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Abstract

Using simulated annealing, we derive several equivalence classes of balanced Boolean functions
with optimum algebraic immunity, fast algebraic resistance, and maximum possible algebraic de-
gree. For numbers n of input bits less than 16, these functions also possess superior nonlinearity
to all Boolean functions so far obtained with said properties.
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1 Introduction.

Combiner and filter functions for shift register-based stream ciphers need to satisfy various crypto-
graphic criteria. They must be balanced [4], possess high nonlinearity to resist fast correlation attacks
(see, among others, [7, 18, 2, 29]), and must possess high algebraic degree:

• to resist the RØnjom-Helleseth attack [19],

• to resist the Berlekamp-Massey attack [4],

• as a necessary but not sufficient condition to resist fast algebraic attacks [14].

(Furthermore, where n denotes the number of input bits of the Boolean function, an algebraic
degree less than dn2 e restricts the degree of so-called algebraic immunity that can be achieved.)

In the case of combiner functions, a high order of correlation immunity is also necessary [27, 28].
For filter functions, correlation immunity of order 1 is considered sufficient [7]. Unfortunately, the
criteria of correlation immunity and algebraic degree are in conflict with one another, and the higher
the correlation immunity of f , the lower the value that can be achieved for its degree - which increases
the desirability of a model relying on filter instead of combiner functions.

(Correlation immunity of order 1 for a filter function is typically achieved by generating a function
g which is as close as possible to the optimum for the other desirable criteria, and then using a shift
register state bit xn+1 which is not input to g to define a function f(x1, . . ., xn+1) = g(x1, . . ., xn)⊕xn+1.
It may be necessary to apply an affine transformation to the input bits of f and/or g. [4, 3])

Correlation immunity of order m for a balanced function is also referred to as order-m resiliency.
Until the early 21st century, these were the only criteria which a stream cipher’s filtering/ com-

bining function needed to satisfy. However, the discovery by Courtois et al. of algebraic attacks [15]
and fast algebraic attacks [14] changed this, forcing:
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1. An increase in the number of input bits needed by these functions (from “about 10” to “at least
13 and in practice much more, maybe 20” [7].) Where the shift register is a 256-bit LFSR,
Braeken et al. [1] show that a balanced filter function on at least 14 input bits is needed to keep
the time complexity of fast algebraic attacks below 280. The “RØnjom-Helleseth attack” [19] is
a more recent form of algebraic attack, and it has been claimed [26] that filter functions need
more than 30 input bits to resist it.

2. The introduction of two new criteria to quantify the resistance of Boolean functions f to these
attacks. The first of these is the aforementioned algebraic immunity (AI) [9]. The second
criterion, which involves “(dg, dh)−relations”, is unnamed at present; we shall refer to it as fast
algebraic resistance. A criterion known as fast algebraic immunity attempts to unify the two;
however we consider it to be flawed.

In [17], algebraic attacks on “augmented functions” are discussed. For a given filter function f ,
shift register update polynomial L, and integer m > 1, the augmented function Sm is a vectorial
Boolean function which takes as input the internal state of the shift register and is defined as the
concatenation (f(x)|f(L(x))|f(L2(x))|. . .|f(Lm(x))). Since the properties of augmented functions
depend on both the shift register update function and the filter function, and since this paper only
studies filter functions, it is beyond our remit to examine resistance to such attacks here.

Finding Boolean functions which combine optimal or near-optimal resistance to algebraic and fast
algebraic attacks with the various other desirable properties has proven difficult. The need for high
algebraic degree has led some researchers in this field to abandon the combiner model and focus
entirely on filter functions; for which only a few suitable constructions have been found.

The first such was the Carlet-Feng construction [7]. This defines a class of balanced Boolean
functions on n variables with algebraic degree (n − 1) and algebraic immunity dn2 e (These are the
optimal values of AI and degree for balanced f). A lower bound exists on their nonlinearity; this lower
bound is not near-optimal but in practice the nonlinearity of the functions in this class was observed
to exceed 2n−1 − 2b

n
2
c+1 for n ≤ 11. Furthermore, the fast algebraic resistance of the constructed

functions was examined and, for functions with less than 10 variables, shown by experimentation to
be optimal.

The Carlet-Feng class was independently rediscovered by Wang et al. [23], with a slight increase
in the lower bound for nonlinearity. Functions with higher nonlinearity than previously achieved for
n = 8, n = 9 and n = 16 were also presented.

Carlet demonstrated [6] that the two constructions were the same. He also stated that the functions
could be implemented without needing to store a lookup table in memory; the computation of the
Boolean function could be reduced to calculating a discrete logarithm, which, he stated, was feasible
using the Pohlig-Hellman algorithm [20] when the function operated on 20 input bits or less. He stated,
however, that this was the highest value of n used by such functions, and if we accept the statement
in [26] that more than thirty are in fact needed, then it is not clear whether such an implementation
is in fact viable for these larger functions.

The construction was improved upon in two later works coauthored by Carlet [8, 10]. The con-
structions in these papers obtained increased nonlinearity for n = 10, and results were obtained for
much larger values of n than the previous papers had dealt with. Values of nonlinearity for newly-
obtained Carlet-Feng functions corresponding to these higher values of n were given in [8]. In [10],
the lower bounds on nonlinearity for the Carlet-Feng functions were tightened, and another balanced
construction was presented which improved on the nonlinearity for some values of n but not others.

It is notable that the only apparent way to compute the functions in [8] without needing a lookup
table also involves calculating a discrete logarithm, and this would appear also to be a necessary step
in computing the functions in [10]. We reiterate that it is not clear whether this is viable for functions
on more than 20, or indeed more than 30, input bits; thus motivating a search for alternatives.

In this paper, we apply simulated annealing to the problem of finding balanced Boolean functions
with high nonlinearity and optimal AI, FAR and algebraic degree. This technique has achieved success



in a similar context, when searching for combiner functions with high nonlinearity, low autocorrelation,
and good tradeoffs between high degree and high order of correlation immunity [11, 12, 13]. In
particular, it provided a search technique by means of which functions with profiles not hitherto
obtained by any construction were found [11, 12].

(Autocorrelation was believed when first defined [30] to be a potential weakness that might lead
to attacks on stream ciphers akin to differential cryptanalysis of block ciphers. As this has not
subsequently proven to be the case, and as no eSTREAM finalist other than Dragon [16] was designed
in a way that took autocorrelation into account, we will not focus on it here.)

Crucial to the method’s success was a technique known as “two-stage optimisation”. This technique
would use one cost/fitness function for the simulated annealing, and would then hill-climb the results
using a different cost function. The idea was that the first cost function would guide the annealing
into a region of the search space (this space being the set of all Boolean functions of the pertinent
size) in which candidate solutions (evolved Boolean functions) of above-average quality as defined by
the second cost function were likely to exist. The second cost function would search this region for
one of these high quality solutions, and return it. In Clark et al.’s experiments [11], this achieved far
more favourable results using two-stage simulated annealing than any previous attempts to construct
Boolean functions with metaheuristics.

This paper is structured as follows: Section 2 will provide precise definitions of the various crypt-
analytic criteria and the tradeoffs between them, and describe the simulated annealing algorithm. In
Section 3, we will describe the search landscape defined by the various properties, and justify our
decision to represent the candidate functions using truth tables. We will also discuss the various cost
functions used. In Section 4, we will compare the best Boolean functions found by our search to the
best found by means of construction, and discuss avenues for future research.

2 Preliminaries

A balanced function is a Boolean function with an equal number of 1s and 0s in its truth table.
We are not interested in filter or combiner functions that are not balanced, and the experiments
were designed to ensure that these could not be evolved.

The algebraic normal form (ANF) of a Boolean function is its representation as a multivariate
polynomial in which the variables are the values (x0, . . ., xn−1) of the input bits. This represen-
tation is unique, and there exist mappings from truth table to ANF and vice-versa (both with
matrix representations).

A linear function has algebraic normal form a0x0 ⊕ a1x1 ⊕ . . .⊕ an−1xn−1 (ai ∈ {0, 1}).

The algebraic degree of a Boolean function is defined thus: Let the Hamming weight of a monomial
be defined as the number of variables in it - so, for instance, x1x4 has weight 2. The algebraic
degree of a monomial is defined as being equal to its weight, and the algebraic degree of a
Boolean function is equal to the algebraic degree of the highest-weight monomial in its ANF.

The Walsh-Hadamard spectrum of a Boolean function f ∈ Bn contains information on the cor-
relation between f and the various n-bit linear functions. That is to say, where ω is an integer
between 0 and 2n − 1, let ω1ω2. . .ωn be the bitstring representation of ω. Then entry ω in the
Walsh spectrum is equal to:

F̂ (ω) =
2n−1∑
i=0

(−1)f(i) · (−1)ω·i

Given a Walsh spectrum F̂ , the truth table of the original function f can be recovered from F̂
using the Inverse Walsh Transform [12]. It is, therefore, a valid alternate representation.



The nonlinearity of f is defined as

2n−1 − maxω |F̂ (ω)|
2

Nonlinearity and algebraic degree are partially in conflict. For functions on an even number of
variables, the highest nonlinearity possible is achieved only by bent functions, which have degree
≤ n/2 and cannot be balanced.

The correlation immunity of f is the maximal value m such that |F̂ (ω)| = 0 for all ω of Hamming
weight ≤ m (that is, all ω with m ones or less in their base-2 representations).

The autocorrelation spectrum of f is defined thus. Let ω denote the bitstring representation of
an integer between 0 and 2n − 1. Then

r̂f (ω) =
2n−1∑
i=0

(−1)f(i)(−1)f(i⊕ω)

and the autocorrelation spectrum is the sequence (r̂f (0), r̂f (1), . . ., r̂f (2n − 1)).

There is no inverse transformation allowing the truth table to be recovered from the autocorre-
lation spectrum.

The autocorrelation of f is the maximum absolute value, maxi 6=0 |r̂f (i)| in the autocorrelation
spectrum.

Algebraic immunity (AI) is defined as the minimum degree of the nonzero functions g such that
either fg = 0 or (f ⊕ 1)g = 0. [9]. Such g are known, respectively, as annihilators of f or of
(f ⊕ 1). For this reason, algebraic immunity is sometimes known as “annihilator immunity”.

A corollary to Theorem 6.0.1 in [9] is that AI(f) ≤ dn2 e.

Fast algebraic resistance (FAR) is defined thus:

For two values dg, (dh > dg), we say that a (dg, dh)−relation exists for f if two nonzero functions,
g and h, exist such that fg = h, deg(g) < deg(h), deg(g) = dg and deg(h) = dh.

The fast algebraic resistance of f is the minimum value of (dg + dh) for all (dg, dh)−relations on
f . Clearly, since f ·1 = f , this is upper-bounded by deg(f). From our viewpoint, this means that
any cost function dealing with fast algebraic resistance also deals to some extent with algebraic
degree, since the FAR lower-bounds the degree.

For a given (dg + dh), different values of (dg, dh) lead to different attack complexities. Various
tradeoffs are discussed in [14] and [1]; however at present the cipher designer simply aims to
achieve a (dg + dh) too high for any (dg, dh) to lead to an attack, and preferably equal to the
maximum value (for a balanced function) of (dg + dh) = (n− 1).

It is shown in [1] that in any (dg, dh)−relation, dh is greater than or equal to the algebraic
immunity of f .

Fast algebraic immunity (FAI) is an attempt to unify the criteria of algebraic immunity and fast
algebraic resistance. It is defined in [22] as:

FAI(f) = min{2·AI(f), FAR(f)}

We believe that this criterion is inadequate, and illustrate our reasons as follows: Let f ∈ B13

be a Boolean function with fast algebraic resistance 12. Clearly, the optimal value of AI(f) is
7. However, when AI(f) = 6, the value for fast algebraic immunity is the same as if it were 7,
since in both cases FAI(f) = 12.



2.1 The simulated annealing algorithm

Simulated annealing [25] is a local-search based metaheuristic search algorithm, inspired by a technique
used in metallurgy to eliminate defects in the crystalline structures in samples of metal.

The pseudocode below describes the workings of the algorithm. At the start, some initial candidate
solution, S0, usually chosen at random (so S0 would be the truth table of a randomly chosen Boolean
function on n input bits in this case), is input to the SA algorithm, along with the following parameters:

• The cost function C, which takes a solution candidate as input, and outputs a scalar value; the
“cost”. The cost function evaluates the candidate’s desirability in terms of whatever criteria the
experimenter is interested in (deciding on the relative weighting of the various criteria can be
tricky!). The more desirable the candidate, the lower the cost should be.

• The initial value T0 for the “temperature”. The higher the temperature in the current iteration,
the more likely the search algorithm is to accept a move which results in a candidate solution with
higher cost than the current candidate (that is, to store said candidate solution as the “current
candidate”). The temperature drops over time, causing the algorithm to accept fewer non-
improving moves and hence to shift away from exploration and towards optimisation. Towards
the end of the search, it is extremely rare for the algorithm to accept a non-improving move,
and its behaviour is very close to that of a hill-climbing algorithm.

• In choosing the value of T0, various sources state that it should be chosen so that a particular
proportion of moves are accepted at temperature T0. There is very little information or advice
available as to what this proportion should be. In one of the earliest papers on simulated
annealing [24] it is stated that any temperature leading to an initial acceptance rate of 80% or
more will do; however our initial experiments indicated that this was far too high for most of
the experiments in this paper. We eventually settled on an initial acceptance rate of 0.5 instead
of 0.8.

Having chosen the initial acceptance rate, the experimenter executes the annealing algorithm
with various T0 until a temperature is found that achieves a fraction close enough to this. We
started with the temperature at 0.1, and repeatedly ran the algorithm, doubled the temperature,
and re-ran the algorithm until an acceptance rate at least as high as that specified was obtained.
Where Ta was the temperature at which this had been achieved, and Tb = Ta/2, we then used
a binary-search-like algorithm to obtain a temperature between Ta and Tb that would result in
an acceptance rate ≈ 50%.

• A value α; the “cooling factor”, determining how far the temperature decreases at each iteration
of the algorithm.

• An integer value: MAX INNER LOOPS, determining the number of moves that the local
search algorithm can make at each temperature.

• The stopping criterion must also be specified. We used a MAX OUTER LOOPS value, indi-
cating how many times the algorithm was to be allowed to reduce the temperature and continue
searching before it stopped.

• We also specified a MAX FROZEN OUTER LOOPS parameter. If the algorithm had, at any
stage, executed this many outer loops without accepting a single move, it would be considered
extremely unlikely to do anything other than remain completely stationary from then on, and
would be instructed to terminate early.

A “move” is a transformation of the current solution candidate into another. Its precise definiton
depends on the entity being annealed. Since we are evolving truth tables of balanced Boolean functions,
we swap the positions of a zero and a one in the truth table. If we were not interested in preserving



Algorithm 1 Pseudocode for simulated annealing algorithm

S ← S0
bestsol← S0
T ← T0
ZERO ACCEPT LOOPS ← 0
for x← 0,MAX OUTER LOOPS − 1 do

ACCEPTS IN THIS LOOP ← false
for y ← 0,MAX INNER LOOPS − 1 do

Choose some Sn in the 1-move neighbourhood of S.
cost diff ← C(Sn)− C(S)
if cost diff < 0 then

S ← Sn
ACCEPTS IN THIS LOOP ← true
if C(Sn) < C(bestsol) then

bestsol← Sn
end if

else
u← Rnd(0, 1)
if u < exp(−cost diff/T ) then

S ← Sn
ACCEPTS IN THIS LOOP ← true

end if
end if

end for
if ACCEPTS IN THIS LOOP = false then

ZERO ACCEPT LOOPS ← ZERO ACCEPT LOOPS + 1
if ZERO ACCEPT LOOPS = MAX FROZEN OUTER LOOPS then

. Algorithm terminates early.
return bestsol

end if
end if
T ← T × α

end for
return bestsol



balanced functions, we might just flip a bit in the truth table at random. In general, there should be
reason to believe that there are bounds on the extent to which the cost can change when a move is
made. The “1-move neighbourhood” of solution candidate S is the set of candidate solutions that can
be obtained from S by making one move precisely.

2.2 The hill-climbing algorithm

The below pseudocode describes the hill-climbing algorithm used. The value ofMAX INNER LOOPS
is identical to that used by the annealing algorithm.

Algorithm 2 Pseudocode for hill-climbing algorithm

S ← initial candidate (output of the simulated annealing algorithm in this case.)
repeat

Sbest ← S
ACCEPTS IN THIS LOOP ← false
for x← 0,MAX INNER LOOPS do

Sx ← some randomly chosen member of the 1-move neighbourhood of S.
cost diff ← C(Sx)− C(S)
if cost diff < 0 then

ACCEPTS IN THIS LOOP ← true
Sbest ← Sx

end if
end for
if ACCEPTS IN THIS LOOP = true then

S ← Sbest
end if

until ACCEPTS IN THIS LOOP = false
return S

3 The experiments

3.1 Representing candidates as truth tables

So far, we have referred to three possible representations of Boolean functions:

• Their truth tables.

• Their algebraic normal forms.

• Their Walsh-Hadamard spectra.

An additional representation in the form of a univariate polynomial also exists, in which we treat the
value of the n input bits as a single value in GF (2n). [4, 5].

We have decided to focus on the truth tables, with the positions of a 1 and a 0 being swapped as
the move function. Not only does this move function preserve balancedness, but several smoothnesses
in the search landscape exist for the truth table representation, as we shall demonstrate below:

Lemma 3.1. If one element of the truth table of a Boolean function f with more than one input bit
changes value, the algebraic immunity of f changes by at most 1.

Proof. Let xα be the input value for which the output value flips. Let f be the original function, f ′

the function after the truth table is altered that differs from f only in the value of f(xα). Let g be an
annihilator of either f or (f ⊕ 1) of degree AI(f).



f ′(x) = f(x)⊕ δ(xα), where δ(xα) is the sum of all supermonoms of xα. (supermonoms being xα
and all multiples thereof, i.e. any monoms containing all the “on” variables of xα.)

That is, δ(xα) = xα(1 ⊕ xb ⊕ xc ⊕ xbxc ⊕ . . .) = xα(1 ⊕ xb)(1⊕ xc). . . where xb, xc, etc are input
bits not appearing in the monom xα. Let us refer to these as “not-in-common inbits”, and the others
as “in-common inbits”. For example, δ(10001) = x1(1 ⊕ x2)(1 ⊕ x3)(1 ⊕ x4)x5, where x1 and x5 are
the in-common inbits, and x2, x3, x4 are the not-in-common inbits.

δ(xα) · (one of the not-in-common inbits) = 0. (Note that if xα is the maximum-weight-all-ones
input, no not-in-common inbits exist). Furthermore, δ(xα) · (1⊕ any in-common inbit) = 0.

If xbg = 0 for all not-in-common xb, g must be a multiple of (1 ⊕ xb)(1 ⊕ xc). . ., with algebraic
degree ≥ (n−HW (xα)).

If (1 ⊕ xi)g = 0 for all in-common xi, g must be a multiple of (xi · xj · . . .) = xα, with algebraic
degree ≥ HW (xα).

If xbg = 0 for all not-in-common xb and (1⊕ xi)g = 0 for all in-common xi, g must be xα(1⊕ xb⊕
xc ⊕ xbxc ⊕ . . .) with algebraic degree n. Since g has algebraic degree AI(f), which is bounded above
by dn2 e, this is only possible if n = 1. So there exists at least one xb or (1⊕ xi) such that the product
of it and g is nonzero, and such that the product of it and δ(xα) is zero. Call it z.

(In fact, since g must have algebraic degree ≤ dn2 e, there exist at least bn2 c such candidates for z;
however we only need one of them to complete the proof.)

Either g is an annihilator of f , or an annihilator of (1⊕ f).
If the former: fg = 0. Then zgf ′ = zg(f ⊕ δ) = zgf ⊕ zgδ. gf = 0, so this = zgδ = zδg = 0.

Hence zg annihilates f ′, and AI(f ′) ≤ deg(zg) ≤ AI(f) + 1.
If the latter: (1 ⊕ f)g = 0. zg(1 ⊕ f ′) = zg(1 ⊕ f ⊕ δ) = zg(1 ⊕ f) ⊕ zgδ = 0z ⊕ zδg = 0. Hence

zg annihilates (1⊕ f ′), and AI(f ′) ≤ deg(zg) ≤ AI(f) + 1.
We have shown that AI(f ′) ≤ AI(f) + 1. It is trivial to swap f ′ and f and repeat the above

procedure to show that AI(f) ≤ AI(f ′) + 1. Hence |AI(f)−AI(f ′)| ≤ 1.

Lemma 3.2. If one of the 0s in the truth table of a Boolean function f on more than one input bit
changes to a 1, and if one of the 1s in said truth table simultaneously changes to a 0, the algebraic
immunity of the resultant Boolean function f ′ differs from AI(f) by at most 1.

Proof. Since this represents two changes to the truth table of f , we know from the above result that
|AI(f)−AI(f ′)| ≤ 2. Now, let the first change be the one turning a 1 into a 0 in the truth table, and
let the Boolean function resulting from this change be denoted f2. Clearly any annihilators of f are
annihilators of f2, so AI(f2) ≤ AI(f).

The second change, a 0 to a 1, changes f2 into f ′. From result 10 above, we know that AI(f ′) ≤
(AI(f2) + 1) ≤ (AI(f) + 1). By similar reasoning, we can show that AI(f) ≤ (AI(f ′) + 1). Hence
|AI(f)−AI(f ′)| ≤ 1.

Lemma 3.3. Let DP (f) be the minimum value of dg + dh such that f ∈ Bn (n > 1) satisfies a
(dg, dh)−relation. Let f ′ be a Boolean function differing from f in precisely one truth table position,
corresponding to input value xα.

Then |DP (f ′)−DP (f)| ≤ 2.

Proof. As noted in Lemma 3.1 above, f ′ = f ⊕ δ(xα), where δ(xα), for all input bits xb, xc, . . . that
are not submonoms of xα, is equal to xα(1⊕ xb)(1⊕ xc). . .

Let g with degree dg and h with degree dh be two functions such that a (dg, dh)−relation exists
for f . For a valid (dg, dh)−relation, since dh ≥ AI(f), dg ≤ bn2 c.

If xbg = 0 for any input bit xb that is not a submonom of xα, g must be a multiple of (1⊕ xb).
If (1⊕ xi)g = 0 for any input bit xi that is a submonom of xα, g must be a multiple of xi.
It follows that there must exist at least dn2 e polynomials p = xb or (1⊕ xi) of the form described

above such that pg is a nonzero function, otherwise g would have algebraic degree higher than bn2 c.
Let us choose one, and denote it z.



z · δ(xα) must equal zero, since if z is one of the xb, we have z · δ = xαxb(1⊕xb). . . = xα ·0 · . . . = 0,
and if z is one of the (1⊕ xi), z · xα = (1⊕ xi)xixj . . . = 0 and hence z · δ = 0 · (1⊕ xb)(1⊕ xc). . . = 0.

Now, zgf ′ = zg(f ⊕ δ) = zgf ⊕ zgδ = zh⊕ (gzδ = 0) = zh. deg(zg) ≤ deg(g) + 1 = (dg + 1), and
deg(zh) ≤ deg(h) + 1 = (dh + 1). We see that DP (f ′) cannot exceed (DP (f) + 2) since (zg)f ′ = zh
with deg(zg) + deg(zh) ≤ (dg + 1) + (dh + 1) = (dg + dh + 2).

We can similarly show that DP (f) ≤ (DP (f ′) + 2), giving us the result that |DP (f ′)−DP (f)| ≤
2.

Corollary 3.4. Let DP (f) be the minimum value of dg + dh such that f ∈ Bn (n > 1) satisfies a
(dg, dh)−relation. Let f ′ be a Boolean function differing from f in precisely two truth table positions.
Then |DP (f ′)−DP (f)| ≤ 4.

Lemma 3.5. Let f ′ be a Boolean function differing from f in precisely one truth table position. Then
all values in the Walsh-Hadamard spectrum of f ′ differ from their corresponding values in the spectrum
of f by ±2.

Proof. Consider that, as stated earlier, entry ω in the spectrum is equal to:

F̂ (ω) =
2n−1∑
i=0

(−1)f(i) · (−1)ω·i

Since only one value of f(i) changes, only one value of (−1)f(i) · (−1)ω·i changes, from either
(−1)·(−1)ω·i to 1·(−1)ω·i, or vice versa. In any case, the magnitude of the change is 2·(−1)ω·i, i.e.
2.

Corollary 3.6. Let f ′ be a Boolean function obtained by swapping two differing values in f ’s truth
table. Then all values in the Walsh-Hadamard spectrum of f ′ differ from their corresponding values
in the spectrum of f by +4, 0, or −4.

Since, as stated earlier, all Walsh-Hadamard spectrum entries for a balanced function are multiples
of 4, we have:

Corollary 3.7. Let f ′ be a balanced Boolean function obtained by swapping two differing values in f ’s
truth table. Let MW (f) denote the maximal absolute value in the Walsh-Hadamard spectrum of f ;
that is MW (f) = maxω |F̂ (ω)|. Then MW (f ′) = MW (f) or MW (f)± 4. In any case, the difference

is at most 4. Since nonlinearity is defined as 2n−1 − maxω |F̂ (ω)|
2 , we see that the nonlinearities of f

and f ′ differ by at most 2.

Early experiments on evolving truth tables with 8 or 9 input bits showed that the optimal values
for AI and FAR would always be found within two outer loops, even with only 100 inner loops. For
this reason, we felt confident in focusing solely on truth tables, and in adding nonlinearity to the cost
function, thus covering all the relevant criteria for a filter function in [7].

3.2 Choosing a cost function

In [11], cost functions of this form were experimented with for various values of R and X:

cost(f) =

2n−1∑
ω=0

||F̂f (ω)| −X|R

To be more precise, the value R = 3.0 was preferred, with 2.0 and 2.5 also experimented with. In
devising the part of the cost function that would deal with nonlinearity, however, we opted to utilise
R = 4.0 (and to divide this part of the cost function by a scalar factor dependent on n), for various
reasons:



1. According to Parseval’s Theorem, the sum of squares of the entries in a valid Walsh spectrum
is constant. It therefore seemed unlikely that exponent 2 would be of much help. Furthermore,
we had observed that high-quality solutions tended to have higher costs as defined by the pair
(X = 0, R = 1); and although attempts to base a cost function on this observation proved
ineffective, this was nonetheless evidence that R would have to exceed 2.

2. In [21], it is shown that applying a matrix transformation to the difference distribution table
(DDT) of a vectorial Boolean function yields a table containing the autocorrelation spectra of
all linear combinations of the co-ordinate functions, and that applying a further matrix trans-
formation to this yields a table containing the squared entries of the Walsh-Hadamard spectra
for these functions. Previous research into evolving substitution boxes had utilised the sum of
squares of DDT entries after (R = 2.0, X = 0) for this table turned out to be especially effi-
cient and high-performing, and this suggested that the sum of the squares of the squares of the
Walsh entries might be analogous with the sum of the squares of the DDT entries for a vectorial
Boolean function in some way.

3. Consistent with the preceding point, dividing the variance of the entries in the “squared Walsh
spectra” table by a particular value exponential in n yielded the variance of the DDT; and we
had been able to prove that the cost as defined by the DDT variance changed by the same
amount as the (R = 2.0, X = 0) DDT cost function whenever a move was made.

4. During initial experimentation, dividing the sum of fourth powers by 2n+5 to define a cost was
observed to create a situation where each move changed the cost by 3.0 or some integer multiple
thereof, raising confidence in the uniform smoothness of the search landscape.

5. Furthermore, when combined with algebraic and fast algebraic qualities, this cost function ob-
tained Boolean functions with comparable algebraic characteristics and superior nonlinearity to
a cost function in which (2n−1−NL) - (the number of occurrences of the maximal absolute value
in the Walsh spectrum) was used as the nonlinearity component.

The overall cost function, therefore, derived an initial cost using the Walsh spectrum in this fashion,
and then subtracted 2 ∗ AI(f) + FAR(f) from it to obtain the overall cost. This meant that a one
point improvement in the nonlinearity portion of the cost function would subtract 3 from the cost,
compared to 1 or 2 for the others. We felt that this was justified to reflect the difficulty of obtaining
functions with optimal nonlinearity through simulated annealing compared to functions with optimal
algebraic characteristics. In experiments, it was observed that this would allow the cost function
to move through candidates with suboptimal algebraic characteristics that might otherwise block off
promising search avenues. The additional weight given to AI compared to FAR simply reflected its
more restricted range of values.

As stated above, we used a different cost function for hill-climbing. This, again, subtracted 2 ∗
AI(f) + FAR(f) from the overall cost, but had a simpler nonlinear component of (2n−1 − NL) −
2/freq(maxf (|F̂ (ω)|)). That is, we divided 2 by the frequency with which the maximal absolute
value in the Walsh spectrum occurred, and subtracted this from (2n−1 − NL). On this occasion,
however, we reduced the weighting given to the nonlinearity - slightly suboptimal nonlinearity was
acceptable, anything less than optimal AI and FAR in the final product was not.

We used 500,000 inner loops for problems of size 9 or higher, and 20,000 for size 8 or less. We
used 100 outer loops and 50 trials per problem size, cooling factor 0.97, and initial acceptance rate
0.5. Algebraic immunity was calculated according to Algorithm 2 in [9], and fast algebraic resistance
according to the algorithm of [1].

3.2.1 The next cost function

For up to 11 input bits, this was acceptably efficient. The following table compares our results to the
previously-known best in the literature ([7, 8, 10, 23]):



n Previous best (NL,AI, FAR) (NL,AI, FAR) achieved by annealing

6 (24, 3, 5) (26, 3, 5)

7 (54, 4, 6) (56, 4, 6)

8 (114, 4, 7) (116, 4, 7)

9 (236, 5, 8) (238, 5, 8)

10 (484, 5, 9) (486, 5, 9)

11 (980, 6, 10) (986, 6, 10)

Table 1: Comparisons of previously-known Boolean functions with first set of annealed functions for
n ≤ 11

However, both in memory and time, the cost of calculating algebraic immunity and fast algebraic
resistance is exponential. Despite the optimisations we were able to make by taking into account the
lemmas in Section 3, both complexities were still exponential, and for 12 input bits the algorithm
remained stuck in its first hill-climb for several days without returning a result.

Since most of the results that had been achieved still had optimal algebraic characteristics, and
since the speed with which these were achieved suggested that functions with optimal (AI, FAR)
were plentiful, we decided to run a new set of experiments in which we would remove all parts of
the cost functions that did not focus on nonlinearity. We would evaluate (AI, FAR) at the end of
the algorithm, and hope that at least some of the annealed functions were optimal in terms of these
criteria.

The parameters remained unchanged up to n = 15. For n = 16, the increased complexity meant
that we reduced the number of inner loops to 200,000; however we later raised this to 400,000 (and
later 1,000,000, after discovering the substantial gulf between constructed and annealed results at this
size.) We did not go as far as n = 17; and note that to do so would require at least 4GB of memory for
the fast algebraic resistance calculations and the precomputed tables used in the nonlinearity sections
of the cost function; this quantity increases approximately fourfold when n is increased by 1.

We also reran the experiments for n = 9, n = 10 and n = 11 using this approach, hoping either to
improve on our best results or to increase the number of distinct affine equivalence classes possessing
the same set of optimal criteria. For n = 9, 8% of functions achieved nonlinearity 240, but all of these
had only FAR = 7. 32% of the functions for n = 10 achieved nonlinearity 488, again at the cost of
a slightly suboptimal FAR = 8. The new experiment for n = 11, after hill-climbing, found functions
with nonlinearity 988 on every run, but none of these possessed the necessary FAR > 9. What was
more, as well as FAR(f) = (n− 2), these functions also had suboptimal algebraic degree (n− 2).

Comparing this to the results for higher sizes; for n = 12 58% of the hill-climbed functions had
nonlinearity 1996, but all of these had suboptimal degree and FAR of 10. For n = 13 60% of the
hill-climbed functions had nonlinearity 4020, but all of these had FAR 11 and degree 11.

n Best (NL,AI, FAR) achieved with nonlinearity-only cost function.

12 (1994, 6, 11)

13 (4018, 7, 12)

14 (8082, 7, 13)

15 (16222, 8, 14)

16 (32536, 8, 15)

Table 2: Annealed Boolean functions for 12 ≤ n ≤ 16 before incorporation of algebraic degree into
the cost function.



3.3 Adding algebraic degree to the cost function.

Since all the functions we had found with nonlinearity in excess of those in Table 2 had suboptimal
algebraic degree, we altered the hill-climb cost function to heavily penalise algebraic degree < (n− 1),
and reran the previous experiments with increased numbers of inner loops (going as far as 32,000,000
for n = 14).

The results of this were mixed. For n ≤ 13, the higher values for nonlinearity observed previously
simply did not occur. For n = 14, four Boolean functions with nonlinearity 8084 and the desired
(AI, FAR) value were obtained; all the other functions at this size had nonlinearity 8082. For n = 16
(with up to 3,000,000 inner loops) one function with nonlinearity 32540 was found, followed by a total
of three more when the number of inner loops was increased to 6,000,000 and then 12,000,000. No
functions with higher nonlinearity at this size have yet been obtained through annealing; however all
functions with this or lower nonlinearity have so far possessed optimal (AI, FAR), suggesting that
experiments over a longer time period with more inner loops may obtain higher nonlinearities still.

For n = 15 (with up to 6,000,000 inner loops), however, most annealed functions had only subop-
timal AI of 7, despite their optimal degree and FAR. Over several experiment runs, five functions
with (NL 16226, AI 8, FAR 14) were nevertheless found, but the reduced AI of most of the results
suggested that very few Boolean functions with high nonlinearity possess optimal algebraic degree,
algebraic immunity and fast algebraic resistance at this size, and that increasing the computational
resources devoted to this problem with the current cost function might primarily have the effect of
reducing the number of functions with AI = 8. This is consistent with the fact that the only func-
tion with NL = 16228 we obtained also had AI = 7. It should be noted that the evaluation of
a Boolean function’s algebraic immunity is much slower than the evaluation of its algebraic degree,
and hence reintroducing this into the cost function would significantly increase the time required to
anneal a single Boolean function, or force a reduction in the number of inner loops (and hence the
achievable nonlinearity). This may even result in functions with optimal algebraic degree (n− 1) but
FAR ≤ (n− 2).

n Previous best (NL,AI, FAR) Best (NL,AI, FAR) achieved with annealing
and original hill-climber.

12 (1988, 6, 11) (1994, 6, 11)

13 (3988, 7, 12) (4018, 7, 12)

14 (8072, 7, 13) (8084, 7, 13)

15 (16212, 8, 14) (16226, 8, 14)

16 (32556, 8, 15) (32540, 8, 15)

Table 3: Comparisons of the best existing Boolean functions with the last annealing results for the
original hill-climbing algorithm (12 ≤ n ≤ 16)

3.4 A more exhaustive hill-climbing algorithm.

The original hill-climbing algorithm (Algorithm 2) does not evaluate the cost of every member of the
1-move neighbourhood of the current candidate. This was a conscious design decision, made due to
the high time complexity of the AI/FAI algorithms that were involved initially. However, since these
were no longer incorporated into any cost function, this was no longer a factor. Despite the fact that
the size of the 1-move neighbourhood increases exponentially with n, we decided that it was worth
experimenting with a more exhaustive, deterministic, hill-climbing algorithm (see below pseudocode
for Algorithm 3).

Using 500,000 inner loops for the simulated annealing algorithm, we obtained our first (NL =
988, AI = 6, FAR = 10) functions for n = 11, but did not obtain any improvement for n ≤ 10. For
n = 9, we increased the number of inner loops to 2,000,000 and later 8,000,000 but still did not obtain



Algorithm 3 Pseudocode for the second hill-climbing algorithm

S0 denotes initial candidate
S ← S0
repeat

Sbest ← S
ACCEPTS IN THIS LOOP ← false
for x← 0, sizeof(1-move neighbourhood of S) do

Sx denotes the xth member of the 1-move neighbourhood of S.
cost diff ← C(Sx)− C(Sbest)
if cost diff < 0 then

ACCEPTS IN THIS LOOP ← true
Sbest ← Sx

end if
end for
if ACCEPTS IN THIS LOOP = true then

S ← Sbest
end if

until ACCEPTS IN THIS LOOP = false
return S

NL > 238. For n = 10, using 2, 000, 000 and then 4, 000, 000 inner loops, 2% of our obtained results
had (NL = 488, AI = 5, FAR = 9).

For n = 12, again using 2, 000, 000 followed by 4, 000, 000 inner loops, we obtained several (NL =
1996, AI = 6, FAR = 11) functions. For n = 13, we obtained several functions with NL = 4020 and
FAR = 12. Most of these had AI = 6, but we did still obtain several with AI = 7. For n = 14, we
equalled but did not improve on the quality of our best previous results, and it should be noted that
the exponential increase in time complexity is such that the full 50 trials have not yet been completed
after several months of computation. For n = 15 and n = 16, the time complexity is such that for
neither of these sizes has the hill-climber finished evolving the first candidate one month after the
completion of the annealing phase (which took approximately two days in the first case, five in the
second.)

n Previous best (NL,AI, FAR) Best (NL,AI, FAR) achieved with annealing.

6 (24, 3, 5) (26, 3, 5)

7 (54, 4, 6) (56, 4, 6)

8 (114, 4, 7) (116, 4, 7)

9 (236, 5, 8) (238, 5, 8)

10 (484, 5, 9) (488, 5, 9)

11 (980, 6, 10) (988, 6, 10)

12 (1988, 6, 11) (1996, 6, 11)

13 (3988, 7, 12) (4020, 7, 12)

14 (8072, 7, 13) (8084, 7, 13)

15 (16212, 8, 14) (16226, 8, 14)

16 (32556, 8, 15) (32540, 8, 15)

Table 4: Comparisons of the best existing Boolean functions with the final annealing results

3.5 Equivalence classes.

The histograms of the values in the Walsh spectra of the evolved functions differed, even for functions
with the same (NL,AI, FAR). Since these frequency histograms are affine invariant, it was clear that



several different affine equivalence classes of functions existed with these properties.

(n,NL,AI, FAR) Number of distinct equivalence classes identified

(6, 26, 3, 5) 2

(7, 56, 4, 6) 2

(8, 116, 4, 7) 20

(9, 238, 5, 8) 62

(10, 488, 5, 9) 2

(11, 988, 6, 10) 6

(12, 1996, 6, 11) 23

(13, 4020, 7, 12) 33

(14, 8084, 7, 13) 7

(15, 16226, 8, 14) 5

(16, 32540, 8, 15) 4

Table 5: Number of non-equivalent functions so far with the best (NL,AI, FAR) obtained through
annealing.

4 Conclusions and avenues for future research

In this paper, we have established via theoretical analysis that the search landscape defined by the use
of truth table flips as a move function is extremely promising with respect to the search for Boolean
functions with cryptographically-relevant properties. In addition to the existing results in this area
for nonlinearity and autocorrelation, we have demonstrated the existence of smooth search landscapes
for algebraic immunity and fast algebraic resistance, and exploited these in a local-optimisation based
metaheuristic, finding Boolean functions with superior properties to the best theoretical constructions
for their corresponding values of n.

Truth tables for some of the evolved Boolean functions are presented in the appendix, and any
researchers wishing to investigate the full set of evolved truth tables are invited to email the authors.

It would be interesting to see if such a search landscape is also defined for properties such as
transparency order which are relevant to side-channel attacks, or indeed for any other properties
of Boolean functions that are cryptographically relevant. Or, for that matter, relevant in areas of
computer science other than cryptology!

The key issue with the new functions is one of implementation. The Carlet-Feng functions can be
implemented using the Pohlig-Hellman algorithm [20] for up to 20 bits (and possibly more) without
needing the truth-table to be stored in memory; and for purposes of efficiency, some fast means to
calculate one of the new functions without needing to store a large lookup table in memory or requiring
a circuit with an overly large number of gates is required for them to be of practical use. Algebraic
immunity is not invariant in the case of affine transformations on the outputs, but is invariant under
transforms on the function inputs, and all other relevant properties are affine invariant [1]. Hence, a
potentially profitable avenue might be to apply various affine transformations to the function inputs
and to experiment with the results to find out if any of them are of the types described in [7, 8, 10].
Alternatively, the univariate representations of the affine equivalence subclasses thus defined could be
examined for functions with suitably sparse univariate forms.

Perhaps the best way to view this work might be as an existence proof. Boolean functions satisfying
all the required properties for use as nonlinear filter functions, and with nonlinearity higher than that
achieved by existing constructions, have been shown to exist. Now the question is whether any of
them can be shown to be part of an infinite class of Boolean functions with these properties (and,
ideally, some more efficient means of implementation). The exponential complexity of the algebraic



immunity and fast algebraic resistance algorithms renders the use of the current annealing approach
to find such functions for higher values of n increasingly impractical.
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Appendices

We present, in hexadecimal format, some of the truth tables of the evolved functions. Any researchers
who would like the full set of evolved functions with nonlinearities as shown in Tables 1 and 2 are
welcome to contact the authors directly (jmclaugh@cs.york.ac.uk).

n = 6: The following two truth tables are representatives of the discovered equivalence classes:
3502 8c3e f607 f571

and
385d b3b3 6f90 58a1

n = 7 : The representative truth tables are:
094f ddf3 299f 8b6c 15a4 42c7 5185 edc8

and
58ff 2d3a d029 4127 1958 f4d9 d436 3b53

n = 8 :
fbf2 6023 2e62 c9c7 aec4 d8b6 e4b2 ade5 616e 3c45 03f3 08d5 5baf e9aa 9609 6031

possesses fewer 24s (the maximal absolute value) in its absolute Walsh spectrum than any other
annealed function of this size.

n = 9 :
3011 9f10 b4f0 fce0 ebf1 4a57 fe9c 4d17 663b 8911 321d d1c8 8225 c40c a0bc 5c3b

7b91 9d70 a487 67b5 6c30 28ed c3bf 7e24 4b94 f79f 1175 96c7 1b8a fb33 9574 2d52

has the fewest 36s in its absolute spectrum.

n = 10 :
70ea 61ed 92c1 e717 c837 2f1c 83bf 8b97 32ac d5e6 d054 df57 9468 934d 03bc fa0e

0492 8550 d23b 32aa dd61 7ec6 aea6 4189 fa28 1b82 1e20 e2da a2d9 d184 4ad2 a778

bb66 b463 b335 c686 df3e 55db 6f25 f439 1e71 b998 1276 8bc8 a770 ba13 10f0 2ca5

1181 9acf e2d3 d6ee e730 0dd0 19ef 7050 e9f8 9330 a949 142f ad4c efd9 af73 ad12

has fewer 48s in its absolute spectrum than any other annealed function of this size and nonlin-
earity.

n = 11 :
ef3d a74f 8ee4 3066 8eae 24c9 5da2 22ce 031d a6cc 7fcd d712 6c29 6274 1bba d4b2

9bfa 9307 55af c5c9 442e 5933 5dc9 027c 1156 27ae 5896 0ea2 f7bd 3c3a f1a4 fa60

76f1 bd35 9133 1afd df26 d3f0 979f 9ae9 afe6 caac 1b04 10f7 e990 2dfc 8658 a489

82a3 644f ab5e d40a 4f9e 1dba 7bf0 4278 88c1 28e6 30b9 00f4 2b7c 7b59 242c 23a1

dc35 21b8 7096 38d1 096a e824 2478 7e2c f897 a4d5 d593 7a2d 98c6 749f 18e9 8d16

8b8c 1a46 67e5 3bf2 f4b4 1e67 4f15 2152 1857 112c 5371 128c 40c0 349b 70ac cbc9

88e9 bb1b b201 f67b b6ca 3ab2 c41b c153 53a8 02fe f49a 2c10 eed3 fa9a 979b 1a70

d751 a9ba 7f95 5678 623c c750 6789 9bc6 4cfd de0e db07 9bd1 300f ed27 a6b6 4af8

has the lowest number of 72s in its absolute Walsh spectrum.



n = 12 :
3047 d0a3 617a ad1d bd27 c955 c3df 0ba0 2ca6 b256 2f78 92dd c2b1 e417 42ec ce8d

1133 e062 7d87 26ee 20d8 c9e5 f142 c333 9df6 07ec a417 026e c27d 062a ce4c 2a68

ef96 bf1c ddfb 9945 a0cf ce07 155c 3c1b 326b 780e 0d4c 6676 1f93 3245 cb3c 9e33

e217 49f2 c06e 94aa 1f21 836a 0bc9 a674 9ffd ae24 654c af61 3a8f ad74 12f0 a7ae

4631 416b 5fbc b2e7 c124 92ab 0a8c 4541 9aed e66e eba8 349c 3b0f b48a 378a ed9e

ba0a e03d 53b7 a0bd 7895 55d2 13b6 cb62 957d b2e7 b7d5 f87b 2718 1a48 2304 f165

2f39 a1f8 af0f b5b1 7b5f 8501 7471 7d6d bba1 eb67 1e80 6090 aa1e 0133 55bc 4e8a

4be4 5784 08f7 25ba de1a 6a9d 9e60 7efe 12da 9c15 8d27 0f93 cf22 754b 8086 6ac3

9590 719d 424b e466 1ec9 3186 430c 84cc d35e aee6 b184 8898 6af2 edbf 0017 6a75

d76d 7477 7788 0636 0f96 8762 3e8d 4ca1 348a b21e 12f1 7a20 f632 ca85 f0c7 dfed

f8fd a288 0a84 b289 6108 5c16 ed3f 408a fa61 9906 90d8 1faa cae3 f715 2ed0 75d3

3bbe 312a e141 e187 9cd1 9010 b156 18ff 3c13 bf3f 5294 31b2 ef35 d866 25e6 16e5

6fe9 e846 2383 b955 b394 a71c be34 eb50 cf5b 464c f3ef a988 29e7 96a0 b3f0 caad

c631 deb0 bc8f 81a2 4e46 d593 a48b 3217 a755 8064 ed15 3037 04c3 644e 3da5 5eeb

506e 4d9a 7e9b d84e fb40 4b0a a432 1400 93a4 6dfb df11 212d 6056 6db6 43f5 4ccc

41f9 c1af eba9 067c 56f7 534f 6f17 dbf1 6f8f 1789 5f0a 48cd 8523 9fc4 c9e5 f8d3

has the fewest 104s in its Walsh spectrum.

n = 13 :
f10d 0769 ad35 6249 b1a0 1dbb d733 6786 7d68 0c5d 5632 3687 475a cf43 36ee 8619

0d81 e2a7 bc23 4616 be11 6b4e 4c54 fa9a ba6f a8d3 6472 6cde aa07 3fc7 a4cf 248b

2a17 9259 9d82 9826 e944 5829 20d1 a701 2627 0562 c27d 61ab f7d0 3970 354b d08d

3f5e d387 9c4f 6e35 ecfd 606a 655d c563 5a50 1f4b 4e37 bff0 dfcf 6f63 d2b4 4624
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has the fewest 152s in its Walsh spectrum
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