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Abstract. In this work, we generalize the paradigm of hash proof system (HPS) proposed by
Cramer and Shoup [CS02]. In the central of our generalization, we lift subset membership problem to
distribution distinguish problem. Our generalized HPS clarifies and encompass all the known public-
key encryption (PKE) schemes that essentially implement the idea of hash proof system. Moreover,
besides existing smoothness property, we introduce an additional property named anonymity for
HPS. As a natural application, we consider anonymity for PKE in the presence of key-leakage, and
provide a generic construction of leakage-resilient anonymous PKE from anonymous HPS. We then
extend our generalization to the identity-based setting. Concretely, we generalize the paradigm
of identity-based hash proof system (IB-HPS) proposed by Boneh et al. [BGH07] and Alwen et
al. [ADN+10], and introduce anonymity for it. As an interesting application of anonymous IB-
HPS, we consider security for public-key encryption with keyword search (PEKS) in the presence
of token-leakage, and provide a generic construction of leakage-resilient secure PEKS from leakage-
resilient anonymous IBE, which in turn is based on anonymous IB-HPS.
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1 Introduction

In EUROCRYPT 2002, Cramer and Shoup [CS02] abstracted their earlier public-key encryption
(PKE) scheme [CS98] to the paradigm of hash proof system (HPS) with the initial purpose to
provide a framework for the construction of CCA-secure PKE. Thereafter, HPS and its variants
have found numerous applications beyond CCA security, including password-based authenti-
cated key exchange (PAKE) [GL06, KV09], oblivious transfer [HK12], extractable commit-
ment [ACP09], privacy-preserving interactive protocols [BPV12], leakage-resilient PKE [NS09,
ADN+10], threshold cryptosystems [LY12], lossy encryption [BHY09] and thus selective opening
secure PKE [HLOV11], lossy trapdoor hash functions (LTDF) [PW08, Wee12, HO12], and thus
deterministic PKE [BBO07, BFOR08, BS11].

Briefly, HPS consists of two ingredients, namely subset membership problem (SMP) and
projective hash family (PHF). The SMP defines a set X and a language L ⊂ X, from which a
member x can be efficiently sampled with a witness w. Intuitively, a subset membership problem
is hard if it is computationally impossible to distinguish random members x ∈ L from random
non-members x ∈ X\L. The PHF with projection α : SK → PK is a family of hash functions
H indexed by SK with domain X. HPS connects SMP and PHF by providing two algorithms
to evaluate Hsk on L, that is one can either evaluate Hsk(x) privately using sk or publicly using
the witness w for x. Basically, we require HPS to be projective and smooth. The projective
property stipulates that the action of Hsk on L is determined by α(sk), while the smooth
property stipulates that the action of Hsk on X\L is undetermined. In applications of HPS,
the projective property is usually used to guarantee correctness while the hardness of subset
membership problem and smooth property are used to establish security. We further explain
this idea by taking the construction CPA-secure PKE from smooth HPS as a concrete example.
The construction of PKE from HPS is immediate: to encrypt message m under public key pk,
one samples an instance x from L as the ciphertext, then computes the hash value y ← Hsk(x)
publicly using the witness w, and finally masks m with y. The correctness follows from the
projection property, which ensures the recipient can recover y by computing Hsk privately with
sk. The security follows from the smoothness property and the hardness of subset membership
problem, that is, when sampling x from X\L the corresponding hashing value y is statistically
close to uniform and no PPT adversary can notice this switch (from x← L to x← X\L).

1.1 Related Works

Gennaro and Lindell [GL06] tailored HPS by defining L = {(c,m)}, where c is a non-malleable
commitment to m, then used this variant to build a framework of PAKE. Abdalla et al. [ACP09]
modified HPS to support disjunctions and conjunctions of language, then constructed ex-
tractable commitment from it. Halevi and Kailai [HK12] presented a construction of two-message
oblivious transfer from smooth HPS with verifiable smoothness. Hemenway et al. [HLOV11] for-
mally defined homomorphic smooth HPS, and showed how to construct lossy encryption and
thus selective opening secure PKE from it. Hemenway and Ostrovsky [HO12] showed the usage
of homomorphic smooth HPS in the construction of LTDF. Libert and Yung [LY12] extended
HPS to all-but-one perfectly sound threshold HPS, then used it to construct non-interactive
CCA-secure PKE. Wee [Wee12] proposed the notion of dual HPS, in which H is viewed in a
dual way (indexed by X with domain SK), and invertibility on X\L is required instead of
smoothness. As shown by [Wee12], dual HPS immediately yields elegant and simple construc-
tions of LTDF and deterministic PKE.

Boneh et al. [BGH07] extended HPS to the identity-based setting, which they called HPS
with trapdoor. Alwen et al. [ADN+10] then formally define the notion of identity-based hash
proof system (IB-HPS) in the description of identity-based key encapsulation mechanism.
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1.2 Motivation

In this paper, we focus on the original (IB)-HPS and its application in encryption schemes.
While (IB)-HPS can be constructed for languages related to Diffie-Hellman like assumptions
(such as DDH, DLIN, and DBDH) and number-theoretic assumptions (such as QR and DCR),
it is interesting to realize the difficulty of construct efficient (IB)-HPS for lattice-based assump-
tions (such as LWE)1. The main reason is that the original paradigm of (IB)-HPS insists that L
and X\L are disjointed. This requirement works well with the concept of valid ciphertext and
invalid ciphertext, and the original paradigm can be interpreted exactly by languages related
to DH-like and number-theoretic assumptions (those with precise algebraic property). However,
such requirement rules out lattice-based instantiations. We first note that more formally, subset
membership problem should be reformulated as distribution distinguish problem, which states
that a uniform distribution on L is computationally indistinguishable from a uniform distri-
bution on X\L. We then observe that for most usages of HPS, it is the indistinguishability
between two modes (one is for real system and the other is for simulation) that really matters.
Hence, the supports of the two distributions are not necessarily disjointed, and the uniform
requirement is also not necessary. Moreover, in the original paradigm of HPS the language L is
independent of PK, which means that ciphertext is unrelated to the public key. To encompass
a broad class of encryption schemes that relying on HPS, L should be viewed as a collection of
languages indexed by PK.

The classical security definitions for encryption schemes are mainly concerned with data
privacy, that a ciphertext does not reveal the data it encrypts. The well-known notions such
as one-wayness (OW) and indistinguishability (IND) are both directed at capturing different
levels of data privacy. However, many newly emerged applications such as cloud computing also
require key privacy, that is ciphertext does not reveal the key under which it encrypts. The
concept of key privacy (or anonymity) was first formalized in the context of symmetric-key
encryption [AR02, Des00, Fis99] and was later extended to the context of public-key encryption
(PKE) [BBDP01] and identity-based encryption (IBE) [ABC+05]. It is easy to see that the
goals of data privacy and key privacy are orthogonal [BBDP01, ZHI07]. There exist encryption
schemes which satisfy the strongest data privacy but still lack the weakest key privacy. For
instance, given a PKE scheme with certain level of data privacy, we can construct a variant of it
by simply adding the public key to the ciphertexts. The new PKE scheme preserves original data
privacy but obviously loses all the key privacy. Similar examples also exists in the identity-based
settings, where we just make the identity explicit in the ciphertexts.

Unlike that data privacy has already been extensively studied in the literature, key privacy
is comparatively less studied. Recently, researchers start to consider data privacy in the presence
of key-leakage attacks, as in real life an adversary might gain some partial information about
secret keys, by observing behavior of the protocol executions, or measuring the places where they
are stored, via cold-boot attacks, electromagnetic measurements and many more. A large body
of work [NS09, ADN+10, CDRW10, LRW11, CLC11] have already emerged on constructing
encryption schemes with data privacy against various key-leakage attacks. However, all these
work only focus on classical security (data privacy) but not anonymity (key privacy). On one
hand, for encryption schemes derived from (IB)-HPS, while the smooth property of (IB)-HPS
implies data privacy, there is no property of (IB)-HPS ready to imply anonymity. On the other

1 We note two exceptions here. Katz and Vaikuntanathan [KV09] presented a variant of HPS for the application
in PAKE and a gave a latticed-based instantiation. However, their variant of HPS differs much from the
original HPS in the definition of language and projection. Alwen et al. [ADN+10] gave a lattice-based IB-HPS
in [ADN+10]. However, the construction can not fit their definition of IB-HPS exactly as the valid and invalid
ciphertext space are identical, i.e., what the so called invalid encapsulation algorithm output may also be a
valid ciphertext.
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hand, we note that (IB)-HPS is one of the two known methodologies2 to achieve leakage-
resilience (mainly benefit from the redundancy introduced to the secret key). Hence, we are
motivated to seek an additional property for (IB)-HPS which implies anonymity for the resulting
encryption schemes, and consider the construction of leakage-resilient anonymous encryption
schemes via IB-HPS with such property.

1.3 Our Contribution

– Generalize the paradigm of HPS and present a latticed-based instantiation.

– Introduce a new property named anonymity for HPS; formally define the anonymity for
PKE in the presence of key-leakage.

– Show how to convert smooth and anonymous HPS to leakage-resilient one, and further show
how to construct leakage-resilient secure and anonymous PKE.

– Generalize the paradigm of identity-based HPS and present six instantiations based on the
ideas behind prior IBE schemes.

– Introduce a new property named anonymity for IB-HPS; formally define the anonymity for
IBE in the presence of key-leakage.

– Show how to convert smooth and anonymous IB-HPS to leakage-resilient one, and further
show how to construct leakage-resilient secure and anonymous IBE.

– Introduce the notion of leakage-resilient security for public-key encryption with keyword
search (PEKS), and construct leakage-resilient secure PEKS via leakage-resilient anonymous
IBE, which is in turn derived from anonymous IB-HPS.

2 Definitions and Preliminaries

2.1 Notation

For a finite set S, we denote by x
R←− S the action of uniformly choosing an element x from S,

and by x, y, z
R←− S the action of independently and uniformly choosing all x, y, z from S. We

denote by US the uniform distribution over S. For an integer n ∈ N, we denote by Un the uniform
distribution over {0, 1}n. For a distribution D, we denote by |D| its support, and by x ← D
the action of choosing x according to D. Throughout this paper, κ ∈ N denotes the security
parameter. We denote by negl(κ) an unspecified function negligible in κ. We use PPT to denote
probabilistic polynomial-time. If A is a randomized algorithm, we write z ← A(x1, . . . , xn; r)
to indicate that A outputs z on inputs (x1, . . . , xn) and random coins r. Sometimes for brevity,
we omit r and write z ← A(x1, . . . , xn) when it is not necessary to make explicit the random
coins A uses.

2.2 Assumptions

Let BLGroupGen be a PPT algorithm that takes as input a security parameter κ and output
a tuple (p,G,GT , e), where p is a κ-bit prime, G and GT are two groups of order p, e is a
bilinear map from G × G to GT . The following three assumptions are all defined with respect
to parameters (p,G,GT , e)← BLGroupGen(κ).

Decisional Bilinear Diffie-Hellman Assumption. The decisional bilinear Diffie-Hellman
(DBDH) assumption [BF03] is that the distributions (g, ga, gb, gc, e(g, g)abc) and (g, ga, gb, gc, Z)

are computationally indistinguishable, where g
R←− G∗, a, b, c R←− Zp, Z

R←− GT .

2 The other is dual encryption system [Wat09].
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Decisional Square Bilinear Diffie-Hellman Assumption. The decisional square bilinear
Diffie- Hellman (DSBDH) assumption [Kil07] is that the distributions (g, ga, gb, e(g, g)a

2b) and

(g, ga, gb, Z) are computationally indistinguishable, where g
R←− G∗, a, b R←− Zp, Z

R←− GT .

Decisional Truncated Augmented Bilinear Diffie-Hellman Exponent Assumption.
The decisional truncated augmented bilinear Diffie-Hellman exponent (DTABDHE) assump-
tion [Gen06] with respect to q is that the distributions (g′, g′q+2, g, g1, . . . , gq, e(gq+1, g

′)) and

(g′, g′q+2, g, g1, . . . , gq, Z) (here gi and g′i denote gα
i

and g′α
i
) are computationally indistinguish-

able, where g, g′
R←− G∗, α R←− Zp, Z

R←− GT .

Quadratic Residuosity Assumption. Let RSAGen(κ) be a PPT algorithm that generates two
κ-bit primes p and q. For a positive integer N , let J(N) denote the set J(N) = {x ∈ ZN :

(
x
N

)
=

1} where
(
x
N

)
denotes the Jacobi symbol of x in ZN . Let QR(N) denote the set of quadratic

residues in J(N). The quadratic residuosity (QR) assumption is that the distributions (N ←
pq, x

R←− QR(N)) and (N ← pq, x
R←− J(N)\QR(N)) are computationally indistinguishable.

Decisional Learning With Errors Assumption. For an integer q ≥ 2 and some probability
distribution χ over Zq, an integer dimension n ∈ Z+, and a vector s ∈ Znq , define As,χ as

the distribution over Znq × Zq of the variable (a,aT s + t) where a
R←− Znq and t ← χ. The

decisional learning with errors (DLWE) assumption is that the distribution As,χ and the uniform

distribution over Znq × Zq are computationally indistinguishable, where s
R←− Zq.

2.3 Min-Entropy and Randomness Extractor

Here we review some concepts related to probability distributions and randomness extractors.

The statistical distance between two random variables x, y over a finite domain Ω is defined
as SD(x, y) = 1

2

∑
ω∈Ω |Pr[x = ω] − Pr[y = ω]|. We say that two variables are ε-close if their

statistical distance is at most ε.

The min-entropy of a random variable x over a domain Ω is the negative (base-2) logarithm
of the predictability of x: H∞(x) = − log2(maxω∈Ω Pr[x = ω]). In many scenarios, the variable x
is correlated with another variable y (define on domain Θ) whose value is known to an adversary.
In such scenarios, it is more convenient to use the notion of average min-entropy [DORS08],
which captures the average predictability of x given knowledge of y. This is formally defined as:

H̃∞(x|y) = − log2

(
Eθ←Θ

[
max
ω∈Ω

Pr[x = ω|y = θ]

])
The following lemma bound on average min-entropy:

Lemma 2.1 ([DORS08]) If y takes at most 2r possible values and z is any random variable,
then

H̃∞(x|(y, z)) ≥ H∞(x|z)− r

In out constructions, we will mainly use strong randomness extractor [Sha02] in the setting of
average min-entropy. The precise definition is as follows:

Definition 2.2 A polynomial-time function Ext : Ω → {0, 1}v is an average case (m, ε)-strong
extractor with seeds set S = {0, 1}µ, if for all pairs of random variables (x, y) such that x is dis-
tributed over Ω and H̃∞(x|y) ≥ m, s← US, r ← Um, we have SD((Ext(x; s), s, y)), (r, s, y)) ≤ ε.
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2.4 Leakage Model

So far, there are mainly two leakage models for leakage-resilient cryptographic schemes. One is
called the “bounded-leakage model” [AGV09, NS09, ADW09, ADN+10, CDRW10], which does
not restrict the type of leakage, but has to bound the overall amount of leakage. The other is
called the “continuous-leakage model” [CDH+00, MR04, DP08, FKPR10], which only bounds
the amount of leakage per period (as opposed to overall) by continually refreshing the secret
keys, but has to impose additional non-trivial restrictions on the types of leakage. In this paper,
we consider security and anonymity for encryption schemes in the bounded-leakage model.

3 Generalized Hash Proof System

As we have discussed in the introduction, HPS serves as a good framework to unify many PKE
schemes based on decisional assumptions. However, its original definition seems a bit strict to
encompass latticed-based PKE schemes which essentially implement the hash proof technique.
Aiming for utmost generality, in this work we generalize the original paradigm of HPS. The main
difference between our generalization and that of Cramer and Shoup [CS02] is that we introduce
distribution distinguish problem instead of subset membership problem. In more details, the
distribution distinguish problem can be viewed as a relaxed version of the subset membership
problem. The relaxations comes from three aspects: 1) remove the restriction that the supports
of two distributions must be disjointed; 2) remove the restriction that the two distributions are
both uniform; 3) extend L from a single language to a collection of languages indexed by the
set of public keys. Looking ahead, the first and second relaxations admits more natural and
efficient constructions for languages related to a broad class of assumptions, while the third
relaxation admits more PKE constructions (e.g. the PKE schemes transformed from the IBE
schemes presented in [CDRW10, Gen06]).

Distribution Distinguish Problem (DDP). A distribution distinguish problem D specifies
a collection (Dκ)κ≥0 of distributions. For each security parameter κ ≥ 0, Dκ is a probability
distribution over problem instance descriptions. Each instance description Γ specifies:

– Finite non-empty sets X, W , PK, and two collections of distributions A = (Apk)pk∈PK and
B = (Bpk)pk∈PK over X.

– A collection of binary relations R = (Rpk)pk∈PK defined over X×W . For x ∈ X and w ∈W
and some pk ∈ PK such that (x,w) ∈ Rpk, we say that w is a witness for x. We require that
for all x ∈ |Apk|, there exists a w ∈W such that (x,w) ∈ Rpk.

We write Γ = (X,W,PK,A,B,R) to indicate that the instance Γ specifies X, W , PK, A, B,
and R as above. D also provides the three sampling algorithms below:

– SampDDP(κ): take as input a security parameter κ, output a master public and secret key
pair (mpk,msk) and an instance description Γ according to the distribution Dκ. Here, mpk
will be implicitly used by the following two sampling algorithm.

– SampA(pk): output x ← Apk along with a witness w ∈ W such that (x,w) ∈ Rpk. This is
the sampling with witness algorithm.

– SampB(pk): output x← Bpk. This is the sampling without witness algorithm.

We only require algorithms SampDDP and SampA to be efficient. A distribution distinguish
problem D is said to be hard if Apk and Bpk are computationally indistinguishable for any PPT
adversary (a precise definition will be given later).
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Projective Hash Family (PHF). Let X, Y , SK, PK be finite non-empty sets, and A be a
collection of distributions indexed by PK. Here X, PK, A are defined as in DDP above. Let
H = {Hsk : X → Y }sk∈SK be a family of functions indexed by SK. Let α : SK → PK be
a projection from SK to PK. We say H = (H, SK, PK,X,A, Y, α) a projective hash family
(PHF) if for any sk ∈ SK and pk = α(sk), the action of Hsk on x ← Apk is approximately
determined by α(sk) (in a sense we will make precise below).

Generalized Hash Proof System. A generalized hash proof system P bridges a distribution
distinguish problem D and a projective hash family H with the following four algorithms:

– Setup(κ): run SampDDP(κ) to generate a master public/secret key pair (mpk,msk) and an
instance description Γ = (X,W,PK,A,B,R) of D, pick a suitable projective hash family
H = (H, SK, PK,X,A, Y, α). msk will be implicitly used by the following algorithms.

– KeyGen(κ): pick sk
R←− SK, compute pk ← α(sk), and output a public/secret key pair

(pk, sk).
– Priv(sk, x): take as input a private key sk and x ∈ X, and output y ∈ Y such that y = Hsk(x).

This is the private evaluation algorithm.
– Pub(pk, x, w): take as input pk and x ∈ |Apk| together with a witness w ∈ W for x, and

output y ∈ Y . This is the public evaluation algorithm.

We now are ready to define soem properties for generalized HPS. Unless otherwise indicated, all
the following properties are defined in the probability space of generating (mpk,msk) honestly
by SampDDP(κ).

Definition 3.1 (Indistinguishability) A HPS satisfies the indistinguishability if for any PPT
adversary A:

|Pr[A(mpk, pk, sk, x) = 1 : x← Apk]− Pr[A(mpk, pk, sk, x) = 1 : x← Bpk]| ≤ negl(κ)

where (mpk,msk)← SampDDP(κ) and (pk, sk)← KeyGen(κ).

This property captures the hardness of the underlying DDP.

Definition 3.2 (Projection) A HPS is projective if:

Pr[Pub(pk, x, w) 6= Priv(sk, x)] ≤ negl(κ)

where w is a witness for x. The probability is taken over the choice of x← Apk and (pk, sk)←
KeyGen(κ).

The above definition is in fact approximate projection, which is analogous to the notion of
approximate correctness introduced in [KV09]. The property of approximate projection captures
the average-case behavior of Hsk on x← Apk.

Definition 3.3 (Smoothness) A HPS is ε-smooth if:

SD((R, pk, x, y), (R, pk, x, y′)) ≤ ε

where R is the ensemble of (mpk,msk). The probability is taken over the choice (pk, sk) ←
KeyGen(κ), x ← Bpk, y ← Priv(sk, x), y′ ← UY . Moreover, a HPS is `-leakage-resilient ε-
smooth if for any function f(·)3 with `-bit output:

SD((R, pk, f(sk), x, y), (R, pk, f(sk), x, y′)) ≤ ε
3 Throughout this paper, leakage function f(·) is possibly randomized and need not be efficient, and we assume

the output of f(·) can be equivalently obtained in an adaptive manner.
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The property of smoothness captures the average-case behavior of Hsk on x← Bpk.

Definition 3.4 (Anonymity) A HPS is ε-anonymous if:

SD((R, pk0, pk1, x0, y0), (R, pk0, pk1, x1, y1)) ≤ ε

where R is the ensemble of (mpk,msk). The probability is taken over the choice of (pki, ski)←
KeyGen(κ), xi ← Bpki, yi ← Priv(ski, xi) for i = {0, 1}. Moreover, a HPS is `-leakage-resilient
ε-anonymous if for any function f0(·) and f1(·) with `-bit output:

SD((R, pk0, pk1, f0(sk0), f1(sk1), x0, y0), (R, pk0, pk1, f0(sk0), f1(sk1), x1, y1)) ≤ ε

The property of anonymity captures the behavior of SampB from pairwise aspect.

3.1 Generic Construction of Leakage-Resilient HPS

We now show how to convert a HPS (Setup, KeyGen, Pub, Priv) into a leakage-resilient one using
an average-case randomness extractor Ext : Y → {0, 1}v with seeds set S = {0, 1}µ. We slightly
modify the algorithms SampA and SampB of D as follows:

– SampA(pk): sample (x,w)← SampA(pk), pick a seed s
R←− {0, 1}µ, and output x̄ = (x, s).

– SampB(pk): sample x← SampB(pk), pick a seed s
R←− {0, 1}µ, and output x̄ = (x, s).

We keep algorithms Setup and KeyGen unchanged, define:

– Priv(sk, x̄): parse x̄ as (x, s), compute y ← Priv(id, x), and output ȳ ← Ext(y; s).

– Pub(pk, x̄, w): parse x̄ as (x, s), compute y ← Pub(pk, x, w), and output ȳ ← Ext(y; s).

The theorem below shows that the transformed HPS (Setup, KeyGen, Pub, Priv) is leakage-
resilient for appropriate parameters.

Theorem 3.5 Assume that the underlying HPS is ε1-smooth and ε2-anonymous and |Y | = 2m.
Let Ext : Y → {0, 1}v be an average-case (m − `, εext) randomness extractor. Then the above
transform produces an `-leakage-resilient (ε1 + εext)-smooth and (ε2 + 2εext)-anonymous HPS.

Proof. The smoothness of the underlying HPS means SD((R, pk, x, y), (R, pk, x, y′)) ≤ ε1, which
implies H̃∞(y|(R, pk, x)) ≈ log2 |Y | = m. In the presence of leakage, an adversary can ob-
tain at most ` bits of leakage from the private key sk (modelled as a random variable f(sk)
with 2` values). By Lemma 2.1 we have H̃∞(y|(R, pk, f(sk), x)) ≈ H̃∞(y|(R, pk, x)) − ` =
m − `, therefore according to the definition of a (m − `, εext) randomness extractor, we have
SD((R, pk, f(sk), x, ȳ), (R, pk, f(sk), x, ȳ′)) ≤ ε1 + εext. The leakage-resilient smoothness of the
resulting HPS immediately follows the fact that s is independently chosen from {0, 1}µ, that is:

SD((R, pk, f(sk), x̄, ȳ), (R, pk, f(sk), x̄, ȳ′)) ≤ ε1 + εext

This part of theorem has been implicitly implied in [NS09].

Next we prove the leakage-resilient anonymity of the resulting HPS. We first apply the
leakage-resilient smooth property twice:

SD((R, pk0, f0(sk0), x̄0, ȳ0), (R, pk0, f0(sk0), x̄0, ȳ
′)) ≤ εext

SD((R, pk1, f1(sk1), x̄1, ȳ1), (R, pk1, f1(sk1), x̄1, ȳ
′)) ≤ εext
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Note that (pk0, sk0) and (pk1, sk1) are independently generated by KeyGen(κ), then we have:

SD((R, pk0, pk1, f0(sk0), f1(sk1), x̄0, ȳ0), (R, pk0, pk1, f0(sk0), f1(sk1), x̄0, ȳ
′)) ≤ εext (1)

SD((R, pk0, pk1, f0(sk0), f1(sk1), x̄1, ȳ1), (R, pk0, pk1, f0(sk0), f1(sk1), x̄1, ȳ
′)) ≤ εext (2)

The anonymity of the underlying HPS means SD((R, pk0, pk1, x0, y0), (R, pk0, pk1, x1, y1)) ≤ ε2,

thus certainly SD((R, pk0, pk1, x0), (R, pk0, pk1, x1)) ≤ ε2. The fact that s
R←− {0, 1}µ and ȳ′

R←−
{0, 1}v are independent of x0, x1 further implies SD((R, pk0, pk1, x̄0, ȳ

′), (R, pk0, pk1, x̄1, ȳ
′)) ≤

ε2. Note that conditioned on fixed pk0 and pk1, f0(sk0) and f1(sk1) are independent of x̄0, x̄1,
we then arrive at:

SD((R, pk0, pk1, f0(sk0), f1(sk1), x̄0, ȳ
′), (R, pk0, pk1, f0(sk0), f1(sk1), x̄1, ȳ

′)) ≤ ε2 (3)

The leakage-resilient anonymity of the resulting HPS immediately follows by combining the
inequalities 1, 2, 3, that is:

SD((R, pk0, pk1, f0(sk0), f1(sk1), x̄0, ȳ0), (R, pk0, pk1, f0(sk0), f1(sk1), x̄1, ȳ1)) ≤ ε2 + 2εext

This proves the theorem. ut

4 Leakage-Resilient PKE

A PKE scheme consists of three PPT algorithms as below:

– KeyGen(κ): take as input a security parameter κ, output a public/secret key pair (pk, sk).
Let M be the message space, and C be the ciphertext space.

– Encrypt(pk,m): take as input a public key pk and a message m ∈M , output a ciphertext c.

– Decrypt(sk, c): take as input a secret key sk and a ciphertext c ∈ C, output a message m or
a reject symbol ⊥ indicating c is invalid.

The correctness of PKE requires that for any message m ∈M , we have:

Pr[Decrypt(sk,Encrypt(pk,m)) 6= m] ≤ negl(κ)

where the probability is taken over the random coins used by KeyGen and Encrypt.

Security. The data privacy we consider for PKE is leakage-resilient IND-CPA security in the
bounded-leakage model. Advantage of an adversary A is defined as:

AdvA(κ) = Pr


(pk, sk)← KeyGen(κ);

m← AOleak(sk,·)(pk);

b = b′ : b
R←− {0, 1};

c∗ ← Encrypt(pk,m);
b′ ← A(c∗)

−
1

2

where Oleak(sk, ·) is an oracle that on input a function f : SK → {0, 1}∗, returns f(sk). We
say A an `-leakage adversary if the sum of output length of all functions that it submits to the
leakage oracle Oleak(sk, ·) is less than `. A PKE scheme is said to be `-leakage-resilient IND-CPA
secure if for any PPT `-leakage adversary A, its advantage defined as above is negligible in κ.
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Anonymity. The key privacy we consider for PKE is leakage-resilient ANO-CPA anonymity
in the bounded-retrieval model. Advantage of an adversary A is defined as:

AdvA(κ) = Pr


(pk0, sk0)← KeyGen(κ), (pk1, sk1)← KeyGen(κ);

m← AOleak(sk0,·),Oleak(sk1,·)(pk0, pk1);

b = b′ : b
R←− {0, 1};

c∗ ← Encrypt(pkb,m);
b′ ← A(c∗)

−
1

2

where Oleak(sk, ·) is an oracle that on input a function f : SK → {0, 1}∗, returns f(sk). We
say A an `-leakage adversary if the sum of output length of all functions that it submits to the
leakage oracle Oleak(sk0, ·) and Oleak(sk1, ·) are both less than `. A PKE scheme is said to be
`-leakage-resilient ANO-CPA anonymous if for any PPT `-leakage adversary A, its advantage
defined as above is negligible in κ.

The construction of a leakage-resilient PKE from a leakage-resilient HPS is straightforward.
Starting from a leakage-resilient HPS where the hash value set Y has some group structure (Y,+)
(e.g. bit-strings with “exclusive or” ⊕), we can construct a PKE scheme with the common public
parameters mpk and the message set M = Y by simply using the hashing value as one-time-pad
to mask message. More precisely:

– KeyGen(κ): the same as that in HPS.
– Encrypt(pk,m): (x,w)← SampA(pk), compute y ← Pub(pk, x, w), set z = y+m, and output
c = (x, z).

– Decrypt(sk, c): parse c as (x, z), compute y ← Priv(sk, c), and output m = z − y.

The correctness of the resulting PKE scheme follows from the projective property of the starting
HPS. Note that the algorithm SampB is not used in the construction of PKE, but it will be
used to establish security.

Theorem 4.1 The above construction yields an `-leakage-resilient IND-CPA secure PKE if the
underlying HPS is `-leakage-resilient smooth.

Proof. The proof of this theorem is rather straightforward and follows from the same argument
presented in [CS02, NS09]. ut

Theorem 4.2 The above construction yields an `-leakage-resilient ANO-CPA anonymous PKE
if the underlying HPS is `-leakage-resilient anonymous.

Proof. We proceed via a sequence of games.

Game 0: Define Game 0 as the leakage-resilient anonymous game for PKE. In the challenge
stage of Game 0, upon receiving a message m submitted by the adversary, the challenger picks
a random bit b and computes cb ← Encrypt(pkb,m). We expands cb as (xb, zb) where:

(xb, w)← SampA(pkb), yb ← Pub(pkb, xb, w), zb = yb +m

Game 1: Compared to Game 0, we modify the challenge stage by letting the challenger generate
the ciphertext cb = (xb, zb) using the private key skb of pkb:

(xb, w)← SampA(pkb), ỹb ← Priv(skb, xb), zb = ỹb +m

The difference between Game 0 an Game 1 is only using ỹb in the place of yb. By the approximate
projection of the underlying HPS, the probability ỹb 6= yb is negligible in κ. Thereby, Game 0
and Game 1 are indistinguishable.
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Game 2: Based on Game 1, we further modify the challenge stage by letting the challenger
generate the ciphertext cb = (xb, zb) as follows:

xb ← SampB(pkb), ỹb ← Priv(skb, xb), zb = ỹb +m

We argue that Game 1 and Game 2 are computationally indistinguishable by the indistin-
guishability of the underlying IB-HPS. Although the definition of indistinguishability does not
explicitly embody private key leakage queries, it allows the adversary to learn the entire pri-
vate keys. Therefore, Game 1 and Game 2 are indistinguishable even if the adversary obtains
the entire information of private keys for the two target public keys, and thus certainly being
indistinguishable when the adversary is only given limited amount of leakage.

According to the `-leakage-resilient anonymous property of HPS, the advantage of any PPT
adversary in Game 2 is negligible. Therefore the advantage of any PPT adversary in Game 0 is
also negligible in κ, which concludes the Theorem 4.2. ut

5 Instantiations of HPS

Previous constructions of HPS based on a variety of assumptions [CS02, NS09] can also be
explained in the paradigm of generalized HPS without any difficulty. To avoid repetition, we
only present a construction of HPS based on the DLWE assumption, which does not fit the
original paradigm.

5.1 HPS based on the DLWE Assumption

We now describe a HPS based on the DLWE assumption, which can be viewed as the backbone
of the PKE scheme presented in [GPV08].

Let D be a distribution distinguish problem based on the DLWE assumption. SampDDP(κ)
generates A ∈ Zn×mq along with a trapdoor S ⊂ Λ⊥(A, q) according to the trapdoor generation
algorithm of [GPV08], and a function f indexed by A, sets mpk = (A, fA) and msk = S;
outputs an instance description Γ = (X,W,PK,A,B,R) of D, where X = Znq × Zq, W = Znq ,

PK = Znq , R = {((p, v), w) ∈ X ×W : ((ATw+ t, v), w)} where t ∈ χm, v ∈ Zp}, two collections
of distributions A and B are specified by SampA and SampB as follows:

– SampA(pk): pick w
R←− Znq , t

R←− χm, v
R←− Zq, compute p = ATw + t, output x = (p, v) and

w ∈W .
– SampB(pk): pick p

R←− Zmq and v
R←− Zq, output x = (p, v).

In this case, Apk, Bpk, and Rpk are the same for all pk ∈ PK. We then write A, B, and R for
simplicity.

Let H = (H, SK, PK,X, Y,A, α) be a corresponding projective hash family, where SK =
Zmq , Y = Z2 × Zq, X, PK, and A are defined as above. For x = (p, v), we define Hsk(x) = y as

y = 1 if |v − skT p| ≤ q−1
4 and y = 0 otherwise.

Let P be an HPS for D associating H, which consists of four algorithms as below:

– Setup(κ): run SampDDP(κ) to generate mpk = (A, fA) and msk = S.
– KeyGen(κ): choose an error vector according to DZm

q ,r as the secret key sk, set the public
key pk to be fA(sk).

– Priv(sk, x): parse x = (p, v), if |v − skT p| ≤ q−1
4 then output y = 1 else output y = 0.

– Pub(pk, x, w): parse x = (p, v), if |v − pkTw| ≤ q−1
4 then output y = 1 else output y = 0.

As shown in [GPV08], the above HPS is smooth and anonymous.
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6 Generalized Identity-Based Hash Proof System

The paradigm of IB-HPS has appeared in different forms in previous literature [BGH07, ADN+10].
In [BGH07], IB-HPS is viewed as HPS with trapdoor. However, their definition inherently re-
lates to the original SMP, hence is not generic enough to encompass all the IBE schemes relying
on hash proof techniques, e.g. the IBE schemes presented in [Gen06, CDRW10]. In [ADN+10],
IB-HPS is viewed as IB-KEM with some special algebraic properties. Although their definition
extended the original SMP by making the encapsulation algorithms take a public key as input,
they still retained the “disjointed” requirement by equipping with valid and invalid encapsula-
tion. In [ADN+10], they also introduced a property called “anonymous-encapsulation”. Briefly,
anonymous-encapsulation requires that there exists an efficient and equivalent encapsulation
algorithm that can generate the ciphertext and the DEM key without knowing the intended
identity. As they summarized, the anonymity-encapsulation property brings two advantages.
Firstly, IB-HPS with such property immediately implies anonymous IBE, in that the ciphertext
does not contain any information of the intended identity. Secondly, IB-HPS with such property
allows the resulting leakage-amplification scheme to greatly reduce the ciphertext size by adapt-
ing the standard randomness reuse trick (here witness serves as randomness). We remark that
anonymous-encapsulation of IB-HPS is a sufficient but not a necessary condition for anonymity
of the resulting IBE. For instance, as we will see in subsection 8.4, Gentry IBE [Gen06] is
anonymous but its underlying IB-HPS does not satisfy anonymous-encapsulation property.

In what follows, parallel to what we did in section 3, we generalize the paradigm of IB-HPS.
and then introduce a property named anonymity to serve as a sufficient and necessary condition
for anonymity of the resulting IBE. As we will see later, our paradigm of anonymous (IB)-HPS
serves as a good framework to explain all the known anonymous encryption schemes [Gen06,
BGH07, GPV08, Cor09] that rely on hash proof technique, either in the random oracle model
or in the standard model.

6.1 Definition of Generalized IB-HPS

The definition of distribution distinguish problem and projective hash family are the same as
that of HPS. An identity-based hash proof system (IB-HPS) P bridges DDP D and PHF H
with the following four algorithms:

– Setup(κ): the same as that in HPS; in addition, it aslo specifies an identity set I, a function
IHF : I → PK, and requires that α can be efficiently inverted with msk. We denote its
inverse function by σ(msk, ·), which satisfies α(σ(msk, pk)) = pk for any pk ∈ PK.

– KeyGen(msk, id): take as input msk and id ∈ I, and output sk ← σ(msk, IHF(id)).
– Priv(sk, x): the same as that in HPS. This is the private evaluation algorithm.
– Pub(id, x, w): take as input id ∈ I, x ∈ Lpk (where pk = IHF(id)) and a witness w ∈ W for
x, and output y ∈ Y . This is the public evaluation algorithm.

We then define the indistinguishability, (approximate) projection, smoothness, and anonymity
for IB-HPS. Unless otherwise indicated, all the following properties are defined in the probability
space of generating (mpk,msk) honestly by SampDDP(κ).

Definition 6.1 (Indistinguishability) An IB-HPS satisfies the indistinguishability if for any
PPT adversary A and any id ∈ I,

|Pr[AOreveal(·)(mpk, id, x) = 1 : x← Apk]− Pr[AOreveal(mpk, id, x) = 1 : x← Bpk]| ≤ negl(κ)

where pk = IHF(id), Oreveal(·) is an oracle that on input of id ∈ I, returns sk ← KeyGen(msk, id).
The probability is taken over the choice of (mpk,msk)← SampDDP(κ).
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Definition 6.2 (Projection) An IB-HPS is projective if for any id ∈ I:

Pr[Pub(id, x, w) 6= Priv(sk, x)] ≤ negl(κ)

where w is a witness for x. The probability is taken over the choice of x← Apk (pk = IHF(id))
and sk ← KeyGen(msk, id).

Definition 6.3 (Smoothness) An IB-HPS is ε-smooth if for any id ∈ I:

SD((R, id, x, y), (R, id, x, y′)) ≤ ε

where R is the ensemble of (mpk,msk) and the private keys for identities other than id. The
probability is taken over the choice of x ← Bpk for pk ← IHF(id), y ← Priv(sk, x) (sk ←
KeyGen(msk, id)), and y′ ← UY . Moreover, an IB-HPS is `-leakage-resilient ε-smooth if for any
function f(·) with `-bit output:

SD((R, id, f(sk), x, y), (R, id, f(sk), x, y′)) ≤ ε

Definition 6.4 (Anonymity) An IB-HPS is ε-anonymous if for any two distinct id0, id1 ∈ I:

SD((R, id0, id1, x0, y0), (R, id0, id1, x1, y1)) ≤ ε

where R is the ensemble of (mpk,msk) and the private keys for identities other than id0

and id1. The probability is taken over the choice of xi ← Bpki for pki ← IHF(idi)), yi ←
Priv(ski, xi) (ski ← KeyGen(msk, idi)) for i ∈ {0, 1}, Moreover, an IB-HPS is `-leakage-resilient
ε-anonymous if, for any function f0(·) and f1(·) with `-bit output, we have:

SD((R, id0, id1, f0(sk0), f1(sk1), x0, y0), (R, id0, id1, f0(sk0), f1(sk1), x1, y1)) ≤ ε

The generic construction of leakage-resilient IB-HPS from IB-HPS and the generic construction
of leakage-resilient IBE from leakage-resilient IB-HPS are similar to that in PKE setting. For
completeness, we present the technical details as below.

6.2 Generic Construction of Leakage-Resilient IB-HPS

We now show a generic construction of leakage-resilient IB-HPS, which is almost the same as
that presented in [ADN+10, Section 3.2]. Starting from an IB-HPS (Setup, KeyGen, Pub, Priv),
the construction converts it to a leakage-resilient IB-HPS using an average-case randomness
extractor Ext : Y → {0, 1}v with seeds set {0, 1}µ. We slightly modify the algorithms SampA
and SampB of D as follows:

– SampA(pk): sample (x,w)← SampA(pk), pick a seed s
R←− {0, 1}µ, and output x̄ = (x, s).

– SampB(pk): sample x← SampB(pk), pick a seed s
R←− {0, 1}µ, and output x̄ = (x, s).

We keep algorithms Setup and KeyGen unchanged, define:

– Priv(sk, x̄): parse x̄ as (x, s), compute y ← Priv(id, x), and output ȳ = Ext(y; s).
– Pub(id, x̄, w): parse x̄ as (x, s), compute y ← Pub(id, x, w), and output ȳ = Ext(y; s).

The theorem below shows that the transformed IB-HPS (Setup, KeyGen, Pub, Priv) is leakage-
resilient smooth and anonymous for appropriate parameters.

Theorem 6.5 Assume that an IB-HPS is ε1-smooth and ε2-anonymous and |Y | = 2m. Let Ext :
Y → {0, 1}v be an (m − `, εext) average-case randomness extractor. Then the above transform
produces an `-leakage-resilient (ε1 + εext)-smooth and (ε2 + 2εext)-anonymous IB-HPS.
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Proof. The smoothness of the underlying IB-HPS means that SD((R, id, x, y), (R, id, x, y′)) ≤
ε1, which implies H̃∞(y|(R, id, x)) ≈ log2 |Y | = m. In the presence of leakage, an adversary has
access to at most ` bits of leakage from the private key sk (modelled as a random variable f(sk)
with 2` values). By Lemma 2.1 we know that H̃∞(y|(R, f(sk), id, x)) ≈ H̃∞(y|(R, f(sk), id, x))−
` = m− `, therefore according to the definition of a (m− `, εext) randomness extractor, we have
SD((R, id, f(sk), x, ȳ), (R, id, f(sk), x, ȳ′)) ≤ ε1 + εext. The leakage-resilient smoothness of the
resulting IB-HPS follows from the fact that s is chosen independently from {0, 1}µ, that is:

SD((R, id, f(sk), x̄, ȳ), (R, id, f(sk), x̄, ȳ′)) ≤ ε1 + εext

This part of theorem has been proved in another way in [ADN+10].
Next we prove leakage-resilient anonymity of the resulting IB-HPS. For any two distinct

identities id0, id1 ∈ I, denote by R0 (resp. R1) the ensemble of mpk, msk, and the private keys
for identities other than sk0 (resp. sk1). We first apply the leakage-resilient smooth property
twice:

SD((R0, id0, f0(sk0), x̄0, ȳ0), (R0, id0, f0(sk0), x̄0, ȳ
′)) ≤ εext

SD((R1, id1, f1(sk1), x̄1, ȳ1), (R1, id1, f1(sk1), x̄1, ȳ
′)) ≤ εext

Note that sk1 ∈ R0 and sk0 ∈ R1, we have:

SD((R0, id0, id1, f0(sk0), f1(sk1), x̄0, ȳ0), (R0, id0, id1, f0(sk0), f1(sk1), x̄0, ȳ
′)) ≤ εext

SD((R1, id0, id1, f0(sk0), f1(sk1), x̄1, ȳ1), (R1, id0, id1, f0(sk0), f1(sk1), x̄1, ȳ
′)) ≤ εext

Note the fact that R ⊂ R0 and R ⊂ R1, then we get:

SD((R, id0, id1, f0(sk0), f1(sk1), x̄0, ȳ0), (R, id0, id1, f0(sk0), f1(sk1), x̄0, ȳ
′)) ≤ εext (4)

SD((R, id0, id1, f0(sk0), f1(sk1), x̄1, ȳ1), (R, id0, id1, f0(sk0), f1(sk1), x̄1, ȳ
′)) ≤ εext (5)

The anonymity of the underlying IB-HPS indicates SD((R, id0, id1, x0, y0), (R, id0, id1, x1, y1)) ≤
ε2 and thus certainly SD((R, id0, id1, x0), (R, id0, id1, x1)) ≤ ε2. The fact that s

R←− {0, 1}µ and

ȳ′
R←− {0, 1}v are independent of x0, x1 implies SD((R, id0, id1, x̄0, ȳ

′), (R, id0, id1, x̄1, ȳ
′)) ≤ ε1.

Note that conditioned on fixed id0 and id1, f0(sk0) and f1(sk1) are independent of x̄0, x̄1, we
arrive at:

SD((R, id0, id1, f0(sk0), f1(sk1), x̄0, ȳ
′), (R, id0, id1, f0(sk0), f1(sk1), x̄1, ȳ

′)) ≤ ε2 (6)

Finally, the desired leakage-resilient anonymity of the IB-HPS immediately follows by combining
the inequalities 4, 5, 6, that is:

SD((R, id0, id1, f0(sk0), f1(sk1), x̄0, ȳ0), (R, id0, id1, f0(sk0), f1(sk1), x̄1, ȳ1)) ≤ ε1 + 2εext

This proves the theorem. ut

7 Leakage-Resilient IBE

An IBE scheme [BF03] consists of four PPT algorithms as below:

– Setup(κ): take as input a security parameter κ, output a master public/secret key pair
(mpk,msk). Let I be the identity space, M be the message space, and C be the ciphertext
space. mpk will be used as an implicit input for algorithms Extract, Encrypt, and Decrypt,
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– KeyGen(msk, id): take as input msk and an identity id ∈ I, output a private key sk.
– Encrypt(id,m): take as input mpk, an identity id ∈ I, and a message m ∈ M , output a

ciphertext c ∈ C.
– Decrypt(sk, c): take as input a private key sk and a ciphertext c ∈ C, output a message
m ∈M or a reject symbol ⊥ indicating c is invalid.

The correctness of IBE requires that for any id ∈ I and any m ∈M , we have:

Pr[Decrypt(KeyGen(msk, id),Encrypt(id,m)) 6= m] ≤ negl(κ)

where the probability is taken over random coins used by Setup, KeyGen, and Encrypt.

Security. The data privacy we consider for IBE is leakage-resilient IND-CPA security in the
bounded-leakage model. Advantage of an adversary A is defined as:

AdvA(κ) = Pr


(mpk,msk)← Setup(κ);

(m0,m1, id
∗)← AOreveal(·),Oleak(·,·)(mpk);

b = b′ : b
R←− {0, 1};

c∗ ← Encrypt(id∗,mb);

b′ ← AOreveal(·),Oleak(·,·)(c∗)

−
1

2

where Oreveal(·) is an oracle that on input id, returns sk ← KeyGen(msk, id), Oleak(·, ·) is an
oracle that on input id and a function f : SK → {0, 1}∗, returns f(sk). The restrictions are that
the reveal oracle is only available for identities other than id∗, and after seeing the challenge
ciphertext c∗ the leak oracle is only available for identities other than id∗. We say A an `-
leakage adversary if the sum of output length of all functions that it submits to the leakage
oracle Oleak(id, ·) for any single id ∈ I is less than `. An IBE scheme is said to be `-leakage-
resilient IND-CPA secure if for any PPT `-leakage adversary A, its advantage defined as above
is negligible in κ.

Anonymity. The key privacy we consider for IBE is leakage-resilient ANO-CPA security in the
bounded-leakage model. Advantage of an adversary A is defined as:

AdvA(κ) = Pr


(mpk,msk)← Setup(κ);

(m, id0, id1)← AOreveal(·),Oleak(·,·)(mpk);

b = b′ : b
R←− {0, 1};

c∗ ← Encrypt(idb,m);

b′ ← AOreveal(·),Oleak(·,·)(c∗)

−
1

2

where Oreveal(·) and Oleak(·, ·) oracles are defined as above. The restrictions are that the reveal
oracle is only available for identities other than id0, id1, and after seeing the challenge ciphertext
c∗ the leak oracle is only available for identities other than id0, id1. We say A an `-leakage
adversary if the sum of output length of all functions that it submits to the leakage oracle
Oleak(id, ·) for any single id ∈ I is less than `. An IBE scheme is said to be `-leakage-resilient
ANO-CPA anonymous if for any PPT `-leakage adversary A, its advantage defined as above is
negligible in κ.

Remark 1. Our notion of leakage-resilience only allows leakage on single private key for each
identity, but not on master secret key.

We next show a natural construction of leakage-resilient IBE from IB-HPS, which is almost
the same to the construction presented in [ADN+10, Section 4.2]. More precisely, given an
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IB-HPS where the hashing value set Y has some group structure (Y,+) (e.g. bit-strings with
“exclusive or” ⊕), one can construct an IBE with identity set I and message set M = Y by
simply using the hashing value as one-time-pad to mask a message.. The algorithms Setup and
KeyGen are identical to that of IB-HPS. The algorithms Encrypt and Decrypt are constructed
as follows:

– Encrypt(id,m): compute pk ← IHF(id), (x,w) ← SampA(pk), y ← Pub(id, x, w), set z =
y +m, and output c = (x, z).

– Decrypt(sk, c): parse c as (x, z), compute y ← Priv(sk, x), and output m = z − y.

The correctness of the resulting PKE scheme follows from the projective property of the starting
HPS. Note that the algorithm SampB of the IB-HPS is not used in the construction, but will
be used to argue security.

Theorem 7.1 The above construction yields an `-leakage-resilient CPA-secure IBE if the un-
derlying IB-HPS is `-leakage-resilient smooth.

Proof. The proof of this theorem has been presented in [ADN+10]. ut

Theorem 7.2 The above construction yields an `-leakage-resilient anonymous IBE if the un-
derlying IB-HPS is `-leakage-resilient anonymous.

Proof. We proceed via a sequence of games.

Game 0: Define Game 0 as the standard anonymous game for IBE. In the challenge stage of
Game 0, upon receiving two identities id0 and id1 and a message m submitted by the adversary,
the challenger picks a random bit b and computes cb ← Encrypt(idb,m). We expands cb as
(xb, zb) where:

(xb, w)← SampA(idb), yb ← Pub(idb, xb, w), zb = yb +m

Game 1: Compared to Game 0, we modify the challenge stage by having the challenger generate
the ciphertext cb = (xb, zb) using the private key skb of idb:

(xb, w)← SampA(idb), ỹb ← Priv(skb, xb), zb = ỹb +m

The difference between Game 0 an Game 1 is only the use of ỹb versus yb. By the approximate
correctness of evaluation, ỹb 6= yb happens with negligible probability, so Game 0 and Game 1
are indistinguishable.
Game 2: Based on Game 1, we further modify the challenge stage by having the challenger
generate the ciphertext cb = (xb, zb) as follows:

xb ← SampB(idb), ỹb ← Priv(skb, xb), zb = ỹb +m

We claim that Game 1 and Game 2 are computationally indistinguishable by the distribution
indistinguishability of the underlying IB-HPS. Note that, although the definition of distribu-
tion indistinguishability does not explicitly embody private key leakage queries, it allows the
adversary to learn all private keys. Therefore indistinguishability between Game 1 and Game
2 holds even if the adversary obtains the entire information of private keys for the two target
identities, and hence certainly holds when just given limited amount of leakage.

According to the `-leakage-resilient anonymous property of IB-HPS, the advantage of any PPT
adversary in Game 2 is negligible. Therefore the advantage of any PPT adversary in Game 0 is
also negligible in κ, which concludes the Theorem 7.2. ut
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8 Instantiations of IB-HPS

IB-HPS is known to exist based on a variety of assumptions [ADN+10]. We first describe a
construction of IB-HPS which is smooth but not anonymous, then describe five constructions of
IB-HPS which are smooth and anonymous. We note that the last three constructions have been
presented in [ADN+10]. For completeness, we interpret them using our generalized paradigm.

8.1 IB-HPS Based on the DBDH Assumption

We now describe an IB-HPS based on the DBDH assumption, which can be viewed as the
backbone of the IBE scheme presented in [CDRW10].

Let D be a distribution distinguish problem based on the DBDH assumption. SampDDP(κ)

runs BLGroupGen(κ) to generate PP = (e,G,GT , p), picks g
R←− G∗, u0, u1, . . . , un

R←− G,

a, b, c, d
R←− Zp, sets mpk = (g, u0, u1, . . . , un, e(g, g)ab, e(g, g)cd), msk = (gab, gcd); outputs an

instance description Γ = (X,W,PK,A,B,R) of D, where X = G×G×GT , W = Zp, PK = G,
Rpk = {(x,w) ∈ X ×W : ((pkw, gw, e(g, g)abw), w)}, two collections of distributions A and B
are specified by SampA and SampB below:

– SampA(pk): pick w
R←− Zp, output x = (pkw, gw, e(g, g)abw)← Apk and w ∈W .

– SampB(pk): pick w,w′
R←− Zp, output x = (pkw, gw, e(g, g)abw

′
)← Bpk.

Let H = (H, SK, PK,X,A, Y, α) be a corresponding projective hash family, where SK =
Zp × G × G, Y = GT . For sk = (sk1, sk2, sk3) and x = (x1, x2, x3), we define H as Hsk(x) =

e(x1, sk3)e(x2, sk2)xsk13 .
Let P be an IB-HPS for D associating H, which consists of four algorithms as below:

– Setup(κ): run SampDDP(κ) to generate mpk = (g, u0, u1, . . . , un, e(g, g)ab, e(g, g)cd) and
msk = (gab, gcd); set the identity set I to be Zp, construct IHF : Zp → G as IHF(id) =

u0
∏n
i=1 u

idi
i (known as the Waters hash [Wat05]) where idi denotes the i-th bit of iden-

tity id; σ(msk, pk) is constructed as: parse msk as (msk1,msk2), pick t, r
R←− Zp, output

(t,msk1msk
−t
2 pkr, g−r).

– KeyGen(msk, id): compute pk ← IHF(id), output sk ← σ(msk, pk).
– Pub(id, x, w): compute pk ← IHF(id), for x = (pkw, gw, e(g, g)abw) output y = e(g, g)cdw.
– Priv(sk, x): parse sk as (sk1, sk2, sk3) and x as (x1, x2, x3), output y = e(x1, sk3)e(x2, sk2)xsk13 .

It is obvious that one can use the bilinear map as a tool to test if an invalid sample x is generated
by SampB with respect to pk. Therefore the above IB-HPS is smooth but not anonymous. This
provides us an evidence that for IB-HPS smoothness does not guarantee anonymity.

8.2 IB-HPS Based on the DSBDH Assumption

We now describe an IB-HPS based on the DSBDH assumption, which can be viewed as the
backbone of the first IBE scheme presented in [Cor09].

Let D be a distribution distinguish problem based on the DSBDH assumption. SampDDP(κ)

runs BLGroupGen(κ) to generate PP = (e,G,GT , p), picks g
R←− G∗, a R←− Zp, sets mpk =

(g, g1 = ga) and msk = a; outputs an instance description Γ = (X,W,PK,A,B,R) of D, where
X = G×GT , W = Zp, PK = G, Rpk = {(x,w) ∈ X×W : ((gw, e(g1, g1)w), w)}, two collections
of distributions A and B are defined by SampA and SampB as below:

– SampA(pk): pick w
R←− Zp, output x = (gw, e(g1, g1)w) ∈ X and w ∈W .
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– SampB(pk): pick w,w′
R←− Zp, output x = (gw, e(g1, g1)w

′
) ∈ X.

In this case, Apk, Bpk, and Rpk are the same for all pk ∈ PK. We then write A, B, and R for
simplicity.

Let H = (H, SK, PK,X,A, Y, α) be a corresponding projective hash family, where SK =
Zp ×G, Y = GT . For sk = (sk1, sk2) and x = (x1, x2), H is defined as Hsk(x) = e(x1, sk2)xsk12 .

Let P be an IB-HPS for D associating H, which consists of four algorithms as below:

– Setup(κ): run SampDDP(κ) to generate mpk = (g, g1 = ga) and msk = a. The identity set
I is {0, 1}∗ and IHF is a random oracle from {0, 1}∗ to G. σ(msk, pk) is constructed as: pick

t
R←− Zp, output (t, (pk · g−t1 )msk).

– KeyGen(msk, id): compute pk ← IHF(id), output sk ← σ(msk, pk).
– Pub(id, x, w): compute pk ← IHF(id), for x = (gw, e(g1, g1)w) output y = e(pk, g1)w.
– Priv(sk, x): parse sk as (sk1, sk2) and x as (x1, x2), output y = e(x1, sk2)xsk12 .

The above IB-HPS is smooth and anonymous.

8.3 IB-HPS Based on the DBDH Assumption

We now describe an IB-HPS based on the DBDH assumption, which can be viewed as the
backbone of the second IBE scheme presented in [Cor09].

Let D be a distribution distinguish problem based on the DBDH assumption. SampDDP(κ)

runs BLGroupGen(κ) to generate PP = (e,G,GT , p), picks g
R←− G∗, a R←− Zp, g2

R←− G, sets
mpk = (g, g1 = ga, g2), msk = a; outputs an instance description Γ = (X,W,PK,A,B,R) of
D, where X = G×GT , W = Zp, PK = G, Rpk = {(x,w) ∈ X ×W : ((gw, e(g1, g2)w), w)}, two
collections of distributions A and B are defined by SampA and SampB as below:

– SampA(pk): pick w
R←− Zp, output x = (gw, e(g1, g2)w)← Apk and w ∈W .

– SampB(pk): pick w,w′
R←− Zp, output x = (gw, e(g1, g2)w

′
) ∈ Bpk.

In this case, Apk, Bpk, and Rpk are the same for all pk ∈ PK. We then write A, B, and R for
simplicity.

Let H = (H, SK, PK,X,A, Y, α) be a corresponding projective hash family, where SK =
Zp ×G, Y = GT . For sk = (sk1, sk2) and x = (x1, x2), H is defined as Hsk(x) = e(x1, sk2)xsk12 .

Let P be an IB-HPS for D associating H, which consists of four algorithms as below:

– Setup(κ): run SampDDP(κ) to generate mpk = (g, g1 = ga, g2), msk = a; set the identity set
I to be {0, 1}∗, model IHF as a random oracle from {0, 1}∗ to G. σ(msk, pk) is constructed

as: pick t
R←− Zp, output (t, (pk · g−t2 )msk).

– KeyGen(msk, id): compute pk ← IHF(id), output sk ← σ(msk, pk).
– Pub(id, x, w): compute pk ← IHF(id), for x = (gw, e(g1, g2)w) output y = e(pk, g1)w.
– Priv(sk, x): parse sk as (sk1, sk2) and x as (x1, x2), output y = e(x1, sk2)xsk12 .

As shown in [Cor09], the above IB-HPS is smooth and anonymous.

8.4 IB-HPS Based on the DTABDHE Assumption

We now describe an IB-HPS based on the DTABDHE assumption [Gen06], which can be viewed
as the backbone of Gentry’s IBE [Gen06].

Let D be a distribution distinguish problem based on the DTABDHE assumption. SampDDP(κ)

runs BLGroupGen(κ) to generate PP = (e,G,GT , p), picks g, h ← G∗ and a
R←− Zp, sets

mpk = (g, g1 = ga, h) and msk = a; outputs an instance description Γ = (X,W,PK,A,B,R) of
D, where X = G×GT , W = Zp, PK = Zp, Rpk = {(x,w) ∈ X×W : ((gw1 g

−w·pk, e(g, g)w), w)},
two collections of distributions A and B are defined by SampA and SampB as below:
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– SampA(pk): pick w
R←− Zp, output x = (gw1 g

−w·pk, e(g, g)w)← Apk and w ∈W .

– SampB(pk): pick w,w′
R←− Zp, output x = (gw1 g

−w·pk, e(g, g)w
′
)← Bpk.

Let H = (H, SK, PK,X,A, Y, α) be a corresponding projective hash family, where SK =
Zp ×G, Y = GT . For sk = (sk1, sk2) and x = (x1, x2), H is defined as Hsk(x) = e(x1, sk2)xsk12 .

Let P be an IB-HPS for D associating H, which consists of four algorithms as below:

– Setup(κ): run SampDDP(κ) to generate mpk = (g, g1 = ga, h) and msk = a; set the identity
set I to be Zp, IHF is an identity function. σ(msk, pk) is constructed as: pick t ∈ Zp, output
(t, (hg−t)1/(msk−pk)).

– KeyGen(msk, id): set pk = id, output σ(msk, pk).

– Pub(id, x, w): set pk = id, for x = (gw1 g
−w·pk, e(g, g)w) output y = e(g, h)−w.

– Priv(sk, x): parse sk = (sk1, sk2) and x = (x1, x2), output y = e(x1, sk2)xsk12 .

As shown in [Gen06], the above IB-HPS is smooth and anonymous.

8.5 IB-HPS Based on the QR Assumption

We now describe an IB-HPS based on the QR assumption, which can be viewed as the backbone
of the IBE scheme presented in [BGH07].

Let D be a distribution distinguish problem based on the QR assumption. SampDDP(κ)
runs RSAGen(κ) to generate two primes p and q, sets mpk = (N, u,Q) (where N = pq and

u
R←− J(N)\QR(N) andQ is the algorithm defined in [ADN+10, Appendix C]) and msk = (p, q),

outputs an instance description Γ = (X,W,PK,A,B,R) of D, where X = J(N)× {±1}, W =

ZN , PK = J(N), Rpk = {(x,w) ∈ X ×W : ((w2,
( τ(w)

N

)
), w)}, two collections of distributions

A and B are specified by SampA and SampB as below:

– SampA(pk): pick w
R←− Zp, set x1 = w2, run Q(N, u, 1, x1) to obtain τ and compute x2 =( τ(w)

N

)
, output x = (x1, x2) ∈ X and w ∈W .

– SampB(pk): pick x1
R←− J(N)\QR(N), x2

R←− {±1}, output x = (x1, x2) ∈ X\L.

In this case, Apk, Bpk, and Rpk are the same for all pk ∈ PK. We then write A, B, and R for
simplicity.

Let H = (H, SK, PK,X,A, Y, α) be a corresponding projective hash family, where SK =
ZN , Y = {±1}. For sk = r and x = (x1, x2), Hsk(x) = y is defined as when r2 = pk output(f(r)
N

)
else output x2

( f̄(r)
N

)
, where f , f̄ are the polynomials output by Q(N, u,R, x1).

Let P be an IB-HPS for D associating H, which consists of four algorithms as below:

– Setup(κ): run SampDDP(κ) to generate mpk = (N = pq, u,Q) and msk = (p, q); set the
identity set I to be {0, 1}∗ and IHF is a random oracle from {0, 1}∗ to J(N). σ(msk, pk) is
constructed as: let a ∈ {0, 1} be the unique choice for which uapk ∈ QR(N), let {r1, r2, r3, r4}
be the four square-roots of uapk so that r1 < r2 < r3 < r4 (in ZN ) and r1 = −r4, r2 = −r3,

output r
R←− {r1, r2}.

– KeyGen(msk, id): compute pk = IHF(id), output sk = α(msk, pk).

– Pub(id, x, w): compute pk = IHF(id), for x = (x1, x2), run Q(N, u, pk, x1) to obtain a poly-

nomial g, output y =
(g(w)
N

)
.

– Priv(sk, x): suppose sk = r for id and x = (x1, x2), compute pk = IHF(id), runQ(N, u, pk, x1)

to obtain polynomials f , f̄ . If r2 = pk output y =
(f(r)
N

)
, else output y = x2

( f̄(r)
N

)
.

As shown in [BGH07], the above IB-HPS is smooth and anonymous.
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8.6 IB-HPS Based on the DLWE Assumption

We now describe an IB-HPS based on the DLWE assumption, which can be viewed as the
backbone of the IBE scheme presented in [GPV08].

The distribution distinguish problem D and the projective hash family H are the same as
that in HPS defined in subsection 5.1.

Let P be an IB-HPS for D associating H, which consists of four algorithms as below:

Setup(κ): run SampDDP(κ) to generate mpk = (A, fA) and msk = S. The identity set I is {0, 1}∗
and the identity mapping function IHF is a random oracle from {0, 1}∗ to Znq . The inversion of

α is constructed as σ(msk, pk) = f−1
A (pk) using the preimage sampler with msk = S.

KeyGen(msk, id): compute pk ← IHF(id), output sk ← σ(msk, pk).

Priv(sk, x): parse x = (p, v), if |v − skT p| ≤ q−1
4 then output y = 1 else output y = 0.

Pub(id, x, w): compute pk ← IHF(id), parse x = (p, v), if |v − pkTw| ≤ q−1
4 then set y = 1 else

set y = 0.

As shown in [GPV08], the above IB-HPS is smooth and anonymous.

9 Leakage-Resilient Public-Key Encryption with Keyword Search

Public-key encryption with keyword search (PEKS) [BCOP04] is a useful primitive to provide
the functionality of “searching on encrypted data” for public-key encryption (PKE). It allows
one to delegate his searching ability on encrypted data to a third party without impacting the
data privacy and the keyword privacy.

A PEKS scheme [BCOP04] consists of four PPT algorithms as below:

– Setup(κ): take as input a security parameter κ, output a public/secret key pair (pkA, skA).
Let the keyword space be W , the token space be T .

– PEKS(pkA, w): take as input a public key pkA and a keyword w, output a searchable en-
cryption s.

– TokenGen(skA, w): take as input a secret key skA and a keyword w, output a token tw.

– Test(tw, s): take as input a public key pk, a searchable encryption s, output a bit b ∈ {0, 1}.

The correctness of PEKS requires that for any w ∈W , we have:

Pr[Test(TokenGen(skA, w),PEKS(pkA, w)) = 1] ≥ 1− negl(κ)

where the probability is taken over the random coins used by Setup, PEKS, and ToeknGen. On
the other hand, the consistency of PEKS requires that Test outputs 0 with overwhelmingly
probability if s is not an encryption of w.

9.1 Leakage Model for PEKS

Intuitively, a PEKS scheme is said to be secure if no PPT adversary cannot distinguish the
keyword under which a ciphertext was generated. Boneh et al. [BCOP04] formally defined the
security of PKES under chosen-plaintext attack in the traditional sence. However, there is no
work considering the security of PEKS in the presence of leakage.

In what follows, we define the leakage-resilient security of PEKS by modifying the usual
security game of PEKS (against chosen-plaintext attack) appropriately in the bounded-leakage
model. Informally speaking, a PEKS scheme is leakage-resilient secure if it retains security even
an adversary can obtain partial information about the tokens of the keywords.
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We consider the security for PEKS against chosen-plaintext attack in the presence of token
leakage. Advantage of an adversary A is defined as:

AdvA(κ) = Pr


(pkA, skA)← Setup(κ);

(w0, w1)← AOreveal(·),Oleak(·,·)(pkA);

b = b′ : b
R←− {0, 1};

s∗ ← Encrypt(wb,m);

b′ ← AOreveal(·),Oleak(·,·)(s∗)

−
1

2

where Oreveal(·) is an oracle that on input w, returns tw ← TokenGen(skA, w), Oleak(·, ·) is an
oracle that on input w and a function f : T → {0, 1}∗, returns f(tw). The restrictions are
that the reveal oracle is only available for keywords other than w0, w1, and after seeing the
challenge ciphertext s∗ the leak oracle is only available for keywords other than w0, w1. We
say A an `-leakage adversary if the sum of output length of all functions that it submits to the
leakage oracle Oleak(w, ·) for any single w ∈ W is less than `. An PEKS scheme is said to be
`-leakage-resilient IND-CPA secure if for any PPT `-leakage adversary A, its advantage defined
as above is negligible in κ.

9.2 Generic Construction of Leakage-Resilient PEKS

We first review the generic transform due to [BCOP04, ABC+05] from anonymous IBE to PEKS,
then show that this transform also provides us a generic method to compile a leakage-resilient
anonymous IBE scheme into a leakage-resilient secure PEKS scheme.

Boneh et al. [BCOP04] presented a transform from an IBE scheme to a PEKS scheme (knows
as the BDOP transform). Subsequently, Abdalla et al. [ABC+05] revised the BDOP transform
and gave a formal proof for it. The resulting randomized BDOP transform is refereed to as the
new BDOP transform. Starting from an IBE scheme (Setup, KeyGen, Encrypt, Decrypt), the new
BDOP transform creates a PEKS scheme (Setup, PEKS, TokenGen, Test) as follows:

– PEKS.Setup(κ): run (mpk,msk) ← IBE.Setup(κ), set pkA = mpk, skA = msk, return the
key pair (pkA, skA).

– PEKS.Encrypt(pkA, w): pick s1
R←−M (here M is message set of the underlying IBE scheme),

compute s2 ← IBE.Encrypt(w, s1) where w serves as the identity, return the searchable
encryption s = (s1, s2).

– PEKS.TokenGen(skA, w): run IBE.KeyGen(skA, w) to obtain a private key skw for “identity”
w, return tw = skw.

– PEKS.Test(pkA, s, tw): parse s = (s1, s2), decide if s1 = IBE.Decrypt(s2, tw). If so, return 1.
Otherwise, return 0.

Leakage-Resilient PEKS from Leakage-Resilient IBE. Be aware of the close resemblance
between the (leakage-resilient) security game for PEKS and (leakage-resilient) anonymity game
for IBE, leakage-resilient anonymous IBE is likely to imply leakage-resilient secure PEKS. We
formally capture this intuition by the following theorem.

Theorem 9.1 For PEKS scheme constructed from IBE scheme via the new BDOP transform,
if the IBE scheme is `-leakage-resilient ANO-CPA anonymous, then the resulting PEKS scheme
is `-leakage-resilient IND-CPA secure.

Proof. The proof of this theorem is rather straightforward. Suppose A is an `-leakage adversary
against the security of the PEKS scheme, we can create an `-leakage adversary B against the
anonymity of the underlying IBE scheme. B interacts with its own challenger CH in a leakage-
resilient anonymity game of IBE, and at the same time plays the role of a challenger for A in a
leakage-resilient security game of PEKS as below.
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Setup: B is given mpk of the underlying IBE scheme. B forwards it to A as the public key pkA.
Phase 1: Upon receiving the token reveal queries and test leakage queries issued by A, B
responds as follows:

– Token reveal query 〈w〉: B issues the private key reveal query for “identity” w to its own
challenger CH and forwards the reply to A.

– Token leakage query 〈w, fi〉: B issues the private key leak query 〈w, fi〉 to its own challenger
CH and forwards the reply to A.

Challenge: When A outputs two keywords w0 and w1 where it wants to be challenged on, B
picks m

R←− M , then sends it with w0 and w1 (serve as two target identities) to CH. When B
obtains the challenge ciphertext c = IBE.Encrypt(mpk,wb,m), it sends s = (c,m) to A as the
challenge.
Phase 2: A may issue more token reveal and token leakage queries with the restriction that
they are not related to either w0 or w1. B responds the same way as in Phase 1.
Guess: As soon as A outputs its guess b′ for b, B outputs b′ to its own challenger.

It is easy to see that B provides a perfect simulation for A, so B has the same advantage against
the `-leakage anonymity of the underlying IBE scheme as A wins the above game. Theorem 9.1
immediately follows. ut

Remark 2. The leakage model for PEKS defined in subsection 9.1 only allows leakage on one
token for each keyword. It can be further strengthened to allow leakage on several tokens for
each keyword as well as the user’s private key. Notice the correspondence between PEKS and
IBE indicated by the new BDOP transform, one can immediately construct a PEKS scheme
that can tolerate leakage on several tokens per keyword as well as the user’s private key from
an anonymous IBE scheme that allows leakage on several private keys for each identity as well
as the master secret key. Recently, Lewko et al. [LRW11] presented the first IBE scheme which
can tolerate leakage leakage on several keys for each identity as well as leakage on the master
secret key from dual system encryption. However, it is not anonymous.

10 Concluding Remarks

The role of master secret key. Firstly, we highlight some subtle details in our generalization
of (IB)-HPS. In the definition of HPS and IB-HPS, we make explicit the master secret key msk,
though it is not used in the algorithms of HPS. From narrative aspect, this treatment allows us
to describe HPS and IB-HPS in a unified manner. From technical aspect, this treatment allows
us to define (leakage-resilient) smoothness and anonymity for (IB)-HPS as strong as possible.
In fact, we requires (leakage-resilient) smoothness and anonymity hold even the adversary can
obtain the entire information of msk. Such strengthened definitions have not been explicitly
addressed prior to this work. We emphasize that our enhancement is safe and free, in that
the smoothness is acquired via the redundancy of secret key while the anonymity is related
to the property of algorithm SampB. It is also interesting to note that when reducing the
indistinguishability of (IB)-HPS to the underlying assumptions, the hard instance is usually
embedded into msk. This explains the difficulty of constructing IBE that allows leakage on
msk via the methodology of hash proof system.

The relationship between smoothness and anonymity. In the cases of HPS and IB-
HPS, when the algorithm SampB is independent of pk, smoothness instantly implies anonymity,
in that the sample x does not contain any information of pk (IHF(id)) and the corresponding
hashing value y is pseudo-random in Y . This observation provides us a simple approach to attain
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anonymity for many encryption schemes.4 The instantiations presented in subsections 5.1, 8.2
8.3, 8.5, 8.6 exactly follow this approach. However, there do exist anonymous (IB)-HPS falling
outside this approach, for instance, the IB-HPS underlying the Gentry IBE [Gen06] does not
adapt this approach but is anonymous, as we showed in subsection 8.4. We also stress that
smoothness does not always guarantee anonymity, for example, the IB-HPS that underlying the
IBE scheme [CDRW10] is smooth but not anonymous, as we show in subsection 8.1.

Chosen-ciphertext security. In the main body of this paper, we restrict our attention to
(leakage-resilient) security against only chosen-plaintext attacks. Technically, there are two
generic method to bootstrap the security to the setting of (adaptive) chosen-ciphertext attacks.
As indicated in [NS09], Naor-Yung “double encryption” [DDN00] can also be used as a generic
transform from CPA-security to CCA-security in the presence of key-leakage. However, this ap-
proach is only of theoretical interest in that the generic non-interactive zero-knowledge proofs
are generally inefficient. From the practical aspect, we note that Cramer and Shoup [CS02]
already presented a direct and elegant construction of CCA-secure PKE from HPS. In more
details, except a smooth PHF H from X to Y (which is sufficient to yield CPA-secure PKE), a
corresponding PHF H̃ from X×M to Ỹ satisfying universal2 property is also needed. One then
can obtain a CCA-secure PKE by using H and H̃ to perform “double encryption”-like operation.
We observe that universal2 (see definition in [CS02]) is a much stronger notion than smoothness.
Intuitively, for the distribution of y = Hsk(x) conditioned on some fixed pk = α(sk), universal
property requires that for every point x ∈ X\L the distribution is close to the uniform, while
smooth property just requires that for almost every point x ∈ X\L the distribution is close
to the uniform. It is also interesting to realize that the compatibility between projection and
universality in the original HPS comes from the fact that L and X\L are disjointed. In the
context of our generalization, we do not require the partition on X. Alternatively, we re-define
the projection and smoothness with respect to distributions A and B over X, and |A| and |B|
are not necessarily to be disjointed. Therefore, the projection and universality contradict with
each other when the supports of A and B are identical (e.g. the case of lattice-based HPS shown
in subsection 5.1). However, it might still be possible to construct a HPS satisfying approxi-
mate projection and universality simultaneously when |A|∩ |B| is not empty (the situation that
the action of Hsk on |A| ∩ |B| is completely undetermined, and Pr[x ∈ |A| ∩ |B| : x ← A] is
negligible.). We left concrete construction of such generalized (IB)-HPS as an open problem.

Extensions. Our generalization idea extends naturally to many variants of (IB)-HPS. Most
notably, in the dual HPS introduced in [Wee12], the set ΠY (corresponding to YES instances)
and ΠN (corresponding to NO instances) are required to be disjointed, and the indistinguisha-
bility is respect to two uniform distributions over them. However, such restrictions makes the
instantiation from LWE presented in [Wee12, Section 8] do not fit the original paradigm of dual
HPS exactly. Similar to the case of (IB)-HPS, these restrictions are not necessary in essence, it
is thus reasonable to generalize dual HPS by centring around distribution distinguish problem
instead of subset membership problem. Interestingly, the generalized dual HPS immediately im-
plies almost-always LTDFs, which is a slightly relaxed definition of LTDFs suggested by Peikert
and Waters [PW08].
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[LY12] Benôıt Libert and Moti Yung. Non-interactive cca-secure threshold cryptosystems with adaptive
security: New framework and constructions. In Theory of Cryptography - 9th Theory of Cryptography
Conference, TCC 2012, volume 7194 of LNCS, pages 75–93. Springer, 2012.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract). In Theory
of Cryptography, First Theory of Cryptography Conference, TCC 2004, volume 2951 of LNCS, pages
278–296. Springer, 2004.

[NS09] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In Advances in Cryp-
tology - CRYPTO 2009, volume 5677 of LNCS, pages 18–35. Springer, 2009.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In STOC 2008,
pages 187–196, 2008.

[Sha02] Ronen Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of the EATCS,
77:67–95, 2002.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In Advances in Cryptology
- EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127, 2005.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure ibe and hibe under simple assumptions.
In Advances in Cryptology - CRYPTO 2009, volume 5677 of LNCS, pages 619–636, 2009.

[Wee12] Hoeteck Wee. Dual projective hashing and its applications - lossy trapdoor functions and more. In
Advances in Cryptology - EUROCRYPT 2012, volume 7237 of LNCS, pages 246–262. Springer, 2012.

[ZHI07] Rui Zhang, Goichiro Hanaoka, and Hideki Imai. Orthogonality between key privacy and data privacy,
revisited. In Information Security and Cryptology, Third SKLOIS Conference, Inscrypt 2007, volume
4990 of LNCS, pages 313–327. Springer, 2007.

25


	Lecture Notes in Computer Science
	Authors' Instructions

