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ABSTRACT
An ever-increasing number of personal photos is stored on-
line. This trend can be problematic, because face recognition
software can undermine user privacy in unexpected ways.
Face de-identification aims to prevent automatic recognition
of faces thus improving user privacy, but previous work al-
ters the image in a way that makes them indistinguishable
for both computers and humans, which prevents a wide-
spread use.

We propose a method for de-identification of images that
effectively prevents face recognition software (using the most
popular and effective algorithms) from identifying people,
but still allows human recognition.

We evaluate our method experimentally by adapting the
CSU framework and using the FERET database. We show
that we are able to achieve strong de-identification while
maintaining reasonable image quality.

1. INTRODUCTION
The number of personal photos that is available online has

been rapidly increasing over the past years.1 This develop-
ment is driven by the wide availability of (stationary and
mobile) high-speed Internet, cheap electronic storage, and
ubiquitous digital cameras on the one hand, and a strong
trend towards social networks and managing friends online
on the other hand. Recently, some services publicly an-
nounced the deployment of face recognition software on the
stored images (see, e.g., [12]). Face recognition software can
be beneficial for the user, as it helps finding and tagging
friends in pictures. However, it can also be used to gather
additional information about friendship-relations (i.e., the
social graph), even relations the user deliberately did not
share with everybody.

People often try to separate some groups of people, e.g.,
personal friends and work colleagues and reserve an online

1As an example, Facebook hosted 10 billion photos in Oct.
2008, receiving about 250 million new photos a day [14, 11].
Flickr hosted 4 billion photos in Oct. 2009 [15].
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profile for personal friends. Note that Facebook considers
the social graph as public information that can even be
queried via a special API [13], and in general one can easily
imagine external services crawling the image database. A
rather drastic example includes predicting a persons sexual
orientation from the social graph [22]. So a person might
want to hide (parts of) their social graph in order to pro-
tect such information, but still might want to post images.
(We stress that automated extraction of the social graph is a
much bigger problem than manual extraction, because of the
large-scale extraction of information that becomes possible.)

In the past few month, the criticism of automated face
recognition, and in particular Facebook as the most promi-
nent example, has increased, e.g., from the Electronic Pri-
vacy Information Center (EPIC), which considers Face-
book’s handling of personal data a violation of European
privacy law (see, e.g., [35, 9]).

In this work we will demonstrate a system that effectively
protects the anonymity, in particular the social graph, of a
user by thwarting face recognition software, while still allow-
ing humans to identify faces and keeping the visual changes
to the image small. In particular, previous work [24] mapped
several “similar” faces to the same “average”-face (see Sec-
tion 2 for details), thus the resulting face-images are indis-
tinguishable for both computers and humans. While their
approach provides strong security guarantees, it constitutes
a strong visual alteration of the face images, and in par-
ticular prevents humans from distinguishing persons. We
believe that this is too intrusive to find wide-spread use.

1.1 Our contribution
We propose a system to anonymize face images in a way

that retains more details of the original image than previ-
ous work, thus allowing a human to still identify the person
from the image, and works against all major classes of face
recognition algorithms.

We exploit the fact that face recognition algorithms reduce
the dimensionality of the data of the face image in order to
reduce noise and improve speed. We show how to manipu-
late these relevant parts of the image to fool all important
face recognition algorithms. We aim at a slightly weaker
form of anonymity than k-anonymity (see Section 4), where
an attacker’s confidence in correct identification is small.
This is well suited for the two main threats we are consider-
ing: first, we want to prevent extraction of the relationships
(the social graph), e.g., by evaluating who is present on a
sufficiently large number of pictures of one specific person;
second, we want to prevent automated tagging of people on
pictures.
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Of course, when humans can recognize a face, then the
face will not be anonymous in a strict sense. Studies show [2]
that the “price” most users are willing to pay for privacy is
pretty low, so we hope that by providing a reasonable image
quality, this approach will find more acceptance by users,
while still preventing automated extraction of information
and thus providing a reasonable level of security.

1.2 Paper organization
We describe face recognition algorithms based on principle

component analysis (Eigenfaces), namely PCA, PCA+LDA,
and Bayesian classifiers, and explain the basic steps to fool
these algorithms in Section 2. We review the Elastic Bunch
Graph Mapping (EBGM) algorithm and the idea to fool
these algorithms in Section 3. We describe our approach to
anonymize images in Section 4, show a number of experi-
ments in Section 5, and discuss these results in Section 6.
We review related work in Section 7 and conclude with Sec-
tion 8.

2. EIGENFACE-BASED FACE RECOGNI-
TION

We introduce the basic terminology, face recognition al-
gorithms based on Principal Component Analysis (PCA),
and show the basic idea how we can manipulate these algo-
rithms. We consider the classical Eigenface-algorithm [34],
which is interesting because it constituted a breakthrough
in recognition performance at the time of its invention, and
still provides very competitive performance for images taken
in a moderately controlled environment. Also, it forms the
basis for a wide range of algorithms, including Linear Dis-
criminant Analysis (LDA), which can be applied after PCA,
and the Bayesian classifier, both of which we present in the
sequel.

2.1 Brief introduction to face recognition ter-
minology

The task of face recognition can be described in simple
terms: Given a set of images of a number of (known) persons
(gallery images), and given an image for an unknown person
(probe image), decide which person from the gallery is shown
on the probe image.

The process is usually divided into the following steps (see
Figure 1): First, one needs to find the approximate position
of the face in the image, this is called face-detection [38]
and a separate line of research. Most work on face recog-
nition considers this job to be completed before; commonly
used face image databases such as the FERET database (see
Section 5.2) annotate the images with the eye coordinates.
Second, images are normalized, which usually includes an
affine transformation to align the eyes, histogram equaliza-
tion, and sometimes masking of the background. Third, in
feature extraction algorithm-dependent features the probe
image are extracted. Representing an image by a set of fea-
tures can be seen as a step in data reduction that aims at
extracting a compact but discriminating description of the
image. Ideally, the output of this step is at the same time
robust against changes in posture, lightning, face expres-
sion, etc. Finally, the pre-processed probe image is matched
against gallery images. Different distance functions, measur-
ing the similarity of two images, can be used here, we will see
Euclidean distance, weighted Euclidean distance, and angles

Face detection

Feature extraction

Face recognition

Image

Identifier

Normalization

Figure 1: Process of identifying subjects in the real-
world.

in the sequel.
The output of a face recognition algorithm is a list of iden-

tifiers, where the algorithm estimates that the first identi-
fier (e.g. name) is the most likely one, matching the subject
on the probe image. The list is typically ordered by de-
scending probability (or ascending distance, depending on
the distance measure). The performance of face recognition
algorithms is usually measured in rank curves (see Figure 2),
where on the x-axis we plot ranks and on the y-axis recog-
nition rates. When the curve passes point (x, y) this means
that for a fraction of y probe images, the correct identifier
was contained in the first x suggestions of the recognition
algorithm.

2.2 Classical Eigenfaces
Given L training pictures ~u1, . . . , ~uL, written as vectors

with p pixels each, we compute the (point-wise) average im-
age

~m :=
1

L

L
∑

k=1

~uk

and compute the mean-subtracted images ~u′

k := ~uk − ~m.

Write U = [ ~u′

1, . . . ,
~u′

L]
t for the matrix of images. Then the

(empirical) covariance matrix is written as

C = U t · U =
1

L

L
∑

k=1

~u′

k
~u′

k

t
.

The matrix U has size p×L and the matrix C has size p×p.
Let λ0, . . . , λN−1 be the N largest Eigenvalues with asso-
ciated Eigenvectors ~e0, . . . , ~eN−1.

2 Using the orthonormal
vectors ~e0, . . . , ~eN−1, we calculate a feature vector (in what
is called face-space, the space spanned by Eigenvectors), by
simply projecting an image ~u on the Eigenvectors

sk = ~ek
t · (~u− ~m) for k = 0, . . . , N − 1, (1)

2Computing the Eigenvectors of this large matrix is compu-
tationally expensive for common parameter sizes. Instead,
one computes the Eigenvectors of the (usually smaller) ma-
trix U · U t and derives the Eigenvectors ek from these.
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where sk is the k-th component of the projection of ~u in face-
space. Calculating a feature vector for every gallery image
as well as the probe image, and using Euclidean distance
(where i iterates over the elements of the vectors),

DEuclidean(~u,~v) =

√

∑

i

(~u(i) − ~v(i))2 (2)

to find the gallery image that is closest to the probe image,
we get the original Eigenfaces face recognition algorithm.

Instead of Euclidean distance we can also use different
distance measures, such as MahCosine, which measures the
angle of the projections ~m,~n of two vectors ~u,~v into Mahali-
nobis space, i.e.,

DMahCosine(~u,~v) = cos(θ~m,~n), (3)

see [4] for details and more examples. We essentially chose
this measure because it outperformed other measures for
purely PCA-based recognition methods [19] and in order
to enhance our understanding of the effectiveness of de-
identification methods in the presence of non-Euclidean dis-
tance measures.

2.3 Modifying projections (in image space)
Our basic idea is to manipulate the face images in such a

way that the projection onto the face-space changes, while
hopefully making minimal changes to the image.

Given the input image ~u as a row-vector and a set of or-
thogonal and normalized vectors ~e0, . . . , ~eN−1 (the selected
principal eigenvectors as computed by the PCA, spanning
the face-space), consider Equation (1). By adding ∆k · ~ek,
a multiple of the k-th Eigenvector, to an image ~u, we can
arbitrarily change the k-th component of the projection:

((∆k · ~ek
t + ~ut)− ~mt)) · ~ek

= ∆k · ~ek
t · ~ek + (~ut − ~mt) · ~ek

= ∆k · || ~ek||
2
2 + sk

= ∆k + sk, (4)

where we use that || ~ek||
2
2 = 1.

When adjusting several components, the projections be-
have independently, because the ~e1, . . . , ~eN−1 are pairwise
orthogonal. Let

~v := ~u+

N−1
∑

l=0

∆l · ~el

be the image we have modified based on the input image ~u,
then the projection of the altered image differs by ∆k in the
k-th component, i.e.,

(~vt − ~mt) · ~ek

= (~ut +

N−1
∑

l=0

∆l · ~el
t − ~mt) · ~ek

= (~ut − ~mt) · ~ek +

N−1
∑

l=0

∆l · ~el
t · ~ek

= sk +∆k for k = 0, . . . , N − 1. (5)

Compared with previous work [24], the image quality of
this approach is better, because we leave the information
outside the space spanned by the Eigenfaces untouched.

2.4 PCA+LDA face recognition
LDA can be applied directly to the input data [1], but

was found to be more effective when applied after a PCA
transform [42]. Writing E for the matrix that describes the
PCA transform, LDA produces a matrix W that gives an
optimal linear discriminant function, projecting the input
into a classification space. W can be computed from the
within-class and between-class scatter matrices; the details
are not relevant for our work and we refer to [42]. For a
combination of PCA and LDA, the overall transformation
is from image space (via face-space) to classification space
and can be written as

~s =W t · Et · ~u, (6)

where ~s is a vector in the classification space. In this space,
a simple or weighted Euclidean distance such as the measure
(again, k iterates over the elements of ~u and ~v)

DldaSoft(~u,~v) =
∑

k

λ0.2
i (~uk − ~vk)

2,

proposed by Wen Yi Zao [40], can be used to find the nearest
neighbor (where the λi are the LDA Eigenvalues).

As we can see, we do a normal PCA transform (albeit with
a slightly different basis, as slightly different parameters are
optimal for PCA with LDA) before applying LDA. Conse-
quently, using the same techniques as in Section 2.3, we can
alter the results for this method as well. In fact, even though
the distance measures for purely PCA-based methods and
this approach are different, de-identification for one system
practically means de-identification for the other system as
well, which can be understood from Equation (6).

2.5 Bayesian face recognition
The Bayesian face recognition algorithm [20, 33] is differ-

ent from most other algorithms in that it breaks down face
recognition to a series of classification problems: In order to
recognize a face, the algorithm iterates over all stored per-
sons (not faces), and for each decides if this is the correct
person or not. The central idea is that it tries to decide if
the difference of two faces is in one of two classes, either
inter-personal (ΩI) or extra-personal (ΩE).

In the preprocessing stage, the algorithm learns what are
“typical variations” for the difference of two images of the
same face, and for two images of different faces. Consider
the class ΩI of inter-personal difference images, i.e., images
of the form ~∆ = ~u − ~v, where ~u,~v belong to the same per-
son. In order to reduce the dimensionality of the data, one
performs a PCA and keeps the M Eigenvectors with the
largest Eigenvalues λI

1, . . . , λ
I
M and the projection matrix

EI = (~eI1, . . . , ~e
I
M ), which is used the to project the differ-

ence image ∆ (with about 20 000 dimensions3) into the trun-
cated intra-personal face-space (with about 300 dimensions).

For the class ΩE of extra-personal images with ~∆ = ~u − ~v,
where ~u,~v belong to different subjects, the same is done
with a separate application of PCA. This yields eigenvec-
tors ~eE1 , . . . , ~e

E
M which form the transformation matrix EE

for projections into the extra-personal face-space.
To estimate whether two images ~u,~v are from the same

subject, there are two variants of Bayesian face recogni-
tion that can be used: The Maximum a Posteriori classifier

3This depends on the size of the pre-processed images, which
are 128× 128 pixels in our case.
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(MAP) computes the likelihood based on both intra- and
extra-personal spaces, while the simpler Maximum Likeli-
hood classifier (ML) bases its estimate on the intra-personal
space only. For most applications, the two variants provide
very similar results. The similarity measure in the Bayesian
model is expressed as

SBayesian(
~∆) = P (~∆ ∈ ΩI) with ~∆ = ~u− ~v

which basically states the probability that the images ~u and
~v are from the set of intra-personal images with high prob-
ability (and from ΩE with low probability), i.e., from the
same person. We refer to [20, 33] for further details.

3. ELASTIC BUNCH GRAPH MAPPING
FACE RECOGNITION

Elastic bunch graph mapping [36] is another algorithm for
face recognition that fared very well in the FERET tests [31,
25]. What makes this algorithm particularly interesting is
that it is fundamentally different from the previous algo-
rithms: it is not based on PCA and is commonly classified
as feature-based instead of holistic, i.e., it bases its decision
on particular local features (eyes, mouth, . . . ) instead of a
holistic view of the face.

3.1 Algorithm description
We give a brief overview of the algorithm, for more details

we refer the reader to [36, 5]. A central tool for EBGM are
Gabor wavelets, convolution kernels which are plane waves
bounded by a Gaussian envelope function. Let ψj be a Ga-
bor wavelet, then the convolution at point x with the image
~u is given by

Jj(x) =

∫

~u(x′)ψj(x
′ − x)dx′, (7)

where Jj(x) is a complex value and the index j ranges over
40 values for 8 orientations and 5 frequencies. Convolution
of a fixed point of an image with Gabor wavelets of dif-
ferent orientation and frequency is called a jet ; intuitively,
a jet contains a reduced description of the surrounding of
that point. Gabor wavelets are robust against a number of
variations, and are motivated by human vision research.

Different distance functions for jets are used in different
stages of the process, the most important one being the fol-
lowing: Writing the complex values as Jj = aj · exp(iφj),
the distance function is defined as

Sa(J, J
′) =

∑

j aja
′

j
√

∑

j a
2
j

∑

j a
′

j
2
,

i.e., a “normalized vector product”.
For the faces, one defines a set of fiducial points, such as

pupils, corner of the eyes, corners of the mouth, and top and
bottom of the ears. The nodes of these graphs are labeled
with a jet. Initially, for a small set of faces, the fiducial
points are extracted by hand, and the jets are computed.

When presented with a new face, the information ex-
tracted above is used to automatically fit the above graph
to a new face: First, the rough position of the face is de-
termined by matching the average of all above graphs onto
the probe image. Then the graph that fits best is selected,
allowing for small displacements and scaling of the graph,
followed by successively relaxing the graph geometry and
adapting the points individually.

The graph is fitted on every image in the gallery, and the
resulting vector of jets is stored. For a probe image, the
closest match with a gallery image is computed as the mean
of the individual jet similarities:

1

N

∑

n

Sa(J
I
n, J

G
n ).

3.2 Modifying jets (in image space)
Our basic idea idea is that by adding appropriate multiples

of a wavelet α·ψj to an image ~u at position x, we can change
the value of the convolution with this particular wavelet at
the specific position:

J∗

j (x) =

∫

(~u(x′) + α · ψj(x
′ − x)) · ψj(x

′ − x)dx′

=

∫

~u(x′) · ψj(x
′ − x) + α

∫

ψj(x
′ − x)2dx′.

One difference to the situation for PCA is that these
changes are not independent of each other: modifying one
jet value also changes other values for this jet, and several
jets are close enough that other jets are influenced as well.
For this reason we proceed iteratively as follows:

1. Do 150 times, over all jets and wavelets:

(a) Find the maximum difference between the current
and target value

(b) Add Gabor wavelet to bridge 1/5-th of the dis-
tance

2. Over all jets and wavelets (wavelets with large radius
first):

(a) Add Gabor wavelet to bridge 1/20-th of the dis-
tance

We established these parameters empirically and found them
to work well. As for PCA-based techniques, it is not nec-
essary to actually set the image to be equal to the target
image, because probe and gallery images have a certain dis-
tance anyway.

4. ACHIEVING ANONYMITY
Next, we describe how we utilize the approaches from the

previous sections to anonymize face images.

4.1 k-anonymity
An established definition of security against identifica-

tion is k-anonymity [32], see also the notion of anonymity
sets [26]. For face recognition, a person remains k-
anonymous if the face recognition algorithms cannot narrow
the person down to a set of less then k persons.

For our envisioned targets, weaker forms of anonymity are
sufficient. There are two scenarios we would like to protect
against: First, automated tagging of persons on uploaded
pictures (note that we are not targeting the automated pro-
posal of persons to tag, because this still contains human in-
teraction and thus is only making tagging easier...); second,
automated derivation of friendship-relations from a large set
of pictures. For both scenarios, weaker privacy guarantees
suffice. Along with this weaker privacy guarantee comes a

4



large improvement in image quality (as perceived by a hu-
man), so we hope that our system will lead to more wide-
spread usage of privacy-protecting systems.

4.2 Anonymizing face images
Here we describe our approach to face anonymization,

which builds on the methods we have developed above.

1. We select a partition of the involved persons such that
each set has at least k members. We choose them
by picking a random face image and selecting the k −
1 nearest images (of distinct persons) according to a
suitable distance measure (we will elaborate on this in
Section 5) and we call this set a cluster.

2. For every cluster we project each of the k images and
compute the average projection (wrt. to PCA).

3. All images in a cluster are modified (as described in
Section 2.3) to have the same, averaged projection.
However, we may also choose to adjust the projection
by a fraction σ ∈ R with 0 < σ < 1 of the difference
between an images actual projection and the average
projection. The parameter σ was determined experi-
mentally, see Section 5.4.

4. Next, all images in a cluster are modified wrt.
to EBGM (as described in Section 3.2) to resem-
ble the average face for that cluster. We ap-
ply EBGM-modifications after PCA-modifications, be-
cause EBGM-modifications are local, whereas PCA-
changes influence the entire image (see classification
of EBGM as a local feature-approach, as opposed to
PCA being a holistic approach).

A central observation is that we do not need to change the
projections of PCA in face-space to the actual average, but
it’s sufficient to go some way in that direction. The reason
is that probe image and gallery image of the same person
are already quite some distant apart, so moving partially
in the correct direction suffices. We will show experiments
substantiating this claim.

5. EXPERIMENTS
In this section we present extensive experiments that sub-

stantiate our privacy claims. We used the CSU framework
of face recognition algorithms to test our results on a subset
of 1000 images of the FERET database. We performed de-
identification experiments for all three classes of algorithms
(Eigenface-based, Bayesian, EBGM) and finally realized a
synthesis of our results.

5.1 The CSU framework
The CSU framework [6, 4] was created at Colorado State

University to facilitate the comparison of different algo-
rithms, and is available for free for research. The frame-
work runs on UNIX/Linux systems, the source code is avail-
able and therefore easily adaptable. The current version 5.1,
published July 2010, supports the following face recognition
algorithms:

• Classical Eigenfaces (i.e., PCA) with different distance
measures, e.g. Euclidean, MahCosine, etc.,

• LDA+PCA, also with different measures,

• Bayesian classification with the MAP and ML classi-
fier, and

• Elastic Bunch Graph Mapping.

Details about the specific implementations can be found in a
series of papers, most notably [33, 5, 37, 3]. The framework
utilizes the FERET dataset and allows to easily measure the
recognition performance. Furthermore, due to its modular-
ity, the framework can be extended by new algorithms in
order to benchmark these against already known methods.
Although not intended, the framework can easily be adapted
to allow benchmarking the de-identification performance of
our algorithms.

5.2 The FERET database
The FERET program [27, 29] started 1993 and ran un-

til 1997. It was sponsored by the Department of Defense
Counterdrug Technology Development Program through the
Defense Advanced Research Products Agency. Its primary
mission was to develop automatic face recognition algo-
rithms that could be employed to assist security, intelli-
gence and law enforcement personnel. The FERET dataset
was assembled to support government monitored testing and
evaluation of face recognition algorithms using standardized
tests and procedures. The final set of images has 3300 im-
ages from 1200 persons, with varying mimical expressions,
from different dates, under semi-controlled conditions. The
dataset is available for for research related to face recogni-
tion.

5.3 Scope and conduct of experiments
For our experiments, we used the FA and FB subsets of

the FERET database, each containing one facial expres-
sion of 1195 subjects. We ran the experiments on a ran-
dom subsets of 500 subjects each. The FA set served as
our gallery, face recognition performance figures are given
in terms of successively matching subjects from the probe
set FB to their alternate image in FA. In our experiments,
we apply our de-identification methods against both sets
of images which implies that, although all gallery images
have been de-identified, the face recognition system still has
identifiers associated to them. This is not only a necessary
pre-requisite for identification, but also realistic when con-
sidering that most social networks encourage users to man-
ually identify persons on photos, thus adding images to the
gallery. Several experiments were performed to validate our
de-identification approaches and identify a reasonable set of
parameters. First, we tested our de-identification method
for each recognition algorithm individually; the results are
shown in Section 5.4 and Section 5.5. Then we combined
these preliminary findings, applying both techniques at the
same time, for our final results in Section 5.6.

All experiments were conducted with the default configu-
ration of the CSU framework, the only exception concerns
the normalization step. EBGM uses a pre-processing pro-
cedure which is different from the normalization required
by all other recognition methods. Our experiments were
conducted entirely on the data-set generated by EBGM
pre-processing. The reason is our two-fold strategy for de-
identification. Ideally, all PCA-related modifications are ap-
plied to images normalized for PCA-based methods, then
the result is transformed back to the original image which is
subsequently pre-processed for EBGM. Finally, the EBGM
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Figure 2: Baseline performances of the algorithms
(prior to de-identification), in the first image with
the original normalization parameters, in the sec-
ond image with identical normalization for all algo-
rithms.

modifications are applied. However, this is tedious work that
adds little insight to the interesting questions, so we chose
to use the EBGM data-set for all methods. The impact of
this strategy on recognition rates is shown in Figure 2. It
displays the rank curves for all of the algorithms targeted by
us. The upper graph shows recognition performance (prior
to de-identification) in the default configuration, i.e. where
each class of algorithms operated on specifically normalized
images. The lower graph shows a slight degradation in recog-
nition performance, which is due to non-optimal normaliza-
tion, which seems to affect LDA-based methods most. The
performance results of our de-identification methods, which
are expressed as rank curves as well, are to be understood
in relation to the lower graph.

5.4 Experiments for Eigenface-based face
recognition

Experiments to determine the effectiveness of our de-
identification method against Eigenface-based methods are
parameterized by k, which is the size of the anonymity clus-
ters, and 0 < σ < 1 which is a factor weighting the addition
of modifications. In a first series of experiments, presented
in this section, we tested and validated our de-identification
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Figure 3: Eigenface-based recognition after de-
identification with k = 10 and σ ∈ {1, 0.85} clusters
obtained from the same measure.

method against face recognition using PCA and LDA+PCA.
For both, we tested different distance measures, which gives
us assurance that the proposed method is robust against
changes in this metric.

In a first series of experiments, we targeted each of these
methods individually by building clusters of persons accord-
ing to the same face recognition method, because we wanted
to learn how sensitive our method is to how exactly the
clusters are chosen. For our first experiment we consider
de-identification with σ = 1, k = 10 and measure the recog-
nition rate of all four methods, again. Comparing the upper
graph in Figure 3 with the original results from Figure 2,
we see that the two PCA algorithms perform quite similar
with an extremely low rank-0 recognition rate, and the the
PCA+LDA algorithms perform better, yet still much lower
than without de-identification. Also, we can see that the
performance of the MahCosine distance measure, which is
very accurate without de-identification, decreases dispropor-
tionately strong.

In a second series of experiments, we determined a suit-
able weighting factor σ. The lower we choose σ, the less
an image is actually altered (thus not completely bridg-
ing the distance to the cluster’s target image) which con-
sequently yields a better image quality. We found that de-
identification with k = 10 and σ = 0.85 works well, and
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Figure 4: Comparison of original image (left) with
image after de-identification (right) with parameters
k = 10, σ = 0.85.

additionally this parameter balances the recognition rate for
the four algorithms, as can be seen in the lower graph in Fig-
ure 3. Figure 4 shows the visual effects of de-identification
for k = 10, σ = 0.85 for all four recognition methods in com-
parison with the original image. In both cases the person
is clearly recognizable. The strongest effect on the pictures
can be seen at the line between the person’s hair and the
background. This effect hardly affects the recognizability
of a face, and can most likely be avoided by restricting the
Eigenfaces to the actual face, as in the usual preprocessing
for PCA. Also, the modified images look somewhat lighter
than the original images.

In the previous experiments, we have selected the image
clusters using the same distance measure as in the recogni-
tion task. This is not a realistic option in practice, so in
a third series of experiments, we determined the best ap-
proach to de-identify images using a single clustering. We
tested two approaches:

• Compute the four de-identified images for one subject,
each grouped by one of the Eigenface-based measures,
and average these pixel-wise.

• Compute clusters using a single distance measure, here
we used the MahCosine measure (which performed
best for σ = 0.85).

The results for both approaches are shown in Figure 5. The
graph on the top shows that averaging over the four de-
identified images per subject yields rather bad results, all
algorithms have a rank-0 recognition rate of 40%-55%. The
likely reason for this is that the clusters used to compute
each of these projections where different, and the right image
lies in the intersection between these. The lower graph shows
much better de-identification and is our preferred method.
The recognition rate of the classical Eigenfaces method is
worse than in the case were we specifically targeted this
method, see Figure 3. The curves of all other three algo-
rithms very much resemble the already known results as in
the afore mentioned graph. What is more important, they
are still worse than the performance of the MahCosine dis-
tance measure, which serves as our benchmark in this case.
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Figure 5: Eigenface-based recognition after de-
identification of the same cluster with k = 10, σ =
0.85, using averaging (top) and MahCosine (bot-
tom).

We conclude that clustering wrt. MahCosine achieves a
high degree of de-identification among all tested Eigenface-
based methods while only minimally impacting identifica-
tion by humans. We expect that other distance measures
exhibit similar performance.

5.5 Experiments for Bayesian face recogni-
tion

For the Bayesian face recognition, there are two (related)
classifiers: MAP operates on both intra- and extra-personal
spaces, while the simpler ML classifier bases its estimate on
the intra-personal space only. For most applications, the
two variants provide very similar results, but our first set of
experiments targets each method individually.

For the Bayesian method we have again performed de-
identification as described previously. We have grouped
k = 10 subjects into clusters, determined by their close-
ness according to the classification by MAP and ML. Then
we have de-identified the clusters with σ = 0.85. The perfor-
mance of the recognition algorithms is shown in Figure 6 and
is in line with the results expected due to prior experiments
for Eigenface-based algorithms.

Figure 7 shows the visual effects of the de-identification.
Again we see that both subjects are clearly recognizable by
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Figure 6: Bayesian recognition after de-
identification with σ = 0.85 and k = 10.

Figure 7: Comparison of image quality after de-
identification with k = 10, σ = 0.85 for clusters
grouped by MAP and ML.

humans, although the outline of the heads is blurred to a
certain degree, which we attribute to variations in the pre-
processing/normalization of the EBGM-method as we ex-
plained before.

5.6 Experiments for combined face recogni-
tion

Finally, we combined the method of modifying PCA-based
projections with our algorithm to alter EBGM-specific fea-
tures. Since clustering subjects by their closeness according
to MahCosine proved to be effective against Eigenface-based
approaches, we decided to do the same for this experiment.
We have de-identified the probe- and gallery-set with k = 10
and σ = 0.85 in the first step and then modified the jets of
the resulting images to resemble the average of the same set
of clusters (still grouped by MahCosine).

Figure 8 shows the recognition performance of all algo-
rithms when operating on the same set of images. We see
that the EBGM algorithm fares better in recognizing de-
identified subjects than the other methods, but still only gets
a 55% rank-0 recognition rate, see the discussion in the next
section. Interestingly, the curves for Bayesian MAP, ML and
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Figure 8: Recognition rates of all algorithms after
de-identification with σ = 0.85 and k = 10.

Eigenface-based methods are very close to each other.
Figure 9 shows the visual outcome of the de-identification

procedure. The images are all taken from the same cluster
(of 10 images total). Note that previous work (e.g., [17])
would have assigned the same average image to all of these
images, i.e., they would be indistinguishable for humans.
However, the images produced by our method are clearly
distinguishable, which was the main goal of our work.

6. DISCUSSION OF RESULTS
Face recognition algorithms work very well for images

taken in a controlled environment (e.g., background, illu-
mination, tilt). For example, the CSU implementation of
the EBGM algorithm achieves a rank-0 recognition rate of
more than 90% (c.f. Figure 8), and the original EBGM im-
plementation fared even better. Our modifications reduce
the rank-0 recognition rate to 55% for EBGM, and below
30% for the other algorithms, which is a big improvement.

The EBGM algorithm is, according to our experiments,
harder to fool than other algorithms. Possible reasons are
that EBGM is a feature-based algorithm (i.e., it works on
small patches of the face, not a holistic view of the face),
and it has a very good recognition rate in general. In prac-
tice, images stored on image sharing sites are not taken in a
controlled environment, and we expect that in a real environ-
ment the recognition rates will drop substantially compared
to the above experiments.

Sometimes, a corporation’s interest in collecting data and
a user’s interest in privacy are diametrical. In the scenario
we consider the corporation’s interest is extracting as much
information as possible from the available data, where some
users want this information to be private. We stress again
that there is a big difference between extracting such in-
formation automatically, or being “in principle” able to ex-
tract this information, but requiring human assistance for
the task: Whereas the former scales well to large databases,
the latter quickly becomes infeasible.

That said, using anonymization techniques will probably
cause a reaction by the corporations deploying face recogni-
tion algorithms. They could try to detect modified images
and lock them out, which would discourage users from using
such techniques. It is not clear if the modifications of our
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Figure 9: Image quality after de-identification for all algorithms with k = 10, σ = 0.85. The images shown
represent one cluster grouped according to MahCosine, i.e., previous work maps these to the same average
image.

method can be detected reliably, as the wide variations in
real-world images make this task pretty hard. This would
most likely lead to an arms-race between corporations and
privacy advocates. Still, we believe that detecting the mod-
ifications can be made hard enough for practical purposes.
Future research is required to solve some of the remaining
issues, as well as to make it fully practical. But we are opti-
mistic that we made a step in the right direction, and that
the remaining problems can be solved.

7. RELATED WORK

7.1 Previous work on de-identification
Systematic research on face de-identification started with

work by Newton, Sweeney, and Malin (e.g., [23, 24]). Their
goal was to achieve perfect anonymity, which makes identi-
fying an individual from the anonymized photo provably im-
possible for machines (and humans). Their first approach,
called “k-same”-method, computed the de-identified image
either averaging the closest k images pixel-wise (“k-same-
pixel”-method) or in Eigenface (“k-same-eigen”-method).
While achieving strong security guarantees, the resulting
image quality of both approaches was mediocre. To im-
prove the visual quality of the anonymized pictures, a refined
method [17] uses Active Appearance Models (AAMs) fit to
the k images in a cluster and averages over the parameters of
the respective representations in the chosen model. Subse-
quent work [16] introduces a framework and defines different
notions of privacy protection models. Putting it brief, our
approach is to sacrifice some of the strong security guar-
antees this line of work gives, but giving humans a chance
to recognize people on the images. We are convinced that
this is a crucial step towards getting face de-identification
accepted for use in practice, as the purpose of publishing
images is often subverted if one cannot recognize the people
on the image.

Another potential problem of the original proposal [23]
(and potentially the newer works as well) appears when ap-
plied in practice (which we have not found in the literature).
In order to explain our concerns, we briefly re-call the k-same
method: In a setup step, one computes clusters of k similar
faces and an average image that is later used as a substitute
for this cluster. One starts with a set U that contains one
picture for every person (a person-specific face set in their

language). One random picture ~u ∈ U is selected, and the
k − 1 closest faces together with ~u form form a set V . The
images in V are removed from U , the average image ~v is
computed.

When multiple images of the same person are de-
identified, we first need to decide which person is on the
image (i.e., run a face recognition algorithm) in order to
find the correct cluster and the corresponding average im-
age. However, if an image is mis-classified for person B,
but really is an image of person A, then different images
of the same person will be sent to different clusters and
hence assigned distinct average images. In this case k-
anonymity is no longer guaranteed to hold, as the cor-
rect person lies in the intersection of possibly multiple
sets. Experiments based on the Eigenfaces implementation
in the CSU framework with standard pre-processing show
this happens in the FERET database for multiple images,
we found 00357fb010_940422.sfi which is is identified as
00933fb010_960627.sfi, which is not in the cluster created
by grouping images for 00778fa010_941205.sfi. Several
more examples of this can be found, depending on the or-
der in which images are selected from the image sets. Our
method of selecting clusters is similar to the above, so our
approach suffers from the same problem, however, we do not
aim for perfect anonymity anyway.

A couple of ad-hoc methods such as masking parts of the
face (e.g. the eyes) or blurring or pixelation of faces [7, 18,
21, 39] were eventually tested. However, these methods are
visually intrusive and target human and algorithmic recogni-
tion alike. Even worse, it was shown that their effectiveness
is very limited [24], so they are not a good option. Pixelation
and scrambling techniques for videos can be found in [28, 8].

7.2 More related work
The area of face recognition techniques (and related dis-

ciplines such as face detection) has been an active area of
research for the past 20 years. Reasons include numerous
applications, ranging from access control to border protec-
tion (recently adding automated crawling of large image
databases), as well as the increase of available computing
power. The literature on face recognition is vast, see [41] for
an overview. Probably the most influential paper was face
recognition based on Eigenfaces [34], which applied princi-
pal component analysis for the task, which was refined in a
number of ways since then. LDA, which can itself be used for
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face recognition [10, 1], has been combined with PCA [42];
and PCA forms the basis of Bayesian face recognition [20].

A consequence of the high relevance of accurate recog-
nition technology was the large, DARPA-funded FERET
study [31, 27]. The image database collected and used in
this study is one of the biggest databases available for re-
search. Another surge in research activity was followed the
Face Recognition Grand Challenge [30] in 2004, this time
sponsored by IARPA and DHS. The focus of this challenge
was improving algorithmic performance for progressively dif-
ficult high-resolution4 2D and 3D images.

While face recognition has many beneficial applications,
it can be a threat to user privacy when applied on a large
scale, e.g., by crawling large image databases which possi-
bly allows for the automated extraction of possibly sensitive
information. However, research on de-identification meth-
ods to maintain privacy in the presence of automated face
recognition is scarce.

8. CONCLUSION
We have shown a reliable way to de-identify face images

against a wide range of currently available recognition al-
gorithms. While not achieving the very strong notion of
k-anonymity, we achieved a level of anonymity which is suf-
ficient to counter the two most pressing problems that face
recognition software poses for users of social networks: First,
automated extraction of the social graph, i.e, friendship re-
lations; second, automated tagging of people in images. At
the same time we get good image quality, which means that
humans still can identify the person in the image. (This was
not the case in previous work that achieves k-anonymity.)

We believe that it is possible to further increase the image
quality, in particular to remove the ghosting artifacts sur-
rounding the heads. We hope to be able to replace the itera-
tive algorithm for EBGM modifications by faster code. Also
interesting is the integration of our approach in a full tool
that performs all operations on images of arbitrary posture,
not just frontal images as used in the FA and FB sets, as
well as integrating face de-identification into web-browsers
for ease of use.
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