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Abstract—This paper is devoted to the design of a 258-
bit multiplier for computing pairings over Barreto-Naehrig
(BN) curves at 128-bit security level. The proposed design is
optimized for Xilinx field programmable gate array (FPGA).
Each 258-bit integer is represented as a polynomial with five,
65 bit signed integer, coefficients . Exploiting this splitting we
designed a pipelined 65-bit multiplier based on new Karatsuba-
Ofman variant using non-standard splitting to fit to the Xilinx
embedded digital signal processor (DSP) blocks. Our architec-
ture is able to compute 258-bit multiplication suitable for BN
curves using only 11 in-built DSP blocks available on Virtex-6
Xilinx FPGA devices. It is the least DSP blocks consumption in
the known literature. This work can be extended to efficiently
compute pairings at higher security levels.

Keywords-Modular Multiplication, Modular Reduction,
Cryptography, Pairing-Friendly Curves, Non-Standard Split-
ting, Field Programmable Gate Array(FPGA).

I. INTRODUCTION

A bilinear pairing is a map G1 x G2 → GT , where G1 and
G2 are typically additive groups and GT is a multiplicative
group and the map is linear in each component. Many
pairings used in cryptography such as the Tate pairing
[1], ate pairing [3], R-ate pairing [2] and optimal pairings
[4], choose G1 and G2 to be specific cyclic subgroups of
E(Fpk), and GT to be a subgroup of F∗pk .

A. Ate pairing

Let Fp be a finite field and let E be an elliptic curve
defined over Fp. Let r be a large prime dividing #E(Fp)
and k the embedding degree of E(Fp) with respect to r,
namely, the smallest positive integer k such that r|pk − 1.
For any finite extension field K of Fp, denote with E(K)[r]
the K-rational r-torsion group of the curve. For P ∈ E(K)
and an integer s,let O be the infinity point of E and fs,P
be a K-rational function or Miller function with divisor
(fs,P ) = s(P )− ([s]P )− (s− 1)(O).

Let G1 = E(Fp)[r], G2 = E(Fpk)∩Ker(πp−[p]), where
πp is the p-th power Frobenius endomorphism;i.e πp : E →
E : (x, y) 7→ (xp, yp) and GT = µr ⊂ F∗pk .

Let P ∈ G1, Q ∈ G2 and let t := p + 1 − #E(Fp) be
the trace of Frobenius, then:

α(P,Q) = (ft−1,Q(P ))(p
k−1)/r (1)

is non-degenerate bilinear, and computable pairing, it is the
ate pairing.

B. Pairing-Friendly Curves

An elliptic curve E over Fp is called pairing-friendly
whenever there exists a large prime r|#E(Fp) with r >√
p and the embedding degree k is small enough, e.g.

k < log2(r)/8. Many construction methods result in a
parametrized family of elliptic curves, i.e. r and p are
given by the evaluation of polynomials r(u) and f(u) at an
integer value u. One of the most important examples of such
families are the Barreto- Naehrig (BN) curves [5], ideally
suited for implementing pairings at the 128-bit security level.
These curves have k = 12 are defined by

p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1 (2)

r(u) = 36u4 + 36u3 + 18u2 + 6u+ 1 (3)

for some u ∈ Z such that p is prime. We show that
when choosing u = 2τ + s, where s is a reasonably
small number, the modular multiplication in Fp can be
substantially improved.

The R-ate pairing [2] is a generalization of the ate pairing
and can be seen as an instantiation of optimal pairings [4].
Since the definition of the optimal ate pairing really depends
on the particular elliptic curve one is using, we only provide
the definition in the case of BN curves: using the same G1

and G2 as for the ate pairing, the optimal ate pairing on BN
curves is defined as [7]

%(P,Q) = (f.(f.laQ,Q(P ))p.lπ(aQ+Q),aQ(P ))(p
k−1)/r

(4)
where a = 6u + 2, f = fa,Q(P ) and lA,B denotes the line
through points A and B.

C. FPGA resources

FPGA manufacturers integrate more and more of ded-
icated function blocks into modern devices. For exam-
ple, Xilinx Virtex-6 FPGAs including separate columns of
additional function hard cores for memory (BRAM) and
arithmetic DSP operations. The DSP blocks are grouped in
pairs that span the height of four or five CLBs, respectively.



Algorithm 1 Optimal Ate Pairing over BN curves [7]

Input: a = |6u + 2| =
s−1∑
i=0

ai2i, P ∈ E(Fp)[r], Q ∈

E(Fp12)[r] ∩ ker(πp − [p])
Output: %(Q,P ) ∈ Fp12

1: T =← Q, f ← 1
2: for i=s-2 downto 0 do
3: T ← 2T , f ← f2.lT,T (P )
4: if ai = 1 then
5: T ← T +Q, f ← f.lT,Q(P )
6: end if
7: end for
8: f ← (f.(f.laQ,Q(P ))p.lπ(aQ+Q),aQ(P ))(p

k−1)/r

9: return f

The dual-ported BRAM matches the height of the pair of
DSP blocks and supports a fast data path between memory
and the DSP elements. Of particular interest is the use
of these memory elements and DSP blocks for efficient
boolean and integer arithmetic operations with low signal
propagation time. Large devices of Xilinx Virtex-6 class
are equipped with up to thousand individual function blocks
of these dedicated memory and arithmetic units. Originally,
the integrated DSP blocks as indicated by their name were
designed to accelerate DSP applications, e.g., Finite Impulse
Response (FIR) filters, etc. However, these arithmetic units
can be programmed to perform universal arithmetic func-
tions not limited to the scope of DSP filter applications;
they support generic multiplication, addition and subtraction
of (un)signed integers [14].

D. Outline

The remainder of this paper is organized as follows:
Section II studies the most important existing works related
to efficient hardware implementations of multiplication over
Fp suitable for computing pairings over BN curves. Section
III introduces our hardware design of 65 x 65 bit multiplier
based on DSP macro for Virtex-6 and performance compari-
son. Section IV focuses on the hardware implementation and
performance comparison of our 258 bit multiplier. Finally,
section V provides conclusion and future works.

II. RELATED WORKS

Since 2009 many hardware implementations of multi-
plication over Fp suitable for computing pairings on BN
curves was described. The first work was described by Fan
et al. [6]. Their proposed architecture was base on Hybrid
Montgomery Multiplier (HMM) where multiplication and
reduction was interleaved. In same year, a new Applica-
tion Specific Integrated Circuit (ASIC) implementation of
pairings over BN curves was proposed. In 2010 Fan et al.
[7] proposed a new pipelined and parallelized version of

their HMM [6]. In 2011, Corona et al. [8] proposed a new
hardware implementation of 256bit multiplier suitable for
computing pairings over BN curves. They used an asym-
metric divide and conquer approach to efficiently implement
their 65x65 bit multiplier. Their design used only 12 DSP
slices on a Xilinx Virtex 6. In same year, Yao et al. [9]
proposed a new hardware implementation of optimal ate
pairing on Virtex 6. Their design computed multiplication
over Fp using 32 DSP slices. They combined Lazy reduction
with RNS representation.

III. HARDWARE DESIGN OF 65X65 BIT MULTIPLIER

A. Karatsuba-Ofman Algorithm: Two-part splitting
Let X and Y be two integers to multiply,

X =
∑2n−1
i=0 xi2i = and Y =

∑2n−1
i=0 yi2i. We can

split Y and Y into two parts:
X = 2nX1 + X0 and Y = 2nY1 + Y0 The product X.Y
can be written as

X.Y = 22nX1Y1+2n(X1Y 1+X0Y0−DxDy)+X0Y0 (5)

with Dx = X1−X0 and Dy = Y1−Y0. The same work can
be expanded to three, four, five, six and seven-part splitting
[10]. But these variants of Karatsuba-Ofman can not exploit
the full performance of DSP blocks. The solution is to find
a tilling method to fit to the Xilinx embedded DSP blocks.

B. Asymmetric splitting
This section reported a work introduced for the first time

in [11] and exploited in [8] to achieve 64bit multiplier for
computing pairings over (BN) curves. These works used of
the Virtex-6 25x18 signed multipliers. In this case, Y has to
be decomposed into 24-bit chunks, while X is decomposed
into 17-bit parts. This asymmetric variant of Karatsuba-
Ofman algorithm consumed 12 DSP slices. This splitting
would be optimal for a 72x68 product, but quite wasteful for
the 65x65bit multiplication required for pairing computation.
To get optimal exploitation of the in-built Virtex-6 resources
[12] proposed a new splitting method called ”non-standard
tilling”. This method is illustrated by figure 1 (b) and the
following equation.

XY = X0:16Y0:23 P0
+ 217(X17:33Y0:23 P1
+ 217(X34:50Y0:23 P2
+ 217X51:67Y0:23)) P3
+ 224(X0:16Y24:47 P4
+ 217(X17:33Y24:47 P5
+ 217(X34:50Y24:47 P6
+ 217X51:67Y24:47))) P7
+ 248(X0:23Y48:64 P8
+ 224X24:47Y48:64 P9
+ 248X48:71Y48:64) P10



(a) Asymmetric tilling [11] (b) Non standard tilling [12]

Figure 1. Tilling for 65x65 bit multiplication

Figure 2. Partial Products regroupement

Table I
PERFORMANCE OF 65 BIT MULTIPLIER

frequency latency DSP48 slices

[8] 300 MHz 4 12

this work 405 MHz 13 11

This multiplier was implemented, synthesized and test in
VHDL for Xilinx Virtex-6 FPGA target. We have regrouped
the Product P0. . . P10 as shown in figure 2. This arrangement
let us exploit the shift, the multiplier and the adder offered
by the in-built DSP blocks. Table 1 shows the performance
of our design for 65 bit multiplier.

IV. ARCHITECTURE OF 258 BIT MULTIPLIER

In this section we present a hardware architecture for a
modified version of HMM multiplier (algorithm 6) [7]. We
choose u = 263 +29 +28 +26 +24 +23 +1, this parameter
generates BN curves suitable for pairings at 128 bit security
level.

A. Modified HMM multiplier

Taking advantage of small number of sub-products done
by equation 7 in [10] to compute product of quartic polyno-
mials we propose the following algorithm 2. As mentioned
in [7] we replaced multiplications by constants by shifts
(power of 2) and additions. taking advantage of this the
complexity of our modified HMM was reduced. Algorithm
2 is divided into 4 phases. Phase 1 computed the product
a.b using 13 sub-products (65x65 bit multipliers, 7x65 bit

Algorithm 2 Modified Parallel HMM

Input: a =
4∑
i=0

aiu
i, b =

4∑
i=0

biu
i, p = 36u4 + 36u3 +

24u2 + 6u+ 1
Output: r(u) = a.b.u−5 mod p

Phase1: Product of Quartic polynomials [10]
2: Phase2: Coefficient Reduction

for i=0 to 4 do
4: ci+1 ← ci+1 + (ci div u), ci ← ci mod u

end for
6: Phase3: Polynomial Reduction
q(u)← (−c4 + 6(c3 − 2c2 − 6(c1 − 9c0)))u4

+(c3 + 6(c2 − 2c1 − 6c0))u3

+(−c2 + 6(c1 − 2c0))u2

+(−c1 + 6c0)z.
8: h(u)← (36q4)u3

+36(q4 + q3)u2

+12(2q4 + 3(q3 + q2))u
+6(q4 + 4q3 + 6(q2 + q1))u

v(u)← c(u)/u5 + h(u)
10: Phase4: Coefficient Reduction

for i=0 to 3 do
12: vi+1 ← vi+1 + (vi div u), vi ← vi mod u

end for
14: return r(u)← v(u)

multipliers and one 7x7 bit multiplier) and 22 addition
[10]. Phase 2 and phase 4 are dedicated to the coefficient
reduction using an expensive operation div u. But using the
propriety of u written as 263 + 857 algorithm 5 in [7]
replaced division by u by shifts additions and subtractions.
The coefficient reduction is evaluated in parallel with sub-
products. Phase 3 is the polynomial reduction it is also shifts
and addition/subtraction operations. Our approach keep the
circuit occupied all time.

B. implementation result of modified HMM

We used Xilinx Virtex-6 FPGA to implement our design
it uses 11 DSP48 and 4 BRAMs to storage the coefficients
of inputs output and partial variables. Our design takes 11



Table II
COMPARISON WITH EXISTING HARDWARE IMPLEMENTATIONS

criterion [6] [7] [8] [9] [13] this work
Frequency (MHz) 204 210 223 250 147 208
cycle per product 23 5 15 15 - 11

Latency 0 25 40 8 - 20
Device ASIC Virtex-6 Virtex-6 Virtex-6 Xilinx XCHVHX250T Virtex-6

DSP48 Slices - 46/288 12/48 36/2014 11/48

cycles to achieve 258x258 multiplication with maximum
frequency equal to 208 MHz. Table II compares our im-
plementation with the state of art implementations. Our
performance are competitive with others similar works.

V. CONCLUSION

This paper presented an original parallel and pipelined
hardware implementation of modular multiplication. This
implementation exploits the in-built Xilinx FPGA ressources
to achieve a 258x258 bit multiplication using only 11 DSP
blocks. This design is flexible and reconfigurable and can
be used to efficiency compute pairings on BN curves at 128
bit security level or higher. As future work we will use this
multiplier to implement optimal ate pairing on BN curves
at 128 bit security level.
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