
Attribute-Based Functional Encryption on Lattices

(Extended Abstract)

Xavier Boyen

December 31, 2012

Abstract

We introduce a broad lattice manipulation technique for expressive cryptography, and use it

to realize functional encryption for access structures from post-quantum hardness assumptions.

Speci�cally, we build an e�cient key-policy attribute-based encryption scheme, and prove

its security in the selective sense from learning-with-errors intractability in the standard model.

0This is a longer version with appendices of a paper to appear at TCC 2013. Author's contact email: xb@boyen.org

1 Introduction

Attribute-Based Encryption (ABE) is a very powerful notion of encryption, where ciphertexts are
not decipherable according to the ownership of a speci�c key (as in public-key encryption), or a
speci�c name (as in identity-based encryption), but according to the ful�llment of a functional
condition expressed as a predicate that takes multiple attributes as input.

Attribute-based encryption was �rst realized in a paper by Goyal et al. [23], although the idea
was already present in the Fuzzy IBE of Sahai and Waters [34], which for the �rst time permitted
ciphertexts to be addressed on the basis of a condition that was strictly richer than a mere equality
(of keys or identities). Since then, the notion of ABE has blossomed into an entire research program
known as Functional Encryption [24, 11], whereby rich functions driven by inputs from both the
ciphertext and the key attempting to decrypt it, determine whether the message, or some function
thereof, can be accessed. As an illustrative example of recent developments in this area, Waters very
recently built a functional cryptosystem whose predicates are deterministic �nite automata [36].

As impressive as these results may be, almost all of them appear to require the machinery of
bilinear maps [29]�which leaves them completely vulnerable to quantum cryptanalysis, by virtue
of hinging on the classically hard but quantumly easy Discrete Log problem. (Limited instances
of construction from yet other techniques [16, 10] do exist, but, with assumptions that hinge on
Factoring, they are equally vulnerable to quantum attacks.) With quantum computers rapidly
moving from a scienti�c to an engineering problem, it behooves us to have safe cryptographic
alternatives ready before they become a reality�possibly with nary an advance warning. Lattices
appear to be our best defense, for not only are they increasingly conjectured to thwart the quantum
threat in a fundamental way, they also have a rich mathematical structure that makes them well
suited for building �complex� and expressive cryptographic systems.

Lattices have made their apparition in cryptography with the work Ajtai [5], and have since
been used to construct a vast variety of primitives, including one-way and collision-resistant hash
functions [5, 27], signatures [12, 26], public-key encryption [7, 32, 33], identity-based encryption
schemes [22, 15, 1, 2], lossy trapdoor functions [31], and even a couple instances of functional en-
cryption for inner-product [4] and threshold [3] functions. Lattices have also been very instrumental
in cracking the long-standing question of realizing fully homomorphic encryption [20, 21, 14].

Lattices are indeed rapidly emerging as a mathematical platform of choice for building increas-
ingly powerful and e�cient cryptographic primitives. In addition to lattice problems being generally
conjectured to withstand quantum attacks, the mathematical properties of these objects make them
both relatively e�cient and �exible to enable the construction of powerful cryptosystems. Research
in lattice-based cryptosystems that reduce from the �Learning With Errors� (LWE) hardness as-
sumption has been particularly active, in no small part because the average-case LWE problem is
itself reducible [33, 30] from a slew of worst-case lattice problems, for a sound foundation.

Despite all of those incentives and successes, the reality is that functional encryption so far
remains largely con�ned to the world of bilinear maps. In recent years, only a handful of such
systems have been successfully realized using lattices, such as the already cited constructions of
IBE [22, 1], HIBE [15, 2], IPE [4], and FuzzyIBE [3]. Further advances have remained elusive,
despite the �pull� exerted by the faster pace of progress in that other world of bilinear maps.
Rather disconcertingly indeed, as attempts are made to translate high-level principles of bilinear-
map functional encryption into lattice analogues, serious di�culties tend to crop up in the most
unexpected places when one tries to prove security. A pointed example, documented in [3], relates
to the unresolved di�culties faced by those authors when trying to build ABE from LWE.

If anything, this brief history of functional encryption from lattices suggests that new ideas are
in order for progress, beyond the �eld's classic paradigms.

1

1.1 Main Motivations

�Attribute-Based Encryption using Lattices� is by many authors' account an important research
question, having been posed and left unanswered in an number of recent works including [15, 1, 4, 3].
Perhaps the best evidence of the problem's popularity is none other than a recent attempt by a
large corporation to lay claim on its solution, in an eponymous patent application [17], even though
the problem explicitly remained open to this day.1 Why such eager enthusiasm?

First and foremost, functional encryption in general and ABE in particular are extremely pow-
erful cryptographic constructs that would seem almost incredible�e.g., by the standards of circa
2000. FE and ABE primarily give us unprecedented �exibility and expressiveness with which re-
cipients can be designated in a wholesale manner. Not only do there exist direct use cases for such
power (we refer to the early literature on the subject for examples), but the prospects that it opens
for protocol building are highly intriguing.

As already alluded to, such rewards would be for naught if the looming threat of a catastrophic
quantum cryptanalysis kept relegating it to where damage would be contained. It would be foolish
to believe that because quantum registers have only grown from 5 to 7 qubits during the last decade,
that their size could not suddenly become cryptographically devastating during the next one. This
is where lattices come into play.

Compounding their conjectured quantum robustness, lattices also have a number of rather
unique e�ciency and implementation advantages. For instance, while bilinear-map cryptosystems
tend to be convenient to work with on paper thanks to the availability of clean abstractions, this view
hides a rather complex elliptic-curve machinery that must be securely implemented in any physical
implementation. In lattice-based cryptography, the situation is reversed: schemes and proofs tend
to be more complex and mired in details, but implementations require only small-number arithmetic
and basic linear algebra.

Those are the reasons�from quantum peace of mind, to the sheer challenge of solving compelling
theory with practical applications�why it is far from wasted e�ort to �reinvent� Attibute-Based
Encryption, not from bilinear maps but from lattices. (And as a bonus, we introduce a new technique
whose power likely reaches into FE far beyond mere ABE.)

1.2 Our Contributions

Our main result is the construction of a functional encryption scheme for monotone access structures,
also known as (key-policy) attribute-based encryption, and reduce its security from LWE.

We achieve this result by way of a new lattice manipulation framework suited to the handling of
complex access policies. Compared to earlier works on lattice-based IBE and FE, our framework has
two distinguishing characteristics: the reliance on ephemeral lattices for all private-key extractions,
and the subsequent application of a basis splicing technique which allows a recipient to convert an
ephemeral lattice's basis into a basis for any lattice in a given family, as needed.

We introduce our framework in relation to a number of observations we make in our attempt to
shed some light on the di�culties previously faced. This leads us to a (rather informal) discussion
of FE with uniform and non-uniform policies, and how the latter appeared hard to tackle based on
previous lattice techniques.

Here we focus solely on introducing our framework and building �key-policy� KP-ABE from it.
We defer to future work the study of �ciphertext-policy� CP-ABE and even more ambitious FE.

1The US patent application [17] appears to refer to a precursor of the �Fuzzy IBE using Lattices� subsequently
published in [3], wherein a superset of the authors explicitly acknolwedge that it did not extend to a proper ABE.
We further opine on mathematical but not legal grounds that our ABE falls outside of the claims of [17].

2

2 Preliminaries

We refer to the Appendix�available in the eprint version of the paper [13]�for background on
lattices in cryptography, and more speci�cally on Ajtai lattices, Regev's public-key encryption and
the LWE assumption, discrete Gaussian sampling, preimage sampling, lattice trapdoors, and notions
of noise and variance associated with the sampling algorithms.

2.1 Attribute-Based Encryption

We follow the de�nition of the ABE functionality as given by Goyal et al. [23], albeit for security
we consider the notion of ciphertext privacy which implies both semantic security and recipient
anonymity.

De�nition 1 (Key-Policy Attribute-Based Encryption). A Key-Policy Attribute-Based Encryption
scheme consists of the following four algorithms:

Setup(λ, `)→ (Pub,Msk): This algorithm is input a security parameter λ and an attribute number
`. It outputs a public key Pub and a master key Msk.

Extract(Pub,Msk,Policy)→ Key: This algorithm takes a public key Pub, a master key Msk, and an
access policy Policy. It outputs a decryption key Key.

Encrypt(Pub,Attrib,Msg)→ Ctx: This algorithm is input a public key Pub, a list of attributes
Attrib, and a message bit Msg. It outputs a ciphertext Ctx.

Decrypt(Pub,Key,Ctx)→ b: This algorithm takes a public key Pub, a decryption key Key, and a
ciphertext Ctx. It outputs the bit b if the attributes Attrib used to create Ctx satisfy the policy
Policy used in the creation of Key.

De�nition 2 (Selective-Model KP-ABE Security). A KP-ABE scheme is ciphertext-private in the
selective-attribute model of security if all probabilistic polynomial time (PPT) adversaries have at
most a negligible advantage in this game:

Target: The adversary declares the challenge attributes, Attrib†, that it wishes to be challenged
upon.

Setup: The challenger runs the Setup algorithm and gives the public key to the adversary.

Queries: The adversary is allowed to issue adaptive queries for private keys corresponding to
policies Policy of its choice, as long as Attrib† does not satisfy Policy.

Challenge: The adversary signals its readiness to accept a challenge, and proposes a message to
encrypt. The challenger encrypts the message for the challenge attributes Attrib†, and then
�ips a random coin r. If r = 1, the ciphertext is given to the adversary; if r = 0, a random
element of the ciphertext space is returned.

Queries: This is a continuation of the earlier query phase.

Guess: The adversary outputs a guess r′ of r. The advantage of an adversary A in this game is
de�ned as |Pr[r′ = r]− 1

2 |

One also de�nes an adaptive-attribute version of the above game, where the adversary may defer
the choice of target attributes until requesting the challenge.

3

2.2 Linear Secret Sharing

De�nition 3 (LSSS over Zq). An LSSS Π over a set of parties P consists of an �index map� ρ and
a �share-generating matrix� L ∈ Z`×θq with ` rows and θ columns, where ` is the number of shares
speci�ed by Π, and θ depends on the structure of Π. For all i = 1, . . . , `, the function ρ maps the
i-th row of L to its corresponding party. The matrix L maps an input θ-vector v = (s, r2, . . . , rθ),
where s ∈ Zq is the secret to be shared, and r2, . . . , rθ ∈ Zq are random, into an output `-vector
Lv = (s1, . . . , s`) containing the shares of the secret s according to Π. The share si = (Lv)i is
assigned to party ρ(i).

Every LSSS according to the above de�nition enjoys the linear reconstruction property. This
means that if Π is an LSSS for the access structure A, then the following is true. Let S ∈ A be any
authorized set, and let I ⊂ {1, 2, . . . , `} be de�ned as I = {i : ρ(i) ∈ S}. Then, there exist constants
{κi ∈ Zq} for i ∈ I, such that, if the {λi = (Lv)i} are valid shares of any secret s according to Π,
then

∑
i∈I κiλi = s. It was shown by Beimel [9], that these constants {κi} can be found in time

polynomial in the size of the share-generating matrix L.

Vector Secrets and Reconstruction over Z. For the purpose of this paper, we will need a
slightly modi�ed notion of LSSS, where secrets and shares are `-dimensional integer vectors in Z`,
and share-generating matrices are de�ned over Z rather than over Zq. This creates a few issues:

1. Since secrets and shares are themselves vectors, the vector v of all such shares should be
viewed as a tensor, and the product (L · v) interpreted accordingly.

2. There is no notion of uniform share distribution over Z: a benign issue here.

3. Reconstruction in Z may require fractional interpolation coe�cients κi ∈ Q. We alleviate this
di�culty by relaxing our notion of reconstruction, allowing the reconstructed vector to be a
non-zero multiple of the original vector (which is non-trivial only if the vector has dimension
greater than one). Such reconstruction is possible using only integer coe�cients κi ∈ Z.

Low-Norm Share Generation. We will use the generic construction mechanism described in
Appendix G of [25, eprint] to convert a monotone access structure into a deterministic LSSS matrix.
For access formulas with AND (∧) and OR (∨) gates only, it has the further advantage to build
share-generating matrices L ∈ {0,±1}`×θ with ternary elements in {0,±1}. For such formulas,
the (unrelaxed) reconstruction coe�cients κi will be binary in {0, 1} by construction, even when
working in Z, hence already integer and low-norm without further relaxation.

Duplicated Attributes. For ease of exposition, we �rst restrict our attention to formulas where
each attribute appears exactly once. Since ρ is then the identity function, we omit it from the
notation altogether�until Section 4.5 and the Example Appendix of [13] where we handle missing
and duplicated attributes.

3 Framework

Before delving into scheme details, it is useful to take a look at the idea behind the �basis-splicing�
framework, and place it in its broader context.

4

3.1 Functional Encryption from Lattices

It all starts with Ajtai lattices, the Regev cryptosystem, and Gaussian sampling.

The Regev Cryptosystem. Recall that the Regev PKE scheme [33] makes use of an Ajtai lattice
[5], de�ned as Λ⊥q (A) = {x : Ax = 0 (mod q)} ⊆ Zm, where q ∈ Z+ and A ∈ Zn×mq together specify
the lattice (though not necessarily in a unique way). In Regev's PKE scheme, one assumes q �xed
and m > n log q. The private key is a vector d ∈ Zm with low euclidean norm ‖d‖ � q

√
m. The

public key is a pair (A,u) such that Ad = u (mod q). To encrypt a bit m ∈ {0, 1}, one selects
a random ephemeral vector s ∈ Znq , and output a pair (c0, c1), where c0 = s> u + bq/2em + ν0

and c1 = s> A + ν1, and where the additive terms ν0 and ν1 are low-norm independent discrete
gaussian noise terms. To decrypt, the private-key holder computes the di�erence ∆ = c0 − c1 d in
Zq, and interprets it as �m = 1� if (the smallest non-negative representative of the coset) ∆ lies in
{bq/4e, b3 q/4e}, and as �m = 0� otherwise.

Preimage Sampling. The Regev system has served as a starting point for many �expressive�
functional generalizations of public-key cryptography. The key turning point in this generalization
has been the development, in [22], of a �preimage sampling� technique that, given A and u, allow
one to obtain a preimage d such that Ad = u (mod q) and such that d has the same conditional
distribution given u as if it had been sampled �rst and its image computed from it. What makes the
preimage-sampling approach cryptographically interesting, is that in order to sample a preimage of
good quality (where the �quality� of a sample is an inverse measure of its norm), it is (conjectured)
necessary to possess a good quality or low-norm basis B for the lattice Λ⊥q (A). Furthermore, Ajtai's
original result [5] does give us an e�cient way to co-generate both a uniformly random matrix A
and an associated short basis B for the lattice it induces; whereas it is a conjectured hard problem
to �nd even a single short vector �after the fact� for a given random A. Together, these methods
provide an e�ective way to obtain provably secure trapdoors from lattice hardness assumptions, that
have been used in interesting ways to construct increasingly �expressive� functional cryptosystems:
IBE [22, 1], HIBE [15, 2], IPE [4], FuzzyIBE [3], and now ABE.

More Expressive Predicates. The combination of the lattice/basis co-generation algorithm of
[5], the basic public-key framework of [33], and the preimage sampling approach of [22], has led
to the invention of several functional encryption schemes for various classes of functions, starting
with the identity-based encryption scheme in the original paper [22]. A handful of other functional
encryption schemes from lattices were later devised, including IBE in the standard model [15, 1],
hierarchical IBE [15, 2], inner-product encryption [4], and fuzzy IBE [3]. At a high level, all of those
schemes �nd their roots in the Regev PKE system, which they generalize in various ways following
a common principle. The common principle is to extend Regev so that either or both the matrix A
and/or the syndrome u depend on the functional decryption criterion, rather than being constant.
In IBE, the decryption criterion is a match of identities, so we let A and/or u be function of the
identity. In IPE and FuzzyIBE, the decryption criterion is an inner product equality or a threshold
of equalities, obtained by splitting A and/or u into multiple shares Ai and/or ui, each of which
depending on one of the attributes of the decryption predicate.

3.2 Complex Policies and Non-Uniformity

In our quest to understand what di�erentiates successes from failures in earlier lattice-based FE
construction attempts, we are drawn to observe the emergence of a pattern that we shall attempt

5

to characterize informally (based on inductive rather than deductive reasoning).

Uniform Policies. The �successes� share a crucial simplifying characteristic: all attributes taken
as formal arguments in the decryption policy are of equal importance; they play symmetrical roles.

• IBE and HIBE use trivial examples of uniform policies, because the decryption predicate is a
mere equality test that treats a full identity string as a single atomic input (of variable length
in the case of HIBE), comparing that of the ciphertext with that of the private key.

• IPE uses uniform policies, because none of the multiple attributes taken as inputs to the
decryption predicate, plays a di�erent role or is more important than the others. Indeed,
the predicate is of the form, �〈k, c〉 = 0 (mod q) ?� (where k and c are the key's and
the ciphertext's attribute vectors). Now let us consider a permutation π. If we apply it
to the components of k and also to the components of c, one obtains the new predicate,
�〈π(k), π(c)〉 = 0 (mod q) ?�, which is in fact unchanged and evaluates to the same value.

• FuzzyIBE uses uniform policies by same reasoning. The only di�erence is that here the
predicate is a θ-out-of-` threshold equality test between key and ciphertext attributes.

Non-Uniform Policies. To contrast, consider the following basic ABE decryption predicate:
�(Ak = Ac)∨ ((Bk = Bc)∧ (Ck = Cc)) ?� It falls within the scope of the ABE model; yet it is non-
uniform since the atomic clause that takes attribute A as input, (Ak = Ac), can by itself truthify
the entire predicate, whereas neither the clause in B nor in C can do the same. The attributes are
not symmetrical, since A carries more weight than either B or C. Per our earlier criterion, some
permutations π of the attributes would not leave the predicate invariant.

Leakage from Non-Uniformity. The authors of [3] observe that the di�culty with extending
existing lattice techniques into ABE stems from the conjunction of two risk factors: the necessity
to prevent short-vector private keys from spilling a full basis; and the propensity of keys with
asymmetrical components to do just that.

To be sure, there are examples of earlier �FE successes� that allow full-bases to be used as keys:
all the HIBE schemes [15, 1, 2] fall in that category, since full bases are needed for key delegation.
However, we contend that passing out full bases is not damaging in this case, because HIBE policies
are trivially uniform, involving only a single attribute, so that either there is a full match or there
is no match at all�no need to �nesse the power of the decryption key in any way.

The other past �FE success� with multi-vector keys is the FuzzyIBE from [3]. There, a private key
is a Regev key randomly secret-shared into a number of vectors function of the threshold�de�nitely
not a full basis which would give too much power. Such sharing �nesse led to an attack when one
attempted to extend the scheme to ABE with non-uniform policies, because of dicrepancies in the
relative importance of the private key components. E.g., a key for A ∨ (B ∧ C) would be �heavier�
at attribute A. In this situation, an adversary could, by making multiple key queries for related
but distinct policies, obtain a collection of short vectors whose �heavy� coordinates together leak
enough information to allow the adversary to reconstitute a �rogue� (sub-)basis. The uneven weight
of the coordinates made it di�cult to randomize the keys to prevent the �heavy� coordinates from
leaking, without necessarily drowning the �light� coordinates in noise and render them useless.

6

3.3 Robust Embedding of Policies

Instead of trying to prevent the reconstitution of rogue bases from private-key vectors (which was
the direction of future research envisioned in [3]), we shall make our private keys into full bases
outright�albeit, bases of ephemeral random lattices that vary with every invocation of key extraction.

Ephemeral Lattices. Making keys from constantly changing, ephemeral lattices seems great for
security�but how can such keys be useful for decryption in a Regev-like system, if the lattices used
for encryption and key extraction are di�erent? In a nutshell, the ephemeral lattices (or, rather,
the Ajtai matrices de�ning them) will have a known structure, featuring both deterministic and
randomized subcomponents. The ephemeral lattice is rather high-dimensional and its structure will
encode the private-key policy attributes. The structure will allow the recipient to transform this
�useless� random-lattice basis, into a basis for any target lattice, typically of a lower dimension, that
belongs in a certain authorized set that corresponds to the policy encoded into the initial structure.
Thus, if a private key is valid for a given ciphertext, meaning that the attributes of one satisfy the
policy of the other, then the recipient is able to transform it into a basis for the lattice used in the
ciphertext construction, and from there decryption à la Regev can proceed. Conversely, if a private
key is invalid for a given ciphertext, the encryption lattice will be outside the authorized set, and
the private key will be useless to derive a (short) basis for that lattice.

Basis Splicing. We refer as basis splicing the internal operations that let the recipient transform
the given high-dimensional ephemeral-lattice basis, into a basis for any desired lower-dimensional
lattice in the authorized set. In the case of ABE, the structure embedded in the ephemeral lattice
will be obtained from an LSSS, and the basis splicing operations will amount to taking linear
combinations of the basis vectors. Certain linear combinations will cause all the blinding randomness
to vanish, transforming the initial unknown ephemeral lattice into a smaller known target lattice in
the authorized set.

Security versus Functionality. At an intuitive level, the security bene�ts that we derive from
our approach are twofold:

• Private keys as full bases are more robust than single vectors. In a system where private
keys are mere vectors, there is an incentive to obtain more than one such vector, in a bid to
reconctruct a rogue basis. If the key is a full basis, there is nothing to be gained in trying to
obtain another, which can be generated from the �rst.

• Ephemeral lattices make a very potent blinding and �rewalling mechanism. This is perhaps
the most important aspect of the framework we propose: since the key-extraction mechanism
involves an independently rerandomized lattice that changes upon each invocation, the private
keys are in a very strong sense �rewalled from one another and from the master secret.

These two properties should intuitively make it easy to construct a secure system, which should
translate into easy-to-construct reductionist simulations. The main question then is to construct
a scheme that can function under those parameters. This is where the basis-splicing mechanism
comes into play, as we show next.

7

4 Scheme

As already noted, all references to the Appendix should redirect to the eprint version of this paper,
available at [13].

4.1 Intuition

Setup. The system setup is very straightforward. To each (binary) attribute Attribi named in the
system, is associated a random Ajtai matrix Ai and a matching trapdoor Bi such that Ai Bi = 0
for small ‖Bi‖. The matrices Ai form the global public key. The trapdoors Bi form the keying
authority's master key.

In KP-ABE, ciphertexts are created for sets of (binary) attributes, while private keys embed
the decryption policies. To make it possible to encrypt for a set of attributes, a natural idea is, for
each (binary) attribute in the system, to create an Ajtai matrix Ai and an associated trapdoor Ti.
The matrices Ai will form the public key; the trapdoors Ti form the master key.

Encryption. To encrypt for an attribute set {Attribi}, one creates a matrix F by concatenating
the public matrices Ai designated by the Attribi, �lling the gaps with the zero matrix 0; one then
uses F as an �encryption matrix� à la Regev. 2

Key Extraction. To create a private key for a given decryption policy represented as an LSSS,
the key-extraction authority starts by constructing a (high-dimensional) ephemeral matrix M =
[Mdiag|Mlsss], where Mdiag is a block-diagonal assembly of all the Ai, and Mlsss is a tensor product of
the LSSS matrix and a secret ephemeral randomization matrix. Using its knowledge of the master-
key bases Bi, the authority creates a short basis W for the lattice Λ⊥q (M), randomizes it into a
structure-less short basis K, and returns K as the private key. Notice that the basis K is that of a
fresh random lattice whose de�ning Ajtai matrix M is not even revealed to the recipient.

Decryption. Given a Regev ciphertext created from some encryption matrix F, the �rst step is to
transform the private key K into a basis T for the lattice Λ⊥q (F), using the basis-splicing technique.

The transformation requires the encryption matrix F to lie in the �span� of the (undisclosed!)
ephemeral matrix M, i.e., that there be a linear combination of the rows of M that yields M ↪→ [F|0].
By the structure ofM = [Mdiag|Mlsss], it follows that the i-th block-column of F is a multiple of the i-
th block ofMdiag, or, in other words, that F is the concatenation of gi Ai with computable coe�cients
gi. Though K was orthogonal to M, it is not orthogonal to [F|0]. We can obtain orthogonality to
[F|0] by multiplying each row of K by an integer coe�cient ḡi ∝ 1/gi (mod q) inversely proportional
modulo q to the coe�cient gi of the corresponding column of [F|0] (taking ḡi = 0 when corresponding
to the columns of 0 or those of F associated with a coe�cient gi = 0).

The basis K thus transformed is a matrix [T>|0>]> where T has full rank and is orthogonal to F.
The �nal observation is to take ḡi = (

∏
j:gj 6=0 gj)/gi. Because those ḡi are already in Z, no modular

reduction is necessary to ensure that ḡi ∝ 1/gi (mod q). Hence the norm ‖T‖ remains small when
the gi are binary or small enough. This makes of T a low-norm full-rank set, convertible into a basis
suitable as a trapdoor for sampling low-norm vectors in Λ⊥q (F).

We see that, by properly constructing M, it is possible for the recipient to know how its trapdoor
K can be transformed into the desired trapdoor T, even though M itself is not revealed. Once the

2A Regev ciphertext (c0, c1) is created in reference to an Ajtai lattice Λ⊥q (F) de�ned by a known matrix F. We call
the matrix F, the Regev encryption matrix. (It is usually denoted A but we use F to emphasize that it is a function
of the encryption attributes; we reserve the notation Ai for the constant matrices in the public key.)

8

trapdoor T is obtained, it can be used to decrypt the ciphertext, e.g., by �nding a short preimage
d of the encryption syndrome u, i.e., such that Fd = u (mod q), and applying Regev. 3

Issues. For this approach to work, it is necessary that the norm of the reconstructed trapdoor T
be small in order to apply Regev. The only operation that can cause the norm of T to grow out of
hand, is the LSSS-based derivation of T from K. In general, for circuits containing �proper� threshold
gates�not just ∧ nor ∨�with large fan-in, the coe�cients gi can become exponentially large, which
would overwhelm the noise tolerance of the Regev decryption scheme unless the modulus q is itself
chosen to be exponentially large.

The �rst good news is that, even in the pessimal case, the issue of the LSSS coe�cients is
somewhat mitigated by the fact that we only perform LSSS reconstruction �half-way�, eschewing
full-�edged Lagrange interpolation. Indeed, the worst way in which LSSS coe�cients intervene
in T is through simple products

∏
j gj�and not as ratios of products that would further require

denominator elimination as, say, in the Fuzzy IBE of [3]. Intuitively, the reason why we do not need
to account for�and then eliminate�the common denominator in LSSS reconstruction, is because
what needs to be reconstructed is not the secret decryption itself (such as a short pre image or
basis), but merely a multiple of the (public) encryption matrix F; only a multiple is needed because
F induces the same Ajtai lattice as all its multiples relatively prime to q.

The second and main good news is that, as long as the only gates present are ∧ and ∨, regardless
of their size or circuit complexity, the coe�cients gi can be made binary ∈ {0, 1}, thereby ensuring
that ‖T‖ ≤ ‖K‖. This restriction is not as severe as it looks, as it should be emphasized that circuits
of ∧ and ∨ gates already capture most cases of practical interest for (monotone) access policies.
Until now, it was not known how to realize ABE involving even the simplest non-uniform policies,
e.g., involving only one ∧ and one ∨ gate.

4.2 Construction

We assume the existence of the following PPT algorithms for certain lattice sampling operations.
See the Appendix in [13] for some background, and the rapidly evolving literature for the fastest
and tightest instantiations, e.g., [18].

� TrapGen for co-sampling a uniform Ajtai lattice and a short basis for it [5, 6];

� SampleGaussian for discrete Gaussian sampling a point on a given Ajtai lattice;

� SamplePreimage for sampling a preimage of a given Ajtai syndrome, with a discrete Gaussian
conditional density [22, 8].

� ExtendRight for extending a trapdoor of an Ajtai matrix A into a trapdoor of any Ajtai matrix
of the form [A|Z], as long as A has full rank [15, 1].

Remark. (Black-Box Sampling and Algorithm Parameters)

In the scheme description, we view all of the above sampling algorithms as (commodity, interchange-
able) black boxes, without concern for their precise parameter requirements. For now, it su�ces to
know that the available sampling algorithms are both su�ciently fast and su�ciently tight, to make
the entire system security reducible from the learning-with-error (LWE) hardness assumption with
polynomially bounded parameters, so that is can in turn be further (quantumly [33], or for large
moduli classically [30]) reduced from worst-case lattice assumptions.

The KP-ABE scheme consists of four algorithms speci�ed as follows.

3Because the private key is a full basis, it allows the recipient to �nd a preimage for any syndrome; hence the
encryption syndrome u may change with each ciphertext.

9

kpABE.Setup(1λ, 1`): Given a security parameter λ, and an attribute bound `:

1. Select a security dimension n > Ω(λ) and a base lattice dimensionm > 2n log q, together
with a prime modulus q > 2. (See the Appendix for the constraints on q in function of
the desired tightness α of LWE�the larger the modulus, the weaker the assumption.)

2. Use algorithm TrapGen(1λ) to select, for each i ∈ [`], a uniformly random n×m-matrix
Ai ∈ Zn×mq with a full-rankm-vector set Bi ⊆ Λ⊥q (Ai) that satis�es a low-norm condition.

3. Select a uniformly random n×m-matrix A0 ∈ Zn×mq .

4. Select a uniform random n-vector u ∈ Znq .
5. Output the public key and master key,

Pub =
(
{Ai}i∈[`], A0, u

)
; Msk =

(
{Bi}i∈[`]

)
kpABE.Extract(Pub,Msk,Policy): On input a public key denoted Pub, a master key denoted Msk,

and an access structure denoted Policy, do:

1. Convert Policy into a (low-norm, and preferably deterministic) Linear Span Program
matrix L ∈ Z`×(1+θ), assigning the i-th row of L to the binary attribute of index i ∈ [`].
The columns j ∈ [0, θ] are numbered from 0 to θ, with θ ≤ ` being a function of Policy.
The linear encoding rule we adopt for L is that, for a binary attribute list represented as
Attrib ∈ {0, 1}` or Attrib ⊆ [`], the (monotone) access policy is satis�ed i� the rows of L
selected by Attrib contain in their span the row-vector

[
1, 0, . . . , 0

]
∈ Z1+θ.

2. Select θ ephemeral uniform random n×m-matrices Zj ∈ Zn×mq for j ∈ [θ].

3. Construct a �virtual encryption matrix� M ∈ Z` n×(`+1+θ)m
q , consisting of `× (`+ 1 + θ)

blocks of n×m-�sub-matrices�, by translating the sharing matrix L =
(
li,j
)
i∈[`],j∈[1+θ]

as

follows,

M =



A1

A2

. . .

A`︸ ︷︷ ︸
Public, constant, from Pub

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l1,0 A0

l2,0 A0

...

l`,0 A0︸ ︷︷ ︸
From Pub

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l1,1 Z1 . . . l1,θ Zθ

l2,1 Z1 . . . l2,θ Zθ
...

...

l`,1 Z1 . . . l`,θ Zθ︸ ︷︷ ︸
Secret, random, ephemerals


mod q

Each row of L maps to a particular attribute according to the map ρ associated with the
secret-sharing scheme. In this section, we are assuming for simplicity that each attribute
(of index #i) appears exactly once (on the i-th row), making ρ the identity function.
This restriction is lifted in Section 4.5, to handle missing and duplicated attributes.

4. Build a �structureless� random trapdoor K for Λ⊥q (M), thus satisfying M ·K = 0 (mod q).
This can be done using ExtendRight, based on the fact that M = [Mtrapdoor|Mextension],
whereMtrapdoor = Diag(A1, . . . ,A`) has full rank and a trivial trapdoorDiag(B1, . . . ,B`).

Unless ExtendRight is already guaranteed to produce an extended basis W whose vectors
are idenpendently and identically distributed, it is necessary to rerandomize it to achieve
this condition. Let K be the resulting �structureless� trapdoor for M.

10

5. A redundant form of the policy-based private key may be output, as,

Key =
(
K, L

)
However, two optimizations can be made:

(a) If the sharing matrix L is deterministic in Policy, it may be omitted.

(b) It is not necessary to transmit all of K since the decryptor will only ever need
the upper-left quadrant of dimension (` + 1)m × (` + 1)m, which we denote by
K′ ∈ Z(`+1)m×(`+1)m.

Hence, the private key for Policy may be given in compressed form, as,

Key = K′

kpABE.Encrypt(Pub,Attrib,Msg): On input a public key Pub, an attribute list Attrib ⊆ [`], and a
message bit Msg ∈ {0, 1}, do:

1. Assemble an �encryption matrix� F ∈ Zn×(`+1)m
q , obtained as the concatenation of, for

each i ∈ [`], either Ai if i ∈ Attrib, or 0 if i 6∈ Attrib, and A0, as follows,

F =


F1

.
=

A1

or 0

∣∣∣∣∣∣∣∣ . . .

∣∣∣∣∣∣∣∣
F`

.
=

A`
or 0︸ ︷︷ ︸

Ai included i� i ∈ Attrib

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F0
.

=

A0


2. Select a uniform random n-vector s ∈ Znq .
3. Select a low-norm Gaussian noise scalar ν0 ∈ Z according to some parametric distribution

Ψα (see Appendix), and compute the scalar,

c0 =
(
s> · u + ν0 + bq

2
c ·Msg

)
mod q

4. Select a low-norm Gaussian noise vector ν1 ∈ Z(`+1)m whose components are identically
and independently distributed from Ψα, and compute the vector,

c1 =
(
s> · F + ν1

)
mod q

5. Output the ciphertext,

Ctx =
(

c0, c1

)
(It is not necessary to transmit the components of c1 that contain only added ν1-noise,
i.e., we only need to transmit the components of c1 at coordinates where Fi 6= 0.)

kpABE.Decrypt(Pub,Key,Ctx): Given a public key Pub, a policy-based key Key (for known policy
Policy), and a ciphertext Ctx (for known attributes Attrib):

11

1. Find an as-short-as-feasible `-vector g ∈ Z` satisfying the two conditions:

g> · L = [d, 0, . . . , 0] ∝ [1, 0, . . . , 0] ; ∀i ∈ [`] : (gi = 0) ∨ (i ∈ Attrib)

Namely, one �nds a linear combination of the rows of L that yields some small d-multiple
of [1, 0, . . . , 0] with d ∈ Z \ {0}, using only rows corresponding to attributes in Attrib.
This is possible i� Attrib satis�es Policy.

2. Notionally apply the linear combination g to the �block-rows� ofM, to transform the �vir-
tual� encryption matrixM into a �real� encryption matrixM′ that matches the encryption
matrix F of the given ciphertext (up to constant factors):

M′ =

 g1 A1

or 0

∣∣∣∣ g2 A2

or 0

∣∣∣∣ . . . ∣∣∣∣ g` A`
or 0

∣∣∣∣∣ d · A0

∣∣∣∣∣ 0 · Z1

∣∣ . . . ∣∣ 0 · Zθ︸ ︷︷ ︸
0

 mod q

This is de�ned, even though the decryptor does not know the Zi, for they all cancel out.

3. Let M′′ be the matrix containing only the |Attrib|+ 1 non-zero �block-columns� of M′ as
shown above. Let K′′ be the matrix obtained by removing from K the matching rows and
columns�i.e., rows and columns with the same indices as the columns removed from M′.

(Dimension-wise, we obtain M′′ ∈ Zn×(|Attrib|+1)m
q and K′′ ∈ Z(|Attrib|+1)m×(|Attrib|+1)m.)

We have M′ · K = 0; therefore M′′ · K′′ = 0, and K′′ is a short basis of Λ⊥q (M′′).

4. Likewise, let F′′ be the matrix retaining the |Attrib|+1 non-zero �block-columns� of F; and
let c′′1 be the ciphertext vector from which only the matching components of c1 remain.

5. We now build a trapdoor for the encryption matrix F, or, rather, its reduced form F′′.
Let 1 be the m×m identity matrix, and de�ne the diagonal matrices,

G =


g1 · 1

. . .

g` · 1
d · 1

 ; G′′ =


non-zero
diagonal
blocks
of G

 ∈ Z
(|Attrib|+1)m×
(|Attrib|+1)m

Notice F′′·G′′ = M′′ (mod q). SinceM′′·K′′ = 0 (mod q), we have F′′·G′′·K′′ = 0 (mod q).
Compute T′′ = G′′ · K′′, whose norm is bounded as ‖T′′‖ ≤ ‖G′′‖ ‖K′′‖ ≤ max{gi, d} ‖K‖.
The result T′′ is our desired trapdoor for sampling short vectors in Λ⊥q (F′′).

6. Using SamplePreimage with trapdoor T′′, �nd a short solution f ′′ of F′′ · f ′′ = u (mod q).

7. Compute v = c0− (f ′′)> · c′′1 mod q, and represent its coset as an integer v ∈ [−b q2c, b
q
2c].

8. Output the decrypted message bit as,

b =

{
0 if ‖v‖ ≤ b q4c
1 if ‖v‖ ≥ d q4e

4.3 Correctness

Theorem 4. For usual values of the lattice parameters in Regev-like encryption systems, the key-

policy attribute-based encryption scheme of the previous section will correctly decrypt authorized

ciphertexts with overwhelming probability.

12

Proof. To see this, suppose that the �independent� initial bases and short vectors (namely, Bi, Yi,
ei,j , di,j) are sampled with a suitable Gaussian parameter σ, for instance using the tools from [22, 8].
Then, the norm of all �dependent� bases and vectors that are supposed to be short, will be bounded
by multiples of σ to which certain �growth coe�cients� will have applied. To bound those, we note
that the only processes in the whole system that will induce �growth�, are:

• in Extract: the randomized invocation of ExtendRight to obtain K, which merely multiplies the
norm of the master-key trapdoors by a constant factor independent of the data;

• in Decrypt: the calculation of the trapdoor T′′ from K′′, which as we already noted multiplies
the norm of K′′ by a factor ≤ max{gi, d} that only depends on the linear-sharing reconstruction
vector g, itself function of the function Policy and its inputs Attrib.

Bounding max{gi, d} for access-structure circuits with many gates can be tedious, but we note that
max{gi, d} will be dominated by the presence of large threshold gates. On the contrary, ∧ and ∨
gates are essentially harmless, as shown below.
Claim. For a circuit consisting only of ∧ and ∨ gates, max{gi, d} = 1.

Proof. There exists a deterministic construction of a linear sharing matrix L that guarantees binary
reconstruction coe�cients in this case (see Preliminaries).

We defer to the full paper the exact quanti�cation of the various norm and noise parameters. Of
course, while the growing norm of supposedly short vectors can be compensated by commensurately
increasing the modulus q, this is best avoided for e�ciency reasons.

4.4 Security

Theorem 5. If there exists a probabilistic polynomial-time algorithm A with advantage ε > 0
in a selective-security key-policy attack against the above scheme, then there exists a probabilistic

polynomial-time algorithm B that decides the (Zq, n, Ψ̄α)-LWE problem with advantage ε/2, where
α = O(poly(n)).

Proof. In the LWE problem, the decision algorithm is given access to a sampling oracle, O, which
is either a pseudo-random sampler Os with embedded secret s ∈ Znq , or a truly random sampler O$.
Our decider algorithm B will simulate an attack environment for, and exploit the prowesses of A,
to decide which oracle it is given. The reduction proceeds as follows.

Instance. B requests from O and obtains ((1 + `)m+ 1) LWE samples that we denote as,[
(w−1, v−1)

]
∈ (Znq × Zq)[

(w1
0, v

1
0), . . . , (wm

0 , v
m
0)
]
∈ (Znq × Zq)m[

(w1
1, v

1
1), . . . , (wm

1 , v
m
1)
]
∈ (Znq × Zq)m

...[
(w1

` , v
1
`), . . . , (w

m
` , v

m
`)
]
∈ (Znq × Zq)m

Target. A announces a target attribute vector, denoted Attrib†, on which it wishes to be challenged.

Setup. B constructs the public key Pub as follows:

1. The vector u ∈ Znq is constructed from the LWE samples of index −1: simply set u = w.

13

2. The matrix A0 ∈ Zn×mq is built from the LWE samples of index 0: set A0 = [w1
0| . . . |wm

0].

3. For each i ∈ [`] such that attribute i ∈ Attrib†, the matrix Ai is constructed from the
LWE samples of index i in a similar way as above: for i ∈ Attrib†, set Ai = [w1

i | . . . |wm
i].

4. For each i ∈ [`] such that attribute i 6∈ Attrib†, the matrix Ai is constructed as in the real
scheme using TrapGen, which provides an associated low-norm full-rank matrix Bi such
that Ai · Bi = 0. (The LWE samples of all indices i 6∈ Attrib† will remain unused.)

The resulting public key Pub is given to A.

Queries. A is allowed to make adaptive queries for keys Key for policies Policy that the target
attribute list Attrib† does not satisfy. B constructs and returns a key Key for each query
Policy, as follows.

1. As in the real scheme, derive from Policy a (low-norm) linear sharing matrix L ∈ Z`×(1+θ).

2. Let φ = |Attrib†|. Make L′ from L, keeping only the rows of index i such that i ∈ Attrib†.
Make L′′ from L′ by dropping the leftmost column of index j = 0 (keeping j = 1, . . . , θ).

3. W.l.o.g., suppose that Attrib† = {i1, i2, . . . , iφ} = {1, 2, . . . , φ}; i.e., the �rst φ attributes,
from 1 to φ, are arbitrarily assumed to be the attacker's targets.

4. W.l.o.g., suppose that the φ left-most columns of L′′ form a φ-dimensional square matrix
of full rank. The columns of L from which L′′ is derived can always be reordered to
achieve this, since the order of its columns (other than that of index j = 0) is arbitrary.
Notice that this step requires that the challenge Attrib† do not satisfy the query Policy.
If it did, by de�nition some non-zero [d, 0, . . . , 0]> would be in the span of L, and thus
[0, . . . , 0]> non-trivially in that of L′′; therefore the φ left-most columns of L′′ would not
be full-rank.

5. Invoking TrapGen, sample φ random matrices Zi ∈ Zn×mq with short bases Yi ∈ Zm×m,
for all i ∈ Attrib† (i.e., w.l.o.g., i = 1, . . . , φ are the indices of the Zi with trapdoor Yi).

6. Build a �virtual encryption matrix� M exactly as in the real scheme (see below about the
boxes), as,

M =



A1

. . .

Aφ
. . .

A`

∣∣∣∣∣∣∣∣∣∣∣∣

l1,0 A0
...

lφ,0 A0
...

l`,0 A0

∣∣∣∣∣∣∣∣∣∣∣∣

l1,1 Z1 . . . l1,φ Zφ
...

...
lφ,1 Z1 . . . lφ,φ Zφ

. . . l1,θ Zθ
...

. . . lφ,θ Zθ
...

...
l`,1 Z1 . . . l`,φ Zφ . . . l`,θ Zθ


mod q

7. Denote by Z the (φn × φm)-submatrix of M made of the blocks lj,i Zi whose i, j ∈ [φ].
Per Lemma 6, we can build (from the Yi) a single trapdoor Y for Z as a whole.

Lemma 6. For i = 1, . . . , φ, let Zi ∈ Zn×mq and Yi ∈ Zm×m such that Zi Yi = 0 (mod q).

Suppose also that each Yi is a basis of Λ⊥q (Zi) and has low norm ‖Yi‖ ≤ β ∈ R. De�ne,

Z =

l1,1 Z1 · · · l1,φ Zφ
...

. . .
...

lφ,1 Z1 · · · lφ,φ Zφ

 mod q

14

Then, for any full-rank integer matrix
(
li,j
)
with i, j ∈ [φ], the Ajtai lattice induced by

Z ∈ Zφn×φmq admits an e�ciently computable (in fact constant) trapdoor Y ∈ Zφm×φm
i.e., such that Y is a basis of Λ⊥q (Z) with bounded norm ‖Y‖ ≤ β.

Proof. Take,

Y =

Y1 0
. . .

0 Yφ


We have that Z ·Y = 0 (mod q), that Y is a basis for Λ⊥q (Z), and that ‖Y‖ ≤ maxi ‖Yi‖.

8. Observe that we now have a trapdoor for every lattice de�ned by a submatrix of M
encased in one of the boxes shown in Step 6. Let us notionally reorder the columns of
M by swapping the φ left-most Ai-block-columns with the φ left-most Zi-block-columns.
We get a matrix M′ = [M′trapdoor|M′extension], where M′trapdoor is full-rank, block-diagonal,
and each of its blocks has an associated trapdoor. We can thus trivially build a trapdoor
for all of M′trapdoor. By invoking ExtendRight, we extend this into a trapdoor W′ for all
of M′. Reordering the rows of W′ yields a trapdoor for the original M above: call it W.

9. Randomize W into a structure-less basis K whose norm matches that of the real scheme.
(This step is only necessary if ExtendRight does not already produce a basis whose vectors
all have the target discrete Gaussian distribution already; if they do, let K = W.)

This concludes the simulation of the private-key extraction. The adversary A is given the
resulting Key =

(
K, L

)
. Notice that it has exactly the same distribution as in the real scheme.

Challenge. A signals that it is ready to accept a challenge, and chooses a message bitMsg† ∈ {0, 1}.
B responds with a ciphertext Ctx† =

(
c†0, c

†
1

)
assembled from the LWE instance, as follows:

1. Let c†0 = v−1 + b q2c ·Msg†.

2. Let c†1 =
[

v1
1, . . . v

m
1︸ ︷︷ ︸

if 1∈Attrib†

, . . . , v1
` , . . . v

m
`︸ ︷︷ ︸

if `∈Attrib†

, v1
0, . . . v

m
0︸ ︷︷ ︸

always

]
Observe that when the vi come from a genuine LWE oracle, the foregoing is a well-formed
Regev-like encryption of Msg† for the encryption matrix F indicated by the challenge Attrib†.
On the contrary, when the vi come from a random fake LWE oracle, the ciphertext is inde-
pendent of the message bit since c†0 in particular is uniformly and independently distributed.

Continuation. A is allowed to continue making further private-key extraction queries, after having
obtained the challenge ciphertext.

Decision. A eventually emits a guess, whether Ctx† was actually a valid encryption of Msg ∈ {0, 1}
as requested. B uses the guess to decide whether the LWE oracle O was genuine. If A says
�valid�, then B says �genuine�; if A says �invalid�, then B says �fake�.

If the adversary succeeds in guessingMsg† with probability at least 1
2 +ε, then our decision algorithm

B will correctly guess the nature of the LWE oracle with probability at least 1
2 + ε

2 . This concludes
the proof of the security reduction.

15

4.5 Extensions

So far we have assumed, merely for simplicity of notation, that policies will only encode monotone
access structures given as formulas where each attribute appears as argument exactly once. We now
show how to list such limitations.

4.5.1 Duplicated Attributes

Arbitrary monotone policies will generally be expressed as formulas where various attributes appear
zero, once, or even multiple times. Accordingly, we show how to handle policies that can comport
arbitrarily many ∧ and ∨ gates, and an arbitrary wiring of the attribute inputs to feed them,
including duplication. 4 The idea is very simple:

kpABE.Setup' is unchanged from the original version: to each attribute one continues to associate
one Ajtai matrix Ai and its trapdoor Bi.

kpABE.Setup' also remains the same: the ciphertext is constructed as before, around a Regev
encryption matrix F that either includes or excludes each submatrix Ai depending on whether
or not the respective attribute i ∈ Attrib.

kpABE.Extract' must be modi�ed to allow for duplicate occurrences of the same attribute in the
Boolean expression of Policy. This is done as follows:

1. Give each occurrence of some attribute #i in Policy a unique label, say #i.1 and #i.2,
and accordingly rewrite the policy Policy into Policy′ as a function of the augmented
attributes. Policy′ has the same topology (structure and size) as Policy, but its input
literals are now unique. Keep track of the mapping from the augmented attributes i′ to
the original attributes i by means of a surjective map ρ : i′ 7→ i.

2. Construct the sharing matrix L in the regular way from the augmented-attribute formula
Policy′. For each original attribute #i, there will be as many rows in L as the number of
occurrences of #i in the original Policy.

3. Construct the �virtual encryption matrix� M from L as before. Since the augmented
attributes that emanate from the same original attribute, all refer to the same public
matrix Ai, the key-extraction matrix M will thus contain multiple copies of Ai, albeit on
di�erent columns.

Once M has been constructed with possibly duplicated Ai on its left-side block-diagonal, key
extraction both in the real scheme and in the simulation will proceed as usual. The only e�ect
of the duplication is that, in the simulation, knowledge of trapdoors Bi will be linked to the
presence of the original attributes�not the augmented ones�in Attrib†.

kpABE.Decrypt' requires a small adjustment to cope with duplicated attributes in the Policy en-
coded in the decryption key. Essentially, before applying the decryption algorithm, the de-
cryptor needs to avail himself as many copies of the attribute as he will need. This is done
by duplicating the various fragments of c1 that correspond to the attributes that need to be
duplicated, before using the result in the normal decryption process.

4We must however continue to caution on the use of t-out-of-n threshold gates ≥t, because unless t = 1 or t = n
we cannot guarantee in general that the LSSS matrix L and the reconstruction coe�cients will be small. Fortunately,
as long as repeated attribute inputs are allowed, every possible monotone access structure can be expressed using
only ∨ and ∧ gates, in such a way that L is a binary or ternary matrix.

16

This construction is very e�cient as the ciphertext size remains unchanged in |Attrib|, and the
private key size has the same dependency on |Policy| as it did without attribute duplication (of
course, |Policy| can now grow arbitrarily).

4.5.2 Negated Attributes

Handling negation is more complex. One approach is to pair each attribute with its logic opposite,
and let ciphertexts and policies be expressed as functions of the positive and negative literals.
However, this does not quite yet capture the richness of formulas that allow an unrestricted use of
¬-gates, in addition to ∨-gates and ∧-gates

One possibility is to generalize the positive/negative dual representation trick at every level of
the formula tree, ensuring that to every node is associated two values that are the logical complement
of each other.

This is all we are going to say about this topic. We leave it as an open problem the task of
properly extending our scheme to handle negation in an e�cient way.

4.5.3 Elimination of A0

The astute reader will observe that the public matrix A0 never uses any trapdoor, in either the
scheme or the proof.

A0 is not essential, and can be eliminated if we move, in Extract's construction of M, the LSSS
coe�cients li,0 from A0 to the Ai. Some care must then be taken with the application of ExtendRight,
since the left-hand block-diagonal part of M may no longer have full rank, but this can be handled.

Aside from making the keys and ciphertexts marginally smaller, the main bene�t of eliminating
A0 is to remove the coe�cient d from the expression of G in the Decrypt algorithm, thus possibly
lowering the norm of the reconstructed decryption trapdoor T′′ in the general case where threshold
gates are present. (The norm of T′′ is never an issue if only ∨ and ∧ gates are present.)

5 Conclusion

In this paper, we have introduced a new cryptographic framework for performing complex lattice
basis manipulations, of the kind that seemingly can unlock the construction of very powerful and
expressive cryptosystems such as functional encryption. We demonstrated its power and �exibility
by building the �rst known attribute-based cryptosystem from �learning with errors�, a (conjectured)
quantum-resistant hardness assumption tied to many lattice problems.

Acknowledgments

The author would like to thank Dan Boneh for suggesting a simpli�cation of the scheme and its
proof by way of the ExtendRight abstraction, and to thank the TCC 2013 program committee for
what appears to be a very thorough review.

References

[1] Shweta Agrawal, Dan Boneh, and Xavier Boyen. E�cient lattice (H)IBE in the standard
model. In Advances in Cryptology�EUROCRYPT 2010, volume 6110 of LNCS, pages 553�
572. Springer, 2010.

17

[2] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in �xed dimension
and shorter-ciphertext hierarchical IBE. In Advances in Cryptology�CRYPTO 2010, volume
6223 of LNCS, pages 98�115. Springer, 2010.

[3] Shweta Agrawal, Xavier Boyen, Vinod Vaikunthanathan, Panagiotis Voulgaris, and Howteck
Wee. Functional encryption for threshold functions (or, fuzzy ibe) from lattices. In Public Key

Cryptography�PKC 2012, 2012.

[4] Shweta Agrawal, David Freeman, and Vinod Vaikuntanathan. Functional encryption for inner
product predicates from learning with errors. In ASIACRYPT 2011, 2011.

[5] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In STOC 1996,
pages 99�108. ACM, 1996.

[6] Miklos Ajtai. Generating hard instances of the short basis problem. In ICALP, volume 1644
of LNCS, pages 1�9. Springer, 1999.

[7] Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-case
equivalence. In STOC, pages 284�293, 1997.

[8] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. In STACS,
pages 75�86, 2009.

[9] A. Beimel. Secure schemes for secret sharing and key distribution. PhD thesis, Department of
Computer Science, Technion, 1996.

[10] Dan Boneh, Craig Gentry, and Michael Hamburg. Space-e�cient identity based encryption
without pairings. In FOCS 2007, pages 647�657, 2007.

[11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: De�nitions and challenges.
In TCC, 2011.

[12] Xavier Boyen. Lattice mixing and vanishing trapdoors � a framework for fully secure short
signatures and more. In Public Key Cryptography�PKC 2010, volume 6056 of LNCS, pages
499�517, 2010.

[13] Xavier Boyen. Attribute-based functional encryption on lattices. Cryptology ePrint Archive,
Report 2012/716, 2012. http://eprint.iacr.org/.

[14] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In CRYPTO 2011, 2011.

[15] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees or, how to delegate
a lattice basis. In EUROCRYPT 2010, 2010.

[16] Cli�ord Cocks. An identity based encryption scheme based on quadratic residues. In Proceedings
of the 8th IMA International Conference on Cryptography and Coding, pages 26�8, 2001.

[17] Microsoft Corporation. Attribute based encryption using lattices. US patent application
US20120155635, 17 December 2010.

[18] Leo Ducas and Phong Q. Nguyen. Faster gaussian lattice sampling using lazy �oating-point
arithmetic. In ASIACRYPT 2012, LNCS. Springer, 2012.

18

[19] N. Gama and P. Q. Nguyen. Finding short lattice vectors within Mordell's inequality. In STOC

'08 � Proc. 40th ACM Symposium on the Theory of Computing. ACM, 2008.

[20] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169�178,
2009.

[21] Craig Gentry. Toward basing fully homomorphic encryption on worst-case hardness. In
CRYPTO, pages 116�137, 2010.

[22] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In STOC, pages 197�206. ACM, 2008.

[23] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
�ne-grained access control of encrypted data. In CCS 2006, pages 89�98. ACM, 2006.

[24] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In EUROCRYPT 2008, pages 146�162, 2008.

[25] Allison Lewko and Brent Waters. Decentralizing attribute-based encryption. Cryptology ePrint
Archive, Report 2010/351, 2010. http://eprint.iacr.org/.

[26] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT 2012, 2012.

[27] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and e�cient one-way func-
tions from worst-case complexity assumptions. In FOCS, pages 356�365, 2002.

[28] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time algorithm
for most lattice problems based on voronoi cell computations. In STOC 2010, pages 351�358.
ACM, 2010.

[29] Victor Miller. The Weil pairing, and its e�cient calculation. Journal of Cryptology, 17(4),
2004.

[30] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended
abstract. In STOC 2009, pages 333�342. ACM, 2009.

[31] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. SIAM J.

Computing, 40(6):1803�44, 2011.

[32] Oded Regev. New lattice-based cryptographic constructions. J. ACM, 51(6):899�942, 2004.

[33] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
STOC 2005, pages 84�93. ACM, 2005.

[34] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages
457�473, 2005.

[35] Claus-Peter Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theor.
Comput. Sci., 53:201�224, 1987.

[36] Brent Waters. Functional encryption for regular languages. In CRYPTO 2012, 2012.

19

A Background

In this Appendix we provide some abbreviated background information on lattice de�nitions and a
few important results to be used in this paper. This also serves to �x the notation.

A.1 Random Integer Lattices

Throughout the paper, we let the parameters q = q(λ),m = m(λ), n = n(λ) are polynomial
functions of the security parameter λ.

De�nition 7. Let B =
[
b1

∣∣ . . . ∣∣ bm] ∈ Rm×m be an m×m matrix whose columns are linearly
independent vectors b1, . . . ,bm ∈ Rm. The m-dimensional full-rank lattice Λ generated by B is the
in�nite periodic set,

Λ = L(B) =
{
y ∈ Rm s.t. ∃s = (s1, . . . , sm) ∈ Zm , y = Bs =

m∑
i=1

si bi

}
Here, we are interested in integer lattices, i.e, in�nite periodic subsets of Zm, that are invariant

under translation by multiples of some integer q in each of the coordinates.

De�nition 8. For q prime and A ∈ Zn×mq and u ∈ Znq , de�ne:

Λ⊥q (A) =
{
e ∈ Zm s.t. Ae = 0 (mod q)

}
Λu
q (A) =

{
e ∈ Zm s.t. Ae = u (mod q)

}
A.2 Discrete Gaussians

De�nition 9. Let m ∈ Z>0 be a positive integer and Λ ⊂ Rm an m-dimensional lattice. For any
vector c ∈ Rm and any positive parameter σ ∈ R>0, we de�ne:

ρσ,c(x) = exp
(
−π ‖x−c‖

2

σ2

)
: a Gaussian-shaped function on Rm with center c and parameter σ,

ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x) : the (always converging) discrete integral of ρσ,c over the lattice Λ,

DΛ,σ,c : the discrete Gaussian distribution over Λ with center c and parameter σ,

∀y ∈ Λ , DΛ,σ,c(y) =
ρσ,c(y)

ρσ,c(Λ)

For notational convenience, ρσ,0 and DΛ,σ,0 are abbreviated as ρσ and DΛ,σ.

A.3 Trapdoors for Lattices

Ajtai [6] showed how to sample an essentially uniform matrixA ∈ Zn×mq with an associated full-rank

set TA ⊂ Λ⊥(A) of low-norm vectors. We will use an improved version of Ajtai's basis sampling
algorithm due to Alwen and Peikert [8]:

Proposition 10 ([8]). Let n = n(λ), q = q(λ),m = m(λ) be positive integers with q ≥ 2 and
m ≥ 5n log q. There exists a probabilistic polynomial-time algorithm TrapGen that outputs a pair
(A ∈ Zn×mq ,TA ∈ Zm×mq), such that A is statistically close to uniform and TA is a basis for Λ⊥(A)

with length L = ‖T̃A‖ ≤ m · ω(
√

logm) with all but n−ω(1) probability.

20

TrapGen(n,m, q, σ) [22]: On input a modulus q, a lattice dimension m, a constraint dimension n,
and a Gaussian deviation parameter σ dimension Λ, it outputs A and T as above.

A.3.1 Sampling Discrete Gaussians over Lattices

Gentry, Peikert and Vaikuntanathan [22] construct the following algorithm for sampling from the
discrete Gaussian DΛ,σ,c, given a basis B for the m-dimensional lattice Λ with σ ≥ ‖B̃‖ ·ω(

√
logm):

Proposition 11 ([22]). There exists a probabilistic polynomial-time algorithm that, on input an
arbitrary basis B of anm-dimensional full-rank lattice Λ = L(B), a parameter σ ≥ ‖B̃‖·ω(

√
logm),

and a center c ∈ Rm, outputs a sample from a distribution that is statistically close to DΛ,σ,c. For
concreteness, we will refer to the algorithm of Proposition 11 as follows:

SampleGaussian(Λ,B, σ, c) [22]: On input lattice Λ, a basisB for Λ, a positive Gaussian parameter
σ, and a center vector c ∈ Rm, it outputs a fresh random vector x ∈ Λ drawn from a
distribution statistically close to DΛ,σ,c.

A.4 Preimage Sampling

The main use of short lattice basis for our purposes, is that they will allow us to sample short
preimages of a speci�c target under the linear map de�ned by the matrix associated with the
lattice. The following algorithm from [22] is what allows us to perform this preimage sampling. The
shorter the lattice basis, the smaller a preimage we shall be able to obtain.

SamplePreimage(A,TA,u, σ): Let q ≥ 2, m ≥ 2n log q. On input a matrix A ∈ Zn×mq with

`short' trapdoor basis TA for Λ⊥q (A), a target image u ∈ Znq and a Gaussian parameter

σ ≥ ‖T̃A‖ · ω(
√

logm), outputs a sample e ∈ Zm from a distribution that is within negligible
statistical distance of DΛu

q (A),σ.

A.5 Hardness Assumption

The LWE (learning with errors) problem was �rst de�ned by [33], and has since been extensively
studied and used. We use the decisional version of the LWE problem.

De�nition 12. Consider a prime q, a positive integer n, and a distribution χ over Zq, all public.
An (Zq, n, χ)-LWE problem instance consists of access to an unspeci�ed challenge oracle O, being,
either, a noisy pseudo-random sampler Os carrying some constant random secret key s ∈ Znq , or, a
truly random sampler O$, whose behaviors are respectively as follows:

Os: outputs noisy pseudo-random samples of the form (wi, vi) =
(
wi, w

T
i s+xi

)
∈ Znq ×Zq, where,

s ∈ Znq is a uniformly distributed persistent secret key that is invariant across invocations,
xi ∈ Zq is a freshly generated ephemeral additive noise component with distribution χ, and
wi ∈ Znq is a fresh uniformly distributed vector revealed as part of the output.

O$: outputs truly random samples
(
wi, vi

)
∈ Znq × Zq, drawn independently uniformly at random

in the entire domain Znq × Zq.

21

The (Zq, n, χ)-LWE problem statement, or LWE for short, allows an unspeci�ed number of queries
to be made to the challenge oracle O, with no stated prior bound. We say that an algorithm A
decides the (Zq, n, χ)-LWE problem if

∣∣Pr[AOs = 1]− Pr[AO$ = 1]
∣∣ is non-negligible for a random

s ∈ Znq .

It has been shown in [33] that there is a poly(n, q)-time reduction from Search LWE(Zq, n, χ) to
Decision LWE(Zq, n, χ).

The con�dence in the hardness of the LWE problem stems in part from a result of Regev [33]
which shows that the for certain noise distributions χ, the LWE problem is as hard as the worst-case
SIVP and GapSVP under a quantum reduction (see also [30]). A classical reduction with related
parameters was later obtained by Peikert [30].

Proposition 13 ([33]). Consider a real parameter α = α(n) ∈ (0, 1) and a prime q = q(n) >
2
√
n/α. Denote by T = R/Z the group of reals [0, 1) with addition modulo 1. Denote by Ψα the

distribution over T of a normal variable with mean 0 and standard deviation α/
√

2π then reduced
modulo 1. Denote by bxe = bx+ 1

2c the nearest integer to the real x ∈ R. Denote by Ψ̄α the discrete
distribution over Zq of the random variable bq Xe mod q where the random variable X ∈ T has
distribution Ψα.

Then, if there exists an e�cient, possibly quantum, algorithm for deciding the (Zq, n, Ψ̄α)-LWE
problem, there exists a quantum q ·poly(n)-time algorithm for approximating the SIVP and GapSVP
problems, to within Õ(n/α) factors in the `2 norm, in the worst case.

Since the best known algorithms for 2k-approximations of gapSVP and SIVP run in time 2Õ(n/k))
[19, 35, 28], it follows from the above that the LWE problem with the noise ratio α = 2−n

ε
is likely

hard for some constant ε < 1.

B Example

Nothing like a small example could possibly illustrate better the workings of our KP-ABE scheme,
and, by generalization, the fundamental principle behind the new framework that we propose for
this kind of constructions.

Extraction. Consider the monotone access structure given by the Boolean expression,

Policy ≡ (A ∧B) ∨ (A ∧ C)

Of course Policy can be reduced into the simpler expression A ∧ (B ∨ C), but the above
expression has a duplicate attribute which will let us illustrate how that works. To construct
the corresponding private key, we �rst rewrite the policy in function of uniquely appearing
augmented attributes:

Policy′ ≡ (A(1) ∧B(2)) ∨ (A(3) ∧ C(4))

where the superscripts specify the arbitrary indices of the augmented attributes that together
form the domain of the map ρ. We then translate Policy' into a sharing matrix, using some
simple deterministic translation rule that for ∨-&-∧ formulas guarantees a binary output:

L(1∧2)∨(3∧4) =

(1)

(2)

(3)

(4)


1 1 0
0 1 0
1 0 1
0 0 1


22

where indeed for d 6= 0 the reconstruction target vector [d 0 0] is in the span of exactly
those subsets of the rows of L whose corresponding augmented attributes satisfy our Policy'.
Starting from L we assemble the �virtual encryption matrix� M which here takes the form,

M =


AA | A0

AB |
AA | A0

AC |

∣∣∣∣∣∣∣∣
Z1

Z1

Z2

Z2

 mod q

where we observe that the public matrix AA appears twice on the left diagonal, because there
were two occurrences of the attribute A in the access structure formula Policy. From there,
knowing a trapdoor for each of the Ai on the left diagonal, we can construct our policy-encoding
private key K as a (randomized) short basis for the lattice induced by M. The private key
hides the structure of M and especially the ephemeral and undisclosed submatrices Zi from
the recipient.

K =



|
|
|

K′ |
¯̄ ¯̄ ¯̄ ¯̄ | ¯̄

∣∣∣∣∣∣∣∣∣∣∣∣∣∣


As mentioned before, only the upper-left quadrant K′ of K is useful; the rest may be omitted.

Encryption. To encrypt, say, for the set of attributes Attrib = {A,C}, or in other words for the
binary attribute vector Attrib = (1, 0, 1) ∈ {0, 1}{A,B,C}, the encryptor �rst constructs the
Regev encryption matrix,

F =
[
AA 0 AC | A0

]
and then proceeds to create from it a randomized Regev ciphertext,

Ctx =
(

c0 = s> u + bq
2
cMsg + ν0, c1 = s> F + ν1

)
mod q

where for the sequel we note that c1 decomposes into four subvectors: one for each of the
three original attributes (notice how B is actually missing) plus one for the submatrix A0,
written,

c1 = [c1,A 0 c1,C c1,0]

We emphasize that since encryption is with reference to a list of attributes, there is no notion
of duplication here.

Decryption. To decrypt Ctx using Key, the �rst step is to �nd a linear combination of the rows of
L that allows reconstruction of the target vector. Here, the winning combination is a ternary5

vector g, where,

[
gA1

0
gB
0

gA2

1
gC
−1]︸ ︷︷ ︸

g

·


1 1 0
0 1 0
1 0 1
0 0 1

 = [
d
1 0 0]︸ ︷︷ ︸
target

5As long as there are only ∨ and ∧ but no threshold gates, we can choose whether the sharing matrix has binary
and the reconstruction vector ternary coe�cients in Z, or vice versa. This choice does not a�ect the objects' norms.

23

where we note not only that g assigns non-zero coe�cients exclusively to augmented attributes
corresponding to the attributes A and C that are �true� in the ciphertext, but also that, of
the two augmented attributes A(1) and A(3) linked to A, one has value 1 and the other 0.
This is consistent with the rules of secret-sharing reconstruction with duplicated attributes,
which require only that all �false� attributes be given coe�cient zero. Next, per the Decrypt

algorithm, we construct a �real encryption matrix� M′ using the coe�cients from g and d,

M′ =
[
0 0 AA −AC | A0

∣∣ 0 0
]

and we know that this matrix M′ can be expressed from the �virtual encryption matrix� M
(for which K is a short basis and K′ an excerpt of same) by the �tensor� linear combination,

(g ⊗ 1) · M = M′

The Decrypt algorithm shows how to transform the key K′ into a trapdoor for the matrix M′

(or precisely for the matrix F′′ reconstructed from M′ to match the true encryption matrix F).
Here, the transformation is as follows:

K′ =



k
(1)
j |

k
(2)
j |

· · · k
(3)
j · · · | · · ·

k
(4)
j |

¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ ¯̄ | ¯̄
k

(0)
j


begets T′′ =


0
0

· · · k
(3)
j · · ·

−k(4)
j

k
(0)
j


The last step, in order to perform Regev decryption using a short preimage d of u sampled
using this trapdoor T′′, is to have a matching ciphertext, i.e., a ciphertext (that appears to
have been) built upon the �real� encryption matrix M′ (or, rather, its pruned version, the
aforementioned F′′). Since some attributes were duplicated in the matrix M′ (or F′′), we need
to perform a similar duplication of the corresponding ciphertext fragments, and transform,

c1 = [c1,A 0 c1,C c1,0] into c′1 = [c1,A 0 c1,A c1,C c1,0]

so that the width of c′1 matches that of M′ to ensure that Regev decryption can proceed.
Decryption proper works �rst by using the trapdoor T′′ to sample a preimage d of u under
M′ (or F′′), and then by taking the inner product of said d with c′1 and subtracting the result
(consisting of blinding plus noise) from c0 to reveal (a noisy version of) b q2cMsg (mod q).

Remark. The formal description of the scheme provides that the super�uous rows and
columns of F′′, T′′, c′1, etc.�i.e., such rows and columns that become multiplied by zero�,
be suppressed for e�ciency. We preserved them in this illustration for the sake of exposition.

LSSS. To �x ideas, it is also useful to see a few other examples of explicit encodings of policies
into sharing matrices. The following examples illustrate, with one exception, cases of formulas
that consists only of ∨-gates and ∧-gates with no non-trivial threshold gates. In that case,
regardless of input duplication, it is always possible to have binary sharing matrices, i.e., with
entries in {0, 1}, that allow ternary reconstruction vectors, i.e., with coe�cients in {0,±1}.

L∨(1,2) =

[
1
1

]
L≥2(1,2,3) =

1 1
1 2
1 3


L∧(1,2,3) =

1 1 1
0 1 0
0 0 1

 L∧(1,∨(2,∧(3,4),∧(5,6))) =



1 1 0 0
0 1 0 0
0 1 1 0
0 0 1 0
0 1 0 1
0 0 0 1


24

