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Abstract

The Random Oracle Model, introduced by Bellare and Rogaway, provides a method to
heuristically argue about the security of cryptographic primitives and protocols. The basis
of this heuristic is that secure hash functions are close enough to random functions in their
behavior, and so, a primitive that is secure using a random function should continue to remain
secure even when the random function is replaced by a real hash function. In the security
proof, this setting is realized by modeling the hash function as a random oracle. However, this
approach in particular also enables any reduction, reducing a hard problem to the existence of
an adversary, to observe the queries the adversary makes to its random oracle and to program
the responses that the oracle provides to these queries. While, the issue of programmability of
query responses has received a lot of attention in the literature, to the best of our knowledge,
observability of the adversary’s queries has not been identified as an artificial artefact of the
Random Oracle Model. In this work, we study the security of several popular schemes when
the security reduction cannot “observe” the adversary’s queries to the random oracle, but can
(possibly) continue to “program” the query responses. We first show that RSA-PFDH and
Schnorr’s signatures continue to remain secure when the security reduction is non observing
(NO reductions), which is not surprising as their proofs in the random oracle model rely on
programmability. We also provide two example schemes, namely, Fischlin’s NIZK-PoK [Fis05]
and non interactive extractable commitment scheme, extractor algorithms of which seem to rely
on observability in the random oracle model. While we prove that Fischlin’s online extractors
cannot exist when they are non observing, our extractable commitment scheme continues to
be secure even when the extractors are non observing. We also introduce Non Observing Non
Programming reductions which we believe are closest to standard model reductions.

1 Introduction

The Random Oracle Model (ROM) was introduced by Bellare and Rogaway in [BR93] as an al-
ternative model to study the security of cryptographic primitives and protocols. In contrast to
the Standard model, it assumes the availability of a random function (via an oracle) to all parties
(eg. adversary, challenger etc.) in any security game devised to study the security of a crypto-
graphic primitive. The oracle implementing the random function (called the random oracle) returns
a randomly chosen value (which it remembers for later) from the range, when queried at a new
domain point. For already queried points, it returns the same value that it returned the first time
around. The introduction of ROM made it possible to prove the security of many different kinds
of cryptographic primitives (including digital signatures, encryption schemes etc.) for which there
existed no proofs in the Standard model [PS00]. As truly random functions do not exist in prac-
tice, when using these primitives in the real world, the role of random oracle is played by a secure
hash function. The heuristic is that secure hash functions are close enough to random oracles in
their behavior, and so, the primitives continue to remain secure even under this substitution. This
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methodology has resulted in many provably secure (in ROM), and at the same time, practical and
efficient schemes.

Since no real world hash function is truly random, proofs in ROM have been a subject of
debate by cryptographers. Public key encryption and Signature schemes have been devised such
that they can be proved secure in the ROM but which become insecure as soon as the random
oracle is instantiated by any real hash function [CGH04]. However, no real attacks have been
demonstrated against any practical scheme that has been proved secure in ROM. This ambiguity
about the reasonability of ROM has been of great interest to cryptographers. Furthermore, from
a practical viewpoint, random oracle heuristic is the only basis for arguing the security of some of
the most efficient cryptographic schemes (e.g. [PS00, BR, BR96]). Therefore, it is of fundamental
importance to understand why certain cryptographic schemes can be proved secure in the ROM
while no proof of security exists for them in the Standard model.

In ROM, the challenger (or the reduction) simulates the random oracle for the adversary in
the security game. This new power to simulate the random oracle for the adversary enables the
challenger to solve some hard problem, thus ruling out the possibility of the adversary winning in
the security game. The ability to simulate the random oracle seems to “artificially” augment the
capabilities of the challenger (in comparison to a Standard model challenger) in the following two
ways:

• The challenger can now observe the input points at which the adversary makes queries to the
random oracle. We will refer to this ability of the challenger as observability.

• The challenger can now control the response of the random oracle at these input points, often
embedding instances of some hard problem in the response. We will refer to this ability of
the challenger as programmability.

Both these additional capabilities of the reduction are very artifical when compared to Stan-
dard model reductions. Neither do we know of hash functions that can support such complicated
programming nor do we know of a way of observing an algorithm’s queries to a hash function when
the reduction is black-box. The possibility of programming the random oracle has been exploited
in constructing many security reductions and thus the programmability aspect of the ROM has
attracted much attention (see [Nie, FLR+10]). We explain some of that work later. On the other
hand, even though observability is often criticized (explicitly in [Nie]) for providing the challenger
with an unreasonable ability1, to the best of our knowledge, no formal study of this capability of
the reduction has been done. Perhaps one of the most important reasons for the lack of this study
is a general perception that observability is crucial to every proof in the ROM and that nothing can
be achieved without it, thereby leaving no motivation to study reductions that limit observability.
In this work, we study the role of observability in the construction of security reductions for several
schemes. We call such reductions, in which the communication between the adversary and the
random oracle is hidden from the reduction, as Non Observing reductions.

1.1 Non Observing reductions.

While in ROM, reductions often work by providing a simulation of the random oracle to the
adversary, we want Non Observing reductions to operate in the presence of an external random
oracle. All entities make their queries to this external random oracle which is independent of the
reduction. All communication between the random oracle and the adversary is hidden from the
reduction. As our focus is on restricting the observability capability of the reductions, we do let

1Standard model reductions would never get to see the queries made by the adversary to the random oracle.
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the reduction control the responses returned by the random oracle to the adversary (as long as the
returned responses are uniformly distributed in the range of the random function). As shown in
Figure 1, the reduction first sends a Turing machine to the external random oracle which uses this
machine to respond to the queries as follows. On receiving a query, the external random oracle,
inputs “Next” to the Turing machine, sent by the reduction, to obtain an output r which it sends
as a response to the query. Note, that the reduction may still be able to figure out the number of
queries made by the adversary. Non-Observing reductions, the way we have defined, deliberately
have a fair bit of programming capability as our focus is to identify security reductions which
crucially rely on Observability.

Our first result is about online extractors2 for NIZK-POK proposed by Fischlin in [Fis05]. The
Fischlin transformation converts an interactive ZK-PoK (with some special properties) into NIZK-
PoK with online extractors in the ROM. An online extractor, as defined in [Fis05], can output the
witness given a (acceptable) proof and the queries made by the prover to the random oracle (i.e.
with no rewinding). Such a NIZK-PoK can be easily converted into a secure signature scheme. We
introduce the notion of Non Observing extractors, which can program the responses but not observe
the queries made by the adversarial prover, and then prove that they do not exist for NIZK-PoKs
obtained from the Fischlin transformation, thus also ruling out possibility of proving the security
of the resulting signature scheme. Our proof idea can be extended to rule out the online extractor
of [Pas03b] as well though we do not discuss this in our work. Thus, our result clearly proves
that Observability is crucial for the existence of Fischlin extracor, as expected by looking at its
construction.

Our second result demonstrates the existence of extractable commitment schemes with non
observing extractors. The security of the extractable commitment schemes as studied in [Pas03a]
seem to rely on the fact that the extractors can observe the set of query-response pairs. We show
that the capability to observe is not necessary by constructing a secure extractable commitment
scheme where the extractor is not allowed to observe the queries made by the committer but only
allowed to program the random oracle.

We also show (in Appendix B) that both RSA-PFDH and Schnorr signatures remain secure
(under the notion of Existential Forgery with Chosen Message Attack) with Non Observing re-
ductions. This confirms the fact that our Non Observing reductions have enough programming
capabilities so as to be able to rewind and embed.

1.2 Related work.

As part of this ongoing scrutiny of ROM, weaker versions of the Random Oracle model have been
proposed. We briefly survey a few of them that have been proposed since [CGH04]:

• Micali and Reyzin [MR98] initiated the study of the security of signing with weak hashing by
considering hash functions for which an adversary can fix arbitrarily the input-output values
at polynomially many inputs.

• Nielsen [Nie] proposed a variant of the random oracle model where the random oracle is
not programmable. In this model, one cannot program or set the value that the random
oracle returns to any arbitrary value. He establishes separation results between proofs in the
(programmable) random oracle model and non-programmable random oracle model

2From the point of view of using the external random oracle, extractors are no different from reductions in our

results.
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a) Non Observing Reductions b) Non Observing Non Programming Reductions

Table 1: Non Observing reductions can return responses to adversary’s queries without actually
observing the query. Non Observing Non Programming reductions can neither observe the queries
nor influence the responses.

• Liskov [Lis06] proposed models for weak hash functions where there exist the random oracle
and the additional oracles that break some properties of the ROM. He listed several such
oracles that provide, for example, collisions. He also proposed a general construction of a
hash function from weak hash functions. Pasini and Vaudenay [PV] applied Liskov’s idea
to the security analysis of digital signature schemes. They considered the security of hash-
then-sign type signature schemes in the random oracle model with an additional oracle that
returns first-preimages. Numayama, Isshiki and Tanaka [NIT] studied the security of the Full
Domain Hash signature scheme, as well as three variants thereof in weakened random oracle
models.

• Mironov [Mir] relaxed the collision-resistant requirement of hash functions in hash-and-sign
constructions, without addressing the need for a random oracle. He notably revisited two
popular signature schemes, DSA and PSS-RSA, and proposed variants based only on the
target-collision resistant property of the underlying hash function. Their proofs of security,
while still dependent on random oracles, only require short-input ones. In [HK], Halevi and
Krawczyk proved similar results.

• Unruh [Unr] pointed out the fact that it might be more realistic to consider random oracles
with auxiliary input. The auxiliary input models the fact that adversary at times has access
to certain information about the hash function (e.g. collisions) before the initiation of the
protocol. He showed that the RSA-OAEP encryption scheme [BR] is secure in the random
oracle model even in the presence of oracle-dependent auxiliary inputs

• [FLR+10] was the first work to examine the programmability by (black-box) reductions in
ROM and proposed three variants of reduction in ROM: Fully-Programming Reductions,
Non-Programming reductions and Randomly-Programming Reductions. Our work is similar
in spirit but for the property of observability in black-box reductions in ROM.
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2 Non Observing Reductions

2.1 Modeling issues

In this section, we formally define Non Observing reductions. As discussed in the introduction, a non
observing reduction cannot observe the interaction between the adversary and the oracle, though
it can continue to ’influence’ the query responses. Modelling how the reduction can influence the
responses returned by the oracle machine while ensuring that the reduction can get no ‘information’
about the queries of the adversary is tricky. One way of modelling it is as follows: The reduction
sends a (stateful) Turing machine M to the oracle. On receiving a query q from the adversary, M
is executed by the oracle machine on input q to obtain an element r. The value r is then sent to
the adversary as a response. Also, M needs to be programmed in such a way that for a repeat
query, the same response is returned. Unfortunately, this approach does not work because consider
a machine M designed in a way, such that on receiving a ’special’ query from the reduction, all
the queries made by the adversary till then are revealed. Thus, even though the reduction did not
actually “see” the queries made by the adversary it still gets information about the queries made
by the adversary through the machine M . The problem with the previous approach was that the
response returned to a query could depend upon all the queries made till then. We can rectify this
problem by forcing the condition that the machine M should return responses from a list which is
fixed before the adversary makes any query. We allow the reduction to program this list before the
random oracle is initiated. This again suffers from the following problem: After the execution of
the adversary, the reduction can make special queries in such a way that the queries made by the
adversary are leaked. This can be done by associating a (query number n, bit position p, bit value
b) tuple with each response in the list. The reduction can then make a special query indicating
the desired query number and bit position, and M can then return the response associated with
the bit value of the pth bit of the nth query. From this, the reduction can figure out all the queries
made by the adversary. The main problem with this approach is that the machine M is allowed
to maintain state. We can fix this problem by requiring M to be stateless. Thus, the reduction
sends a stateless machine M along with a list L such that for every query q the following is done:
M(q, L) is executed to obtain r. It is verified whether r is in L before sending it to the adversary.
This seems to do better than the previous approaches, in that the machine can no longer return
responses which are correlated to the queries made till that point. But even this approach does
not work! For two different queries q1 and q2, M(q1, L) and M(q2, L) can give the same answer
which might help the adversary in distinguishing between a pure random oracle from M because
in a pure random oracle model this can happen only with negligible probability. Another problem
with this approach is that the returned response can still leak information about some bits of the
query. To circumvent these problems, we present a model, defined in the next subsection, which
seems to not only capture non observability reasonably well but also is a more natural transition
from (programmable and observable) ROM.

2.2 Our model

A Non Observing reduction works in the presence of an external random oracle which is beyond its
control. The adversary and other parties make queries directly to this external random oracle and
receive the responses from it as well. All communication between the adversary and the random
oracle is hidden from everyone else. For ever instantiation of a random oracle, the reduction (or
challenger) can send a Turing machine M to the oracle. This machine is used by the external
random oracle to answer its queries in the following manner: When a random oracle receives a
query, which it has never answered before, it forwards a request to manchine M using the ”Next”

5



message. The machine M , at this point, can provide any response to the oracle as long as it is
uniformly distributed in the range of the random function represented by the oracle. The reduction
is also allowed to send updates to M during the lifetime of its exection. The reduction can also
directly send updates to the external random oracle in the form of (query, response) pairs of its
choice. Both these update procedures, allow the reduction to dynamically adjust its responses to
the random oracle queries. As the reduction may be interacting with the adversary through other
channels (for instance it may be simulating a signature oracle for the adversary), it can therefore use
all of its knowledge from these other channels in returning the response. On receiving a response
from the reduction, the oracle stores the (query, response) pair for future use and returns the
response to the adversary. The reduction can also send queries of its own to the random oracle. In
case of it being a fresh query, the oracle will answer it just like an adversary’s fresh query, else it will
return a response using the stored (query, response) pairs. Thus, our Non Observing reduction can
do almost all what a reduction in ROM can do, but has no visibility of the adversary’s queries ever.
We show this in Figure 1. Before we formally define the model, we present some preliminaries.

For a cryptographic primitive S with the security property ΠS, let AdvΠS (A) be defined as the
success probability of the adversary A in violating the security property ΠS. For an oracle adversary
AO, the probability AdvΠS (A

O) is taken over the random coins of the oracleO as well. More formally,
AdvΠS (A

O) is the weighted average of the Adv parameters when instantiated with specific oracles
and the weights correspond to the probabilities that the corresponding specific oracles are chosen.
This definition can analogously be extended to setting of multiple oracles. We say that an adversary
A ΠS-breaks S if there exists a polynomial p(·) such that AdvΠS (A) > 1/p(n) for infinitely many n.
Consider cryptographic primitives S and f with security properties ΠS and Πf respectively. Let
A denote an attacker on the primitive S and let R denote a reduction from f to S, i.e., R uses
A to attack primitive f . We will denote by O to denote a random oracle that chooses a response
uniformly at random from its range and by O(M) an oracle that uses the machine M produced

by reduction R to provide the responses to its queries. We will use R
A
O(M)

to denote the fact

that the interaction between A and O(M) is hidden from R and R
A
O(M)

,O(M) to denote such a
reduction with its own oracles access to O(M).

Definition 1. There exists a black-box Non Observing reduction from f to S if there exists a
PPT ITM machine R that outputs M with the property that if AO(M) ΠS-breaks S, making qO

queries to the oracle O(M), then R
A
O(M)

,O(M)(w) Πf -breaks f , where O(M) is computationally
indistinguishable from O.

We define a Non Observing Non Programming reduction as a Non Observing reduction that
can no longer provide the responses to the oracle. Thus, such a reduction works with oracle O
rather than O(M). See Table 1 for a diagramatic representation of the reduction.

Definition 2. There exists a black-box Non Observing Non Programming reduction from f to S if
there exists a PPT ITM machine R with the property that if AO ΠS-breaks S, making qO queries

to the oracle O, then R
A
O

,O(w) Πf -breaks f .

3 Non Observing Online Extractors

In this section, we explore online extractors in the non observability framework. The construction of
online extractors in the non interactive zero knowledge proof of knowledge (NIZKPoK) was studied
by [Fis05] though it was first discussed in [SG98]. Informally, an online extractor can extract a
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witness for an input instance, given a proof (accepted by an honest verifier) and all the queries made
by the prover to the random oracle. The online extractors deviate from the traditional extractors in
that rewinding is not necessary to extract the witness. As remarked in [Fis05], rewinding leads to
loose security reductions and hence online extractors can be useful to obtain tight security results.

The formal definition of online extractors for a non interactive zero knowledge proof of knowledge
is given below.

Definition 3 (Online Extractor). [Fis05] There exists a probabilistic polynomial time algorithm K
such that the following holds for any algorithm A. Let O be a random oracle, (x, π)← AO(k) and
QO(A) be the sequence of queries of A to O. Let w ← K(x, π,QO(A)). Then as a function of k,

Pr[(x,w) 6∈Wk ∧ V O(x, π) = 1] ≈ 0

In the above definition, the online extractor does not have any power to choose the random oracle.
In other words, the extractor is not allowed to program the random oracle. We first describe the
result from [Fis05] which gives the construction of online extractors. [Fis05] gave a transformation,
termed as Fischlin transformation, to convert an interactive proof of knowledge (defined as Fiat
Shamir Proof of knowledge; see definition 8 in Appendix) to a NIZK-PoK which has an online
extractor.

We give an informal description of the Fischlin transformation. Fischlin transformation converts
a 3-message interactive ZKPoK (PFS , VFS) to a non interactive ZKPoK (PH , V H), where H is
the random oracle, as follows. PH executes logarithmically many copies, denoted by r, of the
underlying prover PFS . In each execution it gets the commitment comi from PFS . In the ith

execution, PH then sequentially checks whether there exists any challenge chi from 0 to 2t − 1
such that H(com, i, chi, respi) has all its last b bits as 0, where b is typically logarithmic in the
security parameter and respi is the response returned by the ith copy of PFS on challenge chi. If
no such challenge exists then PH picks the challenge chi for which H(com, i, chi, respi) is minimum
among all other challenges. Finally, PH composes the proof (comi, chi, respi)1≤i≤r. The verifier
VFS on input x, (comi, chi, respi)1≤i≤r checks whether VFS accepts the proof (x, comi, chi, respi)
for all 1 ≤ i ≤ r. And also, it checks whether the last b bits of summation of H(com, i, chi, respi)
is at most logarithmic in the security parameter. We formally describe the Fischlin transformation
below.

Definition 4 (Fischlin Transformation). [Fis05] Let H be a random oracle. Let (PFS, VFS) be an
interactive Fiat-Shamir proof of knowledge with challenges of ℓ = ℓ(k) = O(log(k)) bits for relation
W . Define the parameters b, r, S, t (as functions of k) for the number of test bits, repetitions,
maximum sum and trial bits such that br = ω(logk), 2t−b = ω(logk), b, r, t = O(logk), S = O(r)
and b ≤ t ≤ ℓ. Define the following non-interactive proof system for relation W in the random
oracle model, where the random oracle maps to b bits.

- Prover. The prover PH on input (x,w) first runs the prover PFS(x,w) in r independent
repetitions to obtain r commitments com1, · · · , comr. Let com = (com1, · · · , comr). Then
PH does the following, either sequentially or in parallel for each repetition i. For each chi =
0, 1, 2, · · · , 2t − 1 (viewed as t-bit strings) it lets PFS compute the final responses respi =
respi(chi) by rewinding, until it finds the first one such that H(x, com, i, chi, respi) = 0b; if
no such tuple is found then PH picks the first one for which the hash value is minimal among
all 2t hash values. The prover finally outputs π = (comi, chi, respi)i=1,2,...,r.

- Verifier. The verifier V H on input x and π = (comi, chi, respi)i=1,2,...,r accepts if and only
if V1,FS(x, comi, chi, respi) = 1 for each i = 1, 2, · · · , r, and if Σr

i=1H(x, com, chi, respi) ≤ S.
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We first give an intuitive description of the proof of online extractability of the above transformation.
Consider an adversary who, on input x, has produced a proof π without having a witness for x. Let
Q be the set of queries made by the adversary to the random oracle. We first claim that there cannot
exist two queries (com, i, chi, respi) and (com, i, ch∗i , resp

∗
i ) in Q such that both (comi, chi, respi)

and (comi, ch
∗
i , resp

∗
i ) are accepted by the verifier VFS . If there existed two such queries then by

the special soundness property of (PFS , VFS), the witness can be extracted. The extraction can
be done by the online extractor since he can observe the queries made by the adversary. Hence,
once the commitment tuple is fixed the adversary can query the random oracle for one particular
challenge chi for i from 1 to r. Let si be the value output by the random oracle for the challeng
e chi. Using simple probability arguments it can be shown that the summation of si for all the
repetitions is negligible. Thus, for a given commitment tuple adversary succeeds with negligible
probability in producing an accepting proof corresponding to that tuple. Since, adversary can try
only polynomially many commitment tuples he can succeed in producing an accepting proof only
with negligible probability.

The capability of the online extractor to extract the witness comes from crucial fact that the
extractor can observe the queries made by the prover. If the extractor is not allowed to see the
queries made by the prover and not allowed to program the random oracle then it can be seen that
the extractor cannot extract the witness from the proof. In other words, there does not exist an
online extractor for any NIZKPoK that neither programs the random oracle nor observes the queries
made by the prover. The reason is that, if such an extractor were to exist then a malicious verifier
can simply run the extractor to get the witness thus contradicting the zero knowledge property of
the protocol. The same is not clear when the extractor is allowed to program the random oracle.
More precisely, we want to understand whether there exist online extractors for NIZKPoK which
are allowed do some limited programming of the random oracle but not allowed to observe. We
term this class of online extractors as non observing online extractors and formally define them
below.

Definition 5 (Non Observing Online Extractors). There exists a probabilistic polynomial time
algorithm K = (K1,K2) such that for large enough k the following holds for any algorithm A.
There exists a polynomial p(k) such that (M,aux) ← K1(k, p(k)) and (x, π) ← AO(M)(k) making

qO ≤ p(k) queries to the oracle O(M). Then we have that w ← K
O(M)
2 (x, π,M, aux). Then as a

function of k,
Pr[(x,w) 6∈Wk ∧ V O(M)(x, π) = 1] ≈ 0

We first show that there is a NIZKPoK which has a non observing extractor in the random
oracle model. Consider a NIZKPoK (P, V ) in the common reference string model. Construction of
NIZKPoK in the common reference string model has been well studied in literature. See [DSP92] for
one such example. The fact that (P, V ) is a NIZKPoK means that it has an extractor E = (E0, E1)
which executes as follows. On input security parameter, E0 produces a pair of strings (σ, aux). Let
π be an acceptable proof produced by an adversary A on input x as well as σ. Then, E1 on input
(x, π, σ, aux) outputs a witness w for x with non negligible probability. We construct (P ∗, V ∗) in the
random oracle model from (P, V ) as follows. P ∗ on input x, queries the random oracle on the point
x to get the response σ. P ∗ then executes P (x, σ) to obtain π. The verifier V ∗, on receiving π, first
queries x to the random oracle to get σ and then executes V (x, π, σ). V ∗ then outputs whatever V
outputs. We can construct a non observing online extractor E∗ = (E∗0 , E

∗
1) as follows. Consider an

adversarial prover A. Let qO be the number of queries made by the adversary. E∗0 executes E0 for

qO times to obtain the strings
(

(σ1, aux1), . . . , (σqO , auxqO)
)

. E∗0 then constructs a Turing machine

M which on being invoked for the ith time with input next outputs the string σi. E∗0 then sends
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the Turing machine M to the random oracle. After receiving the proof π from an adversary A, E∗1
then queries x to the random oracle to obtain σi and then it executes E1(x, π, σi, auxi) to obtain
w. From the extractability property of (P, V ), it follows that if π is an acceptable proof then E∗

outputs a witness for x with non negligible probability. This shows the existence of a NIZKPoK
having non observing extractors.

The natural question to ask now is whether this is true for all NIZKPoK in the random oracle
model. That is, whether there exists non observing online extractors for all NIZKPoK. We show
that this is not true. In fact, we show that all the NIZKPoKs that are obtained from the Fischlin
transformation do not have non observing online extractors. We formalize this result in the following
theorem. To understand the theorem given below, we refer the reader to the definitions of special
zero knowledge and one way instance generators in Appendix A.

Theorem 1. Consider a relation W having a one-way instance generator I. Let (PH , V H) be a
non-interactive zero-knowledge proof of knowledge obtained by applying the Fischlin transformation
to an interactive Fiat-Shamir proof of knowledge, (PFS, VFS) defined for the relation W . Then,
there does not exists a Non Observing extractor for (PH , V H) 3.

Proof: We show that if a Non Observing online extractor K exists for (PH ,V H), then we can
construct an algorithm B, termed as inverter, which does the following. It takes as input x where
x is produced by the one way instance generator, I. It then outputs a witness w for x with non-
negligible probability such that (x,w) ∈W . This contradicts the fact that I is a one-way instance
generator for the relation W . We now give the construction of B. The algorithm B on input x
executes the following steps.

Step 1) B first executes K1 to get the Turing machine M which is passed on to the random oracle.
It then makes 2tr queries to a copy of M to obtain a list L. The reason why the size of the
list is set to 2tr is because the honest prover makes at most 2tr queries. Note, the list L is
the same as the first 2tr responses returned by O(M).

Step 2) B chooses the r challenges chi, i ∈ [1, r] by looking up the list L. As B has access to the list
L of hash responses, it can figure out the exact challenges which an honest prover will include
in his proof by imitating the honest prover’s strategy. B considers the first 2t elements in
the list L which K1(1

k) outputs. If there is an element whose least significant b bits are 0 (if
there are many such elements pick the one with the least index in L), then B assigns ch

′

1 to
be its index else assign ch

′

1 to be the index of the minimum among the first 2t elements. If

(ch
′

1)
th

element corresponds to an element whose least significant b bits are 0, then B repeats

the process to compute ch
′

2 starting from the (β
′

1 + 1)th element of L. Whereas if (ch
′

1)
th

element corresponds to the smallest element in the first 2t elements, repeat the above process
starting from the (2t + 1)th element of the list. Thus, using the above approach B computes
ch

′

i, for all i ∈ [1, r]. Assign chi to be ch
′

i if i = 1 else chi = ch
′

i − ch
′

i−1.

Step 3) B executes the special zero knowledge simulator, Z, of the interactive Fiat-Shamir proof of
knowledge, (PFS , VFS), at (x, chi, YES) to obtain comi and respi for all i ∈ [1, r]. Let
com = (com1, . . . , comr).

Step 4) B makes ch′r queries to the random oracle O(M) as follows. At query numbers ch
′

i, ∀i ∈ [1, r]
it queries the oracle with (x, com, i, chi, respi). At all other points it queries the oracle at

3We say that there does not exist a non observing online extractor for a proof system if for every PPT extractor

there exists a PPT adversarial prover such that the probability that the adversarial prover produces an accepting

proof and at the same time the non observing extractor cannot extract a witness is non-negligible.
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(x, com, 1, 0, 0), where com is a r-sized vector with each element chosen randomly from the
commitment space.

Finally, B produces πB = ((com1, ch1, resp1), (com2, ch2, resp2), . . . , (comr, chr, respr)) as the proof.
The following lemma proves that no probabilistic polynomial time algorithm (even with access to
the Turing machine M) can distinguish proof πB from a proof πPO(L) produced by an honest prover
PO(M), where PO(M) is same as the prover PH but with random oracle H replaced with O(M).

Lemma 1. Let D be a probabilistic polynomial time algorithm. The following two distributions are
indistinguishable.

• K1(1
k, 2tr) → M . B is executed with input (x,M) and oracle access to O(M) which then

outputs πB. Output DO(M)(x,M, πB).

• K1(1
k, 2tr) → M . PO(M) is executed with input x,w and oracle access to O(M) which then

outputs πPO(M). Output DO(M)(x,M, πPO(M)).

Proof. B’s strategy of producing the challenges and the special zero-knowledge property ensure
that the distributions of πB is computationally indistinguishable from πPO(M) and thus D cannot
distinguish the proof transcript πB from πPO(M) . But as the queries made to the random oracle
by B are different from that of an honest prover, D could try guessing the queries. We show
below that this happens with negligible probability. Let the set of queries made by PO(M) (re-
spectively, B) to O(M) during its execution be QueryPO(M) (resp. QueryB). Denote the set of
respones returned by O(M) corresponding to QueryPO(M) (resp. QueryB) by RespPO(M) (resp.
RespB). To prove the theorem, we first make the claim that RespPO(M) is in fact the same as
RespB. This follows from the description of B and PO(M). Let πPO(M) = (comi, chi, respi)1≤i≤r
and πB = (com

′

i, ch
′

i, resp
′

i)1≤i≤r. We then claim that in both the cases, if the distinguisher makes
a query q to O(M) then q belongs to (QueryPO(M)\{(com1, · · · , comr, i, chi, respi) : 1 ≤ i ≤ r})
(resp. q belongs to (QueryB\{(com

′

1, · · · , com
′

r, i, ch
′

i, resp
′

i)}) with negligible probability. To prove
this claim, consider the following cases.

Case 1. PO(M): Without loss of generality let q be equal to (com1, · · · , comr, i, ch, resp) for some
i ∈ {1, . . . , r}. Since q ∈ (QueryPO(M)\{(com1, · · · , comr, i, chi, respi) : 1 ≤ i ≤ r}), it should hap-
pen that (comi, ch, resp) is an accepting transcript (this is because the honest prover follows the
protocol and hence all its queries correspond to accepting transcripts). We now have two accepting
transcripts (comi, chi, respi) (from πPO(M)) and (comi, ch, resp) using which we can extract a wit-
ness for x. Using this observation, we can construct a polynomial time procedure which can extract
a witness from the input instance. Now, we make the observation that we could have executed the
zero knowledge simulator to obtain πSim (which is indistinguishable from πPO(M)) and then using
the strategy of D (in a non black box way) to find q we could then extract a witness for the input
instance. Since such an approach gives us a probabilistic polynomial time algorithm to compute the
witness, our assumption that the considered relation has a one-way instance generator is violated.

Case 2. B : Consider the query q′ = (com
′′

1 , . . . , com
′′

r , 0, 0, 0) in the set (QueryB\{(com
′

1, · · · ,
com

′

r), i, ch
′

i, resp
′

i}). The probability that q′ = q is negligible since com
′′

1 , . . . , com
′′

r is picked uni-
formly at random.

From the above two cases it can be inferred that the distributionsDO(M)(x, L, πPO(M)) andDO(M)(x,
L, πB) are indistinguishable. ⊓⊔
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Now, consider the following probabilistic polynomial time algorithm.

Input: Instance x obtained as the output of the one-way instance generator I.
Output: Witness w.
1. K1(1

k, 2tr)→M .
2. BO(M)(x,M)→ πB.

3. K
O(M)
2 (x,M, πB)→ w.

Using Lemma 3 and the construction of B, it can be seen that the above algorithm outputs w
with non-negligible probability for input x such that (x,w) ∈ W contradicting the assumption
that W has a one-way instance generator. Thus, Non Observing online extractors do not exist for
(PH , V H).

4 Extractable commitment schemes

The notion of extractable commitment schemes has been studied [Pas03a, ACP09] in the common
reference string model as well as the random oracle model. Extractable commitments are commit-
ment schemes equipped with an additional algorithm, called the extractor, which can recover the
committed value given the commitment as well as the trapdoor to the CRS (in the CRS model)
or given access to the queries to the random oracle made by the committer to generate the com-
mitment. In this section, we study extractable commitments in the random oracle model. If the
extractor is allowed to observe the queries made by the committer then there is a simple com-
mitment scheme as described in [Pas03a]. We give an example of an non interactive extractable
commitment scheme where the extractor is allowed the program the random oracle but not allowed
to observe the queries made by the committer to the random oracle. We now define the notion of
extractable commitment schemes in the random oracle model when the extractor is non-observing.
For preliminaries on commitment schemes, refer to Appendix D.

Definition 6. Consider a non-interactive commitment scheme (C,R) defined in the random oracle
model where C is the committer and R is the receiver. We say (C,R) is an extractable commitment
scheme with non observing extractors if there exists a PPT extractor K = (K1,K2) which does the
following. The algorithm K1 on input security parameter ouputs a Turing machine M along with
auxillary information aux. Let the output of the committer with access to O(M) be the commitment
c. Then, K2 on input (c,M, aux) and access to the random oracle O(M) outputs m with probability
negligibly close to the probability that the committer succeeds in decommitting to m.

We now describe our extractable commitment scheme. Consider the random oracle H mapping
from {0, 1}∗ to {0, 1}n, where n is some polynomial in the security parameter. Let k1 < n and k2
be polynomials in the security parameter.

ExtCom.
Commit phase:
On input m, the committer picks a value R from {0, 1}k2 uniformly at random. It then sends
the queries (m,R, 1), . . . , (m,R, l) to H to receive the responses (h′1, . . . , h

′
l), where l is the length

of m. It then picks a non-zero key K from the space {0, 1}n−k1\{0n−k1} uniformly at random 4.
It then computes (h1, . . . , hl) as follows: hi = h′i if mi = 0 (mi denotes the ith bit of m) else

4This means that it picks a non-zero key from the space {0, 1}n−k1 uniformly at random.
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hi = h′i ⊕ (K||0k1). It then sends (h1, . . . , hl) as the commitment.

Reveal phase:
The committer sends (m,R,K) as the decommitment. Let the input received by the receiver during
the commit phase be (h1, . . . , hl). The receiver accepts if the following conditions are satisfied.
1. K 6= 0.
2. H(m,R, i) = hi if mi = 0, else H(m,R, i)⊕ (K||0k1) = hi.

We now show that the above commitment scheme satisfies both the hiding and the binding proper-
ties. We first show that the commitment scheme satisfies computational hiding property. Observe
that the only way for the adversary to distinguish the commitments corresponding to two different
messages is when it queries the random oracle on the message which is contained in the commit-
ment. Since the adversary runs in polynomial time the probability that it guesses R (picked by
the committer) correctly is negligible, since R is polynomial in the security parameter. This shows
that no PPT adversary can distinguish commitments corresponding to two different messages. We
now show that the extractable commitment scheme satisfies the binding property. Let m1 and
m2 be two distinct messages which correspond to the opening of a commitment c = (h1, . . . , hl).
Without loss of generality, assume that the ith bit of m1 is different from the ith bit of m2. Also
assume that the ith bit of m1 is 1 while the ith bit of m2 is 0. Since c can be opened to both
m1 and m2, this means that H(m1, R, i) ⊕ (K||0k1) = H(m2, R, i). In other words, the last k1
bits of H(m1, R, i) is the same as the last k1 bits of H(m2, R, i). But this can happen only with
probability 1

2k1
= negl(k) which in turn means that with negligible probability the commitment c

can be opened to both m1 and m2 for any two distinct messages m1 and m2. This shows that the
commitment scheme satisfies binding property.

The following theorem shows that the above described commitment scheme is a secure ex-
tractable commitment scheme even when the extractor is non observing, as per Definition 6.

Theorem 2. ExtCom is an extractable commitment scheme secure in the random oracle model.
Further, the extractor in the commitment scheme is non-observing.

Proof. We demonstrate the existence of an extractor K for the commitment scheme ExtCom

which succeeds in extracting the message from the commitment with non-negligible probability. To
do this, we crucially use the fact that the extractor can program the random oracle. Further, the
extractor we construct is a non-observing one: the extractor cannot see the interaction between
the oracle and the adversary. We now define the extractor K which is decomposed into algorithms
K1 and K2.

K1 picks a list L of responses of length qh uniformly at random. It then constructs a machine
M which does the following. On being invoked for the ith time with the next query, M outputs
the ith entry in the list L. Note that M is a stateful machine and so can store the number of times
it has been invoked till now. K1 then sends M to the oracle O. We now define K2: On input a
commitment (h1, . . . , hl) along with the Turing machine M and oracle access to O(M), K2 does
the following. It executes M(next) for qh times to get a list L. It then computes a message m such
that for all i = 1, . . . , l it assigns the ith bit of m to be 0 if hi is found in L else it assigns mi to be
1. It then outputs m.

We claim that, with overwhelming probability the output of K2 is the same as the message
decommitted by the sender during the reveal phase. More precisely, if the sender successfully
decommits to m then K outputs m′ such that m′ = m with overwhelming probability. To prove
this claim, we first consider the event that m

′

i 6= mi for some i from 1, . . . , l. To show that this event
is negligible, observe that it suffices to show that the event respi = respj⊕ (K||0k1) is negligible for

12



any non-zero K, where respi, respj are any two responses returned by the machine M . This follows
from the following two cases: if respi = respj then respi 6= respj ⊕ (K||0k1) since K is non-zero
and if respi 6= respj then respi can be same as respj ⊕ (K||0k1) with negligible probability since
the probability that the last k1 bits of respi and respj are the same is 1

2k1
(because the responses

returned by M are picked uniformly at random). This proves that respi = respj ⊕ (K||0k1) with
negligible probability which further proves that the probability that m′ 6= m is negligible. This
completes the proof. ⊓⊔

These ideas can be extended further, in a straightforward manner, to construct plaintext aware
encryption schemes having non observing plaintext extractors.
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A Preliminaries

Let λ ∈ N be the security parameter. We say that a function is negligible in λ if it is asymptotically
smaller than the inverse of any fixed polynomial. More precisely, a function η(λ) from non-negative
integers to reals is called negligible in λ if for every constant c > 0, ∃λc such that ∀λ > λc,
|η(λ)| < λ−c. Otherwise, η(λ) is said to be non-negligible in λ.
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A.1 Signatures

Definition 7 (Digital Signatures Scheme.). A signature scheme [GMR88] consists of three algo-
rithms (Gen, Sign,Verify) for key generation, signing and verification, respectively. More concretely,

- Key Generation. Gen(1λ) generates a public key secret key pair, (pk, sk).

- Signing. Sign(sk,m) outputs a signature σ on message m.

- Verification. Verify(pk,m, σ) outputs a bit.

A signature scheme is said to be complete if, for every (pk, sk)← Gen(1λ), any message m ∈ {0, 1}λ

and any σ ← Sign(sk,m), we have Verify(pk,m, σ) = 1.

Attack and Forgery types: An adversary can broadly mount two kinds of attacks against
signature schemes: Key-only attack (KOA, also called no-message attack) and Chosen message
attack (CMA). In the first attack, the attacker knows only the public key of the signer while in
the latter, the attacker can also obtain signatures on messages of his choice adaptively. The result
of the attacks by the adversary are classified as follows:

1. Total Break - The adversary learns the secret key of the signer.

2. Universal Forgery (UF) - The adversary can produce a valid signature for any given message.

3. Existential Forgery(EF) - The adversary can produce a new message signature pair.

Thus, by combining the attack type and the attack result, one can talk about various levels of
security for digital signatures. For instance, a (ε, τ)-universal forger under key-only attack is an
adversary who, knowing only the public key, can produce a signature on any given message with
probability ε in time at most τ . An (ε, τ, qh)-universal forger under key-only attack is the same
adversary in the Random Oracle Model who, makes at most qh hash queries to the random oracle.
For details refer to [MvOV97, PV05].

Security notions are obtained by coupling an adversarial goal with an attack model. We dis-
tinguish between several notions for which general results are immediate, as shown on Figure 1.
We refer the reader to the extensive cryptographic literature for a more formal definition of these
security notions.

Existential forgeries EF-KOA [S] ⇒ EF-CMA [S]
⇑ ⇑

Universal forgeries UF-KOA [S] ⇒ UF-CMA [S]
⇑ ⇑

Breakability BK-KOA [S] ⇒ BK-CMA [S]

Goal vs. Attack Key only Chosen message

Figure 1: Major security notions for signature schemes. S denotes an arbitrary signature scheme
and P1 ⇐ P2 means that P1 is polynomially reducible to P2. Security notions are defined by their
underlying problem e.g. UF-KOA [S] denotes the problem of computing a universal forgery under a
key-only attack.
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Definition 8. A Fiat Shamir proof of knowledge (with l(k)-bit challenges) for relation W is pair
(P, V ) of probabilistic polynomial time algorithms P = (P0, P1), V = (V0, V1) with the following
properties. [Completeness.] For any parameter k, any (x,w) ∈Wk, any (P (x,w), V0(x))→ (α, β, γ)
it holds V1(x, α, β, γ) = 1.
[Commitment Entropy.] For parameter k, for any (x,w) ∈Wk, the min-entropy of P0(x,w)→ α is
superlogarithmic in k.
[Public Coin.] For any k, any (x,w) ∈Wk any α← P0(x,w) the challenge V0(x, α)→ β is uniform
on {0, 1}l(k).
[Unique responses.] For any probabilistic polynomial time algorithm A, for parameter k and A(k)→
(x, α, β, γ, γ′) we have, as a function of k,

Pr[V1(x, α, β, γ) = V1(x, α, β, γ
′) = 1 ∧ γ 6= γ′] ≈ 0

[Special Soundness.] There exists a probabilistic polynomial time algorithm K, the knowledge ex-
tractor, such that for any k, any (x,w) ∈ Wk, any pairs (α, β, γ), (α, β′, γ′) with V1(x, α, β, γ) =
V1(x, α, β

′, γ′) = 1 and β 6= β′, for K(x, α, β, γ, β′, γ′)→ w′ it holds (x,w′) ∈Wk.
[Honest-Verifier Zero-Knowledge.] There exists a probabilistic polynomial time algorithm Z, the
zero-knowledge simulator, such that for any pair of probabilistic polynomial time algorithms D =
(D0, D1) the following distributions are computationally indistinguishable:

• Let D0(k) → (x,w, δ) and (P (x,w), V0(x)) → (α, β, γ) if (x,w) ∈ Wk and ⊥ → (α, β, γ)
otherwise. Output D1(α, β, γ, δ).

• Let D0(k) → (x,w, δ) and Z(x, Y ES) → (α, β, γ) if (x,w) ∈ Wk and Z(x,NO) → (α, β, γ).
Output D1(α, β, γ, δ).

Definition 9 (Special Zero-Knowledge). There exists a probabilistic polynomial-time algorithm X,
the special zero-knowledge simulator, such that for any pair of probabilistic polynomial-time al-
gorithms D = (D0, D1) the following distributions are computationally indistinguishable: (-) Let
(x,w, ch, δ)← D0(k) and (com, ch, resp) ← (P (x,w), V0(x, ch)) if (x,w) ∈Wk and (com, ch, resp)
← ⊥ else. Output D1(com, ch, resp, δ). (-) Let (x,w, ch, δ) ← D0(k) and (com, ch, resp) ←
Z(x, ch, Y ES) if (x,w) ∈Wk and (com, ch, resp)← Z(x, ch,NO) else. Output D1(com, ch, resp, δ).

Definition 10. A relation W is said to have a one-way instance generator I if for any parameter k
algorithm I returns in probabilistic polynomial time (x,w) ∈Wk, but such that for any probabilistic
polynomial time algorithm, termed as inverter, I, for (x,w) ∈ I(1k) and I(x)→ w′ the probability
P ((x,w′) ∈Wk) is negligible in k.

B Schnorr Signatures are secure without observability

In this section we provide a positive result arguing the security of the Schnorr signature scheme.
We define below the Discrete Log problem and the Schnorr signature scheme and then show that
Schnorr signatures are secure against existential forgery under chosen message attack (EF-CMA).
We refer the reader to Appendix A for an introduction to signature schemes and related security
models.

Definition 11 (DL Problem). Let G = 〈g〉 be a group of prime order q generated by g. Given
r ∈ G, computing k ∈ Zq such that r = gk is known as the Discrete Log (DL) problem over the
group G.
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A probabilistic algorithm A is said to be an (ε, τ)-solver for DL if

Pr
k

$
←Zq

[

A(gk) = k
]

≥ ε,

where the probability is taken over the random tape of A and random choices of k and A stops
after time at most τ .

The (ε, τ)-discrete log assumption (for group G) says that no (ε, τ)-solver can exist for DL over
G. The (asymptotic) DL-assumption says that the (ε, τ)-discrete log assumption holds whenever
τ = poly(log q) and ε is a non-negligible function of log q.

Definition 12 (Schnorr Signature Scheme). Let p and q be primes such that q | (p − 1) Let g be
a generator of the cyclic subgroup G of order q in Z

∗
p. Let H be a secure hash function with range

{1, . . . , q − 1}. The Schnorr signature scheme consists of the following three algorithms:

1. Key Generation: Choose a random x with 0 < x < q. x is the private key and y := gx is the
public key.

2. Signing: Given the input message m, choose a random k mod q. Let c := H(m, gk), and
s := k + cx. Return (c, s) as the signature.

3. Verification: Given the message m and the signature pair (c, s), calculate r = gsy−c. Let
c′ = H(m, r). If c = c′ then return true else return false.

We now show that there exists a Non Observing reduction from the Discrete Log assumption to
any adversary (making atmost qh hash queries) that generates existential forgeries under key only
attack. To give an intuition behind our idea we start by recalling the original proof of Schnorr in
the random oracle model. The key idea in the proof [PS00] is to execute the adversary twice using
the same input and random tape. This adversary will make hash queries and the reduction needs to
respond to these queries. In both executions, the reduction responds with the same hash responses
till some chosen query called the “forking point”. Starting from this “forking point” the reduction
uses different hash responses in the two executions. With certain probability both executions of
the adversary will generate forgery at the “forking” point and this allows the reduction to compute
the discrete log. As for the adversary’s signature query for some message m, the reduction returns
a randomly chosen tuple (s, c) as the signature and then updates the random oracle to return the
response c when queried at (m; gsy−c).

Our positive results relies on the observation that in the proof of security of Schnorr signatures,
the reduction does not need to actually know the queries made by the adversary to the random
oracle. It just needs to be able to achieve a “forking” situation. Furthermore, this effect can be
achieved by programming two separate random oracles for the two executions, that respond with
the same value up till the “chosen query.”

We start by recalling the Splitting Lemma. We refer the reader to [PS00] for details on the
proof. Then we provide a formal proof for the security of the Schnorr signature scheme in non
observing reduction model.

Lemma 2 (The Splitting Lemma.). Let A ⊂ X × Y such that Pr[(x, y) ∈ A] ≥ ε. For,

B =
{

(x, y) ∈ X × Y | Pry′∈Y [(x, y
′) ∈ A] ≥

ε

2

}

(1)

then Pr[B] ≥ ε
2
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The philosophy of splitting lemma is that when a subset A is “large” in a product space X×Y ,
then it has many “large” sections.

Theorem 3. There exists a Non Observing reduction from the (τ ′, ε′)-secure Discrete-Log problem
to any adversary that (ε, τ, qh, qs)-breaks existentially unforgeability (under chosen message attack)
of the Schnorr signature scheme such that

ε ≈ poly
(

ε′, qh
)

and τ ≈ poly
(

τ ′, ε, qh, qs
)

where qh is the number of random oracle queries and qs is the number of signature queries that the
Schnorr forger makes.

Proof. We closely follow the ideas from [PS00]. Given an existential Schnorr forger oracle machine
A, which receives the public key pk and makes up to qh random oracle queries and up to qs
signature queries, we construct a Non Observing reduction R = (R1,R2) that solves the Discrete-
Log problem. The reduction will execute the adversary twice. We start by describing R1, the
first part of the reduction. For the two executions of the adversary, R1 generates machines M1

and M2 that it will send to the two instances of the random oracle. Execution of the adversary

instantiated with the oracle O(M1) when using machine M1 is denoted by A
O(M1)

. Similarly,

adversary instantiated with the oracle O(M2) when using machine M2 is denoted by A
O(M2)

.
We start by describing how R1 generates the machines M1 and M2. R1 samples a random

value j ∈ [qh] and qh random hash responses ρ1, ρ2 . . . ρqh . It creates a list L1 with these values
ρ1, ρ2 . . . ρqh . This list is used by machine M1 to return the query responses and in that order.
Similarly, it initializes machine M2 with list L2= {ρ1, ρ2 . . . ρj−1, ρ

′
j . . . ρ

′
qh
}, where ρ′j . . . ρ

′
qh

are
freshly chosen.

Reduction R2 chooses fresh randomness ̟ and executes A
O(M1)

with input pk and with ran-

domness ̟. It then executes A
O(M2)

with the same input pk and the same randomness ̟. Observe
that the reduction R2 remains oblivious of all the queries that the adversaries make to their or-

acles. However, since we execute A
O(M1)

and A
O(M2)

with the same input and randomness we
can assume that in both executions the adversary will make the same first query to the respective
oracle. Further, if it is given same responses then its future queries, in the two executions, will
also be the same. In our setting, the first j − 1 responses provided by L1 and L2 will be the same
and therefore the first j queries made by the adversary will necessarily have to be the same. The
queries made by the adversaries after this point might vary. In effect, we have achieved the effect of

rewinding even though the reduction R2 remains oblivious of actual queries made by both A
O(M1)

and A
O(M2)

.
To answer the signature queries of the adversary, the reduction exploits the fact that it can send

dynamic updates to the random oracle. Thus, when the signature oracle is queried at point m, the
reduction randomly chooses s and c from [1, p− 1], and returns (s, c) as the signature. At the same
time, it sends an update to the random oracle to return c when queried at point (m, gs · y−c).

If both executions A
O(M1)

and A
O(M2)

return valid signatures on the jth query we can use the
two forgeries to solve the Discrete-Log problem. In all other cases our reduction aborts.

Probability Analysis. Let ν be the probability that the adversary returns a forgery on a hash
query that it made to its oracle at some point. The probability that the adversary comes up with
a forgery involving a hash query for which the random oracle was never queried is 1

q−1 . Thus

ν = ε − 1
q−1 ≥ 6ε/7. This means that over the random coins of ̟, ρ1 . . . ρqh the probability of
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success the adversary returning forgery involving some hash query is at least ν. Therefore, there
exists a β ∈ [qh] such that over the random coins of ̟, ρ1 . . . ρqh the probability of success of
the adversary returning forgery involving the βth hash query is at least ν

qh
. We say that a value

̟, ρ1 . . . ρβ−1 is “good” if an adversary on input ̟, ρ1 . . . ρqh successfully outputs a forgery on the
βth hash query with probability at least ν

2qh
, where the probability is taken over the random choices

of ρβ . . . ρqh . Now using Lemma 2, at least ν
2qh

fraction of the values ̟, ρ1 . . . ρβ−1 will be “good.”
Finally, this yields that the over all success probability of our reduction in solving discrete log is at

least 1
qh
·
(

ν
2qh

)3
, which is non negligible. For a more detailed analysis, refer to [PS00]. ⊓⊔

C RSA based Signature Schemes.

RSA [RSA83] public system consists of a public key (N, e) and a secret key (N, d), where N is the
product of two λ/2 bit primes, and e, d ∈ Z

∗
φ(N) satisfying ed ≡ 1 mod φ(N). The RSA function

f : Z∗N → Z
∗
N is defined by f(x) = xe mod N and its inverse f−1 : Z∗N → Z

∗
N is defined by

f−1(y) = yd mod N (x, y ∈ Z
∗
N ). Let (N, e, d)← RSA(1λ) be the RSA key generation algorithm.

Definition 13 (RSA Problem). Given (N, e) and y ∈ Z
∗
N computing xe mod N is known as the

RSA inversion problem.

A probabilistic algorithm A is said to be an (ε, τ)-solver for the RSA inversion problem if

Pr
(N,e,d)←RSA(1λ),x

$
←Z∗

N

[(A(N, e, xe)) = x] ≥ ε,

where the probability is taken over the random tape of A, random choices of RSA and x and
A stops after time at most τ .

The (ε, τ)-RSA inversion assumption says that no (ε, τ)-solver can exist for RSA inversion prob-
lem. The (asymptotic) RSA inversion assumption says that the (ε, τ)-RSA inversion assumption
holds whenever τ = poly(log q) and ε is a non-negligible function of log q.

Definition 14 (Probabilistic Full Domain Hash (PFDH) signatures.). This signature scheme is
parameterized by a length parameter k0. Let H : {0, 1}∗ → Z

∗
N be a secure hash function. The

PFDH signature scheme consists of the following three algorithms:

1. Key Generation: Let (N, e, d) ← RSA(1λ). Further let (N, d) be the private key and (N, e)
be the public key.

2. Signing: Given the input message m, and the secret key (N, d), choose a random r
$
← {0, 1}k0.

Compute s := (H(m, r))d mod N and return (r, s) as the signature.

3. Verification: Given the message m and the signature (r, s), check if se = H(m, r) mod N . If
it is indeed the case then return true else return false.

When k0 = 0 then the above described signature scheme is in fact deterministic and is referred
to as the Full Domain Hash (FDH) signature scheme.

Theorem 4. Assuming that the RSA inversion problem is (τ ′, ǫ′)-secure, the PFDH signature
scheme with parameter k0 is (ǫ, τ, qh, qs)-existentially unforgeable under chosen message attack (un-
der Non Observing reductions) in the random oracle model such that:-

ǫ ≥ ǫ′qh and τ = τ ′ + poly(λ, qh, qs)
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where qh is the number of the hash queries and qs is the number of signature queries that the forger
makes.

Proof. Given an existential forger oracle machine A, which receives the public key pk and makes up
to qh queries and upto qs signature queries, we construct a Non Observing reduction R = (R1,R2).
R1 is responsible for generating a machine M that will be used by it to return responses to the
random oracle for the adversary. R1 generates a list L as follows: R1 samples qs + qh elements
µ1, . . . , µqs+qh ∈ Z∗N . It picks a number i uniformly at random from [qs + qh]. It then writes the
elements µe

1, . . . , µ
e
i−1, yµ

e
i , µ

e
i+1, . . . , µ

e
qs+qh

on L, where y is the RSA inversion challenge. The ma-
chine M is then programmed to return the reponses to its queries from list L and in that order. We
next describe the simulation of signature queries. Reduction R2 then instantiates the adversary
with input (N, e) and oracle access to O(M). On receiving a message m, the reduction picks a bit
r of k0 bits uniformly at random and queries O(M) with (m, r). If the response returned by O(M)
is of the form µe

j then reduction returns µj to the adversary else it aborts.
Outputting an inverse: The reduction returns a forgery (r, s) on message m with randomness
r such that it never received a signature on this message. Let the response of O(R1) to the query
(m, r) be h. Either h is of the form µe

j or yµe
j for some j ∈ [qs + qh]. If h = yµe

j then R2 outputs
s
µj

as RSA inverse of y.

Probability analysis: The reduction succeeds only if the adversary produces a forgery corre-
sponding to the element yµe

i . But the adversary can choose this element with probability 1
qs+qh

.

Hence, the probability that the reduction outputs an RSA inverse of y is ǫ′

qs+qh
.

⊓⊔

D Commitment schemes

In this section, we recall the definition of commitment schemes in the random oracle model. A
commitment scheme consists of three PPT algorithms: Commit, Decommit and Verify which are
as described below. The committer executes the Commit algorithm during the commit phase and
it executes the Decommit algorithm during the reveal phase. Consider a random oracle H.

• Commit(m, r): It takes the message m and chooses randomness r to derive a commitment c
using the random oracle H.

• Decommit(c): The commitment c is opened by outputting m and r.

• Verify(m, r, c): It verifies whether c is indeed the output of (m, r) using the random oracle H.

A commitment scheme is said to satisfy two main properties: namely, hiding and binding. The
computational hiding property says that distributions of the commitments corresponding to two
different messages are computationally indistinguishable. The computational binding property says
that a probabilistic polynomial time committer can open a commitment to two different values only
with negligible probability.
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