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Abstract. We employ tropical algebras as platforms for several cryptographic
schemes that would be vulnerable to linear algebra attacks were they based on “usual”
algebras as platforms.
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1. Introduction

In this paper, we employ tropical algebras as platforms for several cryptographic
schemes. The schemes themselves are not brand new; similar ideas were used in the
“classical” case, i.e., for algebras with the familiar addition and multiplication. How-
ever, in the classical case these schemes were shown to be vulnerable to various linear
algebra attacks. Here we make a case for using tropical algebras as platforms by using,
among other things, the fact that in the “tropical” case, even solving systems of linear
equations is computationally infeasible in general. Yet another advantage is improved
efficiency because in tropical schemes, one does not have to perform any multiplications
of numbers since tropical multiplication is the usual addition, see below.

We start by giving some necessary information on tropical algebras here; for more
details, we refer the reader to a recent monograph [2].

Consider a tropical semiring S (also known as the min-plus algebra due to the fol-
lowing definition). This semiring is defined as a subset of reals that contains 0 and is
closed under addition, with two operations as follows:

x⊕ y = min(x, y)

x⊗ y = x + y.

It is straightforward to see that these operations satisfy the following properties:

associativity:
x⊕ (y ⊕ z) = (x⊕ y)⊕ z
x⊗ (y ⊗ z) = (x⊗ y)⊗ z.
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commutativity:
x⊕ y = y ⊕ x
x⊗ y = y ⊗ x.

distributivity:
(x⊕ y)⊗ z = (x⊗ z)⊕ (y ⊗ z).

There are some “counterintuitive” properties as well:
x⊕ x = x

x⊗ 0 = x

x⊕ 0 could be either 0 or x.

There is also a special “ε-element” ε = ∞ such that, for any x ∈ S,

ε⊕ x = x

ε⊗ x = ε.

A (tropical) monomial in S looks like a usual linear function, and a tropical poly-
nomial is the minimum of a finite number of such functions, and therefore a concave,
piecewise linear function. The rules for the order in which tropical operations are
performed are the same as in the classical case, see the example below.

Example 1. Here is an example of a tropical monomial: x⊗x⊗y⊗z⊗z. The (tropical)
degree of this monomial is 5. We note that sometimes, people use the alternative
notation x⊗2 for x⊗ x, etc.

An example of a tropical polynomial is: p(x, y, z) = 5⊗x⊗y⊗z⊕x⊗x⊕2⊗z⊕17 =
(5⊗ x⊗ y⊗ z)⊕ (x⊗ x)⊕ (2⊗ z)⊕ 17. This polynomial has (tropical) degree 3, by the
highest degree of its monomials.

We note that, just as in the classical case, a tropical polynomial is canonically rep-
resented by an ordered set of tropical monomials (together with non-zero coefficients),
where the order that we use here is deglex.

While the ⊕ operation is obviously not invertible, the ⊗ operation is, and we denote
the inverse of this operation by ® (it is just the classical subtraction):

x® y = z if and only if y ⊗ z = x.

We refer to [8] for more detailed properties of this operation; here we just mention
the following properties that agree with those of the usual division:

(x® y)⊗ (z ® t) = (x⊗ z)® (y ⊗ t)

(x® y)⊕ (z ® t) = ((x⊗ t)⊕ (y ⊗ z))® (y ⊗ t).

Also as in the classical case, there is an equivalence relation on the set of all expres-
sions of the form x® y:

x® y is equivalent to z ® t if and only if x⊗ t = y ⊗ z.

All expressions of the form x ® y, where x, y ∈ S, modulo the above equivalence,
form a semifield (of quotients of S), which we denote by Rat(S), see [8].
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1.1. Tropical matrix algebra. A tropical algebra can be used for matrix operations
as well. To perform the A ⊕ B operation, the elements mij of the resulting matrix
M are set to be equal to aij ⊕ bij . The ⊗ operation is similar to the usual matrix
multiplication, however, every “+” calculation has to be substituted by a ⊕ operation,
and every “·” calculation by a ⊗ operation.

Example 2.
(

1 2
5 −1

)
⊕

(
0 3
2 8

)
=

(
0 2
2 −1

)
.

Example 3.
(

1 2
5 −1

)
⊗

(
0 3
2 8

)
=

(
1 4
1 7

)
.

The role of the identity matrix I is played by the matrix that has “0”s on the diagonal
and∞ elsewhere. Similarly, a scalar matrix would be a matrix with an element λ ∈ S on
the diagonal and ∞ elsewhere. Such a matrix commutes with any other square matrix
(of the same size). Multiplying a square matrix by a scalar amounts to multiplying it
by the corresponding scalar matrix.

Example 4. 2⊗
(

1 2
5 −1

)
=

(
2 ∞
∞ 2

)
⊗

(
1 2
5 −1

)
=

(
3 4
7 1

)
.

Then, tropical diagonal matrices have something on the diagonal and ∞ elsewhere.
We also note that, in contrast with the “classical” situation, it is rather rare that

a “tropical” matrix is invertible. More specifically (see [2, p.5]), the only invertible
tropical matrices are those that are obtained from a diagonal matrix by permuting
rows and/or columns.

2. Key exchange using matrices over a tropical algebra

We are now going to offer a key exchange protocol building on an idea of Stickel [13]
who used it for matrices over “usual” algebras, which made his scheme vulnerable to
linear algebra attacks, see e.g. [11]. Since we believe that Stickel’s idea itself has a
good potential, we suggest here to use matrices over a tropical algebra as the platform
for his scheme, in order to prevent linear algebra attacks.

We start by recalling the original Stickel’s protocol. Let G be a public non-
commutative semigroup, a, b ∈ G public elements such that ab 6= ba. The key exchange
protocol goes as follows.

2.1. Protocol 1 [13].
(1) Alice picks two random natural numbers n,m and sends u = anbm to Bob.
(2) Bob picks two random natural numbers r, s and sends v = arbs to Alice.
(3) Alice computes KA = anvbm = an+rbm+s.
(4) Bob computes KB = arubs = an+rbm+s.

Thus, Alice and Bob end up with the same group element K = KA = KB which can
serve as the shared secret key.

This can be generalized if the platform is not just a semigroup, but a ring (actually,
a semiring would suffice):
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2.2. Protocol 2 [6, 11]. Let R be a public non-commutative ring (or a semiring),
a, b ∈ R public elements such that ab 6= ba.

(1) Alice picks two random polynomials p1(x), p2(x) (say, with positive integer co-
efficients) and sends p1(a) · p2(b) to Bob.

(2) Bob picks two random polynomials q1(x), q2(x) and sends q1(a) · q2(b) to Alice.
(3) Alice computes KA = p1(a) · (q1(a) · q2(b)) · p2(b).
(4) Bob computes KB = q1(a) · (p1(a) · p2(b)) · q2(b).

Thus, since p1(a) · q1(a) = q1(a) · p1(a) and p2(b) · q2(b) = q2(b) · p2(b), Alice and Bob
end up with the same element K = KA = KB which can serve as the shared secret key.

It is Protocol 2 that we propose to adopt in the “tropical” situation.

2.3. Protocol 3 (tropical). Let R be the tropical algebra of n × n matrices over
integers, and let A,B ∈ R be public matrices such that A⊗B 6= B ⊗A.

(1) Alice picks two random tropical polynomials p1(x), p2(x) (with integer coeffi-
cients) and sends p1(A)⊗ p2(B) to Bob.

(2) Bob picks two random tropical polynomials q1(x), q2(x) and sends q1(A)⊗q2(B)
to Alice.

(3) Alice computes KA = p1(A)⊗ (q1(A)⊗ q2(B))⊗ p2(B).
(4) Bob computes KB = q1(A)⊗ (p1(A)⊗ p2(B))⊗ q2(B).

Thus, since p1(A)⊗q1(A) = q1(A)⊗p1(A) and p2(B)⊗q2(B) = q2(B)⊗p2(B), Alice
and Bob end up with the same element K = KA = KB which can serve as the shared
secret key.

2.4. What are the advantages of the “tropical” Protocol 3 over “classical”
Protocols 1 and 2? One obvious advantage is improved efficiency because when mul-
tiplying matrices in the tropical sense, one does not have to perform any multiplications
of numbers since tropical multiplication is the “usual” addition.

To compare security, we briefly recall a linear algebra attack [11] on Stickel’s original
protocol (Protocol 1), where G was a group of invertible matrices over a field. In that
case, to recover a shared key K, it is not necessary to find the exponents n,m, r, or
s. Instead, as was shown in [11], it is sufficient for the adversary to find matrices x
and y such that xa = ax, yb = by, and xu = y. (Here x corresponds to a−n, while y
corresponds to bm.)

These conditions translate into a system of 3k2 linear equations with 2k2 unknowns,
where k is the size of the matrices. This typically yields a unique solution (according
to computer experiments of [11] and [10]), which can be efficiently found if the matrices
are considered over a field.

We note that in [10], a more sophisticated attack on a more general Protocol 2 was
offered. This attack applies to not necessarily invertible matrices over a field.

In the “tropical” situation (Protocol 3), however, a linear algebra attack will not
work, for several reasons:
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(1) Matrices are generically not invertible, so the equation XY = U with known U
and unknown X, Y does not translate into a system of linear equations.

(2) The equations XA = AX, Y B = BY do translate into a system of linear
equations, which may be called a “two-sided min-linear system”, following [2].
In [1], it is shown that the problem of solving such systems is in the class
NP ∩Co−NP (there is a belief that it does not belong to the class P). We
refer to [2] for a comprehensive exposition of what is known concerning existing
algorithms for solving two-sided min-linear systems and their complexity. Here
we just say that, while it is known how to find one of the solutions of a system
(if a solution exists), there is no known efficient method for describing the linear
space of all solutions, in contrast with the “classical” situation.

2.5. Parameters and key generation. Here we suggest values of the parameters
involved in the description of our Protocol 3.

• The size of matrices n = 10.
• The entries of the public matrices A,B are integers, selected uniformly randomly

in the range [−1010, 1010].
• The degrees of the tropical polynomials p1(x), p2(x), q1(x), q2(x) are selected

uniformly randomly in the range [1, 10].
• The coefficients of the above tropical polynomials are selected uniformly ran-

domly in the range [−1000, 1000].

With these parameters, the size of the key space (for private tropical polynomials)
is approximately 1030.

3. Encryption using birational automorphisms of a tropical polynomial
algebra

In this section, we describe a public key encryption scheme that would be susceptible
to a linear algebra attack in the “classical” case (cf. [9], [4]), but not in the “tropical”
case.

Let P = Rat[x1, . . . , xn] be the quotient semifield of a tropical polynomial algebra
over Z.

3.1. The protocol. There is a public automorphism α ∈ Aut(P ) given as a tuple of
tropical rational functions (α(x1), . . . , α(xn)). Alice’s private key is α−1. Note that α
is also a bijection of the set Zn, i.e., it is a one-to-one map of the set of all n-tuples of
integers onto itself. We will use the same notation α for an automorphism of P and for
the corresponding bijection of Zn, hoping this will not cause a confusion.

(1) Bob’s secret message is a tuple of integers s = (s1, . . . , sn) ∈ Zn. Bob encrypts
his tuple by applying the public automorphism α: Eα(s) = α(s1, . . . , sn).

(2) Alice decrypts by applying her private α−1 to the tuple Eα(s): α−1(Eα(s)) =
s = (s1, . . . , sn).
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3.2. Key generation. The crucial ingredient in this scheme is, of course, generating
the public key α ∈ Aut(P ). Alice can generate her automorphism α as a product
of “monomial” automorphisms on the set of variables {x1, . . . , xn} and “triangular”
automorphisms of the form

ϕ : xi → xi ⊗ pi(xi+1, . . . , xn), 1 ≤ i ≤ n,

where pi ∈ P = Rat[x1, . . . , xn]. Each triangular automorphism, in turn, is a product
of “elementary” triangular automorphisms; these are of the form

τ : xj → xj ⊗ qj(xj+1, . . . , xn), xk → xk, k 6= j.

The inverse of such a τ is

τ−1 : xj → xj ® (qj(xj+1, . . . , xn)), xk → xk, k 6= j,

where qj ∈ P .
“Monomial” automorphisms are analogs of linear automorphisms in the “classical”

situation; they are of the form

µ : xi → bi ⊗ x⊗ai1
1 ⊗ · · · ⊗ x⊗ain

n ,

where bi are finite coefficients (i.e., bi 6= ∞), and the matrix A = (aij) of integer
exponents is invertible in the “classical” sense.

We note, in passing, that a question of independent interest (independent of crypto-
graphic applications) is:

Problem 1. Is every automorphism of P = Rat[x1, . . . , xn], the quotient semifield of
a tropical polynomial algebra over Z, a product of triangular and monomial automor-
phisms?

3.3. Parameters. We suggest the following parameters.
• The number n of variables in the platform tropical polynomial algebra: 10.
• The number of triangular automorphisms in a product for α: 2. The number

of monomial automorphisms: 3. More specifically, Alice generates her α in the
following form:

α = µ1 ◦ ϕ1 ◦ µ2 ◦ ϕ2 ◦ µ3,

where ϕ1, ϕ2 are triangular automorphisms, and µ1, µ2, µ3 are monomial auto-
morphisms.

• The tropical degrees of all qj are equal to 2.
• The coefficients of the above tropical polynomials qj are selected uniformly

randomly in the range [−10, 10].

Remark 1. Alice can obtain the inverse of α as the product of inverses of the auto-
morphisms ϕi and µi, in the reverse order. However, Alice does not have to compute
an explicit expression for α−1; this computation may not be efficient since the degree
of α−1 may be substantially greater than the degree of α. In our protocol, Alice has to
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apply α−1 to a particular point in Zn; efficient way of doing this is to first apply µ−1
3 ,

then apply ϕ−1
2 to the obtained point, etc.

Remark 2. There is a ramification of the above protocol, where Bob’s secret message is
a tropical polynomial u, instead of a point in Zn. (Note that the result of encrypting u
will be, in general, an element of P = Rat[x1, . . . , xn].) In this ramification, decryption
is going to have a much higher computational complexity because Alice would have
to compute an explicit expression for α−1 (cf. the previous remark). On the other
hand, encryption in this case is going to be homomorphic (in the “tropical” sense)
because α(u1 ⊕ u2) = α(u1)⊕ α(u2) and α(u1 ⊗ u2) = α(u1)⊗ α(u2). For examples of
homomorphic encryption in the “classical” case see e.g. [5] or [7].

Remark 3. One can consider an encryption protocol, similar to the one above, also in
the “classical” case. As we have already pointed out, polynomial automorphisms were
employed in a similar context in [9], but birational automorphisms have not been used
for cryptographic purposes before, to the best of our knowledge.

3.4. Possible attacks. There are the following two attacks that adversary may at-
tempt.

(1) Trying to compute α−1 from the public automorphism α. The problem with
this attack is that the degree of α−1 may be exponentially greater than the
degree of α, which makes any commonly used attack (e.g. a linear algebra
attack) infeasible.

(2) Trying to recover Bob’s secret message s from α(s). This translates into a
system of tropical polynomial equations; solving such a system is an NP-hard
problem, as we show in the following proposition.

Proposition 1. The problem of solving systems of tropical polynomial equations is
NP-hard.

Before getting to the proof, we note that for a closely related, but different, problem
of emptiness of a tropical variety NP-completeness was established in [14].

Proof. We show how to reduce the SAT problem to the problem of solving a system
of tropical polynomial equations. Recall that the SAT (for SATisfiability) problem is
a decision problem, whose instance is a Boolean expression written using only AND,
OR, NOT, variables, and parentheses. The question is: given the expression, is there
some assignment of TRUE (=1) and FALSE (=0) values to the variables that will make
the entire expression true? A formula of propositional logic is said to be satisfiable if
logical values can be assigned to its variables in a way that makes the formula true. The
Boolean satisfiability problem is NP-complete [3]. The problem remains NP-complete
even if all expressions are written in conjunctive normal form with 3 variables per clause
(3-CNF), yielding the 3-SAT problem.

Suppose now we have a 3-CNF, and we are going to build (in time polynomial in
the number of clauses) a system of tropical polynomial equations that has a solution
if and only if the given 3-CNF is satisfiable. Denote Boolean variables in the given
3-CNF by ui. In our tropical system, we are going to have two kinds of variables: those
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corresponding to literals ui will be denoted by xi, and those corresponding to literals
¬ui will be denoted by yi.

First of all, we include in our tropical system all equations of the form xi⊗yi = 1, for
all i.

Now suppose we have a clause with 3 literals, for example, ui ∨ ¬uj ∨ ¬uk. To this
clause, we correspond the following tropical polynomial equation:

yi ⊕ xj ⊕ xk = 0.

Obviously, the above clause is TRUE if and only if either ui = 1, or uj = 0, or uk = 0.
If ui = 1, then yi = 0, and our tropical equation is satisfied. If, say, uj = 1, then
xj = 0, and again our tropical equation is satisfied. This shows that if a given 3-CNF
is satisfiable, then our tropical equation has a solution.

If, on the other hand, our tropical equation has a solution, that means either yi = 0,
or xj = 0, or xk = 0. In any case, the given clause is easily seen to be TRUE upon
corresponding ui to xi and ¬ui to yi. (Note that if, say, yi = 0, then, since we also
have the equation xi ⊗ yi = 1, xi should be equal to 1.)

Having thus built a tropical equation for each clause in the given 3-CNF, we end up
with a system of tropical polynomial equations that corresponds to the whole 3-CNF,
which is solvable if and only if the given 3-CNF is satisfiable. This completes the proof.

¤
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