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Abstrat. NTRUEnrypt, proposed in 1996 by Ho�stein, Pipher and Silverman, is the fastest known

lattie-based enryption sheme. Its moderate key-sizes, exellent asymptoti performane and onje-

tured resistane to quantum omputers make it a desirable alternative to fatorisation and disrete-log

based enryption shemes. However, sine its introdution, doubts have regularly arisen on its seurity

and that of its digital signature ounterpart. In the present work, we show how to modify NTRUEnrypt

and NTRUSign to make them provably seure in the standard (resp. random orale) model, under the

assumed quantum (resp. lassial) hardness of standard worst-ase lattie problems, restrited to a

family of latties related to some ylotomi �elds.

Our main ontribution is to show that if the seret key polynomials of the enryption sheme are seleted

from disrete Gaussians, then the publi key, whih is their ratio, is statistially indistinguishable

from uniform over its range. We also show how to rigorously extend the enryption seret key into

a signature seret key. The seurity then follows from the already proven hardness of the R-SIS and

R-LWE problems.
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1 Introdution

The NTRU enryption sheme devised by Ho�stein, Pipher and Silverman, was �rst presented at

the rump session of Crypto'96 [27℄. Although its desription relies on arithmeti over the polynomial

ring Zq[x]/(x
n− 1) for n prime and q a small integer, it was quikly observed that breaking it ould

be expressed as a problem over Eulidean latties [27, 11℄. At the ANTS'98 onferene, the NTRU

authors gave an improved presentation inluding a thorough assessment of its pratial seurity

against lattie attaks [28℄. We refer to [24℄ for an up-to-date aount on the past 15 years of

seurity and performane analyses. Nowadays, NTRUEnrypt is ommonly onsidered as a reasonable

alternative to the enryption shemes based on integer fatorisation and disrete logarithm over �nite

�elds and ellipti urves, as testi�ed by its inlusion in the IEEE P1363 standard [33℄. It is also often

onsidered as the most viable post-quantum publi-key enryption (see, e.g., [58℄). The authors of

NTRUEnrypt also proposed a signature sheme based on a similar design. The history of NTRUSign

started with NSS in 2001 [29℄. Its development has been signi�antly more heti and ontroversial,

with a series of ryptanalyses and repairs (see, e.g., [20, 22, 31, 67, 49, 52℄ and the survey [24℄).

In parallel to the break-and-repair development of the pratially e�ient NTRU shemes, the

(mainly) theoretial �eld of provably seure lattie-based ryptography has steadily been developed.

⋆
Some of the results in this paper have been presented in preliminary form at Eurorypt 2011 [64℄. The results in

this paper improve and signi�antly extend those in [64℄; the most signi�ant addition is the seurity analysis of

a provably seure variant of NTRUSign.



It originated in 1996 with Ajtai's alaimed worst-ase to average-ase redution [3℄, leading to

a ollision-resistant hash funtion that is as hard to break as solving several natural worst-ase

problems de�ned over Eulidean latties. Ajtai's average-ase problem is now referred to as the

Small Integer Solution problem (SIS). Another major breakthrough in this �eld was the introdution

in 2005 of the Learning with Errors problem (LWE) by Regev [59, 60℄: LWE is both hard on the

average (standard worst-ase lattie problems quantumly redue to it), and su�iently �exible to

allow for the design of ryptographi funtions. In the last few years, many ryptographi shemes

have been introdued that are provably as seure as LWE and SIS are hard (and thus provably

seure, assuming the worst-ase hardness of lattie problems). These inlude CPA and CCA seure

enryption shemes, identity-based enryption shemes, digital signatures, et (see [60, 54, 21, 8, 1℄,

among others, and the surveys [47, 61℄).

The main drawbak of ryptography based on LWE and SIS lies in its limited e�ieny. A key

typially ontains a random matrix over the ring Zq = Z/qZ for a small q, whose dimensions are

(at least) linear in the seurity parameter; onsequently, the spae and time requirements seem

bound to be at least quadrati with respet to the seurity parameter. In 2002, Miianio [44℄

sueeded in restriting SIS to strutured matries while preserving a worst-ase to average-ase

redution. The worst-ase problem is a restrition of a standard lattie problem to the spei�

family of yli latties. The struture of Miianio's matries allows for an interpretation in terms

of arithmeti in the ring Zq[x]/(x
n − 1), where n is the dimension of the worst-ase latties and q

is a small prime. Miianio's onstrution leads to a family of pre-image resistant hash funtions,

with omplexity quasi-linear in the seurity parameter n: The e�ieny gain stems from the use

of the disrete Fourier transform for multiplying polynomials. In two onurrent works, Peikert,

Rosen, Lyubashevsky and Miianio [57, 39℄ later suggested to hange the ring to Zq[x]/Φ with a

polynomial Φ that is irreduible over the rationals, sparse, and with small oe�ients (e.g., Φ = xn+1
for n a power of 2). The resulting hash funtion was proven ollision-resistant under the assumed

hardness of the modi�ed average-ase problem, now often alled the Ideal Small Integer Solution

or Ring Small Integer Solution problem (R-SIS). The latter was itself proven at least as hard as

the restritions of standard worst-ase lattie problems to a spei� lass of latties, alled ideal

latties. In 2009, Lyubashevsky [38℄ introdued an e�ient digital signature provably as seure

as R-SIS (in the random orale model). Also in 2009, Stehlé, Steinfeld, Tanaka and Xagawa [65℄

introdued a strutured (albeit somewhat restrited) variant of LWE, whih they proved as hard

as R-SIS (under a quantum redution), and allowed for the design of an asymptotially e�ient

CPA-seure enryption sheme. In an independent and onurrent work, Lyubashevsky et al. [21℄

proposed a ring variant of LWE, alled R-LWE, whose great �exibility allows for more natural (and

e�ient) ryptographi onstrutions.

Our results. The high e�ieny and industrial standardization of NTRUEnrypt and NTRUSign

strongly motivate a theoretially founded study of their seurity. Indeed, in the absene of suh a

study so far, their seurity has remained in doubt over the last 15 years sine the initial NTRU

publiation. This work addresses this problem.

We propose a mild modi�ation of NTRUEnrypt that is CPA-seure in the standard model, under

the assumed quantum hardness of standard worst-ase problems over ideal latties (for Φ = xn + 1
with n a power of 2); and we desribe a variant of NTRUSign that is existentially unforgeable in

the random orale model, under the assumed lassial hardness of the same problems over ideal

latties. The NTRUEnrypt modi�ations are summarized at the end of the introdution. The most

substantial additional modi�ation for NTRUSign is the use of a disrete Gaussian sampler [21, 55,
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13℄ in the signing proess, that ensures that no seret information is leaked while signing (thus

preventing the learning attak from [52℄). We also give the �rst rigorous analysis of the algorithm

that extends an NTRUEnrypt seret key into an NTRUSign seret key.

We stress that our main goal in this paper is to provide, for the �rst time, a �rm theoretial

grounding for the seurity of the NTRU shemes, in the asymptoti sense. The pratial instantia-

tions of our shemes are likely to be signi�antly less e�ient than the original shemes. However,

several of our modi�ations inur negligible performane overheads over the original shemes, while

bringing their seurity level loser to the provably seure shemes. For instane, the extra error term

we add to the NTRUEnrypt sheme is a heap way to address the lak of IND-CPA seurity of the

original sheme.

Overview of our tehniques. Our main tehnial ontribution is the modi�ation and analysis

of the NTRU key generation algorithms.

In NTRUEnrypt, the seret key onsists of two sparse polynomials of degrees < n and oe�-

ients in {−1, 0, 1}. The publi key is their quotient in the ring Zq[x]/(x
n − 1) (the denominator

is resampled if it is not invertible). A simple information-theoreti argument shows that the publi

key annot be uniformly distributed in the whole ring. It would be desirable to guarantee the latter

property, in order to exploit the established hardness of R-SIS and R-LWE (we atually show a

weaker distribution property, whih still su�es for linking the seurity to R-SIS and R-LWE). For
this purpose, we sample the seret key polynomials aording to a disrete Gaussian with standard

deviation ≈ q1/2. An essential ingredient, whih may be of independent interest, is a new regularity

result for the ring Rq := Zq[x]/(x
n + 1) when the polynomial xn + 1 with n a power of 2 has n

fators modulo prime q: Given a1, . . . , am uniform in Rq, we would like

∑
i≤m siai to be within expo-

nentially small statistial distane to uniformity, with small random si's and small m. Miianio's

regularity bound [44, Se. 4.1℄ (see also [65, Le. 6℄) does not su�e for our purposes: For m = O(1),
it bounds the distane to uniformity by a onstant. To ahieve the desired loseness to uniformity,

we hoose the ai's uniform among the invertible elements of Rq and we sample the si's aording to

disrete Gaussians with small standard deviations (≈ q1/m). A similar regularity bound has been

onurrently and independently obtained by Lyubashevsky et al. in [43℄. An additional di�ulty in

the proof of publi-key uniformity, whih we handle via an inlusion-exlusion argument, is that we

need the randomizers si to be invertible in Rq (the denominator of the publi key is one suh si):
We thus sample aording to a disrete Gaussian, and rejet the sample if it is not invertible.

For NTRUSign, the tehnique desribed in [26, Se. 4℄ and in [25, Se. 5℄ to extend an NTRUEnrypt

seret key into an NTRUSign seret key is only heuristi. For instane, it samples an enryption

seret key and rejets the sample until some desirable properties are satis�ed (most notably the

o-primality of the two seret key polynomials over Z[x]/(xn − 1)), but the seurity impat of this

proedure is not arefully analyzed. We show that in our modi�ed ontext, the rejetion probability

an be proven to be su�iently away from 1, by relating it to the Dedekind zeta funtion of the

ylotomi �elds under sope. Furthermore, the seurity of the signature sheme follows from the

hardness of R-SIS, even with this additional rejetion.

Finally, the ryptographi shemes are obtained from (strutured variants of) the Gentry et

al. [21℄ signature and dual enryption shemes, via an inversion-based dimension redution of the

R-SIS/R-LWE instanes. We explain it in the ase of R-SIS: Given (ai)i≤m uniformly and indepen-

dently hosen in Rq, �nd an s ∈ Rm \ 0 with R := Z[x]/(xn + 1) suh that

∑
i siai = 0 mod q.

If q is su�iently large, the event �am invertible in Rq� ours with non-negligible probability, so

the average-ase hardness of the problem is essentially unhanged if we divide all ai's by am. We
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an then remove am = 1 from the input, by making it impliit. This improvement is most dramati

for R-SIS when m = 2.

Comparison between NTRUEnrypt and its provably seure variant. Let R
NTRU

denote the

ring Z[x]/(xn − 1) with n prime. Let q be a medium-size integer, typially a power of 2 of the same

order of magnitude as n. Finally, hoose p ∈ R
NTRU

with small oe�ients, o-prime with q and

suh that the plaintext spae R
NTRU

/p is large. E.g, if q is hosen as above, one may take p = 3
or p = x+ 2.

The NTRUEnrypt seret key is a pair of polynomials (f, g) ∈ R2
NTRU

that are sampled randomly

with large presribed proportions of zero oe�ients, and with their other oe�ients belonging

to {−1, 1}. For improved deryption e�ieny, one may hoose f as f = 1+ pf with f as desribed

just above, so that f = 1 mod p. With high probability, we (heuristially) expet the polynomial f
to be invertible modulo q and modulo p, and if that is the ase the publi-key is h = pg/f mod q
(otherwise, the key generation proess is restarted). To enrypt a message M ∈ R

NTRU

/p, one
samples a random element s ∈ R

NTRU

of small Eulidean norm and omputes the iphertext C =
hs+M mod q. The following proedure allows the owner of the seret key to derypt:

• Compute fC and redue the result modulo q. If the iphertext was properly generated, this

gives pgs + fM mod q. Sine the �ve involved ring elements have small oe�ients, it an be

expeted that after redution modulo q the obtained representative is exatly pgs + fM (seen

as an element of R
NTRU

). The latter requires that q is not too small.

• Redue the result of the previous step modulo p. This should provide fM mod p.
• Multiply the result of the previous step by the inverse of f modulo p (this step beomes vauous

if f = 1 mod p).

Note that the enryption proess is probabilisti, and that deryption errors an our for some

sets of parameters. However, it is possible to arbitrarily derease the deryption error probability,

and even to prevent deryption errors from ourring, by setting the parameters arefully.

In order to ahieve IND-CPA seurity under the assumption that standard lattie problems

are (quantumly) hard to solve in the worst-ase for the family of ideal latties, we make a few

modi�ations to the original NTRUEnrypt sheme (whih preserve its quasi-linear omputation and

spae omplexity):

1. We replae R
NTRU

by R = Z[x]/(xn + 1) with n a power of 2. We will exploit the irreduibility

of xn + 1 and the fat that R is the ring of integers of a ylotomi number �eld.

2. We hoose q ≤ Poly(n) as a prime integer suh that f = xn+1 splits into n distint linear fators

modulo q. This allows us to use the searh to deision redution for R-LWE with ring Rq := R/q
(see [41℄). This also allows us to take p = 2.

3. We sample f and g from disrete Gaussians over R, rejeting the samples that are not invertible

modulo q. We show that f/g mod q is essentially uniformly distributed over the set of invertible

elements of Rq. We may also hoose f = pf + 1 with f sampled from a disrete Gaussian, to

simplify deryption.

4. We add a small error term e in the enryption: C = hs + pe+M mod q, with s and e sampled

from the R-LWE error distribution. This allows us to derive CPA seurity from the hardness of

a variant of R-LWE (whih is similar to the variant of LWE from [5, Se. 3.1℄).

These modi�ations may be expensive to implement in pratie, beause of the hidden onstant

fator overheads. However, they suggest several omputationally inexpensive modi�ations to the
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original NTRUEnrypt design that bring it loser to the provably seure variant. The addition of a

noise omponent e in the enryption funtion (Modi�ation 4) does not require a large inrease of q
for ensuring deryption orretness, but allows thwarting a simple Chosen Plaintext Attak based

on the following observation: If C is an enryption of M in the original NTRUEnrypt sheme, then

the ring element (C−M)/h mod q has small oe�ients. Modi�ation 3 is muh more expensive to

implement, as our analysis requires the standard deviation to be quite large, leading to seret key

polynomials f and g with muh bigger oe�ients than in the original sheme. Then the modulus q
needs being signi�antly inreased in order to enable deryption orretness. However, this modi-

�ation may hint that taking f and g a little less small than in the original design may inrease

seurity. This would for example thwart the so-alled hybrid attak on NTRU [30℄ and allow using a

smaller n. A drawbak of taking non-sparse polynomials f and g is that multipliations by f and g
would beome more ostly. An alternative, suggested by Modi�ation 2, is to take a modulus q so

that xn± 1 has n distint linear fators modulo q: In that setup, the ring R/q admits a natural and

e�ient Fast Fourier Transform. Finally, Modi�ation 1 suggests replaing xn − 1 by xn + 1. The
former has been shown inseure in the ontext of hash funtions [56, Se. 4.1℄, although we atually

do not know of any suh attak in the ontext of NTRU.

Related works. Like NTRUEnrypt, Gentry's somewhat homomorphi sheme [18℄ also has i-

phertexts onsisting of a single ring element. It also admits a seurity proof under the assumed

quantum hardness of standard worst-ase problems over ideal latties [19℄. Our seurity analysis for

the modi�ed NTRUEnrypt sheme allows enrypting and derypting Ω(n) plaintext bits for Õ(n)
bit operations, while ahieving seurity against 2g(n)-time attaks, for any g(n) ≤ o(n), assuming

the worst-ase hardness of Poly(n)-Ideal-SVP against 2O(g(n))
-time quantum algorithms. The latter

assumption is believed to be valid for any g(n) = o(n). Gentry's analysis from [19, 17℄ an be gener-

alized to handle 2g(n)-time attaks while enrypting and derypting O(g(n)) plaintext bits for Õ(n)
bit operations, under the assumed hardness of 2Ω(g(n))

-Ideal-SVP against 2O(g(n))
-time quantum

algorithms. The latter assumption is known to be invalid when g(n) = Ω̃(
√
n) (using [62℄), thus

limiting the attaker's strength the analysis an handle. On the other hand, Gentry's sheme al-

lows homomorphi additions and multipliations, whereas ours seems restrited to homomorphi

additions.

The modi�ed NTRUSign an be shown hard to break for lassial omputers, in the random orale

model (assuming the worst-ase hardness of standard lattie problems for ideal latties). Beause of

the use of the random orale, it does not follow immediately whether this proof remains meaningful

in the ase of quantum attakers. As pointed out in [7℄, one should be extremely autious with

the random orale in a quantum setup. Fortunately, the seurity proof for our NTRUSign sheme

falls in the lass of `history-free' redutions as de�ned in [7℄ and shown to imply seurity in the

quantum-aessible random orale model.

Similarly, the seurity of NAEP (the CCA-seure variant of NTRUEnrypt) relies on the ran-

dom orale (see [32℄). Sine the redution from standard problems over ideal latties to R-LWE is

quantum, the seurity of NAEP remains open, both quantumly and lassially.

We also mention a ouple of works building upon some of the results of this paper, sine its

publiation in a preliminary form in [64℄. In [66℄, it is shown how to adapt the NTRUSign trapdoor

key generation algorithm from the present paper to onstrut an NTRU-based lossy trapdoor fun-

tion and use it to upgrade the IND-CPA seurity of the NTRUEnrypt sheme to hosen-iphertext

seurity (IND-CCA2) in the standard model, while preserving the same asymptoti e�ieny, up

to onstant fators. An extension in another diretion is given in [37℄, whih shows how to modify
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our NTRUEnrypt variant to ahieve a fully-homomorphi multi-key enryption sheme. For this,

the sheme in [37℄ requires the seret key oe�ients to be muh smaller than the O(Poly(n) · q1/2)
value needed for our statistial uniformity bounds in this paper. The seurity of the sheme in [37℄

relies also, besides the hardness of R-LWE, on the assumed omputational indistinguishability of

the resulting publi key from uniformity.

Open problems. Our study is restrited to the sequene of rings Z[x]/Φn where Φn = xn + 1
with n a power of 2. An obvious drawbak is that this does not allow for muh �exibility on the

hoie of n (in the ase of NTRU, the degree was assumed prime, whih provides more freedom).

The R-LWE problem is known to be hard when Φn is ylotomi [41℄ (for an appropriate hoie of

modulus q). The R-SIS problem is known to be hard under even milder onditions on Φn (see [39,

56℄). We hose to restrit ourselves to ylotomi polynomials of order a power of 2 beause it makes

the desription of the shemes simpler to follow. Our results are likely to hold for more general rings

than those we onsidered. An interesting hoie ould be the ylotomi rings of prime order (i.e.,

Φn = (xn − 1)/(x − 1) with n prime) as these are large subrings of the original NTRU rings and

one might then be able to show that the hardness arries over to the NTRU rings.

Reduing the onstant fator overheads of our provably seure shemes with respet to the

original NTRU shemes, while preserving a proof with respet to standard problems, is a remaining

interesting hallenge. A related open question with additional appliations (see [37℄) is to prove the

omputational indistinguishability of the NTRU publi key with seret key oe�ients signi�antly

smaller than q1/2, assuming the hardness of a standard problem, suh as R-LWE.

Road-map. In Setion 2, we provide the neessary bakground material in elementary algebrai

number theory and on the R-LWE and R-SIS problems. Setion 3 is devoted to the desription and

seurity proof of the modi�ed enryption sheme. Finally, we onsider NTRUSign in Setion 4.

Notation. If q is a non-zero integer, we let Zq denote the ring of integers modulo q, i.e., the
set {0, . . . , q−1} with addition and multipliation modulo q. For a ring (R,+,×), we let R× denote

the set of invertible elements of R. If q is a prime power, we let Fq denote the �nite �eld with q
elements. If z ∈ C, its real and imaginary parts will be denoted by ℜ(z) and ℑ(z) respetively.

Vetors will be denoted in bold. If x ∈ Rn, then ‖x‖ denotes the Eulidean norm of x. The inner

produt of two vetors x and y will be denoted by 〈x,y〉. We use ln to denote the natural logarithm.

The standard n-dimensional Gaussian funtion (resp. distribution) with enter 0 and variane σ,
will be denoted by ρσ(x) (resp. νσ), i.e., ρσ(x) = exp(−π‖x‖2/σ2) (resp. νσ(x) = ρσ(x)/σ

n
). If E

is a �nite set, we let U(E) denote the uniform distribution over E. If a funtion f over a ountable

domain E takes non-negative real values, its sum over an arbitrary F ⊆ E will be denoted by f(F ).
If D1 and D2 are two probability distributions over a disrete domain E, their statistial distane
is ∆(D1;D2) =

1
2

∑
x∈E |D1(x)−D2(x)|. We write z ←֓ D when the random variable z is sampled

from the distribution D.

We make use of the Landau notations O(·), Õ(·), o(·), ω(·), Ω(·), Ω̃(·), Θ(·). A funtion f(n) is
said negligible if f(n) = n−ω(1). We say that a sequene of events En holds with overwhelming

probability if Pr[¬En] ≤ f(n) for a negligible funtion f .

2 Reminders on Eulidean latties and in algebrai number theory

We refer to [45℄ and [4, 50, 51℄ for introdutions to the omputational aspets of latties and to alge-

brai number theory respetively, and to [47, 61℄ for detailed surveys on lattie-based ryptography.
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2.1 Eulidean latties

A (full-rank) lattie is a set of the form L =
∑

i≤n Zbi, where the bi's are linearly independent

vetors in Rn. The integer n is alled the lattie dimension, and the bi's are alled a basis of L.
The minimum λ1(L) (resp. λ∞1 (L)) is the Eulidean (resp. in�nity) norm of any shortest non-

zero vetor of L. If B = (bi)i is a basis matrix of L, the fundamental parallelepiped of B is the set

P(B) = {∑i≤n cibi : ci ∈ [0, 1)}. The volume |detB| of P(B) is an invariant of the lattie L, denoted

by detL. Minkowski's theorem states that λ1(L) ≤
√
n(detL)1/n. More generally, we de�ne the k-th

suessive minimum λk(L) for any k ≤ n as the smallest r suh that L ontains at least k linearly

independent vetors of norm ≤ r. The dual lattie of L is de�ned as L̂ = {c ∈ Rn : ∀i, 〈c, bi〉 ∈ Z}.
For a lattie L ⊆ Rn, a real σ > 0 and a point c ∈ Rn, we de�ne the lattie Gaussian distribution

of support L, deviation σ and enter c by DL,σ,c(b) =
ρσ,c(b)
ρσ,c(L)

, for any b ∈ L. We will omit the

subsript c when it is 0. For δ > 0, we de�ne the smoothing parameter ηδ(L) as the smallest σ > 0
suh that ρ1/σ(L̂ \ 0) ≤ δ. We will use the following results.

Lemma 2.1 ([53, Le. 3.5℄,[46, Le. 3.3℄). For any full-rank lattie L ⊆ Rn and δ ∈ (0, 1), we

have ηδ(L) ≤
√

ln(2n(1+1/δ))
π ·min

(
λn(L), 1/λ

∞
1 (L̂)

)
.

Lemma 2.2 ([46, Proof of Le. 4.4℄). For any full-rank lattie L ⊆ Rn, c ∈ Rn, δ ∈ (0, 1) and σ ≥
ηδ(L), we have ρσ,c(L) =

σn

det(L)(1 + ε), with |ε| ≤ δ. As a onsequene, we have

ρσ,c(L)
ρσ(L)

∈
[
1−δ
1+δ , 1

]
.

Lemma 2.3 ([46, Le. 4.4℄). For any full-rank lattie L ⊆ Rn, c ∈ Rn, δ ∈ (0, 1) and σ ≥ ηδ(L),
we have Prb←֓DL,σ,c

[‖b‖ ≥ σ√n] ≤ 1+δ
1−δ · 2−n.

Lemma 2.4 ([21, Cor. 2.8℄). Let L′ ⊆ L ⊆ Rn be two full-rank latties. For any c ∈ Rn, δ ∈
(0, 1/2) and σ ≥ ηδ(L′), we have ∆(DL,σ,c mod L′;U(L/L′)) ≤ 2δ.

Lemma 2.5 ([56, Le. 2.11℄). For any full-rank lattie L ⊆ Rn, c ∈ Rn, δ ∈ (0, 1), σ ≥ 2ηδ(L)
and b ∈ L, we have DL,σ,c(b) ≤ 1+δ

1−δ · 2−n.

Lemma 2.6 ([21, Th. 4.1℄). There exists a polynomial-time algorithm that takes as input any

basis (bi)i of any lattie L ⊆ Zn and σ = ω(
√
lnn)max ‖bi‖, and returns samples from a distribution

whose statistial distane to DL,σ is negligible with respet to n.

We will need the following result on one-dimensional projetions of disrete Gaussians. Other

results on these projetions are known (see [46, Le. 4.2℄ and [53, Cor. 5.3℄), but do not seem to

su�e for our needs. The seond half of Lemma 2.7 below is akin to [53, Cor. 5.3℄, but, to the extent

of our knowledge, the �rst half is new.

Lemma 2.7. For any full-rank lattie L ⊆ Rn, c ∈ Rn, δ ∈ (0, 1), t ≥
√
2π, unit vetor u ∈ Rn

and σ ≥ t√
2π
· ηδ(L), we have:

Pr
b←֓DL,σ,c

[
|〈b− c,u〉| ≤ σ

t

]
≤ 1 + δ

1− δ

√
2πe

t
.

Similarly, if σ ≥ ηδ(L), we have:

Pr
b←֓DL,σ,c

[|〈b− c,u〉| ≥ tσ] ≤ 1 + δ

1− δ t
√
2πe · e−πt2 .
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Proof. Let U be an orthonormal matrix whose �rst row is uT . We are interested in the random

variable X that orresponds to the �rst omponent of the vetor b′− c′ with b′ ←֓ DL′,σ,c′ , c
′ = Uc

and L′ = UL. We have:

Pr
[
|X| ≤ σ

t

]
=

(ρσ,c′ · 1σ/t,c′)(L′)
ρσ,c′(L′)

,

where 1σ/t,c′(x) with x ∈ Rn is de�ned as 1 if |x1 − c′1| ≤ σ/t and 0 otherwise. We �rst estimate

the denominator. We have ηδ(L
′) = ηδ(L) and det(L′) = det(L). Therefore, thanks to Lemma 2.2,

we have ρσ,c′(L
′) = σn

det(L)(1 + ε) with |ε| ≤ δ.
We now provide an upper bound for the numerator. For any x ∈ Rn, we have 1σ/t,c′(x) ≤

eK · exp
(
−K |x1−c

′
1|2

σ2/t2

)
, where K := 1

2 − π
t2
∈ [0, 1/2]. As a onsequene:

(ρσ,c′ · 1σ/t,c′)(L′) ≤ eK · ρσ,Dc′(DL
′),

where D is the diagonal matrix whose �rst oe�ient is

√
1 +Kt2/π and whose other diago-

nal oe�ients are 1. It an be heked that ηδ(DL
′) ≤

√
1 +Kt2/π · ηδ(L′) and det(DL′) =√

1 +Kt2/π · det(L′). Lemma 2.2 provides the result.

The proof of the seond statement is similar. We are interested in:

Pr [|X| ≥ σt] = (ρσ,c′ · 1̄σt,c′)(L′)
ρσ,c′(L′)

,

where X, L′ and c′ are de�ned as above, and 1̄σt,c′(x) with x ∈ Rn is de�ned as 1 if |x1 − c′1| > σt
and 0 otherwise. The denominator is handled as above. For the numerator, note that for any x ≥ σt,
we have exp(−π x2

σ2
) ≤ √e · exp(−πt2) · exp(− x2

2σ2t2
). This gives:

(ρσ,c′ · 1σt,c′)(L′) ≤
√
e · exp(−πt2) · ρσ,Dc′(DL

′),

where D is the diagonal matrix whose �rst oe�ient is

1
t
√
2π

and whose other diagonal oe�ients

are 1. It an be heked that ηδ(DL
′) ≤ ηδ(L

′) and det(DL′) = 1
t
√
2π
· det(L′). Using Lemma 2.2

one more provides the result. ⊓⊔

2.2 Algebrai number theory and latties

Ideal latties. Let Φ ∈ Z[x] be a moni degree n irreduible polynomial. Let R denote the polyno-

mial ring Z[x]/Φ. Let I be an (integral) ideal of R, i.e., a subset of R that is losed under addition,

and multipliation by arbitrary elements of R. For elements r1 . . . , rk of R, we let 〈r1, . . . , rk〉 denote
the minimal ideal of R ontaining these elements, and we say that r1, . . . , rk generate this ideal. By

mapping polynomials to the vetors of their oe�ients, we see that a non-zero ideal I orresponds

to a full-rank sublattie of Zn: we an thus view I as both a lattie and an ideal. An ideal lattie

for Φ is a sublattie of Zn that orresponds to a non-zero ideal I ⊆ Z[x]/Φ. The algebrai norm of

a non-zero ideal I is the ardinality of the additive group R/I, and is equal to det(I), where I is

regarded as an ideal lattie. In the following, an ideal lattie will impliitly refer to a Φ-ideal lattie.
For v ∈ R we let ‖v‖ denote its Eulidean norm (as a vetor).

In this work, we will restrit ourselves to Φ = xn+1 for n a power of 2. In this setup, any ideal I
of R satis�es λn(I) = λ1(I). Sine this Φ orresponds to the 2n-th ylotomi polynomial, the ring R
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is exatly the maximal order (i.e., the ring of integers) of the orresponding ylotomi number

�eld Q[ζ] ∼= Q[x]/Φ =: K, where ζ ∈ C is a primitive 2n-th root of unity. We let (σi)i≤n denote the

anonial omplex embeddings: We an hoose σi : P 7→ P (ζ2i+1) for i ≤ n. For any α in Q[ζ], we
de�ne its T2-norm by T2(α)

2 =
∑

i≤n |σi(α)|2 and its algebrai norm by N (α) =
∏
i≤n |σi(α)|. The

arithmeti-geometri inequality gives N (α)2/n ≤ 1
nT2(α)

2
. Also, for the spei� ylotomi �elds

we are onsidering, the polynomial norm (the norm of the oe�ient vetor of α when expressed

as an element of K) satis�es ‖α‖ = 1√
n
T2(α). We also use the fat for any element α ∈ R, we

have |N (α)| = det 〈α〉, where 〈α〉 is the ideal of R generated by α. For the sake of simpliity, we

will try to use the polynomial terminology wherever possible (and we refer to [41, 43℄ for a more

mathematial exposition).

The following result is a onsequene of Lemma 2.7.

Lemma 2.8. For any non-zero ideal lattie I ⊆ R, c ∈ K, δ ∈ (0, 1), t ≥
√
2π, u ∈ K and σ ≥

ηδ(I), we have

Pr
b←֓DI,σ,c

[
‖(b− c)× u‖ ≥ tσ‖u‖√n

]
≤ 1 + δ

1− δ tn
√
2πe · e−πt2 .

Proof. A oe�ient of (b − c) × u ∈ R an be viewed as an inner produt between the oe�ient

vetors of b − c and of some u′ obtained by permuting the oe�ients of u and multiplying them

by ±1. Therefore, by Lemma 2.7, the magnitude of eah oe�ient of (b− c) × u is ≥ tσ‖u′‖ with
probability ≤ 1+δ

1−δ t
√
2πe · e−πt2 . The equality ‖u′‖ = ‖u‖ and the union bound imply that all the

magnitudes of the oe�ients are ≤ tσ‖u‖ with probability ≥ 1− 1+δ
1−δnt

√
2πe · e−πt2 . If that is the

ase, then ‖(b− c)× u‖ ≤ tσ‖u‖√n, whih ompletes the proof. ⊓⊔

On the redution of the ring modulo q. Let q be a prime integer and Rq := R/qR = Zq[x]/Φ.
Beause of the hoie of Φ = xn + 1 with n a power of 2, the fatorisation of Φ modulo q is

always of the form Φ =
∏
i≤kq Φi, where all the Φi's are irreduible modulo q and share the same

degree dq = n/kq. The number of fators kq is a power of 2 that an range from 2 (if q = 3 mod 8)
to n (if q = 1 mod 2n). The Chinese Remainder Theorem provides a ring isomorphism between Rq
and (Fqdq )

kq
:

a 7→
(
a mod Φ1, . . . , a mod Φkq

)
.

Both extreme situations an prove interesting. Choosing q suh that Φ has exatly n distint linear

fators modulo q allows for faster implementations, as the ring Rq then admits a natural FFT:

Multipliation of elements of Rq an be performed within O(n lnn) additions and multipliations

in Fq (see [16, Ch. 8℄, [40, Se. 2.1℄). Oppositely, hoosing q suh that Φ has only two irreduible

fators modulo q makes the ring Rq behave very similarly to a �eld (it has very few zero divisors).

For example, this hoie allows for proving statistial uniformity of the revised NTRU publi key

for smaller values of q, and to have the seurity of the shemes rely on weaker assumptions. For

both hoies of q, Dirihlet's theorem on arithmeti progressions implies that in�nitely suh primes

exist. Furthermore, Linnik's theorem asserts that the smallest suh prime is ≤ Poly(n). For our

partiular hoie of n (a power of 2), the smallest suh primes are known to be O(n2.5), and, after
some Poly(n) threshold, these primes are quite frequent (see [34, 15℄).

Module q-ary latties. We all an m-dimensional lattie that ontains qZm a q-ary lattie.

An R-module is a set of the form M =
∑

i≤dRbi ⊆ Km
. If the bi's are K-linearly independent,

we all them an R-basis of M . Note that ontrarily to latties, some R-modules may not admit
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an R-basis (we refer the reader to [10, Ch. 1℄ and [14℄ for alternative ompat representations).

Let a ∈ Rmq . We de�ne the following families of R-modules:

a⊥ := {(t1, . . . , tm) ∈ Rm :
∑

i

tiai = 0 mod q},

L(a) := {(t1, . . . , tm) ∈ Rm : ∃s ∈ Rq,∀i, ti = ai · s mod q}.

These modules orrespond to mn-dimensional integer latties, via the mapping of an element of Rm

to the onatenation of the oe�ient vetors. Sine these latties are q-ary, we all them module

q-ary latties.

In [55℄, Peikert desribed a signi�antly faster algorithm than the disrete Gaussian sampler

from [21℄, in the ase of q-ary latties, and even further for module q-ary latties. In the following

adaptation, we bound Peikert's s1(B) by
√
nmax ‖bi‖ (using the Cauhy-Shwarz inequality).

Lemma 2.9 (Adapted from [55℄). There exists a Õ(nm)-time o�-line/on-line algorithm that

takes as input an R-basis b1, . . . , bm of a module q-ary lattie L ⊆ Rm, with q = Poly(n), c ∈ Qmn

and σ = ω(
√
mn lnn)max ‖bi‖, and returns samples from a distribution whose statistial distane

to DL,σ,c is negligible with respet to n. The omplexity bound holds assuming pre-omputations

(o�-line) are performed using q, σ and b1, . . . , bm, but not c.

Reently, Duas and Nguyen [13℄ showed how to perform the pre-omputations of Lemma 2.9

in expeted time Õ(mn).

2.3 Computational problems

The Shortest Vetor Problem. The most famous algorithmi problem on latties is SVP. Given
a basis of a lattie L, it aims at �nding a shortest vetor in L \ 0. It an be relaxed to γ-SVP by

asking for a non-zero vetor that is no longer than γ(n) times a solution to SVP, for a presribed

funtion γ(·). If we restrit the set of input latties to ideal latties, we obtain the problem Ideal-SVP
(resp. γ-Ideal-SVP), whih is impliitly parameterized by a sequene of polynomials Φ of growing

degrees. No algorithm is known to perform non-negligibly better for (γ-)Ideal-SVP than for (γ-)SVP.
It is believed that no subexponential quantum algorithm solves the omputational variants of γ-SVP
or γ-Ideal-SVP in the worst ase, for any γ that is polynomial in the dimension. The smallest γ
whih is known to be ahievable in polynomial time is exponential, up to poly-logarithmi fators

in the exponent [36, 62, 48℄.

The Small Integer Solution problem over Rings. R-SIS was introdued in [39, 56℄, as an

average-ase variant of γ-SVP in module q-ary latties.

De�nition 2.1. The Ring Small Integer Solution problem with parameters q,m, β and Φ (R-SISΦq,m,β)
is as follows: Given m polynomials a1, . . . , am hosen uniformly and independently in Rq, �nd t ∈
a⊥ \ 0 suh that ‖t‖ ≤ β.

The average-ase hardness of R-SIS is related to the worst-ase hardness of Ideal-SVP, as follows.
The result is adapted from [39℄, using tools from [41℄.

Theorem 2.1 (Adapted from [39℄). Let n = 2k, Φ = xn+1 and ε > 0. Let m, q > 0 suh that q ≥
β
√
n · ω(lnn) and m, ln q ≤ Poly(n). A polynomial-time algorithm solving R-SISΦq,m,β with non-

negligible probability an be used to solve γ-Ideal-SVP in polynomial-time with γ ≥ β√n · ω(
√
lnn).
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The Learning With Errors problem over Rings. For s ∈ Rq and ψ a distribution in Rq, we
de�ne As,ψ as the distribution obtained by sampling the pair (a, as + e) with a uniformly hosen

in Rq and e sampled independently from ψ. The Ring Learning With Errors problem (R-LWE) was
introdued by Lyubashevsky et al. in [41℄ and shown hard for spei� error distributions ψ losely

related to Gaussians.

De�nition 2.2. Let Γ be a distribution over a family of distributions on R. The Ring Learning

With Errors Problem with parameters q, Γ and Φ (R-LWEΦq,Γ ) is as follows. Let ψ be sampled from Γ
and s be hosen uniformly in Rq. Given aess to an orale O that produes samples in Rq × Rq,
distinguish whether O outputs samples from the distribution As,ψ or U(Rq×Rq). The distinguishing
advantage should be non-negligible over the randomness of the input, the randomness of the samples

and the internal randomness of the algorithm.

Note that this de�nition di�ers from the one of [41℄ in the following respets: We use the

polynomial representation (whih is handled by applying the omplex FFT to the error term); we

use Rq rather than R∗q (for our hoie of Φ, we have R∗q = 1
nRq); and the noise distributions are

disrete.

R-LWE an be interpreted as a problem over module q-ary latties. Let m be the number of

samples asked to the orale, and let (ai, bi)i≤m be the samples. Then solving R-LWE onsists in

assessing whether the vetor b is generated uniformly modulo the (module) lattie L(a) or around
the origin aording to some Gaussian-like distribution and then redued modulo the lattie.

Theorem 2.2 (Adapted from [41℄). Assume that αq = ω(n
√
lnn) with α ∈ (0, 1) and q =

Poly(n) prime with q = 1 mod 2n. Consider the distribution Γα de�ned below in this setion. There

exists a randomized polynomial-time quantum redution from γ-Ideal-SVP to R-LWEq,Γα
, denoted

by R-LWEq,α in the sequel, with γ = ω(n1.5 lnn)/α.

Variants of R-LWE. For s ∈ Rq and ψ a distribution in Rq, we de�ne A×s,ψ as the distribution

obtained by sampling the pair (a, as+e) with a uniformly hosen in R×q and e sampled independently

from ψ. When q = Ω(n), the probability for a uniform element of Rq of being invertible is non-

negligible, and thus R-LWE remains hard even when As,ψ and U(Rq×Rq) are respetively replaed

by A×s,ψ and U(R×q ×Rq). We all R-LWE× the latter variant.

Furthermore, as explained in [5, Le. 2℄, the none s an also be hosen from the error dis-

tribution without inurring any seurity redution. We all R-LWE×HNF the orresponding modi-

�ation of R-LWE. We reall the argument, for ompleteness. Assume an algorithm A an solve

R-LWE×HNF. We use A to solve R-LWE×. The priniple is to transform samples ((ai, bi))i into sam-

ples ((a−11 ai, bi − a−11 b1ai))i, where inversion is performed in R×q . This transformation maps A×s,ψ
to A×−e1,ψ, and U(R×q ×Rq) to itself.

We remark that a simpler variant of R-LWE with �xed number of samples and �xed spherial

noise distribution is proven hard in [42℄. However, we hose not to use this simpler variant in this

work sine its proven hardness involves a larger Ideal-SVP approximation fator γ than the variant

of R-LWE onsidered in the theorem above. The simpli�ed variant o�ers a di�erent trade-o� between

the underlying hardness assumption and the ost of sampling noise vetors.

Noise de�nition and noise generation. We now desribe the distribution Γα. It is somewhat

tedious to de�ne, but for the present work, the important fats to be remembered are that the
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samples are small (with probability exponentially lose to 1), and an be obtained in quasi-linear

time. Alternative R-LWE noise generation algorithms are desribed in [43, 12℄.

For σ ∈ Rn with positive oordinates, we de�ne the elliptial Gaussian ρσ as the row vetor

of independent Gaussians (ρσ1 , . . . , ρσn), where σi = σi+n/2 for 1 ≤ i ≤ n/2. As we want to de�ne

R-LWE in the polynomial expression of R rather than with the so-alled �spae H� of [41℄, we apply

a matrix transformation to the latter Gaussians. We de�ne a sample from ρ′σ as a sample from ρσ,

multiplied �rst (from the right) by

1√
2

(
1 1
i −i

)
⊗ Idn/2 ∈ Cn×n, and seond by V ∈ Cn×n with

upper half equal to

1
n

(
ζ−(2j+1)k

)
0≤j<n/2,0≤k<n and bottom half equal to the omplex onjugate

of the upper half. These matrix multipliations an be performed using omplex disrete Fourier

transforms, i.e., with O(n lnn) omplex-valued arithmeti operations with the Cooley-Tukey FFT.

Moreover, they are numerially extremely stable: If all operations are performed with a numerial

preision of p = Ω(lnn) bits, then the omputed output vetor fl(y) satis�es ‖fl(y) − y‖ ≤
C ·(ln n)·2−p·‖y‖, where C is some absolute onstant and y is the vetor that would be obtained with

exat omputations. We refer to [23, Ch. 24℄ for details. We now de�ne a sample from ρ′σ as follows:

Compute a sample from ρ′σ with absolute error < 1/n2; if it is within distane 1/n2 of the middle

of two onseutive integers, then restart; otherwise, round it to a losest integer and then redue it

modulo q. Finally, a distribution sampled from Υα for α ≥ 0 is de�ned as ρ′σ, where σi = σi+n/2 =

αq
√

1 +
√
nxi with the xi's sampled independently from the distribution Γ (2, 1) for i ≤ n/2. The

distribution Γ (2, 1) has density x exp(−x) for x ≥ 0 and zero for x < 0.

Apart from a saling fator and the hoie of the polynomial representation, our R-LWE variant

di�ers from that of [41℄ in that we round to R using a rejetion. The R-LWE problem remains hard

beause a sample passes the rejetion step with non-negligible probability, and beause rounding

an be performed on the orale samples obliviously to the atual error.

Sampling from ρ′σ an be performed in time Õ(n). Sampling from Υα an also be performed

in expeted time Õ(n), and the run-time is bounded by a quantity that follows a geometri law of

parameter < 1. Furthermore, in our ryptographi appliations, one ould pre-ompute suh samples

o�-line (i.e., before the message M to be proessed is known).

Finally, by taking r = 1 in the result below, we obtain that with probability ≥ 1 − n−ω(1), any
sample from Υα in R has Eulidean norm ≤ αqn1/4ω(

√
lnn). The following statement improves on

a bound given in Lemma 6 of the Eurorypt proeedings paper presenting an earlier version of our

results, that exploits the narrower Γ (2, 1) distribution of the xi's. It also �xes a ouple of mistakes

in [64, Le. 6℄.

Lemma 2.10. Let y, r ∈ R, with r �xed and y sampled from Υα, with αq ≥ n1/4. Then

Pr
[
‖yr‖ ≥ αqn1/4ω(

√
lnn) · ‖r‖

]
≤ n−ω(1) and Pr

[
‖yr‖∞ ≥ αqn−1/4ω(lnn) · ‖r‖

]
≤ n−ω(1).

Proof. We de�ne Υα exatly as Υα, but without the rejetion step from ρ′σ to ρ′σ. Beause of the

bound on the rejetion probability, it su�es to prove the result with Υα instead of Υα.

Let y be sampled from Υα. The involved σ satis�es σk = σk+n/2 = αq
√

1 +
√
nxk, with the xk's

sampled independently from the distribution Γ (2, 1). Let (r(k))k be the embedding vetor of r.
Multiplying y by r is the same as sampling from ρσ′ with σ′k = σ′k+n/2 = σk|r(k)| (see [42℄, and

also [35, Le. 9℄ for a proof). We have σ′k ≤ αqn1/4ω(
√
lnn) · |r(k)| for all k ≤ n, with probability at

least 1− n−ω(1).
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In order to obtain the oe�ients of yr, it su�es to apply the matries

1√
2

(
1 1
i −i

)
⊗ Idn/2 ∈

Cn×n and V to the row vetor of the Gaussian samples. The magnitude of eah entry of the

matrix produt being ≤ O(1/n), the oe�ients of the polynomial yr are distributed as sta-

tistially independent (one-dimensional) Gaussians of standard deviations ≤ αqn−3/4ω(
√
lnn) ·

T2(r) = αqn−1/4ω(
√
lnn) · ‖r‖. The Eulidean norm of the resulting n-dimensional vetor is

≤ αqn1/4ω(
√
lnn) · ‖r‖ with probability ≥ 1 − n−ω(1). To omplete the proof, observe that all

the oordinates are ≤ αqn−1/4ω(lnn) · ‖r‖ with probability ≥ 1− n−ω(1). The additional rounding
error O(

√
n) only hanges the hidden onstant fator in the ω(lnn) fator, thanks to the ondi-

tion αq ≥ n1/4. ⊓⊔

3 A provably seure variant of NTRUEnrypt

In NTRUEnrypt, the publi key h is the ratio of the randomly generated seret key polynomials f
and g, whose oe�ients have small magnitudes. In order to derive the IND-CPA seurity of the

revised sheme from the hardness of R-LWE, we ensure that the distribution of h is statistially

very lose to uniform over R×q . (Computational indistinguishability fromuniformity would atually

su�e, but we do not know how to ahieve it based on standard lattie assumptions.) For this

purpose, we sample f and g from the distribution D×σ , obtained by sampling from DZn,σ and

rejeting if the sample (interpreted as an element of R) is not invertible modulo q. We will eventually

hoose σ ≈ ncq1/2 for some small onstant c.

The proof that the ratio g/f is lose to uniform when f, g ←֓ D×σ proeeds in several steps.

We aim at bounding the quantity

∑
a∈R×

q
|Prf,g[g/f = a] − |R×q |−1| by some small amount ε. To

do that, we show that with overwhelming probability over the hoie of a, eah term |Prf,g[g/f =
a] − |R×q |−1| is < |R×q |−1 · ε. This is equivalent to showing that for the overwhelming majority of

the pairs (a1, a2) ∈ (R×q )
2
, the quantity |Prf,g[fa1 + ga2 = 0]− |R×q |−1| is < |R×q |−1 · ε.

The latter statement an be seen as a onsequene of a regularity bound for (a1, . . . , am,
∑

i tiai)
with m = 2. More preisely, we prove a small bound < |R×q |−1 · ε on the statistial distane ∆ to

uniformity over (R×q )
m × Rq of the distribution of (a1, . . . , am,

∑
i tiai) where the ai's are sampled

uniformly and independently in R×q and the ti's are independently sampled from D×σ . We need an

unusually small bound on the statistial distane ∆, beause we eventually sum this bound over |R×q |
to obtain the uniformity of the publi key h. A similar strong regularity was independently used by

Agrawal et al. in [2, Th. 3℄ in the ontext of (non-strutured) SIS/LWE for proving the seurity of

an identity-based enryption sheme.

Another unusual faet of our regularity bound is the fat that the support of the ti's is not a
lattie. We irumvent this di�ulty by writing the support as the lattie Zn minus the union of the

latties LΦi = {x ∈ R : Φi|(x mod q)} orresponding to the ideals 〈q, Φi〉 of R. (Reall that the Φi's
are the irreduible fators of Φ modulo q). This observation leads us to obtain the desired regularity

bound by ombining regularity bounds for the ti's sampled in latties, with an inlusion-exlusion

tehnique (Theorem 3.1).

The remainder of the proof is more lassial. The uniformity of

∑
i tiai for the ti's sampled from

a lattie Gaussian is obtained by proving uniformity of the vetor t made of the ti's taken modulo

the kernel of the map t 7→ ∑
tiai mod q. Note that this kernel is a lattie. As t follows a lattie

Gaussian distribution, uniformity modulo the kernel follows by studying the smoothing parameter

of the kernel lattie and using Lemma 2.4. The latter is the purpose of Subsetion 3.1.
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The bounds in this setion improve and generalize the results presented in [64℄. In partiular,

they show that, for a given desired loseness to uniformity of h = g/f , using a modulus q suh that

xn + 1 splits into kq = O(1) irreduible fators allows to redue the required standard deviation σ
for f, g by a fator ≈ √n, versus the ase kq = n studied in [64℄.

3.1 New results on random module q-ary latties

In the present subsetion, we exploit the duality between variants of the a⊥ and L(a) latties, that
we will use to obtain improved regularity bounds over the ring Rq and its ideals.

We generalize the de�nitions of the a⊥ and L(a) latties to inorporate the ideals of Rq. Let Φ =∏
i≤kq Φi be the fatorisation as a produt of irreduible fators modulo q. Reall that the Φi's share

the same degree dq = n/kq. The ideals of Rq are of the form

IS :=

(∏

i∈S
Φi

)
·Rq =

{
a ∈ Rq : ∀i ∈ S, a = 0 mod Φi

}
, with S ⊆ {1, . . . , kq}.

We also de�ne LS as the lattie orresponding to the ideal

〈
q,
∏
i∈S Φi

〉
of R. More expliitly, we

have LS = {x ∈ R : (x mod q) ∈ IS}.
For a ∈ Rmq and S ⊆ {1, . . . , kq}, we de�ne the following families of R-modules:

a⊥(IS) :=
{
(t1, . . . , tm) ∈ Rm : ∀i, (ti mod q) ∈ IS and

∑

i

tiai = 0 mod q

}
,

L(a, IS) :=

{
(t1, . . . , tm) ∈ Rm : ∃s ∈ Rq,∀i, (ti mod q) = ai · s mod IS

}
,

where S is an arbitrary subset of {1, . . . , kq}. Note that a⊥(IS) is the intersetion of a⊥ with the

Cartesian produt ofm opies of LS . Also, if S = ∅ (resp. S = {1, . . . , n}), then we have a⊥(IS) = a⊥

(resp. L(a, IS) = L(a)).

We now desribe an automorphism of R that will help us exhibit the duality between the modules

above. In the ring R, we have x−1 = −xn−1. Therefore, mapping a(x) ∈ R to a⋆(x) = a(x−1) ∈ R
provides ring automorphism. This map indues a bijetion from the set of fators Φi to itself. It has

the following useful matrix interpretation: If we let A denote the n × n matrix having as its i-th
row the oe�ient vetor of xi · a(x) for i = 0, . . . , n − 1, then a⋆(x) has oe�ient vetor the �rst

olumn of A. For an ideal IS = (
∏
i∈S Φi) ·Rq of R, we let I⋆S denote the ideal (

∏
i∈S Φ

⋆
i ) ·Rq.

Lemma 3.1. Let S ⊆ {1, . . . , kq} and a ∈ Rmq . Let S be the omplement of S and a⋆ ∈ Rmq be

de�ned by a⋆i = ai(x
−1), for all i ≤ m. Then (onsidering both sets are onsidered as mn-dimensional

latties):

â⊥(IS) =
1

q
L(a⋆, I⋆

S
).

Proof. We �rst prove that

1
qL(a

⋆, I⋆
S
) ⊆ â⊥(IS). Let (t1, . . . , tm) ∈ a⊥(IS) and (u1, . . . , um) ∈

L(a⋆, I⋆
S
). Write ti =

∑
j<n ti,jx

j
and ui =

∑
j<n ui,jx

j
for any i ≤ m. Our goal is to show

that

∑
i≤m,j≤n ti,jui,j = 0 mod q. This is equivalent to showing that the onstant oe�ient of the

polynomial

∑
i≤m tiu

⋆
i is 0 modulo q. It thus su�es to show that 〈t,u⋆〉 = 0 mod q. By de�nition
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of the ui's, there exists s ∈ Rq suh that (ui mod q) = a⋆i · s + bi for some bi ∈ I⋆S. We have the

following, modulo q:

〈t,u⋆〉 = s⋆ · 〈t,a〉+ 〈t, b⋆〉 = 0,

where we used that 〈t,a〉 = 0 mod q by de�nition of t and 〈t, b⋆〉 = 0 mod q beause (ti mod q) ∈ IS
and b⋆i ∈ IS̄ for eah i ≤ m. This provides the desired inlusion.

The reverse inlusion

1
qL(a

⋆, I⋆
S
) ⊇ â⊥(IS) is equivalent, by duality, to

̂L(a⋆, I⋆
S
) ⊆ 1

qa
⊥(IS). To

show the latter, it su�es to onsider the elements of L(a⋆, IS) orresponding to s = 1. ⊓⊔

We now show that for a uniformly hosen a ∈ (R×q )
m
, the lattie L(a, IS) is extremely unlikely

to ontain unusually short vetors for the in�nity norm, i.e., muh shorter than the Minkowski upper

bound det(L(a, IS))
1

mn = q
(1− 1

m
) |S|
kq

on λ∞1 (L(a, IS)). (We have det(L(a, IS)) = q(m−1)|S|dq beause

there are q|S|dq+m(n−|S|dq)
points of L(a, IS) in the ube [0, q−1]mn.) We provide two lower bounds.

The �rst lower bound is useful for all parameter settings and mathes the Minkowski upper bound

up to a fator

1√
n
q−ε for an arbitrarily small onstant ε > 0. The seond bound is spei� to the

ase |S| = kq and mathes the Minkowski bound up to a fator q−kq·ε, thus improving on the �rst

bound by a fator ≈ √n in the ase kq = O(1) (whih was not treated in [64℄). Even in the ase

kq = n, the �rst bound improves on the bound given in [64℄, by using a point ounting bound based

on the minima of the ideals of Rq.

Lemma 3.2. Let n ≥ 8 be a power of 2 and q ≥ 5. Assume that Φ = xn + 1 splits into kq distint

irreduible fators modulo q, eah of degree dq = n/kq. Then, for m ≥ 2 and ε > 0, we have

λ∞1 (L(a, IS)) ≥





1√
n
q
(1− 1

m
) |S|
kq
−ε

for any 0 ≤ |S| ≤ kq
q1−

1
m
−kq·ε

for |S| = kq

exept with probability ≤ 24mnq−εmn over the uniformly random hoie of a in (R×q )
m
.

Proof. By the Chinese Remainder Theorem, we know that Rq (resp. R
×
q ) is isomomorphi to (Fqdq )

kq

(resp. (F×
qdq

)kq) via the isomorphism t 7→ (t mod Φi)i≤kq . Let ΦS =
∏
i∈S Φi: it is a degree |S|dq

generator of IS.

Let p denote the probability (over the randomness of a) that L(a, IS) ontains a non-zero

vetor t of in�nity norm < B. We bound p from above by using the union bound, summing the

probabilities p(t, s) = Pra[∀i, ti = ais mod IS ] over all possible values for t of in�nity norm < B
and s ∈ Rq/IS . Sine the ai's are independent, we have p(t, s) =

∏
i≤m pi(ti, s), where pi(ti, s) =

Prai [ti = ais mod IS].

Wlog we an assume that gcd(s, ΦS) = gcd(ti, ΦS) (up to multipliation by an element of F×
qdq

):

If this is not the ase, there exists j ≤ n suh that either ti mod Φj = 0 and s mod Φj 6= 0, or
ti mod Φj 6= 0 and s mod Φj = 0; In both ases, we have pi(ti, s) = 0 beause ai ∈ R×q . We now

assume that gcd(s, ΦS) = gcd(ti, ΦS) = ΦS′
for some S′ ⊆ S of ardinality 0 ≤ k ≤ |S|. For

any j ∈ S′, we have ti = ais = 0 mod Φj regardless of the value of ai mod Φj , whereas for j ∈ S \S′,
we have s 6= 0 mod Φj and there exists a unique value of ai mod Φj suh that ti = ais mod Φj .
Moreover for any j /∈ S, the value of ai mod Φj an be arbitrary in F×

qdq
. So, overall, there are

(qdq−1)kq+k−|S| distint ai's in R×q suh that ti = ais mod IS . This leads to pi(ti, s) = (qdq−1)k−|S|.
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So far, we have shown that the probability p an be bounded from above by:

p ≤
∑

0≤k≤|S|

∑

S′ ⊆ S
|S′| = k

∑

s ∈ Rq/IS
ΦS′ |s

∑

t ∈ (Rq)m

∀i, 0 < ‖ti‖∞ < B
∀i, ΦS′ |ti

(
qdq − 1

)m(k−|S|)
.

For |S′| = k, let N(B, k) denote the number of t ∈ Rq suh that ‖t‖∞ < B and t = ΦS′t′ for
some t′ ∈ Rq of degree < n− kdq = n(1− k/kq). We onsider two upper bounds for N(B, k), from
whih we get the laimed bounds on λ∞1 (L(a, IS)).

As our �rst bound for N(B, k), with B = 1√
n
· qβ, we laim that N(B, k) ≤ 22nq(β−k/kq)n for

k < β · kq and N(B, k) = 0 for k ≥ β · kq. For this, we observe that N(B, k) is the number of points

of the lattie IS′ + qZn = 〈ΦS′ , q〉 in the hyperube C(2B) of sidelength 2B, where a hyperube of

sidelength ℓ is de�ned by C(ℓ) = {v ∈ Rn : ‖v‖∞ < ℓ/2}. Let λ := λ∞1 (IS′ + qZn). If we enter a

hyperube C(λ) of sidelength λ on eah of the N(B, k) points of I ′S + qZn in C(2B), the resulting
N(B, k) hyperubes do not interset, and yet are all ontained within the enlarged hyperube

C(2B + λ). It follows that N(B, k) ≤ vol(C(2B+λ))
vol(C(λ)) = (2Bλ +1)n. To derive a lower bound on λ, note

that for any t ∈ IS′
, we have N (t) = N (〈t〉) ≥ N (〈ΦS′ , q〉) = qkdq , where the inequality is beause

the ideal 〈t〉 is a sub-ideal of 〈ΦS′ , q〉, and the last equality is beause degΦS′ = kdq. It follows

from the arithmeti-geometri inequality that ‖t‖ = 1√
n
T2(t) ≥ N (t)1/n ≥ qk/kq . By equivalene of

norms, we onlude that ‖t‖∞ ≥ λ ≥ 1√
n
qk/kq . Hene, using B = 1√

n
qβ, for k ≥ β ·kq, we have λ ≥ B

so N(B, k) = 0, while for k < β ·kq , we have N(B, k) ≤ (2Bλ +1)n ≤ (2qβ−k/kq +1)n ≤ 22nq(β−k/kq)n,
as laimed.

As our seond bound for N(B, k), we laim that N(B, k) ≤ (2B)n−kdq = (2B)n(1−k/kq). Indeed,
sine the degree of ΦS′

is kdq, the vetor t formed by the n−kdq low-order oe�ients of t = ΦS′t′ is
related to the vetor t′ formed by the n− kdq low-order oe�ients of t′ by a lower triangular (n−
kdq) × (n − kdq) matrix whose diagonal oe�ients are equal to the non-zero onstant oe�ient

of ΦS′
. Hene this matrix is non-singular modulo q and the mapping from t′ to t is one-to-one. This

provides the laim.

Using the fat that the number of subsets of S is 2|S|, and the fat that the number of s ∈ Rq/IS
divisible by ΦS′

is qdq(|S|−k), the above upper bound on p implies that

p ≤ 2(m+1)|S| · max
0≤k≤|S|

N(B, k)m

q(m−1)(|S|−k)dq
.

Using our �rst bound on N(B, k) with B = 1√
n
qβ, we get

p ≤ 2(m+1)(|S|+2n) · max
0≤k<β·kq

q
n
(

m(β− k
kq

)−(m−1) |S|−k
kq

)

.

Viewed as a funtion of k, the exponent in the right hand side is maximized for k = 0. It then has

the value −mnε, when β = (1− 1
m ) |S|kq − ε. This gives the �rst laimed bound on λ∞1 (L(a, IS)).

In the ase |S| = kq , using our seond bound on N(B, k) with B = qβ, and noting that

N(B, kq) = 0, we get

p ≤ 2(m+1)(|S|+2n) · max
0≤k<kq

q
n((1−β)m−1)

(

k
kq
−1

)

= 2(m+1)(|S|+2n) · q−
n
kq

((1−β)m−1)
,

16



where the last equality holds for any β ≤ 1 − 1
m . Using β = 1 − 1

m − kqε gives the seond laimed

bound on λ∞1 (L(a, IS)). ⊓⊔
In our analysis of the distribution of the NTRU key g/f with kq = O(1), we will also use a lower

bound on λ1(a
⊥(IS)). As in Lemma 3.2, we give two bounds, although in this ase our appliation

only needs the �rst bound.

Lemma 3.3. Let n ≥ 8 be a power of 2 and q ≥ 5. Assume that Φ = xn + 1 splits into kq distint

irreduible fators modulo q, eah of degree dq = n/kq. Then, for m ≥ 2 and ε > 0, we have

λ∞1 (a⊥(IS)) ≥





1√
n
q

1
m
+(1− 1

m
)
|S|
kq
−ε

for any 0 ≤ |S| ≤ kq
q

1
m
−kq·ε

for |S| = 0

exept with probability ≤ 24nq−εmn over the uniformly random hoie of a in (R×q )
m
.

Proof. We proeed analogously to the proof of Lemma 3.2.

Let p denote the probability (over a) that L(a⊥(IS)) ontains a non-zero vetor t of in�nity

norm < B. We bound p from above by using the union bound, summing the probabilities p(t) =
Pra[

∑
i≤m aiti = 0 mod q] over all possible values for t of in�nity norm < B and ti ∈ IS for

i = 1, . . . ,m. By the Chinese Remainder Theorem, we have p(t) =
∏
j≤kq pj(t), where pj(t) =

Pra[
∑

i≤m aiti = 0 mod Φj ]. Let ΦS =
∏
i∈S Φi, ΦS̄ =

∏
i∈S̄ Φi and ΦS′ = gcd(t1, . . . , tm, ΦS̄) =∏

i∈S′ Φi for some S′ ⊆ S̄ of ardinality 0 ≤ k ≤ |S̄|. For any j ∈ S∪S′, we have∑i≤m tiai = 0modΦj
regardless of the value of ai mod Φj . For any j ∈ S̄\S′, there exists i ≤ m suh that ti 6= 0 mod Φj so
that for any hoie of {aj}j 6=i, there is a unique value of ai mod Φj suh that

∑
i≤m tiai = 0 mod Φj ;

It follows that pj(t) =
1

qdq−1 . As a onsequene, we have p(t) = 1
(qdq−1)|S̄|−k , and:

p ≤
∑

0≤k≤|S̄|

∑

S′ ⊆ S̄
|S′| = k

∑

t ∈ (Rq)m

∀i, 0 < ‖ti‖∞ < B
∀i, ΦS · ΦS′ |ti

1

(qdq − 1)|S̄|−k
.

For S′ with |S′| = k, let N(B, k) denote the number of t ∈ Rq suh that ‖t‖∞ < B and t =
ΦSΦS′t′ for some t′ ∈ Rq of degree < n(1 − (k + |S|)/kq). Exatly as in the proof of Lemma 3.2,

we derive two upper bounds for N(B, k), from whih we get the laimed bounds on λ∞1 (L(a, IS)).
The �rst upper bound, with B = 1√

n
qβ, shows that N(B, k) = 0 for k ≥ β · kq − |S|, while

N(B, k) ≤ 22nq(β−(|S|+k)/kq)n for k < β ·kq−|S|. The seond bound is N(B, k) ≤ (2B)n(1−(|S|+k)/kq).
The �rst bound on N(B, k) with B = 1√

n
qβ, leads to

p ≤ 22|S̄|+2n · max
0≤k<β·kq

q
n
(

m(β− |S|+k
kq

)− |S̄|−k
kq

)

.

Viewed as a funtion of k, the exponent in the right hand side is maximized for k = 0. It then has

the value −mnε, when β = 1
m + (1− 1

m) |S|kq − ε. This gives the �rst laimed bound.

In the ase |S| = 0, using our seond bound on N(B, k) with B = qβ, and noting that N(B, kq) =
0, we get

p ≤ 22|S̄|+n · max
0≤k<kq

q
n(1−mβ)

(

k
kq
−1

)

= 22|S̄|+n · qn(1−mβ)
(

1− 1
kq

)

.

where the last equality holds for any β ≤ 1
m . Using β = 1

m − kq · ε gives the seond laimed bound.

⊓⊔
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3.2 Regularity bounds for ring Rq

We now study the loseness to uniformity of the distribution of (m+1)-tuples from (R×q )
m ×Rq of

the form (a1, . . . , am,
∑

i≤m tiai), where the ai's are independent and uniformly random in R×q , and
the ti's are hosen from some distribution on Rq onentrated on elements of small height. Similarly

to [44℄, we all the distane of the latter distribution to the uniform distribution on (R×q )
m×Rq the

regularity of the generalized knapsak funtion (ti)i≤m 7→
∑

i≤m tiai. For our NTRU appliation we

are partiularly interested in the ase where m is very small, namely m = 2.

The regularity result in [44, Se. 4.1℄ applies when the ai's are uniformly random in the whole

ring Rq, and the ti's are uniformly random on the subset of elements of Rq of height ≤ d for

some d < q. In this ase, the regularity bound from [44℄ is Ω(
√
nq/dm). Unfortunately, this bound

is non-negligible for small m and q, e.g., for m = O(1) and q = Poly(n). To make it exponentially

small in n, one needs to set m ln d = Ω(n), whih inevitably leads to ine�ient ryptographi

funtions. When the ai's are hosen uniformly from the whole ring Rq with q = 1 mod 2n, the
atual regularity is not muh better than this undesirable regularity bound. This is beause Rq
ontains n proper ideals of size qn−1 = |Rq|/q, and the probability ≈ n/qm that all of the ai's fall
into one suh ideal (whih auses

∑
tiai to also be trapped in the proper ideal) is non-negligible

for small m. To irumvent this problem, we restrit the ai's to be uniform in R×q , and we hoose

the ti's from a disrete Gaussian distribution. We show a regularity bound exponentially small in n
even for m = O(1), by using an argument similar to that used in [21, Se. 5.1℄ for unstrutured

generalized knapsaks, based on the smoothing parameter of the underlying latties. Note that the

new regularity result an be used within the R-SIS trapdoor generation of [65, Se. 3℄, thus extending

the latter to a fully splitting q.

Theorem 3.1. Let n ≥ 8 be a power of 2 suh that Φ = xn + 1 splits into kq irreduible fators

modulo prime q ≥ 5. Let m ≥ 2, ε > 0, δ ∈ (0, 1/2) and t ←֓ DZmn,σ, with σ ≥ ln(2mn(1 +

1/δ))/π · min(
√
n · q 1

m
+ε, q

1
m
+kqε). Then for all exept a fration ≤ 24mnq−εmn of a ∈ (R×q )

m
, we

have ηδ(a
⊥) ≤

√
ln(2mn(1 + 1/δ))/π · min(

√
n · q 1

m
+ε, q

1
m
+kq·ε), and the distane to uniformity

of

∑
i≤m tiai is ≤ 2δ. As a onsequene:

∆

[(
a1, . . . , am,

∑

i≤m
tiai

)
; U

(
(R×q )

m ×Rq
)]
≤ 2δ + 24mnq−εmn.

Proof. For eah a ∈ (R×q )
m
, let Da denote the distribution of

∑
i≤m tiai where t is sampled

from DZmn,σ. Note that the above statistial distane is exatly

1
|R×

q |m
∑

a∈(R×
q )m ∆a, where ∆a

is the distane to uniformity of Da. To prove the theorem, it therefore su�es to show a uniform

bound ∆a ≤ 2δ, for all exept a fration ≤ 24mnq−εmn of a ∈ (R×q )
m
.

Now, the mapping t 7→∑
i tiai indues an isomorphism from the quotient group Zmn/a⊥ to its

range. The latter is Rq, thanks to the invertibility of the ai's. Therefore, the statistial distane ∆a is

equal to the distane to uniformity of t mod a⊥. In the following, sine it is needed for our analysis

of the NTRU key generation algorithm (see Theorem 3.2 in Setion 3.3) we atually study the

distane to uniformity of t mod a⊥(IS) for any S ⊆ {1, . . . , kq}. By Lemma 2.4, we have ∆a ≤ 2δ
if σ is greater than the smoothing parameter ηδ(a

⊥(IS)) of a⊥(IS) ⊆ Zmn. To bound ηδ(a
⊥(IS))

from above, we apply Lemma 2.1, whih redues the task to bounding the minimum of the dual

lattie from below. By Lemma 3.1, the latter lattie is â⊥(IS) = 1
q ·L(a⋆, I⋆S) (where a⋆ ∈ (R×q )

m
is
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in one-to-one orrespondene with a), and the latter task has been addressed by Lemma 3.2. Hene,

we obtain the following result as a diret onsequene of Lemmata 2.1, 2.4, 3.1 and 3.2.

Lemma 3.4. Let n ≥ 8 be a power of 2 suh that Φ = xn + 1 splits into kq irreduible fators

modulo prime q ≥ 5. Let S ⊆ {1, . . . , kq}, m ≥ 2, ε > 0, δ ∈ (0, 1/2), c ∈ Rmn and t ←֓ DZmn,σ,c,

with

σ ≥
{√

n ln(2mn(1 + 1/δ))/π · q1−(1−
1
m
)(1− |S|

kq
)+ε

for any 0 ≤ |S| ≤ kq√
ln(2mn(1 + 1/δ))/π · q 1

m
+kq·ε

for |S| = 0.

Then for all exept a fration ≤ 24mnq−εmn of a ∈ (R×q )
m
, we have:

∆
[
t mod a⊥(IS); U(R/a⊥(IS))

]
≤ 2δ.

Theorem 3.1 follows by taking S = ∅ and c = 0. ⊓⊔

3.3 Revised key generation algorithm for the NTRUEnrypt

We now use the results of the previous setion on modular q-ary latties to derive key generation

algorithms for the NTRU shemes, where the generated publi keys follow distributions for whih

Ideal-SVP is known to redue to R-LWE and R-SIS.
The new key generation algorithm for NTRUEnrypt is given in Fig. 1. The seret key polynomi-

als f and g are generated by using the Gentry et al. sampler of disrete Gaussians (see Lemma 2.6),

and by rejeting so that the output polynomials are invertible modulo q. The Gentry et al. sampler

may not exatly sample from disrete Gaussians, but sine the statistial distane an be made

negligible, the impat on our results is also negligible. Furthermore, it an be heked that our

onditions on standard deviations are muh stronger than the one in Lemma 2.6. From now on, we

will assume we have a perfet disrete Gaussian sampler.

By hoosing a large enough standard deviation σ, we an apply the results of the previous setion

and obtain the (quasi-)uniformity of the publi key. We sample f of the form p ·f ′+1 so that it has

inverse 1 modulo p, making the deryption proess of NTRUEnrypt more e�ient (as in the original

NTRUEnrypt sheme). We remark that the rejetion ondition on f at Step 1 is equivalent to the

ondition (f ′ mod q) 6∈ R×q − p−1, where p−1 is the inverse of p in R×q .

Inputs: n, q ∈ Z, p ∈ R×
q , σ > 0.

Output: A key pair (sk, pk) ∈ R ×R×
q .

1. Sample f ′
from DZn,σ; let f = p · f ′ + 1; if (f mod q) 6∈ R×

q , resample.

2. Sample g from DZn,σ ; if (g mod q) 6∈ R×
q , resample.

3. Return seret key sk = f and publi key pk = h = pg/f ∈ R×
q .

Fig. 1. Revised key generation algorithm for NTRUEnrypt.

The following result ensures that for some appropriate hoie of parameters, the key generation

algorithm terminates in expeted polynomial time.

Lemma 3.5. Let n ≥ 8 be a power of 2 suh that Φ = xn + 1 splits into kq irreduible fators

modulo prime q ≥ 5. Let σ ≥
√
n ln(2n(1 + 1/δ))/π · q1/kq , for an arbitrary δ ∈ (0, 1/2). Let a ∈ R

and p ∈ R×q . Then Prf ′←֓DZn,σ
[(p · f ′ + a mod q) 6∈ R×q ] ≤ kq(q−n/kq + 2δ) ≤ n(q−1 + 2δ).
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Proof. We are to bound the probability that p · f ′ + a belongs to I := 〈q, Φk〉 by q−n/kq + 2δ, for
any k ≤ kq. The result then follows from the Chinese Remainder Theorem and the union bound.

We have N (I) = qn/kq , so that λ1(I) ≤
√
nq1/kq , by Minkowski's theorem. Sine I is an ideal of R,

we have λn(I) = λ1(I), and Lemma 2.1 gives that σ ≥ ηδ(I). Lemma 2.4 then shows that f mod I
is within distane ≤ 2δ to uniformity on R/I, so we have p · f ′ + a = 0 mod I (or, equivalently,

f ′ = −a/p mod I) with probability ≤ q−n/kq + 2δ, as required. ⊓⊔

As a onsequene of the above bound on the rejetion probability, we have the following result,

whih ensures that the generated seret key is small.

Lemma 3.6. Let n ≥ 8 be a power of 2 suh that Φ = xn+1 splits into kq irreduible fators modulo

prime q ≥ 8n. Let σ ≥
√
n lnn · q1/kq . The seret key polynomials f, g returned by the algorithm of

Fig. 1 satisfy, with probability ≥ 1− 2−n+3
:

‖f‖ ≤ 2n‖p‖σ and ‖g‖ ≤ √nσ.

If deg p ≤ 1, then ‖f‖ ≤ 4
√
n‖p‖σ with probability ≥ 1− 2−n+3

.

Proof. The probability under sope is lower than the probability of the same event without rejetion,

divided by the aeptane probability. The result follows by ombining Lemmata 2.3 and 3.5. ⊓⊔

In the algorithm of Fig. 1, the polynomials f ′ and g are independently sampled from the disrete

Gaussian distribution DZn,σ restrited (by rejetion) to R×q − p−1 and R×q , respetively. We denote

by D×σ,z the disrete Gaussian DZn,σ restrited to R×q + z.

Here we apply the result of Setion 3.2 to show that the statistial loseness to uniformity of

a quotient of two distributions (z + p · D×σ,y) for z ∈ Rq and y = −zp−1 mod q. This inludes

the ase of g/f mod q omputed by the algorithm of Fig. 1. Sine p ∈ R×q , multipliation by p
indues a bijetion of Rq, and thus the statistial loseness to uniformity arries over to the publi

key h = pg/f . The following theorem gives two bounds, whose usefulness depends on the number

of irreduible fators kq in the fatorization of xn + 1 modulo q. The �rst bound is most useful for

large kq = Ω(n), while the seond bound is better for small kq = O(1), allowing a smaller σ by a

fator ≈ √n versus the �rst bound.

Theorem 3.2. Let n ≥ 8 be a power of 2 suh that Φ = xn + 1 splits into kq irreduible fators

modulo prime q ≥ 5. Let 0 < ε′ < 1/3, yi ∈ Rq and zi = −yip−1 mod q for i ∈ {1, 2}. Then

∆

[
y1 + p ·D×σ,z1
y2 + p ·D×σ,z2

mod q ; U
(
R×q
)]
≤





210nq
− ⌊ε′kq⌋

kq
·n

if σ ≥ n ·
√
ln(8nq) · q 1

2
+ε′

210nq−ε
′n

if σ ≥
√
n ln(8nq) · q

1+kqε
′

2
and q ≥ n

kq
1−2kqε′ .

Proof. For a ∈ R×q , we de�ne Pra = Prf1,f2 [(y1 + pf1)/(y2 + pf2) = a], where fi ←֓ D×σ,zi for i ∈
{1, 2}. We are to show that |Pra − |R×q |−1| ≤ 22n+5q−n⌊ε

′kq⌋/kq · |R×q |−1 =: ε′′ (resp. ≤ 26n+4q−ε
′n ·

|R×q |−1). This diretly gives the laimed bounds. The fration of a ∈ R×q suh that |Pra−|R×q |−1| ≤
ε′′ is equal to the fration of a = (a1, a2) ∈ (R×q )

2
suh that |Pra − |R×q |−1| ≤ ε′′, where Pra =

Prf1,f2 [a1f1 + a2f2 = a1z1 + a2z2]. This is beause a1f1 + a2f2 = a1z1 + a2z2 is equivalent to (y1 +
pf1)/(y2 + pf2) = −a2/a1 (in R×q ), and −a2/a1 is uniformly random in R×q when a ←֓ U((R×q )

2).
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We observe that (f1, f2) = (z1, z2) =: z satis�es a1f1 + a2f2 = a1z1 + a2z2, and hene the set of

solutions (f1, f2) ∈ R to the latter equation is z+a⊥×, where a⊥× = a⊥ ∩ (R×q + qZn)2. Therefore:

Pra =
DZ2n,σ(z + a⊥×)

DZn,σ(z1 +R×q + qZn) ·DZn,σ(z2 +R×q + qZn)
.

For any t ∈ a⊥ we have t2 = −t1a1/a2, so, sine −a1/a2 ∈ R×q , the ring elements t1 and t2
must belong to the same ideal IS of Rq for some S ⊆ {1, . . . , kq}. It follows that a⊥× = a⊥ \⋃
S⊆{1,...,n},S 6=∅ a

⊥(IS). Similarly, we have R×q + qZn = Zn \ ⋃S⊆{1,...,n},S 6=∅(IS + qZn). Using the

inlusion-exlusion priniple, we obtain:

DZ2n,σ(z + a⊥×) =
∑

S⊆{1,...,n}
(−1)|S| ·DZ2n,σ(z + a⊥(IS)), (1)

∀i ∈ {1, 2} : DZn,σ(zi +R×q + qZn) =
∑

S⊆{1,...,n}
(−1)|S| ·DZn,σ(zi + IS + qZn). (2)

In the rest of the proof, we show that, exept for a fration ≤ 29nq−ε
′n

of a ∈ (R×q )
2
:

DZ2n,σ(z + a⊥×) = (1 + δ0)|R×q |q−2n,
∀i ∈ {1, 2} : DZn,σ(zi +R×q + qZn) = (1 + δi)|R×q |q−n.

where |δi| ≤ 22n+2q−n⌊ε
′kq⌋/kq

(resp. |δi| ≤ 26n+1q−ε
′n
) for i ∈ {0, 1, 2}. The bounds on |Pra −

|R×q |−1| follow by a routine omputation.

Handling (1). We �rst notie that, sine z ∈ Z2n
, we have (for any S ⊆ {1, . . . , kq}):

DZ2n,σ(z + a⊥(IS)) =
ρσ(z + a⊥(IS))

ρσ(Z2n)
=
ρσ(z + a⊥(IS))
ρσ(z + Z2n)

= DZ2n,σ,−z(a
⊥(IS)).

To get our �rst our bound, we proeed as follows. For the terms of (1) with |S| ≤ ε′kq , we apply
the �rst bound of Lemma 3.4 with m = 2 and ε = ε′/2. The assumption of Lemma 3.4 on σ holds,

with δ := q−n(1+⌊ε
′kq⌋/kq)

. Further, we have det(a⊥(IS)) = qn(1+|S|/kq): Indeed, sine a ∈ (R×q )
2
,

there are qn(1−|S|/kq) elements of a⊥(IS) in [0, q − 1]2n. We onlude that |DZ2n,σ,−z(a
⊥(IS)) −

q−n(1+|S|/kq)| ≤ 2δ, for all exept a fration ≤ 28nq−ε
′n

of a ∈ (R×q )
2
(possibly orresponding to a

distint subset of (R×q )
2
for eah possible S).

For a term of (1) with |S| > ε′kq , we hoose S′ ⊆ S with |S′| = ⌊ε′kq⌋. Then we have a⊥(IS) ⊆
a⊥(IS′) and hene DZ2n,σ,−z(a

⊥(IS)) ≤ DZ2n,σ,−z(a
⊥(IS′)). By using with S′ the above result for

small |S|, we obtain DZ2n,σ,−z(a
⊥(IS)) ≤ 2δ + q−n(1+⌊ε

′kq⌋/kq)
.

Overall, we have, exept possibly for a fration ≤ 29nq−ε
′n

of a ∈ (R×q )
2
:

∣∣∣∣DZ2n,σ(z + a⊥×)−
n∑

k=0

(−1)k
(
n

k

)
q−n−k

∣∣∣∣ ≤ 2n+1δ + 2

kq∑

k=⌈εkq⌉

(
kq
k

)
q
−n(1+ ⌊ε′kq⌋

kq
)

≤ 2n+1(δ + q
−n(1+ ⌊ε′kq⌋

kq
)
).

We onlude that |δ0| ≤ q2n

(qn/kq−1)kq 2
n+1(δ + q

−n(1+ ⌊ε′kq⌋

kq
)
) ≤ 22n+2q

− ⌊ε′kq⌋

kq
·n
, as required.
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For our seond bound, we argue as follows. For the term of (1) with |S| = 0, we apply the seond

bound in Lemma 3.4 with ε = ε′/2. By the hoie of σ, the Lemma 3.4 assumption on σ holds,

with δ := q−2n. We have |R/a⊥(IS)| = det(a⊥(IS)) = qn and hene |DZ2n,σ,−z(a
⊥(IS))−q−n| ≤ 2δ,

for all exept a fration ≤ 28nq−ε
′n

of a ∈ (R×q )
2
.

For the terms of (1) with |S| ≥ 1, unlike the argument above, we annot hoose for |S| = 1 an I ′S
with S′ ⊆ S and deta⊥(IS′) ≈ q(1+ε)n: suh an ideal IS′

does not exist, as the only possible hoie for

S′ is the empty set, whih gives deta⊥(IS′) = qn, and the latter is too small. Instead, we proeed as

follows. Let L′ = N ·Z2n
, where N = ⌈14q1/2+ε

′/2⌉. Note that detL′ = N2n ≥ 2−4nq(1+ε
′)n

, and sine

λ2n(L
′) = N ≤ 1

2q
1/2+ε′/2

, we have by Lemma 2.1 with δ = q−2n that ηδ(L
′) ≤

√
n ln(8nq)q1/2+ε

′/2
.

Hene, by Lemma 2.4 and the hoie of σ, we have DZ2n,σ(L
′) ≤ 24nq−(1+ε

′)n + 2δ. To use the last

bound, we now show that, for |S| ≥ 1, we have DZ2n,σ(z + a⊥(IS)) ≤ DZ2n,σ(L
′). For this, we use

a rounding proess φ : Z2n → L′ to map z+a⊥(IS) onto a subset of L′ suh that the following two

properties hold:

1. The map φ is one-to-one on z + a⊥(IS),
2. For eah v ∈ Z2n

, we have ‖φ(v)‖ ≤ ‖v‖.

Sine DZ2n,σ(w) ≥ DZ2n,σ(v) for any v,w ∈ Z2n
with ‖w‖ ≤ ‖v‖, property 2 of φ implies that

DZ2n,σ(z+a⊥(IS)) ≤
∑

v∈z+a⊥(IS)
(φ(v)), and by property 1 of φ, the points {φ(v)}v∈z+a⊥(IS)

are

distint points of L′, so that
∑

v∈z+a⊥(IS)
(φ(v)) ≤ DZ2n,σ(L

′), as required. It remains to de�ne φ and

show that it has both properties. For v ∈ Z2n
, let φ(v) round eah oordinate vi of v to the nearest

multiple of N whih is less than or equal to |vi| in absolute value, i.e., φ(v) = (v′1, . . . , v
′
2n) with

v′i = ⌊ |vi|N ⌋·N ·sign(vi). Sine |v′i| ≤ |vi|, property 2 of φ is learly satis�ed. To show property 1, note

that ‖φ(v)−v‖∞ < N for all v in Z2n
. Suppose towards a ontradition that φ is not one-to-one on

z+a⊥(IS). Then there exist two vetors v1 6= v2 in z+a⊥(IS) with φ(v1) = φ(v2) = v. A triangle

inequality then gives that v1 − v2 is a non-zero vetor of a⊥(IS) with ‖v1 − v2‖ < 2N ≤ q1/2+ε′/2.
However, by the �rst bound of Lemma 3.3 with m = 2, |S| = 1, and ε = ε′/2, we have λ∞1 (a⊥(IS)) ≥
1√
n
q

1
2
+ 1

2kq
− ε′

2
, exept for a fration ≤ 24nq−ε

′n
of a ∈ (R×q )

2
. By the ondition on q, this gives a

ontradition, so φ has property 1, exept for a fration ≤ 24nq−ε
′n
of a ∈ (R×q )

2
. We onlude that

for the terms with |S| ≥ 1, we have DZ2n,σ,−z(a
⊥(IS)) ≤ 24n+1q−(1+ε

′)n
. Hene, similarly to the

�rst bound, we obtain our seond bound |δ0| ≤ q2n

(qn/kq−1)kq 2
5n+1q−(1+ε

′)n ≤ 26n+1q−ε
′n
.

Handling (2). For the bounds on δ1 and δ2, we use a similar argument. Let i ∈ {1, 2}. The zi
term an be handled like the z term of (1). Therefore, in this ase we need a good bound on

DZn,σ,−zi(IS+qZ
n). By Lemma 2.4 this redues to �nding a good bound on the smoothing parameter

of the ideal lattie LS = IS + qZn. For this, we �rst observe that LS = a⊥(IS) in the speial ase

m = 1 and a1(x) =
∏
i∈S̄ Φi(x), where S̄ denotes the omplement of S. Therefore, by Lemma 3.1,

the dual lattie L̂S = 1
qL(a

⋆
1, I

⋆
S̄
) = 1

qLS̄′ is also a (saled) ideal lattie, for some S̄′ ⊆ {1, . . . , kq}
with |S̄′| = |S̄|, where we have used the fat that the mapping sending a1(x) =

∏
i∈S̄ Φi(x) to

a⋆1(x) indues a bijetion on the fators Φi(x). Sine detLS̄′ = qn|S̄|/kq , we have by Minkowski's

theorem that λ∞1 (LS̄′) ≤ q|S̄|/kq . Moreover, sine IS + qZn is an ideal lattie, Lemma 2.1 gives

that ηδ(IS + qZn) ≤ 1
q

√
ln(2n(1 + 1/δ))/π · λ∞1 (LS̄′) ≤

√
n ln(4nq)q|S|/kq ≤ σ, for δ := q−n/2,

assuming |S| ≤ kq/2. Hene, for a term of (2) with |S| ≤ kq/2, by Lemma 2.4, we have |DZn,σ,−zi(IS+
qZn)− q−n|S|/kq | ≤ 2δ.
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For a term of (2) with |S| > kq/2, we hoose S′ ⊆ S with |S′| = ⌊kq/2⌋ ≥ kq/3 for kq ≥ 2. By
using with S′ the above result for small |S|, we obtain DZn,σ,−zi(IS+ qZ

n) ≤ DZn,σ,−zi(IS′ + qZn) ≤
2δ + q−n/3.

Overall, we have:

∣∣∣∣∣∣
DZn,σ(zi +R×q + qZn)−

kq∑

k=0

(−1)k
(
kq
k

)
q−k

∣∣∣∣∣∣
≤ 2n+1δ + 2

kq∑

k=⌈kq/2⌉

(
kq
k

)
q−n/3 ≤ 2n+1(δ + q−n/3),

whih leads to the desired bound on δi. This ompletes the proof of the theorem. ⊓⊔

3.4 A revised NTRUEnrypt sheme

In this setion we present the provably seure variant of the NTRUEnrypt sheme. We de�ne the

sheme NTRUEnrypt with parameters n, q, p, α, σ as follows. The parameters n and q de�ne the

rings R and Rq. The parameter p ∈ R×q de�nes the plaintext message spae as P = R/pR. It must

be a polynomial with `small' oe�ients with respet to q, but at the same time we require N (p) =
|P| = 2Ω(n)

so that many bits an be enoded at one. Typial hoies as used in the original

NTRUEnrypt sheme are p = 3 and p = x + 2, but in our ase, sine q is prime, we may also

hoose p = 2. By reduing modulo the pxi's, we an write any element of P as

∑
0≤i<n εix

ip,
with εi ∈ (−1/2, 1/2]. Using the fat that R = Z[x]/(xn +1), we an thus assume that any element

of P is an element ofR with in�nity norm ≤ 1
2

√
deg(p) + 1·‖p‖. The parameter α is the R-LWE noise

distribution parameter. Finally, the parameter σ is the standard deviation of the disrete Gaussian

distribution used in the key generation proess (see Setion 3.3).

• Key generation. Use the algorithm of Fig. 1 and return sk = f ∈ R×
q with f = 1 mod p, and pk = h = pg/f ∈

R×
q .

• Enryption. Given message M ∈ P , set s, e ←֓ Υα and return iphertext C = hs+ pe+M ∈ Rq .

• Deryption. Given iphertext C and seret key f , ompute C′ = f · C ∈ Rq and return C′ mod p.

Fig. 2. The enryption sheme NTRUEnrypt(n, q, p, α, σ).

The orretness onditions for the sheme are summarized below.

Lemma 3.7. If deg p ≤ 1 ω(n0.25 lnn)α‖p‖2σ < 1, and αq ≥ n0.75, then the deryption algorithm

of NTRUEnrypt reovers M with probability 1− n−ω(1) over the hoie of s, e, f, g.

Proof. In the deryption algorithm, we have C ′ = p·(gs+ef)+fM mod q. Let C ′′ = p·(gs+ef)+fM
omputed in R (not modulo q). If ‖C ′′‖∞ < q/2 then we have C ′ = C ′′ in R and hene, sine f =
1 mod p, C ′ mod p = C ′′ mod p =M mod p, i.e., the deryption algorithm sueeds. It thus su�es

to give an upper bound on the probability that ‖C ′′‖∞ > q/2.
From Lemma 3.6, we know that with probability ≥ 1 − 2−n+3

both f and g have Eulidean

norms ≤ 4
√
n‖p‖σ if deg p ≤ 1. This implies that ‖pf‖, ‖pg‖ ≤ 8

√
n‖p‖2σ, with probability ≥

1− 2−n+3
. From Lemma 2.10, both pfs and pge have in�nity norms ≤ 8αqn0.25ω(lnn) · ‖p‖2σ with

probability 1− n−ω(1). Independently, we have:

‖fM‖∞ ≤ ‖fM‖ ≤
√
n‖f‖‖M‖ ≤ 4n‖p‖2σ.
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Sine αq ≥ n0.75, we onlude that ‖C ′′‖∞ ≤ 20αqn0.25ω(lnn) · ‖p‖2σ, with probability 1− n−ω(1).
⊓⊔

The seurity of the sheme follows by a elementary redution from the deisional R-LWE×HNF,

exploiting the uniformity of the publi key in R×q (Theorem 3.2), and the invertibility of p in Rq.

Lemma 3.8. Suppose that n is a power of 2 suh that Φ = xn+1 splits into n linear fators modulo

prime q ≥ 5. Let ε ∈ (0, 1/3), δ > 0, p ∈ R×q and σ ≥ n
√

ln(8nq) ·q 1
2
+ε
. If there exists an IND-CPA

attak against NTRUEnrypt that runs in time T and has suess probability 1/2+δ, then there exists

an algorithm solving R-LWE×HNF with parameters q and α that runs in time T ′ = T +O(n) and has

suess probability δ′ = δ − q−Ω(n)
.

Proof. Let A denote the given IND-CPA attak algorithm. We onstrut an algorithm B against

R-LWE×HNF that runs as follows, given orale O that samples from either U(R×q ×Rq) or A×s,ψ for some

previously hosen s ←֓ ψ and ψ ←֓ Υα. Algorithm B �rst alls orale O to get a sample (h′, C ′)
from R×q × Rq. Then, algorithm B runs algorithm A with publi key h = p · h′ ∈ Rq. When A
outputs hallenge messages M0,M1 ∈ P, algorithm B piks b ←֓ U({0, 1}), omputes the hallenge

iphertext C = p · C ′ +Mb ∈ Rq, and returns C to A. Eventually, when algorithm A outputs its

guess b′ for b, algorithm B outputs 1 if b′ = b and 0 otherwise.

The h′ used by B is uniformly random in R×q , and therefore so is the publi key h given to A,
thanks to the invertibility of p modulo q. Thus, by Theorem 3.2, the publi key given to A is

within statistial distane q−Ω(n)
of the publi key distribution in the genuine attak. Moreover,

sine C ′ = h · s + e with s, e sampled from ψ, the iphertext C given to A has exatly the right

distribution as in the IND-CPA attak. Overall, if O outputs samples from A×s,ψ, then A sueeds

and B returns 1 with probability ≥ 1/2 + δ − q−Ω(n)
.

On the other hand, if orale O outputs samples from U(R×q ×Rq), then, sine p ∈ R×q , the value
of p ·C ′ and hene C, is uniformly random in Rq and independent of b. It follows that in this ase,

algorithm B outputs 1 with probability 1/2. The laimed advantage of B now follows. ⊓⊔

By ombining Lemmata 3.7 and 3.8 with Theorem 2.2 we obtain our main result.

Theorem 3.3. Suppose n is a power of 2 suh that Φ = xn + 1 splits into n linear fators modulo

prime q = Poly(n) suh that q
1
2
−ε = ω(n2.25 ln2 n)‖p‖2, with ε = ω(1/n) and ε < 1/3 and p ∈

R×q with deg(p) ≤ 1. Let σ = n
√
ln(8nq) · q 1

2
+ε

and α−1 = ω(n0.25 lnn)‖p‖2σ. If there exists

an IND-CPA attak against NTRUEnrypt whih runs in time Poly(n) and has suess probability

1/2 + 1/Poly(n), then there exists a Poly(n)-time quantum algorithm for γ-Ideal-SVP with γ =

ω(n2.75 ln2.5 n)‖p‖2q 1
2
+ε
. Moreover, the deryption algorithm sueeds with probability 1− n−ω(1).

Overall, by hoosing ε = 1/(ln n), the smallest q for whih the analysis holds is Ω̃(n4.5), and the

smallest γ that an be obtained is Õ(n5). Finally, we observe that our proof an be readily adapted

to o�er seurity against sub-exponential attakers, under the assumption that Ideal-SVP annot be

solved in quantum sub-exponential time for some polynomial approximation fator γ.

4 A provably seure variant of NTRUSign

In this setion, we present our provably seure variant of the NTRUSign signature sheme. The

key generation algorithm for our sheme extends the NTRUEnrypt seret key (f, g) by omputing
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another (linearly independent over the ring R) `short' pair (F,G) satisfying F1h − G1 = 0 mod q,

suh that a full short basis matrixM =

[
f g
F G

]
is obtained for the NTRU R-module L generated by

the rows of the matrix

[
1 h
0 q

]
. The method we use for generating (F,G) is a variant of the original

NTRUSign key generation algorithm in [25, 26℄.

Sine the determinant of the lattie orresponding to the module L is qn, to make M a basis

of L, it su�es for the module vetor (F,G) to satisfy the determinant ondition fG− gF = q. The
main idea in [25, 26℄ for generating (F,G) is the observation that if f, g are oprime over R, then
it is easy to ompute (F1, G1) ∈ R2

suh that fG1 − gF1 = 1, and this vetor an be easily lifted

to a module vetor (Fq, Gq) = q · (F1, G1) suh that M is a basis for L. Although (Fq, Gq) is not
short, thanks to the oprimality ondition fG1 − gF1 = 1, it an be easily made short by length

redution, i.e., by subtrating from it a multiple ≈ qF1/f of the given vetor (f, g) to get a vetor

(F,G) ≈ (Fq, Gq)− (qF1/f) · (f, g) = (0, q · (G1−gF1/f)) = (0, q/f), where ‖q/f‖ ≈ q/‖f‖ is short.
However, this proedure fails if f and g are not oprime over R, and this undesirable event is dealt

with in the key generation proedure by rejeting (f, g) and resampling new random andidates

for (f, g) until the oprimality ondition holds. Sine this rejetion probability p ontributes a

deterioration fator

1
1−p in the expeted key generation time, and also to the seurity redution

ost (with respet to the lose-to-uniform distribution of the publi key g/f when (f, g) is sampled

without rejetion), it is important to bound 1− p from below by a non-negligible funtion.

In [25, 26℄, the key generation algorithm, and in partiular, the oprimality probability 1−p, are
not rigorously analyzed. Here, we rigourously bound the oprimality probability 1−p when f and g
are independently sampled from a disrete Gaussian distribution DZn,σ over R. Our argument

is based on a generalization of the lassial analysis of the probability 1 − p that two �random�

integers are oprime, whih gives the asymptoti value 1 − p =
∏
q(1 − 1/q2) = ζ(2)−1, where

ζ(2) =
∏
q

1
1−q−2 = π2

6 is Riemann's zeta funtion evaluated at 2, and the produts run over all

prime integers q. Our generalization of this analysis to the ring R leads us to study the value of ζK(2),
where ζK(2) =

∏
J

1
1−N (J)−2 is the Dedekind zeta funtion for K = Q[x]/(xn + 1), evaluated at 2,

and the produt now runs over all prime ideals J of R = Z[x]/(xn+1). We show that ζK(2) = O(1)
and, using some additional results on ζK , that 1− p ≥ 1

2ζK(2) − o(1), so the aeptane probability

1− p is in fat lower bounded by a onstant.

As a further improvement on the key generation algorithm in [25, 26℄, we apply Babai's nearest

plane algorithm [6℄ to redue the length the extended vetor (F,G), rather than applying Babai's

roundo� method as desribed above. This allows us to save a ≈ √n fator in the norm of (F,G).

4.1 Additional results on ideal latties

For the analysis of the key generation of the signature sheme (in Subsetion 4.2), we need the

following result on the inverse (over K = Q[x]/(xn + 1)) of a disrete Gaussian sample. If b is

sampled from DI,σ for some ideal I ⊆ R, we expet ‖b‖ to be proportional to σ. Sine b · b−1 = 1
over K, it is reasonable to expet ‖b−1‖ to be proportional to σ−1.
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Lemma 4.1. Let n a power of 2, Φ = xn + 1 and R = Z[x]/Φ. For any ideal I ⊆ R, δ ∈ (0, 1),
t ≥
√
2π and σ ≥ t√

2π
· ηδ(I), we have:

Pr
b←֓DI,σ

[
‖b−1‖ ≥ t

σ
√
n/2

]
≤ 1 + δ

1− δ
n
√
2πe

t
.

Proof. Let (b(i))i≤n (resp. (b−(i))i≤n) be the omplex embeddings of b (resp. b−1). We have b−(i) =
(b(i))−1, for all i. We �rst show that it is unlikely that b has a small embedding. Wlog we on-

sider b(1) =
∑

j bjζ
j
(where the bj 's are the oe�ients of the polynomial b). We let Re2 =

∑
j ℜ(ζj)2

and Im2 =
∑

j ℑ(ζj)2. By applying Lemma 2.7 twie, we obtain:

max

(
Pr

[
|ℜb(1)| ≤ σRe

t

]
,Pr

[
|ℑb(1)| ≤ σIm

t

])
≤ 1 + δ

1− δ

√
2πe

t
.

We have Re2 + Im2 = n, whih implies that max(Re, Im) ≥
√
n/2. Therefore:

Pr

[
|b(1)| ≤ σ

√
n/2

t

]
≤ 1 + δ

1− δ

√
2πe

t
.

Now, the union bound implies that Pr[∃i : |b(i)| ≤ σ
√
n/2

t ] ≤ 1+δ
1−δ

n
√
2πe
t . The latter event is

exatly the same as maxi |b−(i)| ≥ t

σ
√
n/2

. Finally, the identity ‖b−1‖ ≤ maxi |b−(i)| allows us to

omplete the proof. ⊓⊔

Dedekind Zeta funtion. We now review some fats about the Dedekind zeta funtion (see, e.g.,

[51, Ch. VII℄). The Möbius funtion for ring R is a funtion from the ideals of R to {−1, 0, 1} and is

de�ned as follows: Let I =
∏r
i=1(Ji)

ei
denote the unique prime ideal fatorization of I 6= 0 stritly

ontained in R, where the Ji's are distint prime ideals in R and ei is a positive integer for i ≤ r;
Then µ(I) = 0 if there exists i with ei ≥ 2, µ(I) = (−1)r if ei = 1 for all i. We extend the de�nition

to I = R by setting µ(R) = 1. The Dedekind zeta funtion of the ring R of integers of K is the

funtion ζK : R→ R de�ned by

ζK(s) =
∑

I⊆R
N (I)−s,

where the sum is over all non-zero ideals of R. The series ζK(s) onverges for s > 1, and:

ζK(s)
−1 =

∏

prime J⊆R

(
1−N (J)−s

)
=
∑

I⊆R
µ(I) · N (I)−s,

where the produt is over all prime ideals of R and the sum is over all non-zero integral ideals of R.

Lemma 4.2. Let Kn = Q[x]/Φn, for n ≥ 4 a power of 2. Then we have ζKn(2) = O(1), and for

ε ∈ (0, 1), we have ζKn(1 + ε) ≤ 2 exp(2 · (ε(1 − ε))−1 · n1−ε).

Proof. Let R = Z[x]/Φ. For a prime integer p, we let πK(p) denote the number of prime ideals

ontained in R having norm a power of p, i.e., dividing the prinipal ideal 〈p〉 ⊆ R. We reall that

by Dedekind's theorem, πK(p) is the number of distint irreduible fators of Φ = xn + 1 over Zp,
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so πK(p) ≤ min(n, p). Also, sine K is a normal extension of Q with ∆K a power of 2, all the prime

ideals above p > 2 have idential norm pn/πK(p)
(see, e.g., [50, Ch. 4℄). Using this, we have, for s > 1:

ζK(s) =
∏

prime p

∏

prime J |〈p〉
(1−N (J)−s)−1

=
2s

2s − 1

∏

prime p>2

(1− p−sn/πK(p))−πK(p)

≤ 2s

2s − 1

∏

prime p, 2<p≤n
(1− p−sn/p)−p ·

∏

prime p>n

(1− p−s)−n.

We used the fat that for �xed x ∈ (0, 1), the funtion t 7→ (1−x−1/t)−t is non-dereasing for t > 0.
We �rst deal with the ase s = 2, where we have:

ζK(2) ≤ 4

3

∏

prime p, 2<p≤n/2
(1− p−4)−p ·

∏

prime p, n/2<p≤n
(1− p−2)−p ·

∏

prime p>n

(1− p−2)−n

≤ 4

3
exp

( ∑

prime p, 2<p≤n
(p−3 + p−7) +

∑

prime p, n/2<p≤n
p−1 + n

∑

prime p>n

(p−2 + p−4)
)
,

where we used the inequality ln(1 − x) ≥ −x− x2, for x ∈ [0, 1/3]. We now show that eah one of

these sums is O(1). We have:

∑

prime p≤n
p−3 ≤

∫ n

1
x−3dx ≤ 1/2.

Similarly, we have

∑
p≤n p

−7 ≤ 1/6,
∑

p>n p
−2 ≤ n−1 and

∑
p>n p

−4 ≤ n−3/3. It remains to

bound

∑
n/2<p≤n p

−1
. It is proved in [68, Th. 9, p. 16℄ that

∑
p≤x p

−1 = ln lnx+ c+O(1/ ln x), for
some onstant c. We thus obtain that:

∑

prime p, n/2<p≤n
p−1 ≤ ln

lnn

ln(n/2)
+O

(
1

lnn

)
= ln

(
1 +

ln 2

ln(n/2)

)
+O

(
1

lnn

)
= O

(
1

lnn

)
.

We now onsider the ase s = 1 + ε. We have:

ζK(1 + ε) ≤ 2
∏

prime p, 2<p≤n
(1− p−(1+ε)n/p)−p ·

∏

prime p>n

(1− p−(1+ε))−n

≤ 2 exp

( ∑

prime p, 2<p≤n
(p−(1+ε)

n
p
+1 + p−2(1+ε)

n
p
+1) + n ·

∑

prime p>n

(p−(1+ε) + p−2(1+ε))
)
.

where we again used the inequality ln(1 − x) ≥ −x − x2, for x ∈ [0, 1/3]. The �rst sum above is

bounded as:

2 ·
∑

prime 2<p≤n
p−ε ≤ 2 ·

∫ n

2
x−εdx ≤ 2

n1−ε

1− ε .

Similarly, the seond sum above is bounded as 2 ·∑p>n p
−(1+ε) ≤ 2ε−1n−ε.This gives the laimed

bound on ζK(1 + ε). ⊓⊔
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In our study of the Dedekind zeta funtion, we use the following bound.

Lemma 4.3. Let N ≥ 1 and ε ∈ (0, 1). The number H(N) of ideals I ⊆ Rn satisfying N (I) ≤ N
is bounded as H(N) ≤ 2 exp(2 · (ε(1 − ε))−1 · n1−ε) ·N1+ε

.

Proof. For k ≥ 1, letM(k) denote the number of ideals of Rn of norm exatly k. Note that for s > 1,
we have ζK(s) =

∑
I⊆RN (I)−s =

∑
k≥1M(k) ·k−s ≥∑k≤NM(k) ·k−s. Using∑k≤NM(k) ·k−s ≥∑

k≤NM(k) ·N−s = H(N) ·N−s, we obtain that H(N) ≤ ζK(s) ·N s
. Setting s = 1+ε and applying

Lemma 4.2 ompletes the proof. ⊓⊔

The value ζQ(2) = π2/6 is famous beause its inverse is the probability that two �random�

integers are o-prime. The next lemma onsiders the generalization of that fat to Kn.

Lemma 4.4. Assume that σ ≥ 7n1.5 ln1.5 n.Then, for n a su�iently large power of 2:

Pr
f,g←֓DR,σ

[〈f, g〉 6= R] ≤ 1− 1

2ζK(2)
+ 2−n+1.

Proof. By Lemma 2.3, we have:

Pr[〈f, g〉 6= R] ≤ Pr[〈f, g〉 6= R ∧ ‖f‖, ‖g‖ ≤ √nσ] + Pr[‖f‖ > √nσ or ‖g‖ > √nσ]
≤ Pr[〈f, g〉 6= R ∧ ‖f‖, ‖g‖ ≤ √nσ] + 2−n+1.

We bound Pr[〈f, g〉 6= R ∧ ‖f‖, ‖g‖ ≤ √nσ] by using an argument adapted from [63℄. Sine

any ideal I ontaining the prinipal ideal 〈f〉 has norm N (I) ≤ N (〈f〉), the ondition ‖f‖ ≤ √nσ
implies N (I) ≤ N (〈f〉) ≤ (

√
nσ)n. Thus, we have Pr[〈f, g〉 6= R ∧ ‖f‖, ‖g‖ ≤ √nσ] ≤ 1− p, with:

p := DT
Z2n,σ

(
Z2n \

⋃

prime I ⊆ R
N (I) ≤ (

√
nσ)n

I × I
)

=
∑

I ⊆ R
N (I) ≤ (

√
nσ)n

µ(I) ·DT
Zn,σ(I)

2,

where in the seond equality, we used the inlusion-exlusion priniple (and µ is the Möbius funtion

for ring R), and DT
σ,Zn denotes the trunation of Dσ,Zn

to the ball Bn(
√
nσ) of radius

√
nσ, i.e.

DT
σ,Zn(x) = Dσ,Zn(x) if x ∈ Bn(

√
nσ) and DT

σ,Zn(x) = 0 otherwise.Reall that ζK(2)
−1 =

∑
µ(I) ·

N (I)−2, where the sum is over all ideals I ⊆ R.We now show that

∣∣p− ζK(2)−1
∣∣ ≤ (2ζK(2))−1.

This implies p ≥ (2ζK(2))−1, as required. We have:

∣∣p− ζK(2)−1
∣∣ ≤

∑

I ⊆ R
N (I) ≤ (

√
nσ)n

∣∣DT
Zn,σ(I)

2 −N (I)−2
∣∣+

∑

I ⊆ R
N (I) > (

√
nσ)n

N (I)−2.

To bound the �rst sum, we reall that for any (even frational) ideal I, we have λn(I) =
λ1(I) ≤

√
nN (I)1/n, so. for any δ ∈ (0, 1/2), the smoothing parameter ηδ(I) is no greater than

Bδ · N (I)1/n, where Bδ =
√
n ln(2n(1 + 1/δ))/π (by Lemma 2.1). It follows from Lemma 2.2 that∣∣DZn,σ(I)

2 −N (I)−2
∣∣ ≤ 18δ/N (I)2 ifN (I) ≤ (σ/Bδ)

n
and I ⊆ R. We have |DZn,σ(I)−DT

Zn,σ(I)| =
DZn,σ(I \Bn(

√
nσ)) = DI,σ(I \Bn(

√
nσ)) ·DZn,σ(I) ≤ 2−n+2 ·DZn,σ(I), where in the last inequality

we applied Lemma 2.3. We onlude that

∣∣∣DT
Zn,σ(I)

2 −N (I)−2
∣∣∣ ≤ (18δ + 2−n+5)/N (I)2 for I ⊆ R

of norm ≤ (σ/Bδ)
n
. Assume now that (σ/Bδ)

n < N (I) ≤ (
√
nσ)n, and let k =

⌈
N (I)1/n

σ/Bδ

⌉
. Sine
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I ⊆ 1
k · I, we have DT

Zn,σ(I) ≤ DT
Zn,σ(

1
k · I). Also, by the hoie of k, we have ηδ(

1
k · I) = 1

kηδ(I) ≤ σ.
Now:

DT
Zn,σ

(
1

k
· I
)
≤ DZn,σ

(
1

k
· I
)

=
ρσ(

1
k · I ∩ Zn)

ρσ(Zn)
≤ ρσ(

1
k · I)

ρσ(Zn)
≤
(
2Bδ
σ

)n 1 + δ

1− δ ,

where in the last inequality we applied Lemma 2.2 twie, using σ ≥ ηδ(Z
n) and det( 1k · I) =

1
kn ·N (I) ≥ ( σ

2Bδ
)n. Therefore, we have DT

Zn,σ(I)
2 ≤ (2Bδ

σ )2n(1+δ1−δ )
2
. Finally, assuming that σ ≥ 2Bδ

and δ = 1
160ζK(2)2

, we obtain:

∑

I ⊆ R
N (I) ≤ (

√
nσ)n

∣∣DT
Zn,σ(I)

2 −N (I)−2
∣∣ ≤

∑

I ⊆ R
N (I) ≤ (σ/Bδ)

n

∣∣DT
Zn,σ(I)

2 −N (I)−2
∣∣+

∑

I ⊆ R
(σ/Bδ)

n < N (I) ≤ (
√
nσ)n

∣∣DT
Zn,σ(I)

2 −N (I)−2
∣∣

≤ (18δ + 2−n+5) ·
∑

I ⊆ R
N (I) ≤ (σ/Bδ)

n

N (I)−2 + 2 ·H((
√
nσ)n) ·

(
2Bδ
σ

)2n

<
1

8ζK(2)
+ 2 ·H((

√
nσ)n) ·

(
2Bδ
σ

)2n

+ o(1),

where in the last inequality we used the hoie of δ and the fat that

∑
I⊆R,N(I)≤(σ√n)n N(I)−2 ≤∑

I⊆RN(I)−2 = ζK(2). Reall that H(N) is the number of (integral) ideals of R of norm ≤ N .

From Lemma 4.3 with ε = ln lnn
lnn , we know that H(N) ≤ 2 exp( 4n

ln lnn)·N1+ε
. Taking σ ≥ 7n1.5 ln1.5 n

providesH ((
√
nσ)n)·

(
2Bδ
σ

)2n
≤ 1

8ζK(2) , for su�iently large n, using ζK(2) = O(1) from Lemma 4.2.

Overall, the �rst sum is ≤ 1
4ζK(2) for n su�iently large.

We now bound the seond sum, as follows:

∑

I ⊆ R
N (I) > ⌊(√nσ)n⌋

N (I)−2 =
∑

k>⌊(√nσ)n⌋

H(k)−H(k − 1)

k2
=

∑

k>⌊(√nσ)n⌋

H(k)

k2
−

∑

k≥⌊(√nσ)n⌋

H(k)

(k + 1)2

≤
∑

k>⌊(√nσ)n⌋
H(k)

(
1

k2
− 1

(k + 1)2

)

≤ 2 exp

(
4n

ln lnn

)
·

∑

k≥(√nσ)n

2k + 1

k1−ε(k + 1)2
,

where we used the bound on H(k) from Lemma 4.3 with ε = ln lnn
lnn . Now, notie that the summand

is ≤ 2
k2−ε , whih allows us to bound the seond sum by O(exp( 4n

ln lnn) · (
√
nσ)−(1−ε)n) = o(1), so the

latter is ≤ (4ζK(2))−1 for su�iently large n, whih ompletes the proof. ⊓⊔

4.2 A revised NTRUSign key generation algorithm

The revised key generation for NTRUSign is given in Fig. 3. It is inspired from the algorithm of [26,

Se. 4℄ and desribed in more details in [25, Se. 5℄. The vetor (f, g) produed by the NTRUEnrypt
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Inputs: n, q ∈ Z, σ > 0.
Output: A key pair (sk, pk) ∈ R2×2 ×R×

q .

1. Sample f from DZn,σ ; if (f mod q) 6∈ R×
q , resample.

2. Sample g from DZn,σ; if (g mod q) 6∈ R×
q , resample.

3. If ‖f‖ > √n · σ or ‖g‖ > √n · σ, restart.
4. If 〈f, g〉 6= R, restart.
5. Compute F1, G1 ∈ R suh that fG1 − gF1 = 1, e.g., using a Hermite Normal

Form algorithm (see [9, Ch. 2.4℄); set Fq := qF1 and Gq := qG1.

6. Use Babai's nearest plane algorithm [6℄ to approximate (Fq, Gq) by an integer

linear ombination of (f, g), (xf, xg), . . . , (xn−1f, xn−1g). Let (F,G) ∈ R2
be the

output, suh that there exists k ∈ R with (F,G) = (Fq , Gq)− k(f, g).
7. If ‖(F,G)‖ > nσ, restart.

8. Return seret key sk =

[

f g
F G

]

and publi key pk = h = g/f ∈ R×
q .

Fig. 3. Revised key generation algorithm for NTRUSign.

key generation algorithm is a short vetor in the R-module generated by the rows of the matrix[
1 h
0 q

]
with h = g/f mod q. The algorithm of Fig. 3 extends (f, g) into a short module basis

[
f g
F G

]
.

Beause of the rejetion tests, the output publi key h may not be uniformly distributed in R×q ,
as it was the ase for NTRUEnrypt. Uniformity is important for us to be able to eventually rely on

Theorem 2.1 to prove the seurity of the signature sheme. In fat, as we will show in Subsetion 4.3,

it su�es that the ombined rejetion probabilities of Steps 3, 4 and 7 is non-negligibly away from 1.
By Lemma 4.4, when no rejetion is performed in Steps 1�3, the rejetion probability of Step 4

is (assuming that σ ≥ 7n1.5 ln1.5 n and that n is a su�iently large power of 2):

Pr
f,g←֓DR,σ

[〈f, g〉 6= R] ≤ 1− 1

2ζK(2)
+ 2−n+1.

We now onsider the rejetion probability of Step 7 (without rejetion in Steps 1�2).

Lemma 4.5. Assume that σ ≥ 7n1.5 ln1.5 n. Then, as n grows to in�nity:

Pr
f,g←֓DR,σ

[
‖(F,G)‖2 > n2σ2

2
+
q2ω(n)

σ2

∣∣∣∣ 〈f, g〉 = R

]
= o(1),

where F and G are as de�ned in Steps 5 and 6 of the algorithm of Figure 3.

Proof. We deompose (F,G) as (F,G) = (Fq, Gq)
∗ + (ef , eg), where (Fq, Gq)

∗
is the projetion

of (Fq, Gq) orthogonally to the K-span of (f, g) (whih an also be viewed as the projetion

of (Fq, Gq) orthogonally to the Q-span of (f, g), (xf, xg), . . . , (xn−1f, xn−1g)). We have:

‖(F,G)‖2 = ‖(Fq, Gq)∗‖2 + ‖(ef , eg)‖2.

As we use Babai's nearest-plane algorithm, the vetor (ef , eg) is the rounding error of Babai's nearest
plane algorithm, in rounding (Fq, Gq) − (Fq, Gq)

∗
to a lose point in the lattie L(f, g) de�ned as

the Z-span of (f, g), (xf, xg), . . . , (xn−1f, xn−1g).
Sine ‖(Fq , Gq)∗‖ = mink∈K ‖(Fq − kf,Gq − kg)‖, to obtain an upper bound on ‖(Fq , Gq)∗‖,

it su�es to �nd a k ∈ R suh that ‖(Fq − kf,Gq − kg)‖ is small. From the equation fGq −
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gFq = q, we obtain Gq = qf−1 + g(f−1Fq) (where inversion takes plae in K). Taking k := f−1Fq
gives ‖(F,G)∗‖ ≤ ‖(0, qf−1)‖ = q‖f−1‖. From Lemma 4.1 with t = ω(n) and I = R, we get:

Pr
f←֓DR,σ

[
‖f−1‖ ≥ ω(

√
n)

σ

]
≤ o(1).

This remains the ase when the event is onditioned on 〈f, g〉 = R, as, by Lemma 4.4, the probability

that 〈f, g〉 = R is bounded from below by a onstant. Overall, we have that ‖(Fq, Gq)∗‖ ≤ qω(
√
n)

σ
holds exept with probability ≤ o(1).

To bound ‖(ef , eg)‖, note that ‖(ef , eg)‖ ≤
√
n
2 maxi ‖(xif, xig)‖ =

√
n
2 ‖(f, g)‖. By Lemma 2.3,

we have ‖(f, g)‖ ≤
√
2nσ with probability ≥ 1 − o(1), when f, g ←֓ DR,σ. For the same reason as

above, this remains the ase when onditioning on 〈f, g〉 = R. Overall, we have ‖(ef , eg)‖ ≤ nσ√
2
,

exept with probability ≤ o(1). This ompletes the proof. ⊓⊔

We an now analyze the overall rejetion probability of the revised NTRUSign key generation

algorithm.

Lemma 4.6. Assume that q ≥ 64nζK(2) and σ = ω(max(
√
n lnn · q1/kq , q1/2n−1/4, n3/2 ln3/2 n)),

where kq the number of irreduible fators of xn + 1 modulo q. Then if n is su�iently large, the

ombined rejetion probability of Steps 3, 4 and 7 of the algorithm of Fig. 3 (when f and g are

independently sampled from D×σ ) is ≤ 1− c, for some absolute onstant c > 0.

Proof. For i ∈ {3, 4, 7}, we let pi denote the rejetion probability of the test in Step i, i.e.:

• p3 is the probability that ‖f‖ > √nσ or ‖g‖ > √nσ, with f, g ←֓ D×R,σ.
• p4 is the probability that 〈f, g〉 6= R and ‖f‖, ‖g‖ ≤ √nσ, with f, g ←֓ D×R,σ.
• p7 is the probability that (‖F,G‖) > nσ, 〈f, g〉 = R and ‖f‖, ‖g‖ ≤ √nσ, with f, g ←֓ D×R,σ .

For i ∈ {3, 4, 7}, we de�ne p′i as pi exept that f and g are independently sampled from DR,σ rather

than D×R,σ. Let p1 be the probability of rejetion of f at Step 1. By the union bound, the probability

of rejeting f or g at Steps 1 or 2 is ≤ 2p1. Hene for i ∈ {3, 4, 7}, we have pi ≤ p′i/(1− 2p1).
The rejetion probability p1 has already been studied in Subsetion 3.3. Indeed, by Lemma 3.5

and the hoie of σ and q, we have p1 ≤ 1
32ζK(2) . Lemmata 2.1 and 2.3 and the hoie of σ imply

that p′3 ≤ 2−n+2
. Finally, from the hoie of σ and Lemmata 4.4 and 4.5, we have that p′4 ≤

1− 1
2ζK(2) +o(1) and p

′
7 = o(1). Reall from Lemma 4.2 that ζK(2) = O(1) when n grows to in�nity.

Therefore, for a large enough n, we have p′3+p
′
4+p

′
7 ≤ 1− 1

4ζK(2) and the total rejetion probability

satis�es p3 + p4 + p7 ≤ p′3+p
′
4+p

′
7

1−2p1 ≤ 1− 1
8ζK(2) , as required. ⊓⊔

We onlude this setion with a orretness and e�ieny statement for the revised NTRUSign

key generation algorithm.

Theorem 4.1. Let n be a power of 2 suh that Φ = xn+1 splits into kq ∈ {2, n} irreduible fators

modulo prime q ≥ 64ζK(2)n. Let ε ∈ (0, 1/3) and σ ≥ max(n
√
ln(8nq) · q1/2+ε, ω(n3/2 ln3/2 n)) if

kq = n, or σ ≥ max(
√
n ln(8nq) · q1/2+ε, ω(n3/2 ln3/2 n)) if kq = 2. Then the algorithm of Fig. 3

terminates in expeted polynomial time, and the output matrix

[
f g
F G

]
is an R-basis of the R-

module spanned by the rows of

[
1 h
0 q

]
with h = g/f mod q. Furthermore, we have ‖(f, g)‖ ≤ 2

√
nσ,
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and ‖(F,G)‖ ≤ nσ. Finally, if n is su�iently large, the distribution of the returned h is rejeted

with probability c < 1 for some absolute onstant c from a distribution whose statistial distane

from U(R×q ) is ≤ 210nq−⌊εn⌋.

Proof. The �rst statement is provided by Lemma 4.6. For the seond statement, we refer to [26,

Th. 1℄. The norm inequalities are obvious from the desription of the algorithm. Finally, the last

statement is provided by Theorem 3.2 and Lemma 4.6. ⊓⊔

4.3 A revised NTRUSign sheme

In this setion we present a provably seure variant of NTRUSign (in the random orale model). The

sheme is an e�ient instaniation of the Gentry et al. signature [21℄, where e�ieny is improved

both by using the ring struture (to redue omputation and storage from Õ(n2) to Õ(n)), and the

NTRU key to redue the key length and signature to a single ring element.

Collision-Resistant Preimage Sampleable Funtions. We reall that the Gentry et al. signa-

ture is built from a general ryptographi primitive introdued in [21℄ and alled Collision-Resistant

Preimage Sampleable Funtions (CRPSF), whih we reall.

De�nition 4.1 (CRPSF). A CRPSF is spei�ed by three probabilisti polynomial-time algorithms

(TrapGen,SampleDom,SamplePre) suh that:

1. Generating a Funtion with Trapdoor: Given a seurity parameter n, TrapGen(1n) returns (a, t),
where a is the desription of an e�iently omputable funtion fa : Dn → Rn (for some e�-

iently reognizable domain Dn and range Rn), and t is a trapdoor string for fa. In the following,

we �x some pair (a, t) returned by TrapGen(1n). Note that the following properties need only hold

for with probability negligibly lose to 1 over the hoie of (a, t) output by TrapGen(1n).
2. Domain Sampling with Uniform Output: Given a seurity parameter n, SampleDom(1n) re-

turns x sampled from a distribution over Dn suh that the statistial distane between fa(x) and
the uniform distribution over Rn is negligible.

3. Preimage Sampling with Trapdoor: Given any y ∈ Rn, SamplePre(t, y) outputs x suh that

fa(x) = y and the distribution of x is within a negligible distane to the onditional distribution

of x′ ←֓ SampleDom(1n) given fa(x
′) = y.

4. Preimage Min-Entropy: For eah y ∈ Rn, the onditional min-entropy of x ←֓ SampleDom(1n)
given fa(x) = y is ω(lnn).

5. Collision-Resistane without Trapdoor: For any probabilisti polynomial-time algorithm F, the

probability that F(1n, a) outputs distint x, x′ ∈ Dn suh that fa(x) = fa(x
′) is negligible, where

the probability is taken over the hoie of a and the random oins of F.

Our CRPSF onstrution NTRUPSF(n, q, σ, s) is shown in Fig. 4. The parameters n and q de�ne
the rings R and Rq. The parameter σ is the width of the disrete Gaussian distribution used in

the NTRUSign key generation proess, while s is the width of the Gaussian used in the preimage

sampling.

Theorem 4.2. Suppose n is a power of 2 suh that Φ = xn + 1 splits into kq ∈ {2, n} irreduible
fators modulo prime q = Poly(n), with σ = n

√
ln(8nq) · q1/2+ε and q1/2−ε = Ω̃(n7/2) if kq =

n, or σ =
√
n ln(8nq) · q1/2+ε and q1/2−ε = Ω̃(n3) if kq = 2, for some �xed ε ∈ (0, lnnln q ). Let

s = Ω̃(n3/2σ). Then the onstrution NTRUPSF(n, q, σ, s) from Fig. 4 is a CRPSF seure against
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• Generating a Funtion with Trapdoor � TrapGen(1n, q, σ): Run the NTRUSign key generation algorithm

from Fig. 3, using n, q, σ as inputs. It returns an NTRU key h = g/f ∈ R×
q and a trapdoor R-basis sk =

[

f g
F G

]

for the R-module h⊥ = {(z1, z2) ∈ R2 : z2 = hz1 mod q}. The key h de�nes funtion fh(z1, z2) = hz1 − z2 ∈ Rq

with domain Dn = {z ∈ R2 : ‖z‖ ≤ s
√
2n} and range Rn = Rq. The trapdoor string for fh is sk.

• Domain Sampling with Uniform Output � SampleDom(1n, q, s): Sample z from DZ2n,s; if ‖z‖ >
√
2ns,

resample.

• Preimage Sampling with Trapdoor � SamplePre(sk, t): To �nd a preimage in Dn for target t ∈ Rq under fh
using the trapdoor sk, note that c = (1, h − t) is a preimage of t under fh (not neessarily in Dn). Sample z

from Dh⊥+c,s, using trapdoor basis sk for h⊥
and the algorithm of Lemma 2.9. Return z.

Fig. 4. Constrution of CRPSF primitive NTRUPSF(n, q, σ, s).

Poly(n) time algorithms, assuming the hardness of γ-Ideal-SVP against Poly(n) time algorithms,

with γ = Õ(n · s).

Proof. The sets Dn and Rn are easily reognizable. Observe that s ≥ max(
√
n, η1/2(Z

2n)), so by

Lemmata 2.3 and 2.6, the distribution of z = (z1, z2) returned by SampleDom is within negligible

statistial distane of DZ2n,s. To show Property 2 of De�nition 4.1, we apply Theorem 3.1 with

δ = n−ω(1) to onlude that thanks to the hoie of s, exept for a fration ≤ 28nq−2εn of (a1, a2) ∈
(R×q )

2
, we have ∆(a1z1−a2z2;U(Rq)) ≤ 2δ with (z1, z2) ←֓ DZ2n,s. Sine the mapping φ : x 7→ a−12 x

is a bijetion of Rq, we have ∆(a1z1 − a2z2;U(Rq)) = ∆(a1a
−1
2 z1 − z2;U(Rq)) for eah a1, a2.

Moreover, sine h = a−12 a1 is uniformly random in R×q when a1 and a2 are independently so, we get

∆(hz1−z2;U(Rq)) ≤ 2δ with (z1, z2) ←֓ DZ2n,s exept for a fration ≤ 28nq−2εn of h ∈ R×q . Finally,
by Theorem 4.1, the distribution Dh of h = g/f generated by TrapGen is obtained by rejetion

with onstant rejetion probability c < 1 from a distribution within statistial distane 210nq−⌊εn⌋

of U(R×q ). It follows that ∆(hz1 − z2;U(Rq)) ≤ 2δ with (z1, z2) ←֓ DZ2n,s exept with probability

≤ 1
1−c · (28nq−2εn + 210nq−⌊εn⌋) = q−Ω(n)

over the hoie of the publi key h, as required.
To show Property 3 of De�nition 4.1, we �rst observe that, for any �xed t ∈ Rq, the onditional

distribution of z ←֓ DZ2n,s given fh(z) = hz1 − z2 = t is exatly F (z) = ρs(z)
ρs(h⊥+c)

= Dh⊥+c,s(z),

where c = (1, h − t). Therefore, Property 3 follows from Lemma 2.9, the upper bound nσ on the

trapdoor basis norm from Theorem 4.1, and the hoie of s = ω(n3/2
√
lnn · σ).

To show Property 4 of De�nition 4.1, note that the onditional preimage distribution isDh⊥+c,s =
Dh⊥,s,−c + c, where c = (1, h − t), so it su�es to bound the min-entropy of Dh⊥,s,−c from be-

low. By Lemma 2.5, the latter min-entropy is Ω(n) if the ondition s ≥ 2η1/2(h
⊥) is satis�ed.

Theorem 3.1 shows that for all exept a fration ≤ 28nq−εn = q−Ω(n)
of a ∈ (R×q )

2
, we have

η1/2(a
⊥) = Õ(

√
nq

1
2
+ε). Sine a⊥ = h⊥ with h = a−12 a1, it follows that for all exept a fration

≤ q−Ω(n)
of h ∈ R×q , we have η1/2(h⊥) ≤ Õ(

√
nq

1
2
+ε). By the hoie of s, the ondition s ≥ 2η1/2(h

⊥)

is satis�ed. By Theorem 4.1, the ondition is satis�ed exept with probability

q−Ω(n)

1−c = q−Ω(n)
over

the hoie of the publi key h, as required.
Finally, we show Property 5 of De�nition 4.1. Let A be a ollision-�nding algorithm for NTRUPSF

with run-time T = Poly(n) and suess probability δ = 1/Poly(n) over the hoie of the publi

key h and the randomness of A. By Theorem 4.1, the suess probability of A over the hoie

of h ←֓ U(R×q ) and the randomness of A is at least δ′ = (1 − c)δ − 210nq−⌊εn⌋. Note that we

have δ′ = 1/Poly(n). We onstrut an algorithm A′ for R-SISq,2,β with β = 2
√
2ns that works as
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follows on input (a1, a2) ←֓ U(R2
q). If (a1, a2) /∈ (R×q )

2
, it aborts. Else, A′ runs A on input h =

a−12 a1. If A sueeds, it outputs (z1, z2) 6= (z′1, z
′
2) with ‖(z1, z2)‖, ‖(z′1, z′2)‖ ≤

√
2ns suh that

a1(z1−z′1)+a2(z′2−z2) = 0, and then A′ returns w = (z1−z′1, z′2−z2). Note that 0 < ‖w‖ ≤ 2
√
2ns,

as required. Conditioned on (a1, a2) ∈ (R×q )
2
, the distribution of h given to A is U(R×q ) and thus

A sueeds with probability ≥ δ′. Sine (a1, a2) ∈ (R×q )
2
with probability ≥ 1 − 2n/q = Ω(1), it

follows that A′ sueeds probability ≥ (1 − 2n/q)δ′ = 1/Poly(n). Applying Theorem 2.1 using the

hoie of q = Ω̃(β
√
n), we obtain a Poly(n) time algorithm for γ-Ideal-SVP with the laimed γ. ⊓⊔

The revised NTRUSign sheme. Given the NTRUPSF onstrution above, the revised NTRUSign

follows the Gentry et al. `Probabilisti Full Domain Hash' onstrution and is shown in Fig. 5.

Besides the NTRUPSF parameters, it has an additional parameter k that indiates the randomizer

length. Note that applying the Gentry et al. onstrution diretly on NTRUPSF results in signatures

on a message M onsisting of two ring elements (σ1, σ2) and a randomizer r ∈ {0, 1}k satisfying

hσ1 − σ2 = H(r,M), where H is the random orale. To redue the signature length, our NTRUSign

variant eliminates σ2 from the signature, sine it an be easily reovered during veri�ation from

the remaining information.

• Key Generation � KeyGen(1n, q, σ, k): Run TrapGen(1n, q, σ) of NTRUPSF(n, q, σ, s) to get key h ∈ R×
q and

trapdoor sk for funtion fh : Dn → Rn, where Dn = {(z1, z2) ∈ R2 : ‖(z1, z2)‖ ≤
√
2ns}, Rn = Rq

and fh(z1, z2) = hz1 − z2. Return the signer's publi key h and seret key sk.

• Signing Algorithm � Sign(sk,M): Choose r ←֓ U({0, 1}k), let (σ1, σ2) := SamplePre(sk,H(r,M)). Return
(r, σ1).

• Veri�ation Algorithm � Ver(h,M, (r, σ1)): Compute t = H(r,M) and σ2 = hσ1 − t. Aept if (σ1, σ2) ∈ Dn

and r ∈ {0, 1}k, else rejet.

Fig. 5. Constrution of NTRUSign(n, q, σ, s, k) from the NTRUPSF primitive in Fig. 4.

Sine σ2 is easily omputed from σ1, r and the publi information, the seurity of NTRUSign is

equivalent to that of the Gentry et al. signature obtained from NTRUPSF, whih in turn has been

shown in [21, Prop. 6.2℄ to follow from the seurity of the underlying CRPSF. Combining with

Theorem 4.2, we obtain our seond main result.

Corollary 4.1. Let ε, n, q, σ, s satisfy the onditions in Theorem 4.2, and let k = ω(lnn). Then,
assuming the random orale model for H, the signature sheme NTRUSign(n, q, σ, s, k) from Fig. 5

is strongly existentially unforgeable against a hosen message attak with Poly(n) run-time and

1/Poly(n) suess probability, assuming the hardness of γ-Ideal-SVP against Poly(n) time algo-

rithms, with γ = Õ(n · s).

Note that if H runs in quasi-linear time, then so does the veri�ation algorithm. Also, if pre-

omputations are performed, then so does the signing algorithm (see [55, 13℄). The amortized ost

per signed bit is then Õ(1). Finally, we remark that the smallest q and γ that an be hosen in

Theorem 4.2 and Corollary 4.1 are Ω̃(n6/(1−2ε)) if kq = 2 and Ω̃(n7/(1−2ε)) if kq = n. Finally, we
observe that our proof an be readily adapted to o�er seurity against sub-exponential attakers (in

the random orale model), under the assumption that Ideal-SVP annot be solved in sub-exponential

time for some polynomial approximation fator γ.
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