
Cryptanalysis of RAKAPOSHI Stream Cipher†

Lin Ding, Jie Guan

Zhengzhou Information Science and Technology Institute, China

E-mail: dinglin_cipher@163.com; guanjie007@163.com

Abstract. RAKAPOSHI is a hardware oriented stream cipher designed by Carlos Cid et al. in 2009. The

stream cipher is based on Dynamic Linear Feedback Shift Registers, with a simple and potentially scalable

design, and is particularly suitable for hardware applications with restricted resources. The RAKAPOSHI

stream cipher offers 128-bit security. In this paper, we point out some weaknesses in the cipher. Firstly, it

shows that there are weak (key, IV) pairs in RAKAPOSHI stream cipher. Secondly, for weak (key, IV)

pairs of RAKAPOSHI, they are vulnerable to linear distinguishing attack and algebraic attack. Finally, we

propose a real time related key chosen IV attack on RAKAPOSHI. The attack on RAKAPOSHI recovers the

128-bit secret key of with a computational complexity of , requiring 47 related keys, chosen IVs

and keystream bits. The success probability of this attack is 0.999, which is quite close to 1. The

experimental results corroborate our assertion.

1922

372 82

14.5552

Keywords: Cryptanalysis; linear distinguishing attack; algebraic attack; related key chosen IV attack;

RAKAPOSHI; stream cipher.

1 Introduction

Stream ciphers are symmetric encryption algorithms based on the concept of pseudorandom keystream

generator. Although it seems rather difficult to construct a very fast and secure stream cipher, some efforts to

achieve this have recently been deployed. The NESSIE project [1] launched in 1999 by the European Union

did not succeed in selecting a secure enough stream cipher. In 2005, the European project ECRYPT decided

to launch a competition to identify new stream ciphers that might be suitable for widespread adoption. This

project is called eSTREAM [2] and received 35 submissions. Those candidates are divided into software

oriented and hardware oriented stream ciphers. Hardware oriented stream ciphers should be suitable for

deployment on passive RFID tags or low-cost devices such as might be used in sensor networks. Such

devices are exceptionally constrained in computing potential because of the number of logic gates available

or the amount of power that might realistically be available.

In 2009, Carlos Cid et al. [3] proposed a new hardware-oriented stream cipher called RAKAPOSHI,

which aims to complement the current eSTREAM portfolio of hardware-oriented stream ciphers. The

RAKAPOSHI stream cipher offers 128-bit security. The designers claimed that the cipher design and

† The paper had been submitted and is under review now. The paper was done independently of two similar works, i.e., [8] and [9].

security evaluation incorporates lessons learned during the several years of extensive analysis in the

eSTREAM process, and thus RAKAPOSHI is less likely to be susceptible to more recent attacks, such as

initialization attacks.

RAKAPOSHI is based on Dynamic Linear Feedback Shift Registers (DLFSR), with a simple and

potentially scalable design, and is particularly suitable for hardware applications with restricted resources. A

Dynamic Linear Feedback Shift Register scheme is a general construction consisting usually of two registers:

the first subregister A, is clocked regularly and updated using a fixed mapping. Subregister B, is updated

using a linear mapping, which varies with time and depends of the state in register A. The design can be seem

as a generalization of constructions found in early designs, including the stop-and-go generator [4], LILI [5],

dynamic feedback polynomial switch [6], and K2 [7]. In fact, the RAKAPOSHI stream cipher is in fact a

successor of the K2 stream cipher, but aiming at low-cost hardware implementations.

In this paper, we point out some weaknesses in the cipher. Firstly, the result shows that there are

weak (key, IV) pairs in RAKAPOSHI stream cipher. Secondly, for weak (key, IV) pairs of RAKAPOSHI,

they are vulnerable to linear distinguishing attack and algebraic attack. Finally, we proposed a real time

related key chosen IV attack on RAKAPOSHI. The time complexity of our related key chosen IV attack on

RAKAPOSHI is about , requiring 39 related keys on average. The results show that there exist some

weaknesses in the cipher. See also [8] and [9] for two works that were done independently of our results.

1922

342

This paper is organized as follows. In Section 2, we briefly describe RAKAPOSHI stream cipher. We

discuss the existence of weak (key, IV) pairs, and present linear distinguishing attack and algebraic attack

against the weak (key, IV) pairs of RAKAPOSHI in Section 3. Section 4 proposes a real time related key

chosen IV attack on RAKAPOSHI. The Section 5 concludes this paper.

2 Brief Description of RAKAPOSHI

The RAKAPOSHI stream cipher consists of three main building blocks, namely a 128-bit Non-Linear

Feedback Shift Register (denoted as register A), a 192-bit Linear Feedback Shift Register (denoted as

register B), and a non-linear filter function over . It uses two bits from the state of the NLFSR to

select and dynamically modify the linear feedback function of the LFSR. The keystream is produced by

combining the output of both registers with the output of the non-linear filter function. An overview of the

different blocks used in the stream cipher can be found in Fig. 1.

8(2)GF

Figure 1. The structure of RAKAPOSHI stream cipher

We denote by the contents of the LFSR at time t. Similarly, the content of the

NFSR is denoted by at time t.

1 1(, , ,)t
t t tA a a a  

1 127(, , ,)t
t t tB b b b  

27



4

Non-Linear Feedback Shift Register A. The register A is a 128-bit NLSFR, defined using the

following recurrence relation.

128 6 7 11 16 28 36 45 55 62

6 7 11 16 28 36 45 55 62 7 45

11 55 7 28 28 55 6 45 62 6 11 62

(, , , , , , , , ,)

1
t t t t t t t t t t t

t t t t t t t t t t t t

t t t t t t t t t t t t

a g a a a a a a a a a a

a a a a a a a a a a a a

a a a a a a a a a a a a

         

          

           



           
   

Linear Feedback Shift Register B. The register B is a 192-bit dynamic LFSR. Register A is used to

select and dynamically modify the feedback function of LFSR B using two bits from the state of register A,

and as a result, Register B, which can use four different linear recursive functions, presents an irregular

updating mechanism. Let and be the 42nd and 90th bits of register A at time t, respectively (that is,

and). Then LFSR B at time t is defined by the following recurrence relation.

0c 1c

0 tc a  1 891 tc a 

192 0 1 14 37 41 49 51 93 107 120 134 136 155 158 176

14 37 41 49 51 93 0 1 107 0 1 120 0 1 134

0 1 136 0

(, , , , , , , , , , , , , , ,)t t t t t t t t t t t t t t t

t t t t t t t t t t

t t

b f c c b b b b b b b b b b b b b b

b b b b b b b c c b c c b c c b

c c b c b

             

        





                

    155 0 158 176t tc b b    

Where 1i ic c  represents the negation of . ic

Non-Linear Filter. The 8-to-1 non-linear filter function is the same function used as the non-affine

component of the AES S-Box. This function is a balanced Boolean function, with polynomial representation

(ANF) of degree 7. In the RAKAPOSHI stream cipher, the input bits for this function are extracted from

both registers A and B, as

67 127 23 53 77 81 103 128(, , , , , , ,t t t t t t t t ts v a a b b b b b b       )

The explicit polynomial expression of the function is given in the Appendix A. ()v 

Initialization Process. The RAKAPOSHI stream cipher supports key size of 128 bits and IV size of 192

bits. Before the generation of the cipher keystream, the cipher is initialized with the secret key and a selected

IV. The initialization process of RAKAPOSHI is done as follows.

Firstly, the secret key 0 127(, ,)K k k  and 0 191(, ,)IV iv iv  are loaded into the NLFSR and DLFSR,

respectively, as follows.

0 127 0 127

0 191 0 19

(, ,) (, ,)

(, ,) (, ,)

a a k k

b b iv iv




 
 

1

Secondly, the cipher then clocks 448 times with the output of the filter function (i.e.,()v  ts) being fed

back

0 cycles, with the output of the non-linear

 for further 128 cycles, with the output of the

) , and it is ready to produce the

first

neration. The cipher outputs one keystream bit at each cycle. Given the cipher state

 The t

 into the cipher state. This process is divided into two stages:

 In the first stage of the initialization, the cipher runs for 32

filter function ()v  being fed back into the register B.

 In the second stage of the initialization, the cipher runs

non-linear filter function ()v  being fed back into the register A.

At the end of the initialization, the cipher internal state is 448 448(,S A B 448

keystream bit 0z .

Keystream Ge

(,)A B at time t, the cipher operates as follows:

 keystream bit tz is computed as t tz a

t t tS 

tb s   and is output.

 B.  0 1, tc c A are used to update the register

 Registers A and B are updated to obtain 1tA  and 1tB  , respectively.

3 Weak (key, IV) Pairs of RAKAPOSHI

3.1 The Existence of the Weak (key, IV) Pairs

RAKAPOSHI uses a dynamic linear feedback shift register to ensure good cryptographic properties.

 of the weak (key, IV) pairs in RAKAPOSHI stream cipher. For a weak

(key

However, there is an “lock-up” state for the register A That is, if the initialization process leaves A in the all

ones state, then it will remain permanently in that state, and register B will become a simple linear feedback

shift register, which is the only active block of the cipher. As well known, keystream sequences generated by

a single LFSR and a non-linear filter function are vulnerable to distinguishing attack and algebraic attack.

Consequently, if the key and IV pair results in this “lock-up” state for the register A, we define the key and

IV pair as a weak (key, IV) pair.

Now we reveal the existence

, IV) pair, the state 448A is the all one state (1,1, ,1) . Then our following purpose is to obtain an

available 0S from known 48 in reverse. According to the structure of RAKAPOSHI, we present an

algorithm compute the weak (key, IV) pairs.

 4S

to

Finding Weak (key, IV) pairs Algorithm for RAKAPOSHI

1. Set 448A be the all o

2. From t = 447 to t = 320 do

.

pute) .

ne state (1,1, ,1) , and select 448B randomly.

(2.a) Compute and0 41t 1

(2.b) Com

c a  89

127 23 53 77 81 103 128(, , , , , , ,t t t t t t t t ts v a a b b b b b b       

tc a 

67

(2.c) Compute

192t t

c c




14 37 41 49 51 93 0 1 107 0 1 120 0 1 134

0 1 136 0 155 0 158 176

t t t t t t t t t

t t t t

b b b b b b c c c c b c c b

b c b c b b

        

   

               

     

(2.d) Compute


3. From t = 319 to t = 0 do

(3.a) Comput and .

) .

put

b b b

128 6 7 11 16 28 36 45 55 62 7 45

11 55 7 28 28 55 6 45 62 6 11 62

1t t t t t t t t t t t t t

t t t t t t t t t t t t

a a a a a a a a a a a a a

a a a a a a a a a a a s
           

         

           
    

ta  

e 0 4tc a  1 9

23 53 77 81 103 128(, , , , , ,t t t t t tb b b b b b     

1 8tc a 

(3.b) Compute 67 127,t t ts v a a 

(3.c) Com e

192t t tb b b 14 37 41 49 51 93 0 1 107 0 1 120 0 1 134

1 136 0 155 0 158 176

t t t t t t t t

t t t t t

b b b b b b c c c c b c c b

c b c b c b b s

        

   

               

      

(3.d) Compute


itial stat 0 .

0c 

128 6 7 11 16 28 36 45 55 62 7 45

11 55 7 28 28 55 6 45 62 6 11 62

1t t t t t t t t t t t t t

t t t t t t t t t t t t

a a a a a a a a a a a a a

a a a a a a a a a a a a
           

           

           
   

4. Output the in e 0 0(,)S A B

According the algorithm above, it is easy to see that for each value of , there exists a unique weak

(key, IV) pair. Since can be randomly selected in this algorithm, there are certainly weak (key, IV)

pairs One example is illustrated in Table 1.

I

Ke

448B

448B 1922

 in RAKAPOSHI stream cipher.

Table 1. Weak (key, IV) pair of RAKAPOSH

y 0x81094ef5d124b47934d15b5228e5b8fa

IV 0x4f9fe37b7c5a87f592ed1e89175e0f6d6634eada6411eaf3

0xffffffffffffffffffffffffffffffff 448A

0x7a72bd70c98392497034e2ba72c56fb629adfc8265f4aada 448B

3.2 Linear Distingu n airs

In distinguishing attacks, n ly random sequence.

For weak (key, IV) pairs of RAKAPOSHI, we tried to construct linear distinguishers, by considering linear

KAPOSHI, the

distinguisher using 11 keystream bits as follows.

ishi g Attack and Algebraic Attack on Weak (key, IV) P

 o e attempts to distinguish the keystream sequence from a pure

approximations of functions used in the stream cipher. For each weak (key, IV) pair of RA

internal states of the register A are all ones after the initialization process, the recurrence relation of LFSR B

will remain permanently as follows.

192 14 37 41 49 51 93 136 158 176t t t t t t t t t t tb b b b b b b b b b b                  

Now, the number of terms in the recurrence function of LFSR B is 11. We can construct a linear

14 37: t t tD z z z z    41 49 51 93 136 158 176 192t t t t t t t tz z z z z z z               0

Simultaneity, the 8-to-1 non-linear filter function can be simplified as follows since the first two

inpu

()v 

t bits are set to ones.

67 127(, ,t t t ts v a a b  23 53 77 81 103 128

23 53 77 81 103 128

, , , , ,)

(1,1, , , , , ,)

()

t t t t t

t t t t t t

b b b b b

v b b b b b b

v

     

     
 

nonlinear filter has biasThe best affine approximation of the 6()v  2 

near filter ()v

as claimed in sec.5.3 by the

designers [3]. However, the best affine approximation of the nonli   has bias . Using the

Pilling-up Lemma [10], the bias of the linear distinguisher is estimated as

KAPO

imed in sec.5.3 by the designers,

RAKAPOSHI stream cipher is secure against distinguishing attacks. However, for weak (key, IV) pairs of

RAK

rs.

RAKA e internal states of the register A are all ones after the

initialization process. Here we use the XL method [12] to estimate the time complexity f solving the above

algebraic equation system, and obtain that its time complexity is about

2.422 

10 2.42 11 16.622 (2) 2  

So, if the keystream sequence is generated by RAKAPOSHI with a weak (key, IV) pair, the linear

distinguisher D holds with the probability bias 16.622 . As a result, to distinguish the RA SHI with a

weak (key, IV) pair, it requires  216.62 33.241 / 2 2  keystream bits. As cla

APOSHI, it is vulnerable to linear distinguishing attacks.

A weak Key-IV can be distinguished means that the register A initial state of the weak Key-IV is the all

ones state. Consequently, the next task is to recover the register B initial state. Algebraic attacks against

stream ciphers were originally proposed in 2003 by Courtois and Meier [11]. The attack is a powerful

cryptanalytic technique against some LFSR-based stream ciphe

For the RAKAPOSHI stream cipher with a weak (key, IV) pair, the keystream output tz is computed

by means of a Boolean function over 7(2)GF given by

67 127 23 53 77 81 103 128(, , , , , , ,)

1 ()
t t t t t t t t t t t t t t

t

z a b s a b v a a b b b b b b

b v
            

   

This function has degree 5 and algebraic immunity 3 (which is the same of the function)v).

For each weak (key, IV) pair of POSHI, th

( 

 o

3
3 192  60.51

0

2
i i

 
 
 

ime complexity of this attack is

much smaller than the time complexity of a brute force attack. Therefore for weak (key, IV) pairs of

RAKAPOSHI, it is weak against algebraic attack.

4 R

n IV attack on RAKAPOSHI stream cipher. The attack on

RAKAPOSHI is done by assuming four conditions as shown in Table 2. The relation of

  


The algebraic attack requires approximately 20.172 keystream bits. The t

elated Key Chosen IV Attack on RAKAPOSHI

In this section, we will propose a related key chose

(,)K IV and

(,)K IV  is as follows.

0 127 1 127 0

0 191 1 191(, ,) (, , ,0)IV iv iv IV iv iv

(, ,) (, , ,)K k k K k k k     
   

.

{0,1}Where   , is a binary constant.

Table 2. Conditions used in the attack on RAKAPOSHI

0 127 0 191(, ,), (, ,)K k k IV iv iv   1 127 0 1 191(, , ,), (, , ,0)K k k k d IV iv iv     Condition

t 127ta  191tb  t 127ta  191tb 

0 127k 191iv

1 0()g A 0() 0f S s 0 0k  0
0

0()g A k  

0
0() 0S s f

2 1()g A 1
1()f S s 1 0()g A 0

0()f S s 

… … … … … …

320 319()g A 319
31() 9f S s 319 318()g A 31

318()8f S s 

321 320
320()g A s 320()f S 320 319()g A 319

31() 9f S s  320 0 3190 ()32s s s 

322 321
321()g A s 321()f S 321 320

320()g A s  320()f S 

… … …… … …

448 447
447()g A s 447()f S 447 446() 446g A s  446()f S 

449 448()g A 448()f S 448 447
447()g A s  447()f S  448 448 4470 ()s s s 

… … … … … …

Let Z and be keystream sequences generated from (,)K IV and (,)K IV Z  . According to table 2, we can

get Propert 1 as follows.

Pr ty 1. The sy em 0 holds when the following two conditions are simultaneously satisfied.

a

y

oper st 1S S 

) g 0
0()A k   ;

n of RAKAPOSHI stream cipher. It consists of two stages, which differ from each

othe

b) 0
0() 0f S s  .

Recall the initializatio



r in the feedback of ts . According to table 2 and Property 1, we can get Property 2 as follows.

Prop 2. If the serty ystem holds, the system1 0S S  1i iS S  holds for when the following two

s are simult usly satisfied.

system

1i 

condition aneo

c) 320 0s  ;

d) 448 0s  .

It is easy to see that if the 449 448S S  holds, there exists a clear re ion between Z andlat Z  , i.e.,

1i iz z  for 0i  .

Let 1[] (, ,)mZ m z  z be the m-bit keystream sequence starting from the second keysteam bit generated

by (,)K IV and 0 1,)mz [] (,Z m z   be m-bit keystream sequence starting from the first keysteam bit generated

by related (,)K IV  pair. We define th [] []e event Z m Z m (i.e., 1i iz z  for 0 1i m  ) by  and its

ment bycomple . We denote the event that the conditions a) mu ously satisfied by L and

its co Sin

c

c

cL

 and b) are si ltane

mplement by ce the conditions c) and d) are obtained in different clocks, and then are assumed to

be independent to facilitate cal ulation of probability. Hence, when the event L occurs, the event

.

 occurs

with probab

2Pr(|) Pr() Pr() Pr() 2L c d c d

ility

     .

However, when the event cL occurs, after 447 clocks of iteration, the differentials of internal states will

be fairly even and unpredictable, the event occurs with probability 2 m . That is,

Pr(|) 2c mL  

fectively,In order to recover the some key bits ef

choo

 we should fix some IV bits. Here, we

se 107 120 134 136 155 0iv iv iv iv     and 158 1iviv  . Thus, the equation 0
0() 0f S s  can be simplified as

follows.

0
0 0 14 37 158

0 7

()

0

41 49 51 93 0

41

176 0

176 0

0 14 37 41 49 51 93 41 158 176 0

14 3 41 49 51 93

f S s iv iv iv

iv iv iv

     

   



iv iv 



127 23 53 77, , ,

iv iv c iv

k

 

103 128, ,

iv s

s

 



iv iv iv iv iv iv iv k iv iv s

iv iv iv iv iv

          

   
 (1)

Where 0 23 53 77 81 103 128 67 81, , , , , ,) (, ,)s 67 127(,v a a

23 53iv iv 

b b b b b b v k k iv  iv iv iv

ee functions can be obtaine

1

iv iv .

Recall the non-linear filter function . Thr

When and

d as follows. ()v 

,

53 77 81, , , ,iv iv iv iv

1

77 81 128 0iv iv iv   103iv 

0 67 127 23 103(, , ,s v k k iv iv128) 1  (2)

he and

W n 77 103 128 0iv iv iv  23 53iv iv  81iv  ,
, , , ,iv iv iv iv

1

0 6 23 53 77 81 103 128 677 127(, , ,s v k k iv iv) k  1  (3)

and

, When 2377 81iv iv 103 128 0iv iv   53iv iv 

0 67 127 23 103(, , ,53 77 81, , , , 128) 127s v k iv v ik vi iv iv i

y bit with

Algorithm 1

v k 

chosen IVs, nam

 (4)

Now, we will introduce a method to recover one ke 2h ed Algorithm 1.

1. Under fixed and unknown and K  , choose 2h IVs where K 107 120v iv 134 136iv iv iv155i 0     , 158 1iv  ,

-bit values and the rema0 1(, , hiv iv ) are all 2h ining bits are fixed to ({0,1})e  .

2. U

 stream sequences

ntil no more chosen IV remain, repeat the followings.

Generate the key 1(, ,)m[]Z m z z  using (,)IV ; K

 Generate the keystream se 0 1[] (, ,)mZ m z z quences    using (,)K IV  ; 

 Check [] []Z m Z m . If the two keystream sequences pass the check, output 0
0()g A k    . Otherwise

utpu

try other chosen IVs.

3. If no chosen IVs passes the check, then o 1t 0
0()g A k   .

With a decision rule of Algorithm 1, t rs denoted as type I and type II exist, see Figure.2. wo types of erro

Let  and  de the probabilities of type I and II errors, respectively. Th 2 2Pr() (1 2)
h

   and

2Pr() 1 (1 2)
hm    . Hence,

note us,

 we can obtain the equation y with a success probabilit0
0g A() k  

of 1 Pr() if the equation 0
0()g A k   holds, and obtain the equation 0

0() 1g A k    with a success

probability of1 Pr() if the equation 0
0()g A k   does not hold. Thus, the success probability of this

algorithm bounded below by1 Pr() Pr()is    . In our paper, we use 0 1 Pr() Pp r()    cess

ttack. The actual value of success prob act more, making our attack

ma stronger.

as the suc

o ability isprobability

rginally

f our a in f

0
0: () 1L g A k   

0: ()L g A k

c

0  

Figure 2. Tw rs in the decision rule of Algorithm 1

ber of chosen IVs used i . For each chosen IV, the algorithm needs to execute the

ocess of RAKAPOSHI omputational complexity of Algorithm 1 i

o types of erro

 In Algorithm 1

 two times. Thus, t

The num

encryption pr

s 2h

he c s 12 2 2h h  .

It requires

In our

12 (1) 2 (2h hm m     1)m  keystream bits.

related key attacks on RAKAPOSHI, we use 2 1m  related keys, which are shows as follows.

For 0 1j m   ,

0 0 1
0 127 1 1 127 0 1 1 127 0

191 1 1

(, ,) (, , ,), (, , , 1)

) (

j j jK k k K k k k K k k k

IV iv

 

0 191(, , , ,0)IV iv iv,j jiv

    



  
  

Note that 0
0K K .

Now, we will ore key bits using these related keys, named Algorithm 2.

Algorithm 2

 introduce a method to recover m

For j m 0 1 , do the followings.

1. Under the related keys 0
jK and 0

1jK  , run Algorithm 1. If Algorithm 1 outputs 0
0()g A k  , goto step 2.

O

elated key

the

2. Under the r

rwise, goto step 3.

and 0
1jK  , do the fo

8 0 and 103iv

llowings. s 0
jK

 Set , and then run Algorithm 1. Recover the key bi oft 41k 0
jK 23iv 53 77 81 12iv iv iv iv    1

using the equation (1) and (2

 Set 23 53iv iv iv 

).

128 0iv  and 81iv , and then run Algorithm 1. Recover the key bi oft 67k 0
jK 77 103iv 1

using the equation (1) and (3).

0 Set and 23 53 1iv iv  , and then run Algorithm 1. Recover the key bit 127k of 0
jK77 81 103 128iv iv iv iv   

using the equation (1) and (4).

3. Under the related keys 0
jK and 1

1jK  , d

0 and 103iv

o the followings.

 Set 23 53 77 81 128iv iv iv iv iv     , and then run Algorithm 1. Recover the key bi oft 41k 0
jK 1

usin (2).

 Set 23 53 77 103 128iv iv iv iv iv    

g the equation (1) and

0 and 81iv , and then run Algorithm 1. Recover the key bi oft 67k 0
jK 1

using the equation (1) and (3).

 Set and 23 53 1iv iv  , and then run Algorithm 1. Recover the key bit 127k of 0
jK77 81 103 128 0iv iv iv iv   

using the equation (1) and (4).

Using t can recover the following key bits. he Algorithm 2, we

41mod128 41 1mod128, , mk k  

67 mod128 67 1mod128, , mk k  

127 mod128 127 1mod128, , mk k  

Furthermore, we also can obtain m non-linear functions with some key bits. In Algorithm 2,

for , we should run Algorithm 1 four times under s. Hence, Algorithm 2 requires

chosen IVs and m keystre bits. The computational complexity of

of Algorithm 2 is bounded below by , since the

In order

properly selected. When we set , then the attacker

tain 23 non

ts

reco

related key0 1j m  

22 4 2h h 

gorithm 2 is

cce

am1 32 (2 1) 4 2 (2 1)h hm    

The success probability Al

su

1 32 4 2h h   . 3
0

mp

ss probability of Algorithm 1 is bounded below by 0p .

to get a high success probability for recovering the 128-bit secret key, m and h should be

can recover 69 key bits 0 21 41 63 67 89 127(, , , , , , , , ,)k k k k k k k   .

We also can ob -linear functions with 22 key bits 22 40 64 65 66(, , , , ,)k k k k k . In fact, w n simplify

these non-linear functions using the recovered 69 key bi . T

23m 

e

s 22 40 66(, ,)k k k k can be

e computa nal complexity

 ca

65khus, the 22 key bit

ut 3 22 372 2 2h

64, , ,

m

tio

vered easily, with a computational complexity of 222 at most. Finally, the re aining 37 key

bits 90 126(, ,)k k should be exhaustive searched. Thus, considering Algorithm 2, th

of our related key chosen IV attack on RAKAPOSHI is abo   ,

2m

 requ

 for parame

iring 22h chosen IVs and

32 (2 1)h m  keystream bits. Table 3 shows the complexities of our attack on RAKAPOSH ters h.

Note that in our related key attacks on RAKAPOSHI, we use 1 47

I

  related keys in Algorithm 2.

Table 3. Our results on RAKAPOSHI for parameters h

h
Computational

complexity
Chosen IVs

Keystrea
required

m bits

Success probability

4 0.514 372 62 12.5552

5 372 72 0.993 13.5552

6 .999 37 82 14.5552 02

Here, we cho , w er re SHI with a

computational compl requiring 47 related ke sen IVs an stream bits. The

success probability of our attack on RAKAPOSHI is 0.999, which quite close to

We also validate our result by simulating Algorithm 2 and solving the 23 near functions. The

resu

e ho

+, CPU 2.31GHz, 768

Gb R

ose 6h  . Thus

exity of 372 ,

e can recov the 128-bit sec t key of RAKAPO

 ys, 82 cho d 2 key14.555

is 1.

 non-li

lt shows that we can recover the 91 (=69+22) key bits within 10.8 minutes on average. By simulating

RAKAPOSHI stream cipher, the remaining 37 can be recov red within 23.04 urs on average. The

simulation was implemented on AMD Athlon(tm) 64 X2 Dual Core Processor 4400

AM, OS Windows XP Pro SP3. These experimental results corroborate our assertion.

5 Conclusions

RAKAPOSHI is a hardware-oriented stream cipher designed by Carlos Cid et al. in 2009. The RAKAPOSHI

stream cipher offers 128-bit security. Until now, no attack on the cipher has been published. In this paper, we

point out some weaknesses in the cipher. Firstly, the result shows that there are weak (key, IV) pairs in

 cipher. Secondly, for weak (key, IV) pairs of RAKAPOSHI, they are vulnerable to

linear distinguishing attack and algebraic attack. Finally, we proposed a real time related key chosen IV

wledgements

nessie.org, Accessed August 18, 2003

[2] ECRYPT. eSTREAM: ECRYPT Stream Cipher Project, IST-2002-507932. Available at

.ecrypt.eu.org/stream/, Accessed September 29, 2005

[3] Carlos Cid, Shinsaku Kiyomoto, and Jun Kurihara. The RAKAPOSHI Stream Cipher. Information and

84, number

 Generator. In Selected Areas in

eudo Random Binary Sequences for

puter Science, Springer Berlin Heidelberg, 2012, pp. 138-155.

1922

RAKAPOSHI stream

attack on RAKAPOSHI. The time complexity of our related key chosen IV attack on RAKAPOSHI is

about 342 , requiring 39 related keys on average. The results show that there exist some weaknesses in the

cipher.

We hope our results can be helpful in evaluating the security of RAKAPOSHI stream ciphers against

related key attacks, and we look forward to further work in evaluating RAKAPOSHI stream ciphers against

other kinds of cryptanalytic attacks.

Ackno

This work is supported in part by the National Natural Science Foundation of China (No. 61202491,

61272041, 61272488).

References

[1] NESSIE. New European Schemes for Signatures, Integrity, and Encryption. Available at

http://www.crypto

http://www

Communications Security, LNCS 5927[C]. 2009. 32-46.

[4] T. Beth and F.C. Piper. The stop-and-go-generator. In Proceedings of EUROCRYPT 19

209 in LNCS, pages 88–92. Springer-Verlag, 1985.

[5] L.R. Simpson, E. Dawson, J. Golic, and W. Millan. LILI Keystream

Cryptography 2000, number 2012 in LNCS, pages 248–261. Springer-Verlag, 2000.

[6] D. Horan and R. Guinee. A Novel Keystream Generator using Ps

Cryptographic Applications. In Irish Signals and Systems Conference 2006, pages 451–456. IEEE,

2006.

[7] S. Kiyomoto, T. Tanaka, and K. Sakurai. K2: A Stream Cipher Algorithm Using Dynamic Feedback

Control. In Proceedings of SECRYPT 2007, pages 204–213, 2008.

[8] T. Isobe, T. Ohigashi, and M. Morii, Slide cryptanalysis of lightweight stream cipher rakaposhi, in

Advances in Information and Computer Security, G. Hanaoka and T. Yamauchi, eds., vol. 7631 of

Lecture Notes in Com

[9] Mohammad Ali Orumiehchiha, Josef Pieprzyk, Elham Shakour and Ron Steinfeld. Security Evaluation

of Rakaposhi Stream Cipher. Cryptology ePrint Archive Report 2012/656, http://eprint.iacr.org/.

ack. In E. Biham,

3-337, 2004.

[10] M. Matsui. Linear Cryptanalysis Method for DES Cipher. In Proceedings of EUROCRYPT 1993,

number 765 in LNCS, pages 386–397. Springer-Verlag, 1993.

[11] N. Courtois and W. Meier. Algebraic Attacks on Stream Ciphers with Linear Feedb

editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656 of LNCS, pages 345–359.

Springer–Verlag, 2003.

[12] C. Diem, The XL-Algorithm and a Conjecture from Commutative Algebra, In Pil Joong Lee, editor,

Advances in Cryptology-ASIACRYPT2004, LNCS 3329, pp.32

