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Abstract

We conduct a study of public-key cryptosystems based on variants of the Learning Par-
ity with Noise (LPN) problem. The main LPN variant in consideration was introduced by
Alekhnovich (FOCS 2003), and we describe several improvements to the originally proposed
scheme, inspired by similar existing variants of Regev’s LWE-based cryptosystem. To achieve
further efficiency, we propose the first public-key cryptosystem based on the ring-LPN problem,
which is a more recently introduced LPN variant that makes for substantial improvement in
terms of both time and space. We also introduce a variant of this problem called the transposed
Ring-LPN problem. Our public-key scheme based on this problem is even more efficient. For
all cases, we compute the parameters required for various security levels in practice, given the
best currently known attacks.

Our conclusion is that the basic LPN-based scheme is in several respects not competitive
with existing practical schemes, as the public key, ciphertexts and encryption time become very
large already for 80-bit security. On the other hand, the scheme based on transposed Ring-
LPN is far better in all these respects. Although the public key and ciphertexts are still larger
than for, say, RSA at comparable security levels, they are not prohibitively large; moreover, for
decryption, the scheme outperforms RSA for security levels of 112 bits or more. The Ring-LPN
based scheme is less efficient, however. Thus, LPN-based public-key cryptography seems to be
somewhat more promising for practical use than has been generally assumed so far.
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1 Introduction

The decisional LPN problem is that of distinguishing from random a set of samples, each of the
form (a, 〈a, s〉+e), where a ∈ Zn2 is uniformly random (for some parameter n ∈ N), e← Berτ where
Berτ denotes the Bernoulli distribution (with some parameter τ ∈ R), and s ∈ Zn2 is a random
secret fixed over all samples. In the search version of the problem, the goal is to find the secret
vector s. A more detailed definition is given in Section 2.

LPN samples are computationally very simple to generate, but the problem nevertheless seems
to be very hard. The two main types of non-trivial attack on LPN are exhaustive search over
possible error vectors, and a series of attacks based on the Blum-Kalai-Wasserman (BKW) algo-
rithm [BKW03]. The original BKW algorithm was estimated to have slightly subexponential time
complexity of 2O(n/ logn) for 2O(n/ logn) samples. Subsequent work by Lyubashevsky gave a variant
algorithm with runtime 2O(n/ log logn) for n1+ε samples [Lyu05]. A further modification proposed
more recently by Kirchner [Kir11] achieved better runtimes specifically for small τ : his algorithm
runs in time O(2

√
n) with O(n) queries when τ = O(1/

√
n) (this is particularly relevant for the

public-key setting). Practical implementations of optimised variants of the above algorithms were
done by Levieil and Fouque [LF06] and Bernstein and Lange [BL12].

The computational simplicity of LPN makes it very attractive for cryptographic applications,
and indeed, many applications of the “symmetric crypto” type have been suggested [HB01; JW05;
GRS08; App+09; KSS10]. Doing public-key cryptography based on LPN seems to be much harder;
however, in [Ale03], Alekhnovich suggested a public-key cryptosystem based on a variant of the
decisional LPN problem, where the noise rate τ is not constant as in standard LPN, but decreases
with increasing n (in fact, τ ≈ 1/

√
n). While this problem might be easier than LPN with constant

τ , no separation between the problems in the sense of asymptotic complexity is known.
In [Hey+12], the ring-LPN problem was introduced. This can be thought of as a variant of LPN

as follows: suppose we are given n samples of the form described above and arrange the random
vectors a as rows in a matrix A. Then what the adversary is given is of form (A,As + e) where
each entry in e is chosen according to the Bernoulli distribution. In ring-LPN, the matrix A is not
chosen at random but instead such that it represents an element r in a ring R = F2[X]/(g), where
g is a polynomial of degree n. The effect of this is that we can specify A succinctly by just giving
the ring element r and the expensive product As can be replaced by a much faster multiplication
in R. The price is that the assumption is now stronger because we need to assume LPN is hard
even when A has the special structure described.

Our contribution. The question we study in this paper is:

Given what we know about LPN, how (un)attractive is public-key cryptography
based on LPN as an alternative to more well known cryptosystems in practice?

We are not aware of any previous attempts to determine a precise answer to this. It seems that
a widespread perception among cryptographers has been that LPN-based public-key cryptography
must “of course” be totally impractical: that Alekhnovich’s version of the LPN problem seems to
be easier than standard LPN (due to the limited noise rate), so to ensure security would require
huge values of n that would render the whole scheme impracticable. However, it is important to
consider that for a practical application of an LPN-based scheme, one must choose concrete values
of parameters n and τ , and what then matters is not the asymptotic complexity of solving the
underlying problem, but whether those concrete values are vulnerable to attack by state-of-the-art
algorithms. Besides, it seems natural to consider whether using the Ring-LPN problem would help
in terms of efficiency.

In this paper we study some variants of Alekhnovich’s original cryptosystem, which are favourable
for analysis as well as for practical efficiency reasons. A basic version of this encryption scheme
was first communicated to us by Cash [Cas12], and seems to be folklore, at least in some parts of
the community, but we were not able to find any published record of the variants that we consider.
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The CCA-secure public-key encryption schemes recently proposed by Döttling, Müller-Quade, and
Nascimento [DMQN12] and Kiltz, Masny, and Pietrzak [KMP14] use some similar ideas to the
schemes we consider in this paper; however, their constructions are relatively complex in order to
achieve CCA security, whereas in this paper we aim to see how simple and efficient a construction
we can achieve under practical CPA security.

The basic scheme we consider is similar in structure to Regev’s cryptosystem based on the
hardness of the Learning With Errors (LWE) problem [Reg05]. Due to this resemblance, we are
able to improve the basic scheme to get a better plaintext to ciphertext size ratio in a way similar to
a corresponding improvement of Regev’s scheme by Peikert, Vaikuntanathan, and Waters [PVW07].
The idea behind several of our proofs of security can be traced to an invited talk given by Micciancio
[Mic10] (although the reader should be aware that the talk was primarily about encryption based
on LWE).

We also propose two new cryptosystems where we exploit the trick from ring-LPN of specifying a
public matrix more succinctly and use the ring structure to implement encryption by multiplication
in the ring. As a result, both the public key size and encryption time become essentially linear in
the security parameter, instead of quadratic. The first scheme is based on the Ring-LPN problem
[Hey+12] and is inspired by similar schemes based on the ring-LWE problem. While this scheme
superficially seems to be more efficient than the LPN-based variants, the decryption has a more
complicated structure and therefore introduces a larger decryption error. We therefore also suggest
a different problem we call Transposed Ring-LPN, which appears to be incomparable to Ring-LPN
in terms of difficulty. We construct a cryptosystem based on Transposed Ring-LPN. It has an even
simpler decryption algorithm with smaller error.

To analyse the concrete efficiency of our schemes, we consider in Section 4 how the best known
attacks would perform against the LPN instances used in the LPN-based cryptosystems we pro-
pose. We aim for a 25% probability of incorrect decryption of an encrypted bit, so that incorrect
decryptions may be corrected using error correcting codes with a manageable expansion factor of
about 5. We find that for 80-, 112-, and 128-bit security, respectively, n = 9000, 21000, and 29000
are suitable. These security levels (are thought to) correspond to 1024-, 2048-, and 3072-bit RSA.

This means that for the basic LPN-based scheme, public keys will be prohibitively large: several
megabytes already for 80-bit security. For the ring-LPN based scheme, however, the situation is
much better: our most efficient scheme is based on Transposed Ring-LPN, and taking 128-bit
security as an example, the public key would have size about 230kB, and to send an encrypted
128-bit symmetric key, we would need to send about 36kB. These numbers are much larger than for,
say, RSA, but they do not seem totally impractical. As for computing time, our implementation of
LPN decryption (to reconstruct a 128-bit symmetric key) outperforms RSA by a factor of about
4.5. The corresponding encryption takes time comparable to a 3000-bit full scale exponentiation
(but is of course much slower than RSA with small public exponent). On the other hand, the
scheme based on Ring-LPN is not competitive. This is because the decryption error probability
is larger, therefore we need to decrease LPN noise parameter to maintain a reasonable decryption
error. This in turn forces us to increase n to maintain the security level, and this causes a loss of
efficiency.

We did not compare to timings for elliptic curve cryptography (ECC). We expect, however,
that LPN decryption will be less competitive here because keys for ECC do not have to grow
as fast with increasing security as in RSA. Finally, it should be noted that for security against
quantum attacks, neither RSA nor ECC are secure, so one should instead compare to LWE-based
cryptosystems; however, this is not in scope of this paper.

In conclusion, we find that LPN-based public-key cryptography is somewhat more practical than
the general perception seems to have been so far, at least given current state-of-the-art of attacks
and if one believes our computational assumption. It might even be competitive in applications
where decryption time is the bottleneck, and security of 112 bits or more is desired.
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2 The Cryptosystems

2.1 Learning Parity with Noise

We begin by establishing some notation and formally defining the LPN problem [Blu+94].

Notation. Berτ denotes the Bernoulli distribution with parameter τ . Berkτ denotes the distribution
of vectors in Zk2 where each entry of the vector is drawn independently from Berτ . Binn,τ denotes
the binomial distribution with n trials, each with success probability τ . x ← D means that x is
drawn from distribution D, and x ← S means that x is drawn uniformly at random from the set
S. A probability ε(n) is said to be negligible if ε(n) ≤ 1/p(n) for any polynomial p and all large
enough n. Where it is clear from context, we sometimes use the term “indistinguishable” in lieu
of “computationally indistinguishable”.

For a vector w, let wi denote its ith entry; and for a matrix W, let wi denote its ith column,
and let wi,j denote the jth entry of its ith row.

Definition 2.1 (Decisional LPN problem). Take parameters n ∈ N and τ ∈ R with 0 < τ < 0.5
(the noise rate). A distinguisher D is said to (q, t, ε)-solve the decisional LPNn,τ problem if∣∣∣∣ Pr

s,A,e
[D(A,As + e) = 1]− Pr

r,A
[D(A, r) = 1]

∣∣∣∣ ≥ ε
where s← Zn2 , A← Zq×n2 , and r← Zq2 are uniformly random and e← Berqτ , and the distinguisher
runs in time at most t.

Note that adding the “Bernoulli noise” is essential to make the problem non-trivial, since
otherwise the secret can be easily found by Gaussian elimination given O(n) samples.

The decisional and search variants of the LPN problem are polynomially equivalent, meaning
that an attack requiring q samples against decisional LPN implies an attack against search LPN
requiring polynomial in q samples. More precisely:

Lemma 2.2 (Lemma 1 from [KSS10]). If there exists a distinguisher D that (q, t, ε)-solves the
decisional LPNn,τ problem, then there is a distinguisher D′ that (q′, t′, ε′)-solves the search LPNn,τ
problem where q′ = O(q log n/ε2), t′ = O(tn log n/ε2), and ε′ = ε/4.

The first cryptosystem shall be based on the following computational assumption.

Definition 2.3 (Decisional LPN assumption, DLPN). For any probabilistic algorithm D that
(q, t, ε)-solves the decisional LPNn,τ problem for all large enough n, where τ is Θ(1/

√
n), t is

polynomial in n and q is O(n), it holds that ε is negligible as a function of n.

Note the additional assumption on the size of τ , compared to Definition 2.1. This restriction
was introduced in [Ale03] and, in all known LPN-based public-key cryptosystems, it seems to be
required for correctness.

2.2 LPN Cryptosystems

We define the basic LPN cryptosystem as follows.

Definition 2.4 (Basic LPN cryptosystem). The key generation, encryption, and decryption func-
tions of the basic LPN cryptosystem are given below. The parameters are n ∈ N, the length of the
secret, and τ ∈ R, the noise rate. All operations are performed over Z2.

• BasicKeyGen(): Choose a secret key s ∈ Zn2 . The public key is (A,b), where A ← Z2n×n
2 ,

e← Ber2nτ is the error vector, and b = As + e.

• BasicEnc(pk = (A,b), v): To encrypt message bit v ∈ Z2, choose f ← Ber2nτ and output the
ciphertext (u, c) where u = fTA and c = fTb + v.
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• BasicDec(sk = s, (u, c)): The decryption is d = c+ 〈u, s〉.

We now prove correctness and security for the basic LPN cryptosystem. Some supporting
lemmas are needed.

Lemma 2.5. Let X ∼ Binn,τ . Then the probability that X is even is 1
2 + (1−2τ)n

2 .

Proof. The probability generating function of X is GX(z) = ((1 − τ) + τz)n. Define G(z) =
1
2(GX(z) +GX(−z)). Then since terms with odd powers cancel out, G(z) =

∑n
k=0 z

2k Pr[X = 2k],
so G(1) is equal to the total probability that X takes an even value: Pr[X is even] = G(1) =
1
2(GX(1) +GX(−1)) = 1

2 + (1−2τ)n

2 .

Lemma 2.6. For any k such that limn→∞
n
k =∞, it holds that limn→∞(1 + k

n)n = ek.

Proof. Take any k such that limn→∞
n
k =∞. Then:

lim
n→∞

(1 +
k

n
)n = lim

n
k
→∞

(1 +
k

n
)
n
k
·k = lim

n′→∞
(1 +

1

n′
)n
′·k = ek.

Lemma 2.7 (Correctness). For any constant ε > 0, it holds that τ can be chosen with τ = Θ( 1√
n

)

such that the probability of correct decryption by BasicDec is at least 1− ε.

Proof. The decrypted bit d is equal to the correct plaintext v if and only if fTe = 0, since d =
c+ sTu = fTb + v+ sT fTA = fT (As + e) + v+ sT fTA = fTe + v. Let ei and fi denote the entries
of e and f respectively. Define Ci = ei · fi. Then these Ci ∼ Berτ2 , independently and identically.
Let C =

∑
iCi ∼ Bin2n,τ2 .

Observe that fTe = 0 if and only if C takes an even value. From Lemma 2.5, then, Pr[fTe =

0] = 1
2 + (1−2τ2)2n

2 . Take 0 < τ ≤ O( 1√
n

): for τ in this range, τ2n = O(1), so limn→∞
n
τ2n

= ∞.

Applying Lemma 2.6 yields: limn→∞(1 − 2τ2)2n = e−2τ2(2n). Hence, for large n, Pr[fTe = 0] ≈
1+e−2τ2(2n)

2 . If τ = c√
n

for some constant c, then the exponent −2τ2(2n) is constant. Observe that

limc→0−2τ2(2n) = 0, so limc→0
1+e−2τ2(2n)

2 = 1. It follows that for τ = Θ( 1√
n

), for any constant

ε > 0, the probability of correct decryption by BasicDec is at least 1− ε provided that c is chosen
sufficiently close to 0.

Remark. Provided that the decryption error rate is low enough, error correcting codes may
be employed to essentially eliminate the possibility of incorrectly received bits (for this we need
messages of multiple bits, which shall be addressed in more detail later).

Lemma 2.8 (Pseudorandom public keys). Under the DLPN assumption, the distribution of the
public keys (A,b) generated by BasicKeyGen is computationally indistinguishable from uniform over
Z2n×n

2 × Z2n
2 .

Proof. The public keys generated by BasicKeyGen are of the form (A,As + e), where A, s, and e
are chosen as in Definition 2.1. Since furthermore q and τ are chosen as in the DLPN assumption,
the required indistinguishability follows immediately.

Lemma 2.9. For m ≥ dn for a constant d > 1, let χm,n be the distribution of matrices M ∈ Zm×n2

which are sampled by choosing the columns to be a uniformly random linearly independent set. For
large n, χm,n is statistically indistinguishable from the uniform distribution over Zm×n2 .
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Proof. A matrix sampled from the uniform distribution over Zm×n2 is (perfectly) indistinguishable
from one constructed by taking n column vectors of m bits drawn uniformly from Zm2 , since
matrix columns are independent in the former distribution. For m ≥ dn, consider generating a
matrix by drawing the columns one by one. Each time a new column is drawn, it lies outside
the subspace spanned by the column vectors already drawn, except with negligible probability.
Therefore, with overwhelming probability, a matrix sampled from Zm×n will have full rank, and
the result follows.

Lemma 2.10. Under the DLPN assumption, (S, fTS) is computationally indistinguishable from

(S, r), where f ← Ber2nτ , S← Z2n×(n+1)
2 and r← Zn+1

2 .

Proof. Take an LPN sample of the form (A,As+e) constructed as detailed in Definition 2.1, with
q = 2n + 2. By Lemma 2.9, this is computationally indistinguishable from (A′,A′s + e) where

A′ ∼ χ2n+2,n+1. Let H ∈ Z(2n+2)×(n+1)
2 be sampled by choosing the column vectors as a uniformly

random basis for the orthogonal complement C ⊆ Z2n+2
2 of the columns of A′. C is determined

uniformly randomly by the choice of A′, so H is distributed according to χ2n+2,n+1. It follows, by
Lemma 2.9, that H is indistinguishable from uniformly random.

By construction, HTA = 0, so HT (As + e) = HTe. This means that since, under DLPN,
(A,As+e) is indistinguishable from random, so is (H,HTe). The lemma follows from transposing
the last component and truncating to the required dimensions.

Theorem 2.11 (Security). Under the DLPN assumption, the basic LPN cryptosystem is secure
against chosen plaintext attack.

Proof. Consider an instance of the basic LPN cryptosystem with parameters n and τ , where the

public key is (A,b). Let R ∈ Z2n×(n+1)
2 be defined as follows.

ri,j =

{
ai,j for 1 ≤ i ≤ 2n, 1 ≤ j ≤ n
bi for 1 ≤ i ≤ 2n, j = n+ 1

So R has the same distribution as the public key. Note that a ciphertext of the message 0 is
of the form (fTA, fTb) as defined by BasicEnc, which can also be written as fTR. We now argue
about the joint distribution of public key and ciphertext as follows:

(R, fTR) is indistinguishable from (S, fTS) where S is uniformly random by Lemma 2.8. Fur-
thermore (S, fTS) is indistinguishable from (S, r) where r is random, by Lemma 2.10.

A similar argument easily implies that public key and a ciphertext of the message 1 has dis-
tribution indistinguishable from (S, r′) where r′ is obtained by generating a random vector and
flipping the last bit. But this is the same distribution as (S, r), so we have shown that public key
and ciphertexts of 0 and 1 have indistinguishable distributions. The theorem follows.

The basic LPN cryptosystem can be significantly improved in efficiency by a relatively simple
modification reducing the ciphertext expansion factor (the ratio of ciphertext to plaintext length)
from Õ(n) to as low as O(1). This is achieved by re-using the encryption randomness over up
to ` = O(n) public key rows. To allow for this, we require ` independent secret keys si and `
independent error vectors ei – thus, the secret key size increases from O(n) to O(n2), while the
public key size remains asymptotically unchanged. The efficacy of the modification is based on
the fact that a large part of the time taken by the original cryptosystem’s operations is due to the
large matrix A.

This modification to the LPN cryptosystem is very similar in structure to the modification to
Regev’s LWE-based cryptosystem proposed by Peikert, Vaikuntanathan, and Waters [PVW07]. In
the context of LPN, a similar idea was mentioned by Pietrzak in [Pie12].

Definition 2.12 (Multi-bit LPN cryptosystem). Parameters n and τ below are as in Defini-
tion 2.4. Additionally, we introduce ` = O(n), the length of plaintext that can be encrypted in a
single operation. Let ñ = max(n, `).
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• MultiBitKeyGen(): Choose a secret key S ← Zn×`2 . The public key is (A,B), where A ←
Z2ñ×n

2 , E← Ber2ñ×`τ , and B = AS + E.

• MultiBitEnc(pk = (A,B),v): To encrypt message v ∈ Z`2, choose f ← Ber2ñτ and output the
ciphertext (u, c) where u = fTA and c = fTB + vT .

• MultiBitDec(sk = S, (u, c)): The decryption is d such that dT = c + STu.

We now prove correctness and security for the multi-bit cryptosystem.

Lemma 2.13 (Correctness). For each fixed choice of f , encryption followed by decryption of a
message v in the multi-bit LPN cryptosystem is equivalent to sending each bit of v through a
binary symmetric channel with some error probability ρ. Furthermore, for any constant ε > 0, τ
can be chosen with τ = Θ( 1√

n
) such that, except with negligible probability, ρ ≤ ε.

Proof. The decryption is equal to the correct plaintext v if and only if fTE = 0 ∈ Z`2, since
dT = c+STu = fTB+vT +ST fTA = fT (AS+E) +vT +ST fTA = fTE+vT . Let |f | denote the
Hamming weight of f . For any given f , the independence of the columns ei of E implies that the
transmitted bits do indeed go independently through a noisy channel, which has error probability

determined by |f |. By Lemma 2.5, for any given weight |f |, it holds that Pr[fTei = 0] = 1
2 + (1−2τ)|f |

2 .
Let A denote the event that |f | ≤ 3ñτ . Note that |f | ∼ Bin2ñ,τ . By a Chernoff bound,

Pr[A] < 1 −
( √

e

1.5
√

1.5

)2ñτ
. Since

( √
e

1.5
√

1.5

)2ñτ
is exponentially small in ñτ , and ñτ = O(nτ) → ∞

as n→∞, A occurs with overwhelming probability. If A occurs, then the encryption followed by
decryption of ` bits in the multi-bit LPN cryptosystem is equivalent to sending the bits through
a binary symmetric channel with error probability ρ which is at most that of the case where
|f | = b3ñτc. From Lemma 2.7, the result follows.

Lemma 2.14 (Pseudorandom public keys). Under the DLPN assumption, the distribution of the
public keys (A,B) generated by MultiBitKeyGen is computationally indistinguishable from uniform
over Z2ñ×n

2 × Z2ñ×`
2 .

Proof. We define hybrid distributions H0, · · · , H` over matrices (A,B) ∈ Z2ñ×n
2 ×Z2ñ×`

2 such that
in distribution Hk, the matrix A and the first k columns of B are uniformly randomly chosen, and
the other columns of B are chosen according to the procedure for generating a column of B given
by MultiBitKeyGen (for parameters n and τ). Then H0 is exactly the distribution of the public
keys generated by MultiBitKeyGen, and H` is completely uniform over Z2ñ×n

2 × Z2ñ×`
2 .

For any k ∈ {0, · · · , `−1}, we define a simulator Sk which has access to an oracle O that returns
samples in Z2ñ×n

2 ×Z2ñ
2 that are either chosen uniformly at random, or are of the form (A,As+e)

as specified in the LPN problem (in Definition 2.1). Sk outputs a pair (A,B) ∈ Z2ñ×n
2 × Z2ñ×`

2

constructed as follows. First, O is queried, yielding a sample (A′,b′). Then, Sk sets A equal to
A′; uniformly randomly chooses the first k columns of the output matrix B; sets the column bk+1

equal to b′; and for all k < j ≤ `, Sk chooses independent secret vectors sj ∈ Zn2 uniformly at
random, and independent error vectors ej ∈ Z2ñ

2 according to Ber2ñτ , and sets bj = Asj + ej .
Observe that if O samples from the uniform distribution, then the output of Sk has distribution

Hk, and otherwise, O samples from the LPN distribution, so the output of Sk has distributionHk+1.
It follows that if LPNn,τ is hard, then Hk and Hk+1 are computationally indistinguishable for all
j ∈ {0, · · · , ` − 1}. Therefore, H` is computationally indistinguishable from uniformly random
H0.

Lemma 2.15. Under the DLPN assumption, for any n, ` ∈ N, (S, fTS) is computationally indis-

tinguishable from (S, r), where f ← Ber
2·max(n,`)
τ , S← Z2·max(n,`)×(n+`)

2 , and r← Zn2 .

Proof. Exactly as in Lemma 2.10; the only difference is that Lemma 2.10 treats the case ` = 1.
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Theorem 2.16 (Security). Under the DLPN assumption, the multi-bit LPN cryptosystem is secure
against chosen plaintext attack.

Proof. Consider an instance of the multi-bit LPN cryptosystem with parameters n and τ , with
` = O(n) and ñ = max(n, `), where the public key is (A,B). Given the public key, one can

construct a matrix R ∈ Z2ñ×(n+`)
2 with entries as follows:

ri,j =

{
ai,j for 1 ≤ i ≤ 2ñ, 1 ≤ j ≤ n
bi for 1 ≤ i ≤ 2ñ, n+ 1 ≤ j ≤ n+ `

So R has the same distribution as the public key. Note that a ciphertext in the multi-bit LPN
cryptosystem is of the form (fTA, fTB+v) as specified in Definition 2.12. The ciphertext can also
be written as fTR � v, and where the � operation denotes “add v to the last ` entries in fTR”.
We now argue about the joint distribution of public key and ciphertext as follows:

(R, fTR � v) is indistinguishable from (S, fTS � v) where S is random by Lemma 2.14. Fur-
thermore (S, fTS�v) is indistinguishable from (S, r�v) where r is random, by Lemma 2.15. Since
in this last distribution, r is sampled independently of v, the distribution of r � v is the uniform
distribution on Zn+`

2 and in particular independent of v. The result follows.

2.3 Cryptosystems from Ring-LPN and Variants

In this section we present cryptosystems based on ring-LPN and variant assumptions. The ring-
LPN assumption (defined formally below) was introduced by Heyse et al. in [Hey+12]. In this
paper, we introduce a closely related variant assumption called the transposed ring-LPN assump-
tion. The encryption schemes based on these assumptions are substantially more efficient and have
smaller public keys, compared to the LPN-based schemes discussed so far.

2.3.1 Ring-LPN Assumption

The ring-LPN problem may be viewed as a natural variant of the LPN problem, with some addi-
tional structure that allows very fast multiplication and compact representations of samples. Since
standard LPN has formed the basis of many cryptographic constructions, the ring-LPN problem
is considered an interesting candidate for constructing more efficient systems building upon exist-
ing LPN-based schemes, both from a design perspective (e.g. the “Lapin” authentication scheme
[Hey+12]) and a cryptanalytic perspective (e.g. Bernstein and Lange’s attack against ring-LPN
[BL12], which was inspired by Lapin).

Notation. For a polynomial ring R ∈ F2[X]/(g), the distribution BerRτ denotes the distribution
over R, where each of the coefficients of the polynomial is drawn independently from Berτ . For a
polynomial r ∈ R, let |r| denote the weight of r, i.e. the number of nonzero coefficients r has. Let
r[i] ∈ Z2 denote the coefficient of xi in r.

Definition 2.17 (Decisional ring-LPN problem). Take parameters R = F2[X]/(g) with g ∈ F2[X]
of degree n− 1, and τ ∈ R with 0 < τ < 0.5. Let UR denote the uniform distribution over R×R.
For any polynomial s ∈ R, let ΛR,sτ be the distribution over R × R whose samples are obtained
by choosing a polynomial r ← R and another polynomial e → BerRτ and outputting (r, rs + e). A
distinguisher D is said to (q, t, ε)-solve the decisional RingLPNRn,τ problem if∣∣∣Pr[DΛR,sτ = 1]− Pr[DU

R
= 1]

∣∣∣ ≥ ε
and the distinguisher runs in time at most t and makes at most q queries.

|Pr[s← R : D]Λ
R,s
τ = 1]− Pr[DU

R
= 1]| ≤ ε.

Lemma 2.18. The ring-LPN problem with s ← BerRτ and the ring-LPN problem with s ← R are
of polynomially equivalent hardness.
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The proof of Lemma 2.18 follows from a transformation shown in the context of LWE by
Applebaum et al., in Lemma 2 of [App+09]. For the details, we refer the reader to their paper.

Definition 2.19 (Decisional Ring-LPN assumption, DRLPN). For any probabilistic algorithm that
(q, t, ε)-solves the decisional RingLPNn,τ problem for all large enough n, where τ is Θ(1/

√
n), t is

polynomial is n and q is O(n), it holds that ε is negligible as a function of n.

2.3.2 Transposed Ring-LPN Assumption

Definition 2.20. Let the LPNn,τ (D) problem be the variant of the standard LPNn,τ problem in
which the matrix A is drawn from distribution D over Zq×n2 , and all other aspects of the problem
are identical to the standard LPNn,τ problem.

Useful distributions. Let ΨR,l denote the distribution over Zln×n2 whose samples consist of the
vertical concatenation of l square matrices in Zn×n2 , where each square matrix is independently

sampled as mat(r) for uniformly random r ← R. Let ΨR,l
0 denote the distribution over Zln×n2 whose

samples A ∈ Zln×n2 are obtained by taking A′ ← ΨR,l and choosing the columns of A uniformly
randomly from the orthogonal complement of the columns of A′.

Definition 2.21 (Transposed ring-LPN assumption, TRLPN). For any probabilistic algorithm
that (q, t, ε)-solves, for all large enough n, the decisional LPNn,τ (ΨR,l) problem or the decisional

LPNn,τ (ΨR,l
0 ) problem, where τ is Θ(1/

√
n), t is polynomial in n, l = 2 (and hence q = 2n), it

holds that ε is negligible as a function of n.

Before defining cryptosystems based on TRLPN, let us discuss the assumption. Consider first
the LPNn,τ (ΨR,l) problem. Here, the adversary is presented with samples of form mat(r) · s + e,
so he gets noisy inner products of the secret and the rows of mat(r). Since the ith row in mat(r)
is equal to vec(r ·Xi), observe that although the rows are not independent, each row is uniformly
random and the rows are linearly independent. It therefore seems plausible to us that LPNn,τ (ΨR,l)
is hard.1 Note that if we had instead taken mat(r)T ·s+e, the product would have been equivalent
to a ring product and we would get the ring-LPN assumption.

As for the LPNn,τ (ΨR,l
0 ) problem, the columns of the public matrix are chosen uniformly from

a certain subspace of dimension n. Each row should therefore have large entropy and intuitively,
it would seem that the rows would be much less correlated than in the first problem. It therefore
seems to us that this second problem is even harder. We emphasise, however, that a much more
careful study is needed to gain more confidence in the assumption.

2.3.3 Lightness-Preserving Rings

To construct a cryptosystem based on ring-LPN, we consider polynomial rings R = F2[X]/(g) with
a special “lightness-preserving” condition on the polynomial g, which is defined below. Informally,
the lightness-preserving condition ensures that when two low-weight polynomials are multiplied,
the result is also of low weight. We begin by showing some useful lemmas about lightness-preserving
rings, then present a new cryptosystem based on the ring-LPN assumption.

Notation. Let |r| denote the weight (number of nonzero coefficients) of a polynomial r in R.
For any polynomial r ∈ R with degree n − 1, let vec(r) ∈ Zn2 denote the (row) vector whose ith

entry is r[i] for all 0 ≤ i < n, and let mat(r) ∈ Zn×n2 be the matrix such that for all r′ ∈ R,
vec(r′) ·mat(r) = vec(r′ · r). Note that the matrix mat(r) has the property that its ith row vector
is equal to vec(r ·Xi).

Definition 2.22 (Lightness-preserving ring). A ring R = F2[X]/(g) is lightness-preserving if for
any polynomial p← F[X] of degree up to 2n− 1, the reduced polynomial p′ = p mod g has weight
at most c · |p| for a constant c.

1It is commonly believed that generally, the LPN problem remains hard even if the public matrix is not uniformly
random but has sufficiently high min-entropy [Pie12].
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Lemma 2.23. For a ring R = F2[X]/(g) to be lightness-preserving (where g is irreducible and has
degree n), it is sufficient for g to be of the form Xn +Xm + 1 where m ≤ n/2.

Proof. Take any p ∈ F2[X] of degree up to 2n − 1. The following simple algorithm reduces p
modulo g. (Note that x^i denotes the polynomial Xi.)

while degree(p) >= n :

p := p + (g * x^(degree(p)-n))

We refer to the coefficients of Xn, . . . , X2n−1 as the top half of p’s coefficients. Define the top
quarter, second quarter, third quarter, and bottom quarter similarly. We will write p to refer to the
variable p in the above algorithm, and use p to refer to the original polynomial in F2[X].

The number of times that the while loop will be iterated is equal to the number of nonzero
coefficients that occur in the top half of p’s coefficients at any point during the execution of the
reduction algorithm. Call the nonzero coefficients of p at the start of the algorithm the original
bits. On each iteration of the while loop, the addition (exclusive-or) operation causes the most
significant nonzero coefficient of p to be zeroed, and causes up to two other coefficients of p to
change. Call the nonzero coefficients that are created by the addition operation the new bits.

Note that for any given iteration of the loop, it is only possible for a new bit to be created in
the top half if the (most significant) coefficient being zeroed in this iteration lies in the top quarter.
Moreover, such a new bit will lie in the second quarter, and thus its presence cannot cause more
new bits to be created in the top half.

It follows that the maximum number of nonzero coefficients that can occur in the top half of
p’s coefficients during the algorithm’s execution is 2 · |p|. Since |g| = 3, the weight of p will increase
by at most 3 on each iteration, and therefore the weight of p will increase by at most 6 · |p| over
the course of the whole reduction procedure. Hence, the weight of the reduced polynomial p′ = p
mod g is at most 7 · |p|. It follows that R is lightness-preserving.

Note that the requirement that g be of the form given in the above lemma not only facilitates
our proofs of correctness for the cryptosystem to follow but also allows for more efficient implemen-
tations of reduction modulo g. As for whether such “nice” polynomials exist, it is known that for
n = 3m for some m ∈ N, the polynomial X2n +Xn + 1 is irreducible in F2[X]. It seems reasonable
to believe that they also exist for other values on n, and in any case, one may of course search
exhaustively for a polynomial given a concrete value of n.

2.3.4 Ring-LPN Cryptosystem

We presently define a new encryption scheme based on the hardness of the ring-LPN problem.

Definition 2.24 (Ring-LPN cryptosystem). Parameters are R = F2[X]/(g), a polynomial ring
with g an irreducible lightness-preserving polynomial of degree n, and τ ∈ R, the noise rate.

• RingKeyGen(): Choose a secret key s← BerRτ . The public key is (a, b), where b = as+ e for
a← R and e← BerRτ .

• RingEnc(pk = (a, b), v): To encrypt message v ∈ R, choose f, f ′, f ′′ ← BerRτ , and output the
ciphertext (u, c) where u = af + f ′ and c = bf + f ′′ + v.

• RingDec(sk = s, (u, c)): The decryption is d = c+ us.

Notice that rather than encrypting single-bit messages, the Ring-LPN cryptosystem encrypts
messages represented by ring elements. Because there is some small in the decryption (which is
characterised formally below), we would actually want the message v ∈ R to be an error-correcting
encoding of the original plaintext.

The key advantages of this cryptosystem are that compared to the LPN cryptosystem, the
public key size has changed from O(n2) to O(n), and the expensive matrix multiplication in
encryption has been replaced by efficient ring multiplication.
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We now prove correctness and security of the Ring-LPN cryptosystem.

Lemma 2.25. Let R = F2[X]/(g) be a lightness-preserving ring. For any constant ε > 0, it holds
that τ can be chosen with τ = Θ( 1√

n
), such that for any independently chosen e, f ← BerRτ , the

weight of the product polynomial ef ∈ R is less than εn with overwhelming probability.

Proof. By a Chernoff bound, it holds that |e| ≤ 2nτ and |f | ≤ 2nτ with overwhelming probability.
Therefore, the product polynomial ef in F2[X] (not reduced modulo g) has weight at most (2nτ)2,
with overwhelming probability. In this case, since R is lightness-preserving, the reduced product
polynomial ef mod g in R has weight at most c · (2nτ)2 for constant c. Let τ = c′√

n
for constant

c′. Notice c · (2nτ)2 = O(n), so for any constant ε > 0 we can choose c′ small enough that the
product ef mod g has weight less than εn with overwhelming probability.

Lemma 2.26 (Correctness). For any constant ε > 0, it holds that τ can be chosen with τ =
Θ( 1√

n
), such that the number of message coefficients incorrectly decrypted by running RingDec on

a ciphertext produced by RingEnc is less than εn with overwhelming probability.

Proof. Take any i ∈ {0, . . . , n − 1}, and consider the coefficient of Xi in the decrypted message
d ∈ R. Denote this coefficient by di. The decrypted coefficient di is equal to the correct plaintext
coefficient vi if and only if (ef + f ′′ + f ′s)i = 0, since

d = c+ us = bf + f ′′ + v + (af + f ′)s = v + ef + f ′′ + f ′s.

Let τ = c√
n

for some constant c. By Lemma 2.25, for any ε′ > 0, it holds that c can be chosen

small enough, so that |ef + f ′s| < 2ε′n with overwhelming probability. By a Chernoff bound and
since f ′′ ← Bernτ , it holds that |f ′′| < 2nτ = O(

√
n) with overwhelming probability. The result

follows.

Lemma 2.27 (Pseudorandom public keys). Under the DRLPN assumption, the distribution of
the public keys (A,b) generated by RingKeyGen is computationally indistinguishable from uniform
over R×R.

Proof. The public keys generated by RingKeyGen are of the form (a, as + e), where a, s, and e
are chosen as in Definition 2.17. Since furthermore τ is chosen as in the DRLPN assumption, the
required indistinguishability follows immediately.

Theorem 2.28 (Security). Under the DRLPN assumption, the ring-LPN cryptosystem is secure
against chosen plaintext attack.

Proof. Consider an instance of the ring-LPN cryptosystem with parameters n and τ , where the
public key is (a, b). Note that the public key is indistinguishable from random in R × R, by
Lemma 2.27. A ciphertext of the message 0 is of the form (af + f ′, bf + f ′′) as defined by RingEnc.
We consider the distribution of pairs of public key and ciphertext, so for an encryption of 0 we
look at ((a, b), (af + f ′, bf + f ′′)). By the DRLPN assumption, (a, af + f ′) is indistinguishable
from (a, r) for random r ∈ R, and similarly (b, bf + f ′′) is indistinguishable from (b, r′). Given also
the pseudorandomness of public keys, it follows that ((a, b), (af + f ′, bf + f ′′)) is indistinguishable
from uniformly random in (R×R)× (R×R).

A ciphertext of the message v ∈ R is of the form (af + f ′, bf + f ′′+ v), that is, it is distributed
exactly like a ciphertext of the message 0, except that some bits of the second component are
flipped. The bits which are flipped are determined by v, which is independent of the public key
and of f, f ′f ′′. Since the distribution of ciphertexts of the message 0 is pseudorandom as has already
been shown, it holds that the distribution of ciphertexts of the message v is also pseudorandom; and
by the independence of v from the other ciphertext components, the ciphertexts are independent
of v. The theorem follows.
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2.3.5 Transposed Ring-LPN Cryptosystem

Notation. For matrices A ∈ Zm×n2 ,B ∈ Zm
′×n

2 , let A//B ∈ Z(m+m′)×n
2 denote their vertical

concatenation, that is, A//B is the matrix consisting of the rows of A followed by those of B.

Observe that if M = mat(r) is an n × n matrix and v is a row vector, then M can be fully
specified by just giving r, and vM can be computed by a single product in R where we translate
v to an element in R in the natural way.

The key idea underlying the cryptosystem presented below is to modify the schemes already
presented, such that the public key matrix is specified by ring elements and the costly vector by
matrix product in encryption can be replaced by a product in the ring. As we shall see, this means
that the product of the secret with the public matrix (in key generation) is not a ring product: this
is why our assumption is not the ring-LPN assumption. We now define the TRLPN cryptosystem.

Definition 2.29 (Transposed Ring-LPN (TRLPN) cryptosystem). Parameters are R = F2[X]/(g),
a polynomial ring with g an irreducible polynomial of degree n, and τ ∈ R, the noise rate.

• TRingKeyGen(): Choose a secret key s← Zn2 . The public key is (a1, a2,b), where a1, a2 ← R,
e← Ber2nτ , and b = As + e for A = mat(a1)//mat(a2).

• TRingEnc(pk = (a1, a2,b), v): To encrypt message bit v ∈ Z2, choose f1, f2 ← BerRτ , define
f = vec(f1)//vec(f2), and output the ciphertext (u, c) where u = fTA = vec(f1a1)//vec(f2a2)
and c = fTb + v.

• TRingDec(sk = s, (u, c)): The decryption is d = c + 〈u, s〉.

Remark. It is not strictly necessary (for correctness or security) that g be irreducible. In fact, it
could increase efficiency of implementation if g were not irreducible. However, there are various
pitfalls to avoid when choosing a reducible g (for example, it must not have factors of very low
degree), in order to maintain security (see [Hey+12] for a more detailed discussion). Thus, for
simplicity, we have opted to let g be irreducible here.

The advantages of this cryptosystem over the LPN cryptosystem are that (as with the ring-
LPN cryptosystem) the public key size has gone from O(n2) to O(n), and the expensive matrix
multiplication has been replaced by efficient ring multiplication. The advantage of the TRLPN
cryptosystem over the ring-LPN cryptosystem is the smaller level of noise in the decryption, mean-
ing that it is possible to achieve the same correctness with significantly smaller parameters.

A very similar modification to that used for the multi-bit LPN cryptosystem yields a multi-
bit TRLPN cryptosystem with corresponding advantages. We omit a formal specification of the
multi-bit TRLPN cryptosystem, for the sake of brevity and avoiding repetition, since it follows
from a straightforward application of the same methodology as above.

The proofs of correctness and security of the basic TRLPN cryptosystem follow.

Lemma 2.30 (Correctness). For any constant ε > 0, it is possible to choose τ with τ = Θ( 1√
n

)

such that the probability of correct decryption by TRingDec is at least 1− ε.

Proof. Exactly as in the proof of Lemma 2.7.

Lemma 2.31 (Pseudorandom public keys). Under the TRLPN assumption, the distribution of the
public keys (a1, a2,b) generated by TRingKeyGen is computationally indistinguishable from uniform
over R×R× Z2n

2 .

Proof. The public keys generated by TRingKeyGen may be transformed (by setting A = mat(a1)//mat(a2))
into samples of the form (A,As + e), where A, s, and e are chosen as in Definition 2.21. Since
furthermore q and τ are chosen as in the TRLPN assumption, the lemma follows.
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Lemma 2.32. Under the TRLPN assumption, for any l ∈ N, it holds that (R, fTR) is computa-
tionally indistinguishable from (R, r), where f ← Ber2lnτ , R← ΨR,2l, and r← Zln2 .

Proof. Take a sample (A,As + e) constructed as detailed in Definition 2.21, with q = 2l. Choose
H ∈ Zln×n2 by taking uniformly random column vectors from the orthogonal complement of the

columns of A. Note that H ∼ ΨR,l
0 . By construction, ATH = 0, so AT (Hs + e) = ATe. Since,

under the TRLPN assumption, (H,Hs+e) is indistinguishable from (H, r′) for random r′ ← Z2ln
2 ,

it follows that samples (A,ATe) are indistinguishable from (A, r) with r← Zln2 . Transposing the
last component gives the result.

Theorem 2.33 (Security). Under the TRLPN assumption, the TRLPN cryptosystem is secure
against chosen plaintext attack.

Proof. Consider an instance of the TRLPN cryptosystem with parameters n and τ , where the

public key is (a1, a2,b). Let A = mat(a1)//mat(a2), and let R ∈ Z2n×(n+1)
2 be as follows:

ri,j =

{
ai,j for 1 ≤ i ≤ 2n, 1 ≤ j ≤ n
bi for 1 ≤ i ≤ 2n, j = n+ 1

So R has the same distribution as the public key. Note that a ciphertext of the message v ∈ R
is of the form (fTA, fTb + v) as defined by TRingEnc. The ciphertext can also be written fTR � v,
where we define the � operation as “add v to the last entry of fTR”. We now argue about the
joint distribution of public key and ciphertext as follows:

By Lemma 2.31, (R, fTR � v) is indistinguishable from (S, fTS � v) where S corresponds to a
uniformly random element in ΨR,2×Z2n

2 . Furthermore, by Lemma 2.32, (S, fTS�v) is indistinguish-
able from (S, r � v) where r is uniformly random. Since in this last distribution, r is independent
of v, r � v is uniform in Zn+1

2 and in particular independent of v. The lemma follows.

3 Known Attacks

The earliest notable attack on LPN was the Blum-Kalai-Wasserman (BKW) algorithm [BKW03],
which is based on the idea that by carefully choosing small sets of vectors from a large set of
samples and computing their exclusive-or, we may create “new” LPN samples where only a single
coordinate is set (with a slight gain in noise). With enough “new” samples, the secret may be
computed correctly with high probability, by a majority vote over the “new” samples for each bit
in the secret. The BKW algorithm is estimated to have time complexity 2O(n/ logn) for 2O(n/ logn)

samples. A subsequent variant by Lyubashevsky [Lyu05] ran in time 2(n/ log logn) for n1+ε samples.
Levieil and Fouque’s LF1 and LF2 algorithms [LF06] practically but not asymptotically im-

prove upon the above, and furthermore are the first BKW-style LPN attacks with a documented
implementation. They modify the final step of the BKW algorithm, where instead of solving equa-
tions over one bit as in the original version, they solve equations over b > 1 bits at a time, with the
help of Walsh-Hadamard transforms. LF2, unlike LF1, makes use of heuristics in this final step.

More recently, Kirchner proposed a modified algorithm [Kir11] using ideas from all the prior
work, that greatly decreases the number of samples needed for a successful attack. Bernstein and
Lange’s yet more recent (implemented) attack [BL12] targeting the Lapin authentication protocol
[Hey+12] is in fact applicable to many LPN-based systems, and is a version of Kirchner’s algorithm
optimised for the fact that Lapin is based on ring-LPN. A slight modification, mentioned briefly
in [BL12], can make the attack apply also to standard LPN; this comes at a relatively minor cost
in time, and requires slightly fewer queries.

This last attack has the best performance currently known, so we use its timings to determine
our parameter choices. We take the attack timings of the ring-LPN version even for the LPN
cryptosystems, both because the standard LPN version is only cursorily documented in [BL12],
and because we aim to take conservative parameters with a reasonable security margin against
slight optimisations (we estimate that the timings will differ by a factor of less than 210).
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4 Parameter Choices

The number of bit operations required for a successful run of the state-of-the-art attack, according
to the analysis of [BL12], is equal to 2f(n,τ,a,b,l,W,q), where f is a function of the cryptosystem
parameters n, τ and the algorithm parameters a, b, l,W, q, as follows:

f(n, τ, a, b, l,W, q) =
∑
w≥2

(
n

w

)
τw(1− τ)n−w + log2

 12q(n2 + n) + a(q − 1)n2+

(
(q − 1)n− 2ba

) ∑
w≤W

((
n− ab− l

w

)
w

)
+ l2l

∑
w≤W

(
n− ab− l

w

)  .

We enforce that the probability of incorrect decryption of a bit is 25%, in order to allow error
correction using codes with a reasonably low expansion factor of about 5. In the case of the LPN

and TRLPN cryptosystems, this means 1
2−

(1−2τ2)2n+2

2 = 0.25. For the ring-LPN cryptosystem, we
have an upper bound of (1+ε)τ+28nτ2 on the decryption error rate, which holds with overwhelming
probability for any constant ε: the first term, (1 + ε)τ , comes from a Chernoff bound on f ′′; and
the second term, 28nτ2, comes from the bound of 7 · (2nτ2) on the weight of ef +f ′s which follows
from Lemmas 2.23 and 2.25. Based on this, we require concretely that 1.1τ + 28nτ2 = 0.25.

Given the low values of τ that result from this, the expected weight of error vectors is very low,
and therefore we consider it reasonable to set l = 1 and W = 1. (Intuitively, the attack algorithm
“hopes” that in a set of W error bits, l or fewer bits will be nonzero.) The parameter q can be
a small integer, and does not greatly influence performance, so we simply set it at a generous
value of 20. Having determined reasonable values for W , l, and q, we find the values of a and b
that minimise n for a range of security levels. (Note that a and b are subject to a few additional
restrictions detailed in [BL12]; we take these restrictions into account.)

Security level (bits) n τ a b
80 9000 0.0044 7 14
112 21000 0.0029 7 14
128 29000 0.0024 8 16
196 80000 0.0015 8 16
256 145000 0.0011 7 17

Table 1: Parameters for selected security parameters for LPN and TRLPN cryptosystems

Security level (bits) n τ a b
80 150000 0.00024 18 13
112 350000 0.00016 38 13
128 500000 0.00013 59 17
196 1500000 0.000099 65 18
256 2700000 0.000057 42 20

Table 2: Parameters for selected security parameters for ring-LPN cryptosystem

We have taken slightly conservative parameters, since we only expect our parameter choices to
be close to optimal2. The reason why n-values are much larger for Ring-LPN is that the decryption
introduces more noise. Therefore, to get a reasonable error rate, we need to reduce τ , and as a
result we need larger n to preserve the security level. This depends, of course, on the concrete
bounds we have for the decryption error. Improving these bounds would allow smaller n-values,
but we would still need significantly larger n for the Ring-LPN scheme.

2It may be of interest and reassurance that by using our method to find near-optimal parameters, we find attacks
that are slightly better than the concrete examples given in [BL12] itself.
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5 Implementation

We compare the performance of the LPN, ring-LPN and TRLPN cryptosystems for various security
levels. As a benchmark, we also implemented RSA encryption and decryption operations for the
same security levels. The LPN cryptosystems primarily manipulate bit matrices and bit vectors
of dimension O(n). The multi-bit LPN cryptosystem implementation performs operations on w
plaintext bits in parallel where w, the word size, is in our case 64.

The implementation was written in C++ and made use of the libraries gf2x, gmp, and ntl

for some mathematical operations. gf2x was used for the ring multiplications for the ring-LPN
and TRLPN cryptosystems. The implementations and all programs used for comparison purposes
were run on the same machine, with a 3.20GHz Intel Core i5 processor with 4GB of RAM and a
7.2RPM SATA hard drive. The timings given are for a single encryption or decryption operation.

Time per encryption (ms) Time per decryption (ms)
Security level (bits) 80 112 128 80 112 128

Basic LPN cryptosytem 25.400 127.600 239.900 0.004 0.007 0.008
Basic TRLPN cryptosystem 1.100 2.250 3.200 ” ” ”

Multi-bit LPN 25.800 128.400 241.700 0.052 0.098 0.128
Multi-bit TRLPN 1.400 3.100 4.400 ” ” ”

Ring-LPN cryptosystem 13.200 29.900 42.200 3.100 6.900 9.700
RSA 0.010 0.030 0.060 0.140 0.940 2.890

Table 3: Encryption/decryption times for comparison

We took RSA modulus sizes 1024, 2048 and 3072 for the three security levels, respectively.
The RSA decryption implementation assumes that the standard Chinese remainder optimisation
is used to reduce decryption to two exponentiations on half-size numbers. The RSA encryption
assumes public exponent 216 + 1, a de facto standard in practice.

To get a reasonable comparison between the LPN and RSA schemes, we consider a typical
application, namely for k-bit security to encrypt and decrypt a k-bit symmetric key. This can be
done with one RSA operation. For LPN we need to consider that because of the 25% decryption
error per bit we need to expand the plaintext by a factor of about 1/(1 − h(25%)) ≈ 5 where h
is the binary entropy function. So for instance for k = 128 the decryption time needed in the
basic scheme is 0.008 · 128 · 5 = 5.12 ms, whereas the multi-bit scheme only needs 0.128 · 5 = 0.64
ms. (The timings given in Table 3 for the multi-bit schemes assume message length ` equal to the
security level of the instantiation.) Thus, decryption in the multi-bit scheme is slower than RSA
for 80-bit security, but faster for 112-bit, and about 4.5 times faster than RSA for 128-bit security.

6 Conclusion

We have seen that, while basic LPN-based public-key encryption currently seems impractical in
standard applications due to the fact that the public key or ciphertext will be very large, the
multi-bit TRLPN scheme is much more practical and may even be competitive in applications
where decryption time can be considered the bottleneck and 112-bit security or more is desired.
The Ring-LPN scheme, on the other hand, seems less competitive than TRLPN.
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[LF06] Éric Levieil and Pierre-Alain Fouque. “An Improved LPN Algorithm”. In: SCN. Ed.
by Roberto De Prisco and Moti Yung. Vol. 4116. Lecture Notes in Computer Science.
Springer, 2006, pp. 348–359. isbn: 3-540-38080-9.

15

http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://dl.acm.org/citation.cfm?id=646758.759585
http://dx.doi.org/10.1007/3-540-45682-1_4
http://dx.doi.org/10.1007/3-540-45682-1_4
http://dx.doi.org/10.1007/3-540-45682-1_4
http://dx.doi.org/10.1007/978-3-642-54631-0_1
http://dx.doi.org/10.1007/978-3-642-54631-0_1


[Lyu05] Vadim Lyubashevsky. “The Parity Problem in the Presence of Noise, Decoding Ran-
dom Linear Codes, and the Subset Sum Problem”. In: APPROX-RANDOM. Ed. by
Chandra Chekuri et al. Vol. 3624. Lecture Notes in Computer Science. Springer, 2005,
pp. 378–389. isbn: 3-540-28239-4.

[Mic10] Daniele Micciancio. Invited talk given at PKC ’10. Slides available at
http://cseweb.ucsd.edu/ daniele/papers/DualitySlides.pdf. 2010.

[PVW07] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. “A Framework for Effi-
cient and Composable Oblivious Transfer”. In: IACR Cryptology ePrint Archive 2007
(2007), p. 348.

[Pie12] Krzysztof Pietrzak. “Cryptography from Learning Parity with Noise”. In: SOFSEM.
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