪ Frac(−c33,min(c23)).
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