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Abstract

Algebraic expressions of the Bernstein-Rabin-Winograd-polynomials, when defined over the field of
the rational numbers, are obtained by recursion.

1 Introduction

For the purpose of message authentication, a family of polynomial hash functions was introduced in [1], the
so called Bernstein-Rabin-Winograd (BRW) polynomials. The tweakable enciphering schemes [3], mostly
applied on low-level disk encryption systems make, an extensive use of the BRW-polynomials due to the
implicit economy in their computations. Efficient pipelined algorithms, with ad-hoc hardware implementa-
tion, were developed in [2], achieving great performances. For most applications the BRW-polynomials are
considered on polynomial rings over finite fields.

A family of BRW-polynomials is a sequence defined recursively and its construction rules make the se-
quence quite suitable for efficient evaluation. For a fixed sequence of parameters, an index and a field element,
the value of the corresponding polynomial on that element is efficiently computed, those for authentication
and signing purposes they provide an important family of hashing maps.

In this short note we study the BRW-polynomials over the field of rational numbers and the resulting
recursive relations in order to fully express in their algebraic forms the BRW-polynomials. An elementary
remark [1], is the assertion that the BRW-polynomials have degrees one less than a power of two. For
a fixed set of parameters determining the coefficients of the BRW-polynomials, the set of indexes can be
partitioned by cuts at the powers of two, and within such a block several common characteristic features of
the BRW-polynomials are distinguished allowing to calculate completely the algebraic forms in linear time
complexity with respect to the block index, although in exponential space complexity.

2 BRW-polynomials

Let us consider the polynomial ring Q[X] over the field Q of rational numbers. For a given rational sequence
c = (ci)i∈N, let us denote by cj , for each j ∈ N, the sequence obtained by dropping the first j terms at c:
cj = (ci)i≥j . Hence, c0 = c.

Given c = (ci)i∈N, the corresponding sequence of Bernstein-Rabin-Winograd (BRW) polynomials H =
(Hm,c)m∈N is defined inductively as follows:

H0,c(X) = 0

H1,c(X) = c0

H2,c(X) = c0 + c1X

H3,c(X) = (c0 + X) · (c1 + X2) + c2 (1)

∀k > 3 : Hm,c(X) = Hm0−1,c(X) · (cm0−1 + Xm0) + Hm−m0,cm0
(X), where m0 = 2blog2 mc. (2)
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Remark 2.1 For each m ≥ 4, the polynomial Hm,c(X) ∈ Q[X] has degree 21+blog2 mc − 1.

Namely, reasoning by induction, we see that for m = 4, from (2), H4,c(X) = H3,c(X)·(c3+X4)+H0,c4(X)
and it has degree 7 = 23 − 1. For m > 4 let us write m = 2m0 + m1, where m0 = 2blog2 mc. From (2) it
follows that the degree of Hm,c(X) is

degHm0,c(X) + m0 = 21+blog2(m0−1)c − 1 + 2blog2 mc = 2 · 2blog2 mc − 1.

For any n ∈ Z+ let In = {2n−1, . . . , 2n − 1}: I1 = {1}, I2 = {2, 3}, I3 = {4, 5, 6, 7}, I4 = {8, . . . , 15}, . . .
Thus (In)n∈Z+ is a partition of Z+ consisting of sets of consecutive integers delimited by powers of 2. The
remark 2.1 can be restated as:

Remark 2.2 For each n ≥ 3: [m ∈ In =⇒ degHm,c(X) = 2n − 1].

Hence, for m ∈ In the coefficient vector of the polynomial Hm,c(X) has dimension 2n, thus the polynomial
expression can be split into two parts, a lower part and an upper part, each determined by 2n−1 coefficients.
Let us write:

Hm,c(X) = G`
m,c(X) + Gu

m,c(X) ·X2n−1

. (3)

Let us compare (3) with (2).
Since m ∈ In, blog2 mc = n− 1 and m0 = 2n−1,

G`
m,c(X) + Gu

m,c(X) ·X2n−1

= H2n−1−1,c(X) · (c2n−1−1 + X2n−1

) + Hm−2n−1,c2n−1
(X)

=
(
Hm−2n−1,c2n−1

(X) + c2n−1−1 H2n−1−1,c(X)
)

+ H2n−1−1,c(X) ·X2n−1

.

But m− 2n−1 < 2n−1, thus by remark 2.2, degH2n−1−1,c(X),degH2n−1−1,c(X) < 2n−1, hence

G`
m,c(X) = Hm−2n−1,c2n−1

(X) + c2n−1−1 H2n−1−1,c(X) (4)

Gu
m,c(X) = H2n−1−1,c(X). (5)

The relation (5) means that the upper part is the same polynomial for all m ∈ In.
For each k ≥ 2, let

F `
k,c(X) = G`

2k,c(X) and Fu
k,c(X) = Gu

2k,c(X). (6)

Again, Fu
k,c(X) is a polynomial of degree 2k − 1 and it is determined by a coefficient vector of dimension 2k,

hence it can be split into a lower and an upper parts. Let us express it as

Fu
k,c(X) = Fu`

k,c(X) + Fuu
k,c(X) ·X2k−1

. (7)

Now, let us observe that

Fu
k,c(X) = Gu

2k,c(X)

= H2k−1,c(X)

= H2k−1−1,c(X) · (c2k−1−1 + X2k−1

) + H2k−1−2k−1,c
2k−1

(X)

=
(
H2k−1−1,c

2k−1
(X) + c2k−1−1 ·H2k−1−1,c(X)

)
+ H2k−1−1,c(X) ·X2k−1

,

since degH2k−1−1,c
2k−1

(X) = degH2k−1−1,c(X) = 2k−2, we obtain, from (7):

Fu`
k,c(X) = H2k−1−1,c

2k−1
(X) + c2k−1−1 ·H2k−1−1,c(X)

Fuu
k,c(X) = H2k−1−1,c(X),

and these equations, together with (5) and (6), can be restated as:

Fu`
k,c(X) = Fu

k−1,c
2k−1

(X) + c2k−1−1 · Fu
k−1,c(X) (8)

Fuu
k,c(X) = Fu

k−1,c(X). (9)
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Clearly, the relations (7), (8) and (9) pose the following recurrence relation for the polynomial sequence

Fu
c =

(
Fu
k,c(X)

)
k≥2

:

∀k > 2 : Fu
k,c(X) =

(
Fu
k−1,c

2k−1
(X) + c2k−1−1 · Fu

k−1,c(X)
)

+ Fu
k−1,c(X) ·X2k−1

. (10)

For the base case of this recurrence, we observe that, from (1): H3,c(X) = (c0c1 + c2) + c1X + (c0 + X)X2,
thus we may define

Fu
1,c(X) = c0 + X,

and (10) holds ∀k ≥ 2.
The relations (4), (5) can be rewritten, using (9), as

Gu
m,c(X) = Fu

n−1,c(X)

G`
m,c(X) = Hm−2n−1,c2n−1

(X) + c2n−1−1 F
u
n−1,c(X) (11)

and finally, from (5)

∀m ∈ In : Hm,c(X) =
(
Hm−2n−1,c2n−1

(X) + c2n−1−1 F
u
n−1,c(X)

)
+ Fu

n−1,c(X) ·X2n−1

. (12)

Equation (12) gives a recursive procedure to calculate the formal polynomial expression of the BRW-
polynomial Hm,c(X).

Some direct conclusions follow:

• With respect to analysis, the BRW-polynomials differ slightly for indexes within In:

∀m ∈ In : Hm,c(X) = Fu
n−1,c(X) ·X2n−1

+ o(X2n−1

).

• The algorithm determined by (12) has time complexity O(n) although it has space complexity O(2n).

• The right hand side of (8) is the addition of a polynomial, let us say
∑2k−1−1

j=0 ajX
j , and a constant

multiple of other polynomial of the same degree, let us say
∑2k−1−1

j=0 bjX
j . Thus, the left hand side

can be calculated as
∑2k−1−1

j=0 A(aj , c2k−1−1, bj)X
j , where A : (a, c, b) 7→ a + c · b.

• The first summand at the right hand side of (12), which is given by (11), can be calculated as well
through the map A at the point before.

• The coefficients of the BRW-polynomials are calculated by iterations of the operator A acting over the
coefficient list c, and the involved computations can be parallelized.
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