
On formal and automatic security verification of WSN

transport protocols

Ta Vinh Thong1

thong@crysys.hu
Amit Dvir2

azdvir@gmail.com

Laboratory of Cryptography and System Security (CrySyS Lab.)

Budapest University of Technology and Economics, Hungary1

Computer Science Department, The College of Management - Academic Studies, Israel2

TECHNICAL REPORT

2013

1

Contents

1 Introduction 4

2 crypt : The calculus for cryptographic protocols 5
2.1 Syntax and semantics . 5

2.1.1 Labeled transition system (
α−→) . 8

2.2 Labeled bisimilarity . 10

3 crypt time: Extending crypt with timed syntax and semantics 11
3.1 Basic time concepts . 11
3.2 Renaming of clock variables . 16

4 cryptprobtime: The probabilistic timed calculus for cryptographic protocols 20

5 DTSN - Distributed Transport for Sensor Networks 26
5.1 DTSN in cryptprobtime . 29

6 SDTP - A Secure Distributed Transport Protocol for WSNs 35
6.1 SDTP in cryptprobtime . 37

7 Security Analysis of DTSN and SDTP using cryptprobtime 39
7.1 Security Analysis of the DTSN protocol . 39
7.2 Security Analysis of the SDTP protocol . 43

8 SDTP+ - A Secure Distributed Transport Protocol for WSNs based on Hash-
chain and Merkle-tree 45
8.1 The ACK Authentication Values . 46
8.2 The NACK Authentication Values . 46
8.3 The operation of the source . 46
8.4 The operation of the destination . 47
8.5 The operation of the intermediate nodes . 48
8.6 Reasoning about the security of SDTP+ . 48

9 SDTP+ in cryptprobtime 49

10 Security analysis of SDTP+ 51

11 Automated security verification using the PAT process analysis toolkit 53
11.1 Specifying the ACT and the EAR timers in the PAT analysis toolkit 57
11.2 On verifying DTSN using the PAT process analysis toolkit 60
11.3 On verifying SDTP using the PAT process analysis toolkit 62

12 Conclusion 65

13 Acknowledgement 66

A The detailed specification of DTSN in cryptprobtime 67

B The detailed specification of SDTP in cryptprobtime 77
B.1 Real SDTP version . 77
B.2 Ideal SDTP version . 80

2

C The specification and verification of DTSN and SDTP in the PAT process
analysis toolkit 83
C.1 Verifying the DTSN protocol . 83
C.2 Verifying the SDTP protocol . 91
C.3 Some additional vulnerabilities of DTSN and SDTP found with PAT 94

3

Abstract

In this paper, we address the problem of formal and automated security verification of
WSN transport protocols that may perform cryptographic operations. The verification of
this class of protocols is difficult because they typically consist of complex behavioral charac-
teristics, such as real-time, probabilistic, and cryptographic operations. To solve this problem,
we propose a probabilistic timed calculus for cryptographic protocols, and demonstrate how
to use this formal language for proving security or vulnerability of protocols. The main ad-
vantage of the proposed language is that it supports an expressive syntax and semantics,
including bisimilarities that supports real-time, probabilistic, and cryptographic issues at the
same time. Hence, it can be used to verify the systems that involve these three properties in a
more convenient way. In addition, we propose an automatic verification method, based on the
well-known PAT process analysis toolkit, for this class of protocols. For demonstration pur-
poses, we apply the proposed manual and automatic proof methods for verifying the security
of DTSN and SDTP, which are two of the recently proposed WSN tranport protocols.

1 Introduction

Numerous transport protocols specifically designed for WSN applications, requiring particularly
reliable delivery and congestion control (e.g., multimedia sensor networks) have been proposed
[26]. Two of the latest protocols are the Distributed Transport for Sensor Networks (DTSN)
[20, 25], and its secured version, the SDTP protocol [6]. In DTSN and SDTP the intermediate
nodes can cache the packets with some probability and retransmit them upon request, providing
a reliable transmission, energy efficiency and distributed functionality.

Unfortunately, existing transport protocols for WSNs (include DTSN) do not include sufficient
security mechanisms or totally ignore the security issue. Hence, many attacks have been found
against existing WSN transport protocols [5]. Broadly speaking, these attacks can be classified
into two groups: attacks against reliability and energy depleting. Reliability attacks aim to mislead
the nodes so that loss of a data packet remains undetected. In the case of energy depleting attacks,
the goal of the attacker is to perform energy-intensive operations in order to deplete the nodes’
batteries [5]. In particular, using a fake or altered ACK packet, an attacker can give the sender
the impression that data packets arrived safely when they may actually have been lost. Similarly,
forging or altering NACK packets to trigger unnecessary retransmission can lead to faster draining
of the node’s batteries. While futile retransmissions do not directly harm the reliability of service,
it is still undesirable.

In this paper, we address the problem of formal and automated security verification of WSN
transport protocols, which typically consist of the following behavioral characteristics: (b1) stor-
ing data packets in the buffer of sensor nodes; (b2) probabilistic and real-time behavior; (b3)
performing cryptographic operations such as one-way hashing, digital signature, computing mes-
sage authentication codes (MACs), and so on.

We propose a formal and an automated verification method, based on the application of a
process algebra and a model-checking framework, respectively. For demonstration purposes, we
apply the proposed methods for specifying and verifying the security of the DTSN and the SDTP
protocols, which are representative in the sense that DTSN involve the first two points of the
behavioral characteristics (b1-b2), while SDTP covers all of the three points (b1-b3). Specifically,
the main contributions of this paper are the following:

• We propose a probabilistic timed calculus, called cryptprobtime, for cryptographic protocols.
To the best of our knowledge, this is the first of its kind in the sense that it combines
the following three features, all at once: (i.) it supports formal syntax and semantics for
cryptographic primitives and operations; (ii.) it supports time constructs similar to the
concept of timed automata that enables us to verify real time systems; (iii.) it also includes
the syntax and semantics of probabilistic constructs for analysing the systems that perform
probabilistic behavior. The basic concept of cryptprobtime is inspired by the previous works
[12, 14, 8] proposing solutions, separately, for each of the three discussed points. In particular,

4

cryptprobtime is a modified and combined version of the well-known concepts of the applied π-
calculus [12], which defines an expressive syntax and semantics supporting cryptographic
primitives to analyse security protocols; the probabilistic extension of the applied π-calculus
[14]; and the process calculus for timed automata proposed in [8].

We note that although in this paper the proposed cryptprobtime calculus is used for analysing
WSN transport protocols, it is also suitable for reasoning of other systems that include
cryptographic operations, real-time and probabilistic behavior.

• Using cryptprobtime we specify the behavior of the DTSN and SDTP protocols. We proposed
the novel definition of probabilistic timed bisimilarity and used it to prove the weaknesses of
DTSN and SDTP, as well as the security of SDTP against some attacks.

• We propose a new secured WSN transport protocol, SDTP+, which is based on the DTSN
protocol, and patch the security holes of DTSN and SDTP. Using cryptprobtime we showed that
SDTP+ is not vulnerable against the attacks which have been successfully performed against
the DTSN and SDTP.

• We provide the automatic security verification of the DTSN and SDTP protocols with the
PAT process analysis toolkit [11], which is a powerful general-purpose model checking frame-
work. To the best of our knowledge PAT has not been used for this purpose before, however,
in this paper we show that the power of PAT can be used to check some interesting security
properties defined for these systems/protocols.

The structure of the paper is as follows: Due to its complexity, we will introduce cryptprobtime in
three steps. In Section 2 we start with the introduction of the base calculus, crypt, which is a
variant of the applied π-calculus [12], designed for analysing security protocols. The extension of
crypt, called crypt time, with real-time modelling elements is given in Section 3, while in Section 4
we provide the description of cryptprobtime, the probabilistic extension of crypt time. The specifications

of the DTSN and SDTP protocols in cryptprobtime can be found in Section 5 and 6, respectively. The

security analysis of DTSN and SDTP, based on cryptprobtime, is provided in Section 7. In Section 8 we
give a brief overview of the SDTP+ protocol, and provide its security proof in Sections 9 and 10.
The model-checking framework PAT and automatic verification of DTSN and SDTP are described
in Section 11. Finally, we conclude the paper and talking about future works in Section 12.

2 crypt : The calculus for cryptographic protocols

crypt is the base calculus for specifying and analysing cryptographic protocols, without supporting
real-time and probabilistic systems. crypt can be seen as a modified variant of the well-known
applied π-calculus [12], designed for analysing security protocols, and proving security properties
of the protocols in a convenient way. Our goal is to extend crypt with time and probabilistic
modelling elements adopting the well-defined concept of timed and probabilistic automata, and to
do this, we need to modify the applied π-calculus in some points.

2.1 Syntax and semantics

We assume an infinite set of names N and variables V, where N ∩ V = ∅. Further, we define a
set of distinguished variables E that model the cache entries for specifying the systems including
entities that store data in their cache entries. In the set N , we distinguish channel names, and
other kind of data. We let the channel names range over ci with different indices such that ci 6= cj ,
i 6= j. The set of non-negative integers is denoted by I, and its elements range over inti with
different indices that are corresponding to the numbers 0, 1, 2, etc.

Further, we let the remaining data names range over mi, ni, ki. The variables range over
xi, yi, zi, and the cache entries range over ei with different indices. The names and variables
with different indices are different. We let

∑
be the set of function symbols. To verify security

5

protocols, in our case the function symbols capture the cryptographic primitives such as hash,
digital signature, encryption, MAC function. Finally, we assume the well-defined type system of
the terms as in the applied π-calculus.

We define a set of terms as

t ::= ci | inti | ni,mi, ki | xi, yi, zi | ei | f(t1, . . . , tk).

In particular, a term can be the following:

• ci models a communication channel between honest parties;

• ni, mi, ki are names and are used to model some data;

• xi, yi, zi are variables that can represent any term, that is, any term can be bound to
variables. Similarly as in case of the applied π-calculus [12];

• ei is a cache entry;

• Finally, f is a function with arity k and is used to construct terms and to model cryptographic
primitives, and messages. Complex messages are modelled by the function tuple with k terms:
tuple(t1,. . . , tk), which we abbreviate as (t1,. . . , tk). The function symbol with arity zero is
a constant;

• inti ranges over special functions for modelling non-negative integers. Formally, let 0 be the
base element of set I, and is formally defined as the function named by 0. Each further
integer is defined as a constructor function named by 1, 2, etc. Let the function inc(inti)
be the function that increases the integer inti by one. Numbers 1, 2, . . . are modelled by
functions inc(0), inc(1), . . . , respectively. The relation between these intergers is defined by
inti < inc(inti) and inti = inti;

The internal operation of communication entities in the system is modelled by processes. Pro-
cesses can be specified with the following syntax, and inductive definition:

P , Q, R ::= Processes
c〈t〉.P send
c(x).P receive
P |Q parallel composition
P []Q enabled-action choice
νn.P restriction
I(y1, . . . , yn) recursive definition
[ti = tj]P else Q if-else equal
[inti ≥ intj]P else Q if-else larger or equal
[inti > intj]P else Q if-else larger
[ti = tj]P if equal
[inti ≥ intj]P if larger or equal
[inti > intj]P if larger
nil does nothing
let (x = t) in P , let (e = t) in P let

• The process c〈t〉.P represents the sending of message t on channel c, followed by the execution
of P . Process c(x).P represents the receiving of some message, which is bound to x in P .

• In the composition P | Q, processes P and Q run in parallel. Each may interact with the
other on channels known to both, or with the outside world, independently of the other.
For example, the communication between the sending process c〈t〉.P and receiving process
c(x).P can be described as the parallel composition c〈t〉.P | c(x).Q.

6

• A choice P [] Q can behave either as P or Q depending on the first visible/invisible action
of P and Q. If the first action of P is enabled but the first action of Q’s is not then P
is chosen, and vice versa. In case both actions are enabled the behavior is the same as a
non-deterministic choice.

• A restriction νn.P is a process that makes a new, private (restricted) name n, and then
behaves as P . The scope of n is restricted to P , and is available only for the process within
its scope. A private channel c restricted to P is defined by νc.P , which does not allow for
the attackers to eavesdrop on the channel.

• A typical way of specifying infinite behavior is by using parametric recursive definitions, like
in the π-calculus [23]. Here I(y1, . . . , yn) is an identifier (or invocation) of arity n. We assume

that every such identifier has a unique, possibly recursive, definition I(x1, . . . , xn)
def
= P

where the xi’s are pairwise distinct. The intuition is that I(y1, . . . , yn) behaves as P with
each xi replaced by yi, respectively.

• In processes [ti = tj]P else Q; [inti ≥ intj]P else Q; and [inti > intj]P else Q: if (ti = tj),
(inti ≥ intj), and (inti > intj), respectively, then process P is “activated”, else they behave
as Q. When Q is the nil process, we simply remove the else branch from the processes.

• The process nil does nothing, and is used to model the termination of a process behavior.

• Finally, let (x = t) in P (or let (e = t) in P) means that every occurrence of x (or e) in P
is bound to t.

We adopt the notion of environment, well-known in process algebra, which is used to model the
attacker(s) who can obtain the (publicly) exchanged messages, and can modify them. Moreover,
we adopt the notation of the extended process and active substitution in the applied π-calculus
[12] to model the information the attacker(s) (or the environment) is getting to know during the
system run. The definition of the extended process is as follows:

A,B,C ::=extended process
P plain process
A|B parallel composition
νn.A name restriction
νx.A variable restriction
{t/x} active substitution

• P is a plain network we already discussed above.

• A|B is a parallel composition of two extended process.

• νn.A is a restriction of the name n to A.

• νx.A is a restriction of the variable x to A.

• {t/x} means that the binding of t to x, denoted by {t/x}, is applied to any process that
is in parallel composition with {t/x}. Intuitively, the binding applies to any process that
comes into contact with it. To restrict the binding {t/x} to a process P , we use the variable
restriction νx over ({t/x} |P), namely, νx. ({t/x} |P). Using this, the equivalent definition of
process c〈t〉.P can be given by νx.(c〈x〉.P | {t/x}). Active substitutions are always assumed
to be cycle-free, that is, the set of bindings will never get into an infinite loop, to make the
calculus well-defined.

We write fv(A), bv(A), fn(A), and bn(A) for the sets of free and bound variables and free
and bound names of A, respectively. These sets are defined as follow:

fv({t/x}) def= fv(t) ∪ {x}, fn({t/x}) def= fn(t)

7

bv({t/x}) def= ∅, bn({t/x}) def= bn(t)

The concept of bound and free values is similar to local and global scope in programming
languages. The scope of names and variables are delimited by binders c(x) (i.e., input) and
νn or νx (i.e., restriction). The set of bound names bn(A) contains every name n which is
under restriction νn inside A. The set of bound variables bv(A) consists of all those variables
x occurring in A that are bound by restriction νx or input c(x). Further, we define the set
of free names and the set of free variables. The set of free names in A, denoted by fn(A),
consists of those names n occurring in A that are not a restricted name. The set of free
variables fv(A) contains the variables x occurring in A which are not a restricted variable
(νx) or input variable (c(x)). A plain process P is closed if it contains no free variable. An
extended process is closed when every variable x is either bound or defined by an active
substitution.

As in the applied π-calculus, a frame (ϕ) is an extended process built up from the nil process
and active substitutions of the form {t/x} by parallel composition and restrictions. Formally,
the frame ϕ(A) of the extended process , A = νn1 . . . nk({t1/x1} | . . . | {tn/xn} | P), is
νn1 . . . nk({t1/x1} | . . . | {tn/xn}). The domain of the frame ϕ(A) (denoted by dom(A)) is
the set {x1, . . . , xn}.
Intuitively, the frame ϕ(A) accounts for the static knowledge exposed by A to its environ-
ment, but not for dynamic behavior. The frame allows access to terms which the environment
cannot construct. For instance, after the term t (not available for the environment) are out-
put in P resulting in P ′ | {t/x}, t becomes available for the enviroment. Finally, let σ range
over substitutions (i.e., variable bindings). We write σt for the result of applying σ to the
variables in t.

2.1.1 Labeled transition system (
α−→)

The operational semantics for processes is defined as a labeled transition system (P,G,−→) where
P represents a set of extended processes, G is a set of labels, and −→ ⊆ P × G × P.

Specifically, the labeled semantics defines a ternary relation, written A
α−→B, where α is a label

of the form τ , c(t), c〈x〉, νx.c〈x〉 where x is a variable of base type and t is a term. The transition

A
τ−→B represents a silent move that are used to model the internal operation/computation of

processes. These internal operations, such as the verification steps made on the received data,

are not visible for the outside world, hence, to the attacker(s). The transition A
c(t)−→B means that

the process A performs an input of the term t from the environment on the channel c, and the
resulting process is B. The label c〈x〉 is for output action of a free variable x. Finally, the label
α is νx.c〈x〉 when a term is output on c. In the following, we give some examples for labeled
transitions:

(Silent transition rules for processes:)

(Let1) let x = t in P
τ−→ P{t/x}

(Let2) let e = t in P
τ−→ P{t/e}

(IfElse1) [ti = tj]P else Q
τ−→ P (if ti = tj)

(IfElse2) [ti = tj]P else Q
τ−→ nil (if ti 6= tj)

(IfElse3) [inti > intj]P else Q
τ−→ P (if inti > intj)

(IfElse4) [inti > intj]P else Q
τ−→ nil (if inti ≤ intj)

(IfElse5) [inti ≥ intj]P else Q
τ−→ P (if inti ≥ intj)

(IfElse6) [inti ≥ intj]P else Q
τ−→ nil (if inti < intj)

(If1) [ti = tj]P
τ−→ P (if ti = tj)

(If2) [ti = tj]P
τ−→ nil (if ti 6= tj)

(If3) [inti > intj]P
τ−→ P (if inti > intj)

(If4) [inti > intj]P
τ−→ nil (if inti ≤ intj)

8

(If5) [inti ≥ intj]P
τ−→ P (if inti ≥ intj)

(If6) [inti ≥ intj]P
τ−→ nil (if inti < intj)

(Com) c〈t〉.P | c(x).Q
τ−→ P | Q{t/x}

Let1-2 bind a variable to a term in a process. Rules IfElse1-6 check the relation of two terms or
integers, and say that if the condition holds. Rules If1-6 is the corresponding rules for IfElse1-6
when Q is the nil process. Besides these internal computations, the reduction relation usually is
used to model communication between a sender and a receiver process. This is specified by the
rule (Com).

Next, we review the rules for output/input actions borrowed from the applied π-calculus. Rule
(In) says that when a term t is received, it is bound to every occurence of x in P . Rule (Out)
is related to the output of a not restricted name. Rule (Open) defines the output of a restricted
name.

(Action transition rules for processes:)

(In) c(x).P
c(t)−→ P{t/x}

(Out) c〈u〉.P c〈u〉−→ P

(Open) A
c〈u〉−→A′,u6=c

νu.A
νu.c〈u〉−→ A′

(Scope) A
α−→A′, u/∈α

νu.A
α−→νu.A′

(Par) A
α−→A′, bv(α)∩fv(B)=bn(α)∩fn(B)=∅

A|B α−→A′|B

(Struct)
A≡B,B α−→B′,B≡B′

A
α−→A′

From rule (Open) and the fact that νx.(c〈x〉.P | {t/x}) is equivalent to c〈t〉.P , we have two
addional output rules

(Out-1) c〈t〉.P νx.c〈x〉−→ {t/x} | P (Out-2) νn.(c〈t〉.P)
νx.c〈x〉−→ νn.({t/x} | P);

For instance, based on the labeled transition system we have the following transitions:

c〈t1〉.c〈t2〉.P
νx1.c〈x1〉−→ {t1/x1} | c〈t2〉.P

νx2.c〈x2〉−→ {t1/x1} | {t2/x2} | P

After sending the terms t1 and t2 on public channel c (modeled by action transitions
νx1.c〈x1〉−→

and
νx2.c〈x2〉−→ respectively), t1 and t2 become available for the environment (attacker), which fact

is specified by the active substitutions {t1/x1} and {t2/x2}.
After sending the terms t1 and t2 on public channel c (modeled by action transition

νx1.c〈x1〉−→
and

νx2.c〈x2〉−→ respectively), t1 and t2 become available for the environment (attacker), which fact
is specified by the active substitutions {t1/x1} and {t2/x2}.

Similarly as in [12], the set of function symbols
∑

is equipped with an equational theory
Eq, that is, a set of equations of the form t1 = t2, where terms t1, t2 are defined over

∑
.

This allows us to define cryptographic primitives and operations, such as one-way hash function,
MAC computation, encryption, decryption, and digital signature generation/verification, etc. For
instance,
tuple : The constructor function Tuple models a tuple of n terms t1, t2,. . . , tn. We write the
function as

Tuple(t1, t2, . . . , tn)

9

We abbreviate it simply as (t1, t2, . . . , tn) in the rest of the paper.
We introduce the destructor functions i that returns the i-th element of a tuple of n elements,

where i ∈ {1, . . . , n}:

i(t1, t2, . . . , tn) = ti

We model the keyed hash or MAC function with symmetric key K with the binary function
MAC. The MAC verification is defined in the form of an equation.

MAC(t,K); CheckMAC(MAC(t,K), K) = ok

Function MAC computes the message authentication code of message t using secret key K.
The shared key between node li and lj is modelled by function K(li, lj). The MAC verification
defined by the function CheckMAC is successful (returns a special name ok) if the keys match
each other.

We model the one-way hash function with the function Hash with one attribute. The

Hash(t)

function that computes the hash value of message t. Note that the hash function do not have
any inverse counterpart because they are one-way functions.

2.2 Labeled bisimilarity

In this subsection, we give the definition of labeled bisimilarity, also known in [12], that says if
two extended processes are equivalent, meaning that their behavior cannot be distinguished by an
observer which can eavesdrop on communications.

Let the extended process A be {t1 /x1
} | . . . | {tn /xn} | P1 | . . . | Pn. The frame ϕ of A is the

parallel composition {t1 /x1
} | . . . | {tn /xn} that models all the information which is output so far

by the process A. In particular, this information is the terms t1,. . . , tn.

Definition 1. (Static equivalence for extended processes) Two extended processes A1 and
A2 are statically equivalent, denoted as A1≈sA2, if their frames are statically equivalent. Two
frames ϕ1 and ϕ2 are statically equivalent if they includes the same number of active substitutions
and same domain; and any two terms that are equal in ϕ1 are equal in ϕ2 as well. Intuitively, this
means that the outputs of the two processes cannot be distinguished by the environment.

Definition 2. Labeled bisimilarity (≈l) is the largest symmetric relation R on closed extended
networks, such that A1RA2 implies

• A1≈sA2;

• if A1
τ−→ A′1, then A2

τ−→
∗
A′2 and A′1RA′2 for some A′2;

• if A1
α−→ A′1 and fv(α) ⊆ dom(A1) ∧ bn(α) ∩ fn(A2) = ∅, then ∃ A′2 such that A2

τ−→
∗

α−→ τ−→
∗
A′2 and A′1 R A′2, where dom(A1) denotes the domain of A1.

Intuitively, this means that the outputs of the two extended processes cannot be distinguished
by the environment. In particular, the first point means that at first A1 and A2 are statically
equivalent; the second point says that A1 and A2 remains statically equivalent after internal
reduction steps. Finally, the third point says that if process A1 outputs/inputs something then
process A2 ables to output/input the same thing, and the “target states” A′1 and A′2 they reach

after that remain statically equivalent. Here,
τ−→
∗

models the sequential execution of some internal
reduction steps.

10

3 crypt time: Extending crypt with timed syntax and seman-
tics

In this subsection, we propose a time extension to crypt, denoted by crypt time. Our calculus is
tailored for the the verification of security protocols, especially for verifying protocols that need to
cache data, such as the transport protocols for wireless sensor networks. The design methodology
of crypt time is based on the terminology proposed in the previous works in timed calculus [19, 8],
and based on the syntax and semantics of the well-known timed automata. The main difference
between our and those methods is that we focusing on extending crypt, which is differ (more
complex) from the calculus used in those related works, and we propose a new definition called
timed labeled bisimilarity for proving the existence of the timing attacks against security protocols.

The concept of crypt time is based on the basic concept of timed automata, hence, the cor-
rectness of crypt time comes from the correctness of the timed automata because the semantic of
crypt time is equivalent to the semantic of the timed automata, and we show that each process in
crypt time has an associated timed automaton.

3.1 Basic time concepts

First of all, we provide some notations and notions related to clocks and time construct, borrowed
from the well-known concept of timed automata. Assume a set C of nonnegative real valued
variable called clocks. A valuation over C is a mapping v : C7→R≥0 assigning nonnegative real
values to clocks. For a time value d ∈ R≥0 let v + d denote the valuation such that (v + d)(xc)
= v(xc) + d, for each clock xc ∈ C.

The set Φ(C) of clock constraints is generated by the following grammar:

φ ::= true | false | xc ∼ N | φ1 ∧ φ2 | ¬φ

where φ ranges over Φ(C), xc ∈ C, N is a natural, ∼ ∈ {<,≤,≥, >}. We write v � φ when the
valuation v satisfies the constraint φ. Formally, v � true; v � xc ∼ N iff v(xc) ∼ N ; v � φ1 ∧ φ2
iff v � φ1 ∧ v � φ2.

In the following we turn to define the following timed-process for crypt time

At ::= A | α∗ ≺ At | φ ↪→ At | φ . At | ‖CR‖At | A1
t [] A2

t |
(A1

t |A2
t) | Xt

We will discuss the meaning of crypt time processes by showing the connection between the
modelling elements of timed automata and crypt time. For this purpose, we recall the definition of
timed automaton: a timed automaton Aut is defined by the tuple (L, l0,

∑
, C, Inv, κ, E), where

• L is a finite set of locations and l0 is the initial location;

•
∑

is a set of actions that range over act ;

• C is a finite set of clocks;

• Inv:L 7→ Φ(C) is a function that assigns location to a formula, called a location invariant,
that must hold at a given location;

• κ: L 7→ 2C is the set of clock resets to be performed at the given locations;

• E ⊆ L ×
∑
× Φ(C) × L is the set of edges. We write l

act,φ−→ l′ when (l, act, φ, l′) ∈ −→,
where act, φ are the action and the time constraint defined on the edge.

Let us denote the set of processes in crypt time by Atime, and we let At range over processes in
Atime. In crypt time, each timed-process Alt corresponds to a location l in timed automaton, such
that there is an initial process Al0t for location l0. The set of actions

∑
corresponds to the set of

actions known in crypt. The set of clocks to be reset at a given location l, κ(l), is defined by the

11

construct ‖CR‖Alt, where CR is the set of clocks to be reset at the beginning of Alt. The location
invariant at the location l corresponds to the construct φ . Alt, and the edge guard can be defined
by φ ↪→ Alt. More specifically,

• At can be an extended process A without any time construct.

• α∗ ≺ At represents the process At of which α∗ is the first (not timed) action. Note that α∗

can be νx.c〈x〉, c〈u〉, c(t), and the silent action τ . For instance, if At is c(t).P , where P is
the plain process in crypt, then α∗ is c(t).

• φ ↪→ At represents the time guard, and says that the first action α∗ of At is performed in

case the guard (time constraint) φ holds. This process intends to model the edge l
α,φ−→ l′

in the timed automaton syntax, where At corresponds to l, while the explicit appearance of
the target location l′ is omitted in the process.

• φ . At represents time invariant over At. Like in timed automaton, this means that the
system cannot “stay” in process At once time constraint φ becomes invalid. If it cannot
move from this process via any transition, then it is a deadlock situation. Invariant can be
used to model timeout.

• in the timed process ‖CR‖At, the clocks in the set CR are reset within the process At. We
move the clock resetting from edge to the target state like in [8].

• A1
t [] A2

t , and A1
t | A2

t describe the non-deterministic choice, first-action choice, and the
parallel composition of two processes, respectively.

• Xt is a process variable to which one of the processes φ ↪→ At, φ.At, ‖CR‖At can be bound.
Note that differ from [23], for our problem we restrict process variables to be only those
processes that have time constructs defined on it. The reason we do this is that we want
to avoid the recursive process invocation for extended processes, which may lead to infinite
invocation cycle (e.g., A = {t/x} | A, where the process variable is abound by A), hence it
is not well-defined. We allow recursive invocation for only plain processes (P) because (i)
they describe the behavior of the system which should include recursive behavior, and (ii)
the process variables (Xt) in them are guarded by an action (input, output, comparison)
which prevents from an infinite invocation. Finally, for our problem, restricting Xt to one
of the processes φ ↪→ At, φ . At, ‖CR‖At is sufficient.

The formal semantics of crypt time also follows the semantics of the timed automata. Namely,
a state s is defined by the pair (At, v), where v is the clock valuation at the location of label At
with the time issues defined at the location. The initial state s0 consists of the initial process and
initial clock valuation, (A0

t , v0). Note that the initial process A0
t is the initial status of a system

behavior, while v0 typically contains the clocks in the reset state. The operational semantics of
crypt time is defined by a timed transition system (TTS).

A timed transition system can be seen as the labeled transition system extended with time
constructs. In our model we adopt the concept of [8].

Definition 3. Let
∑

be the set of actions. A time transition system is defined as the tuple TTS
= (S,

∑
× R≥, s0, −→TTS, U) where

• S is a set of states, and s0 is an initial state.

• −→TTS ⊆ S × (
∑
× R≥0) × S is the set of timed labeled transition. A transition is defined

between the source and target state, and the label of the transition is composed of the actions
and the time stamp (duration) of the action. When (α∗, d) ∈

∑
× R≥0 we denote the

transition from s to s′ by s
α∗,d−→TTS s

′.

• U ⊆ R≥0 × S is the until predicate, and is defined at a state s with a time duration d.
Whenever (d, s) ∈ U we use the notation Ud.

12

The timed transition system TTS should satisfy the two axioms Until and Delay (in both cases
=⇒ denotes logical implication):

Until ∀ d, d′ ∈ R≥0, Ud(s) ∧ (d′ < d) =⇒ Ud′(s)

Delay ∀ d ∈ R≥0, s
α∗,d−→TTS s

′ for some s′ =⇒ Ud(s)

These two axioms define formally the meaning of the notion delay and until. Basically, axiom
Until says that if the system stays in state s until d time units then it also stays in this state
before d. While the axiom Delay says that if the system performs an action α at time d then
it must wait until d. Note that the meaning of until differs from time invariant, because in case
of until, the system waits (stay idled) at least d time units in a state (location, if talking about
automata), whilst invariant says that the system must leave the state (location) upon d time units
have elapsed (if it cannot move from the state then we get deadlock).

We define the satisfaction predicate |=, |= ⊆ Φ(C), on clock constraints. For each φ ∈ Φ(C) we
use the shorthand |= v(φ) iff v satisfies φ, for all valuation v. The set of past closed constraint,
Φ(C) ⊆ Φ(C), is used for defining semantics of location invariant, ∀ v ∈ V, d ∈ R≥0: |= (v+ d)(φ)
=⇒ |= (v)(φ). Intuitively, this says that if the valuation v+ d, which is defined as v(xc) + d for all
clocks xc, satisfies the constraint φ then so does v. We adopt the variant of time automata used
in [8], where location invariant and clock resets are defined as functions ∂ and κ assigning a set of
clock constraints Φ(C) and a set of clocks to be reset R(C), respectively, to a crypt time process.

We adopt the variant of time automata used in [8], where location invariant and clock resets
are defined as functions ∂ and κ assigning a set of clocks constraint Φ(C) and a set of clocks to be
reset R(C) to a crypt time process, respectively.

The interpretation (semantics) of crypt time is composed of the rule describing action moves
and the rule defining the time passage at a state.

(T-pass)
|= (v[rst : κ(At)] + d)(∂(At))

Ud(At, v)
; (T-Act)

(φ ↪→ At)
α∗−→ A′t, |= (v[rst : κ(At)] + d)(∂(At) ∧ φ)

(φ ↪→ At, v)
α∗,d−→TTS (A′t, v[rst : κ(At)] + d)

The rule (T-pass) describes the time passage at the same location. It says that if the system
stays at process At until d time units, then the valuation v+d, after resetting the clocks in κ(At),
satisfies the invariant ∂(At). Rule (T-Act) is concerning with the timed action move of a system
from process φ ↪→ At to process A′t via action α∗. It says that there is a timed transition from

state (φ ↪→ At, v) to state (A′t, v
′) with v′ = v[rst : κ(At)] + d, if there is an edge (φ ↪→ At)

α∗−→
A′t, such that v′ satisfies the invariant at process At and the guard on the edge. Note v′ is the
valuation v in which clocks in κ(At) are set to 0, and increased by d time units.

Definition 4. We extend the definition of free and bound variable to the set of clock variables in
processes At. The set of free variable and bound variable of At, fvc(At) and bvc(At), respectively,
is the least set satisfying

• fvc(A) = ∅: The pure extended process contains no clock variables.

• fvc(α∗ ≺ At) = fvc(At): The set of free clock variables is not affected by action.

• fvc(φ ↪→ At) = clock(φ) ∪ fvc(At): Edge guards contains free clock variables.

• fvc(φ . At) = clock(φ) ∪ fvc(At): Invariant contains free clock variables.

• fvc(‖CR‖At) = fvc(At)\CR: Clocks to be reset are bound clock variables.

• fvc(A1
t [] A2

t) = fvc(A1
t) ∪ fvc(A2

t): Union of free clock variables.

• fvc(A1
t | A2

t) = fvc(A1
t) ∪ fvc(A2

t): Union of free clock variables.

13

and for bound clock variables we have

• bvc(A) = ∅: The pure extended process contains no clock variables.

• bvc(α∗ ≺ At) = bvc(At): The set of bound clock variables is not affected by action.

• bvc(φ ↪→ At) = bvc(At): Edge guards contains no bound clock variables.

• bvc(φ . At) = bvc(At): Invariant contains no bound clock variables.

• bvc(‖CR‖At) = bvc(At) ∪ CR: Clocks to be reset are bound clock variables.

• bvc(A1
t [] A2

t) = bvc(A1
t) ∪ bvc(A2

t): Union of bound clock variables.

• bvc(A1
t | A2

t) = bvc(A1
t) ∪ bvc(A2

t): Union of bound clock variables.

Recall that the recursive process invocationXt is a process variable, defined asXt
def
= P (x1, x2, . . . , xn),

for a plain process P , and describes a recursive process invocation. Since in recursive process in-
vocations Xt only binds plain processes, it does not contain any free/bound clock variables. The
reason that the set of clock variables is divided to bound and free parts is to avoid conflict of clock
valuations. For instance, let us consider the process xc ≤ 8 . (‖xc‖ At), in which the clock xc is
reset wich affects the invariant xc ≤ 8. Further, in the parallel composition (‖xc‖ At) | (xc ≤ 8
. A′t) the clock variable xc is the shared variable of the two processes, however, the reset of xc
affects the behavior of process (xc ≤ 8) . A′t, which is undesirable since the operation semantics
of a process also depends on the behavior of the environment (that is hard to control).

Hence, we define the notion of process with non-conflict of clock variables, using the following
inductive definition and the predicate ncv:

1. ncv(A); 2. ncv(Xt); 3. ncv(α∗ ≺ At) iff ncv(At); 4. ncv(‖CR‖ At) iff ncv(At);

5. ncv(φ ↪→ At); 6. ncv(φ . At): in both cases, iff ncv(At) ∧ (clock(φ) ∩ κ(At) = ∅)

7. ncv(A1
t [] A2

t) iff ncv(A1
t) ∧ ncv(A2

t) ∧ (κ(A1
t) ∩ fvc(A2

t) = ∅) ∧ (κ(A2
t) ∩ fvc(A1

t) = ∅)

8. ncv(A1
t | A2

t) iff ncv(A1
t) ∧ ncv(A2

t) ∧ (κ(A1
t) ∩ fvc(A2

t) = ∅) ∧ (κ(A2
t) ∩ fvc(A1

t) = ∅)

Rule 1 holds because an extended process A does not include any clock variable. Rule 2 says
that the recursive process invocation of plain processes is non-conflict because a plain process
does not contain clock variables. Rule 3 comes from the fact that action α∗ is free from clock
variables. Rule 4 says that if clock resettings are placed outside (outermost) all invariant and
guard constructs then it does not cause conflict. Rules 5 and 6 says that if guard and invariant
construct are placed outside then their clock variables cannot be reset within At, to avoid conflict.
Finally, rules 7-8 are concerning with the cases of choice and parallel composition.

In the following, for each crypt time process we add rules that associate each process to the
invariant and resetting function ∂ and κ, respectively. For the function κ we have:

k1. κ(A) = ∅; k2. κ(α∗ ≺ At) = ∅; k3. κ(‖CR‖ At) = CR ∪ κ(At);

k4. κ(φ ↪→ At) = κ(At); k5. κ(φ . At) = κ(At); k6. κ(A1
t [] A2

t) = κ(A1
t) ∪ κ(A2

t);

k7. κ(A1
t | A2

t) = κ(A1
t) ∪ κ(A2

t).

14

Rule k1 is true because an extended process does not contain any clock; rule k2 the set of
clocks to be reset for α∗ ≺ At is empty because there is no clock reset construct defined on it;
Rule k3 says that the set of clocks to be reset in κ(‖CR‖ At) is CR and the clock resets occur
in At; The clock resets of choices and parallel composition constructs are the union of the clock
resets. For the invariant function ∂ we have:

i1. ∂(A) = true; i2. ∂ (α∗ ≺ At) = true; i3. ∂(‖CR‖ At) = ∂(At);

i4. ∂ (φ ↪→ At) = ∂ (At); i5. ∂ (φ . At) = ∂ (At) ∧ φ; i6. ∂ (A1
t [] A2

t) = ∂(A1
t) ∨ ∂(A2

t);

i7. ∂ (A1
t | A2

t) = ∂(A1
t) ∨ ∂(A2

t).

Rule i1 says that the invariant predicate of a extended process is true because it does not
include clocks; Rules i2, i3 and i4 say that there is no any invariant construct defined on these
processes; Rule i5 says that the invariant of process φ . At is the intersection of φ and the invariant
predicate in At. The invariant predicate of choices and parallel composition is the disjunction of
the predicates (in rules i6 -i7).

In addition, we give the rules for processes that are correspond to automata edges:

t1. α∗ ≺ At
α∗, true−→ At; t2. φ ↪→ (α∗ ≺ At)

α∗, φ−→ At; i3. φ ↪→ (φ′ ↪→ (α∗ ≺ At))
α∗,φ∧φ′−→ At

t4. (φ ↪→ (α∗ ≺ (φ′ . A1
t))) [] A2

t
α∗, φ∧φ′−→ A1

t ; t5. (φ ↪→ (α∗ ≺ (φ′ . A1
t))) | A2

t
α∗, φ∧φ′−→ A1

t ;

t6. ‖CR‖(φ ↪→ (α∗ ≺ At))
α∗, φ−→ At; t7. φ′ . (φ ↪→ (α∗ ≺ At))

α∗, φ∧φ′−→ At.

It is very important to note that the edge
α∗, φ−→ does not change the validity of the ncv property

to be invalid. The following theorem says that the notion of associated timed automata to each
At is well-defined

Theorem 1. For each process At such that ncv(At), the associated timed automata, denoted by
T (At), is indeed a timed automata.

Now we turn to discuss the operational semantics of crypt time, in terms of the semantics of
timed automata. The TTS of a crypt time process At with the initial clock valuation v0, denoted
by TTS (At, v0), is defined by the tuple (At × v,

∑
× R≥0, (At, v0), −→TTS , U) where −→TTS

and U are the least set satisfying the following rules

u1. Ud(A, v); u2. Ud(α∗ ≺ At, v); u3. Ud(φ ↪→ At, v) if Ud(At, v);

u4. Ud(‖CR‖ At, v) if Ud(At, v[rst : CR]); u5. Ud(φ . At, v) if Ud(At, v) ∧ |= (v + d)(φ);

u6. Ud(A1
t [] A2

t , v) if Ud(A1
t , v); u7. Ud(A1

t | A2
t , v) if Ud(A1

t , v);

u8. Ud(X, v) if Ud(P [P/Xt], v);

Rules (u1 -u2) are the Until axioms for the states (A, v) and (α∗ ≺ At, v). In u3 the system
stays in the state (φ ↪→ At, v) until d time units, if this is valid to the state (At, v) as well.
Rules (u4 -u5) come from the definition of the clock reset and invariant. In rule (u4) v[rst : CR]
represents the clock valuation v where the clocks in CR are reset. Rules (u6 -u8) say that the

15

system stays until d time units at the state with A1
t [] A2

t , A
1
t | A2

t , and A1
t ⊕p A2

t , if it stays d
time in the state with one of the two processes A1

t and A2
t . Rule u9 is concerned with the until

predicate for (recursive) process variable Xt, which comes directly from the definition of recursive
process invocation. Note that P is a plain process defined in crypt. The timed transition (action)
rules for crypt time are given as follows:

a1. (α∗ ≺ At, v)
α∗,d−→TTS (At, v + d);

a2. (‖CR‖ At, v)
α∗,d−→TTS (A′t, v

′) if (At, v[rst : CR])
α∗,d−→TTS (A′t, v

′);

a3. (φ ↪→ At, v)
α∗,d−→TTS (A′t, v

′) if (At, v)
α∗,d−→TTS (A′t, v

′) ∧ (v + d)(φ);

a4. (φ . At, v)
α∗,d−→TTS (A′t, v

′) if (At, v)
α∗,d−→TTS (A′t, v

′) ∧ (v + d)(φ);

a5. (A1
t [] A2

t , v)
α∗,d−→TTS (A′1t , v′) if (A1

t , v)
α∗,d−→TTS (A′1t , v′);

a6. (A1
t | A2

t , v)
α∗,d−→TTS (A′1t | norst(A2

t), v
′) if (A1

t , v)
α∗,d−→TTS (A′1t , v′);

a7. (Xt, v)
α∗,d−→TTS (P ′, v′) if (P [P/Xt], v)

α∗,d−→TTS (P ′, v′).

Rule a1 says that after performing action α∗ with d time units the system gets to the process
At with the clock valuation after d time units elapsed. v[rst : CR] in the rule a2 represents the
valuation where the clocks in CR are reset. In the rules a3 and a4 the timed transition can be
performed if (v + d)(φ) holds, which means that the valuation v + d must satisfy the clock guard
φ. Rules a5-a6 describe the case when process A1

t is activated (the rules for activating A2
t are

similar). In a6 to avoid conflict of clock variable, we assume that after performing the transition,
process A2

t cannot start with clock reset. The last rule is the action rule for the recursive process
variable Xt. It can be proven, based on the rules u1 -u8 and a1 -a7, that TTS (At, v0) satisfies
axioms Until and Delay, hence, it is well defined.

Theorem 2. For all crypttime process At and for all closed valuation v0, TTS(At, v0) is indeed
the times transition system defined in timed automata.

3.2 Renaming of clock variables

We show that the process with ncv property is preserved by clock renaming, hence, the restriction
to process without conflict of clock variables is harmless [8]. Let predicate rn represents clock
renaming, we have

n1. rn(A) = A; n2. rn(α∗ ≺ At) = rn(At); n3. rn(φ ↪→ At) = rn(φ) ↪→ rn(At);

n4. rn(‖CR‖ At) = ‖F(CR)‖ rn[F](At); n5. rn(φ . At) = rn(φ) . rn(At) ;

n6. rn(A1
t [] A2

t) = rn(A1
t) ∪ rn(A2

t); n7. rn(A1
t | A2

t) = rn(A1
t) ∪ rn(A2

t);

where F : CR 7→ V is bijective function mapping a set of clock CR to an another set of clocks
V ∈ C (i.e., renaming), such that the resulted clock set V does not contain the renamed clocks
in invariant and guard within At, formally, V ∩ rn(fcv(At)\CR). Note that the traditional
renaming of names and variables defines renaming of bound variables and names in processes, we
allow renaming of free clock variables in rules n3 and n5, since the clocks in invariant and guard
are free by definition.

16

Now based on the rules of renaming we add new rules for structural equivalent resulted from
renaming, denoted by ≡rn. Two process A1

t and A2
t are structurally equivalent by renaming of

clock variables, A1
t ≡rn A2

t if they are (stuctural equivalent to) the left and right side of the rules
n1-n7, respectively.

s1. if A1
t ≡rn A2

t then (i) α∗ ≺ A1
t ≡rn α∗ ≺ A2

t ; (ii) φ ↪→ A1
t ≡rn φ ↪→ A2

t

(iii) φ . A1
t ≡rn φ . A2

t ;

s2. if A1
t ≡rn A2

t and A′1t ≡rn A′2t then (i) A1
t [] A′1t ≡rn A2

t [] A′2t ;
(ii) A1

t | A′1t ≡rn A2
t | A′2t ;

s3. ‖C1
R‖A1

t ≡rn ‖C2
R‖A2

t if clocks in C1
R are renamed to C2

R (F : C1
R 7→C2

R) that
the ncv property is preserved: C2

R ∩ fcv(‖C1
R‖ A1

t) = ∅ and A1
t ≡rn A2

t ;

In addition to the rules for renaming we can define the next structural equivalent rules for At

s4. A1
t [] A2

t ≡ A2
t [] A1

t

s5. (A1
t [] A2

t) [] A3
t ≡ A3

t [] (A1
t [] A2

t)

s6. (φ1 ↪→ A1
t) [] (φ2 ↪→ A2

t) ≡ (φ1 ∨ φ2) ↪→ (A1
t [] A2

t)

s7. (φ1 . A1
t) [] (φ2 . A2

t) ≡ (φ1 ∨ φ2) . (A1
t [] A2

t)

s8. false ↪→ (α∗ ≺ At) ≡ nil

s9. φ ↪→ nil ≡ nil

s10. φ1 .(φ2 . At) ≡ (φ1 ∧ φ2) . At

s11. φ1 ↪→(φ2 . At) ≡ φ2 .(φ1 ↪→ At)

s12. φ ↪→(‖CR‖ At) ≡ ‖CR‖(φ ↪→ At), if clock(φ) ∩ CR = ∅

s13. φ ↪→ (A1
t [] A2

t) ≡ (φ ↪→ A1
t) [] (φ ↪→ A2

t)

s14. true ↪→ At ≡ At

s15. true . At ≡ At

s16. φ1 .(φ2 . At) ≡ (φ1 ∧ φ2) . At

s17. φ .(‖CR‖ At) ≡ ‖CR‖(φ . At), if clock(φ) ∩ CR = ∅

s18. φ . (A1
t [] A2

t) ≡ (φ . A1
t) [] (φ . A2

t)

s19. ‖CR‖ At ≡ At, if fcv(At) ∩ CR = ∅

s20. ‖CR‖ ‖C ′R‖ At ≡ ‖CR ∪ C ′R‖ At

s21. ‖CR‖ (A1
t [] A2

t) ≡ ‖CR‖ A1
t [] ‖CR‖ A2

t .

In the following we consider the parallel composition of two crypt time processes, A1
t | A2

t . We
discuss the bound (bcv) and free clock variables (fvc), the non-conflict of variable predicate (ncv),
along with the axioms. First, we specifies the bound and free variables:

17

Definition 5. We extend the definition of free and bound variables of At, such that the set of free
and bound variables of At is the least set satisfying the following rules (with the previous given
definitions)

• fvc(A1
t | A2

t) = fvc(A1
t) ∪ fvc(A2

t): The free clock variables is the union of the parallel
processes.

• fvc(norst(At)) = κ(At) ∪ fvc(At): The free clock variables of a the process norst(At) is
the union of the clock resets at At and its free clock variables.

• bvc(A1
t | A2

t) = bvc(A1
t) ∪ bvc(A2

t): The bound clock variables is the union of the parallel
processes.

• bvc(norst(At)) = bvc(At): The free clock variables of a the process norst(At) is the same as
At.

and the rules for non-conflict of variable (ncv) predicate:

Definition 6. We extend the definition of predicatee ncv as follows

• ncv(norst(At)) if ncv(At) holds.

• ncv(A1
t | A2

t) if ncv(A1
t) ∧ ncv(A2

t), bvc(A1
t) ∩ var(A2

t) = ∅ ∧ bvc(A2
t) ∩ var(A1

t) = ∅.

The time constructs in case of parallel composition are defined as follows:

k8. κ(A1
t | A2

t) = κ(A1
t) ∪ κ(A2

t); k9. κ(norst(At)) = ∅; k10. κ(norst(‖CR‖ At)) = ∅ ∪ κ(At);

i8. ∂(A1
t | A2

t) = ∂(A1
t) ∧ ∂(A2

t); i9. ∂(At) = ∂(norst(At)).

The action transition for parallel composition are

a9. (A1
t | A2

t)
α∗,φ−→ (A′1t | norst(A2

t)) if A1
t
α∗,φ−→ A′1t ; a10. norst(A1

t)
α∗,φ−→ A′1t if A1

t
α∗,φ−→ A′1t .

Finally, we give the structural equivalence for the parallel composition, and name and variable
restrictions.

s22. A1
t | A2

t ≡ A2
t | A1

t

s23. φ ↪→ A1
t | A2

t ≡ φ ↪→ (A1
t | A2

t)
s24. (‖C‖ A1

t) | A2
t ≡ ‖C‖ (A1

t | A2
t) if C ∩ fvc(A2

t) = ∅
s25. (∂ . A1

t) | A2
t ≡ ∂ . (A1

t | A2
t)

s26. (νk.φ . At) ≡ φ . (νk.At)
s27. (νx.φ . At) ≡ φ . (νx.At)
s28. (νk.‖C‖ At) ≡ (‖C‖νk.At)
s29. (νx.‖C‖ At) ≡ (‖C‖νx.At)
s30. (νk.φ ↪→ At) ≡ (φ ↪→ νk.At)
s31. (νx.φ ↪→ At) ≡ (φ ↪→ νx.At)

Any process defined in crypt time can be expressed in a corresponding timed automata. To
show this, first we adopt the notion image-finite and finitely sorted (borrowed from transition
system theory). A timed automaton is image-finite if the set of outgoing edges of each state with

the same action act. Formally, for each l and act the size of the set {l act, φ−→ l′ | l ∈ L} is finite. A
timed automaton is finitely-sorted if the set of outgoing edges with the same action act of every

state, {act | ∃ l′ ∈ L: l
act, φ−→ l′}, is finite.

The associated timed automaton for a (initial) process A0
t can be constructed by associating

the process A0
t to the initial location l0, then each transition made by A0

t
α∗, φ−→ A1

t can be defined
in terms of timed automaton, T = (S,

∑
, C, l0, −→, κ, ∂), as follows:

18

A0
t = ‖κ(l0)‖ ∂(l0) . (φ ↪→ (α∗ ≺ A1

t))

In this process definition, A0
t corresponds to location l0 of the timed automata at which the

set of clocks to be reset is κ(l0), and on which the invariant ∂(l0) is defined. The edge from l0 to

l1, l0
α∗, φ−→ l1, corresponds to the time construct φ ↪→ (α∗ ≺ A1

t). Generally, for every subsequent
process Ait after some transition steps from A0

t we have

Ait = ‖κ(li)‖ ∂(li) . (φ ↪→ (α∗ ≺ Ai+1
t))

which corresponds to the edge li
α∗, φ−→ li+1 in T . For the more complex target process such as

A
(i+1)1
t [] . . . [] A

(i+1)n
t we have

Ait = ‖κ(li)‖ ∂(li) . []nj=1(φj ↪→ (α∗j ≺ A
(i+1)j
t))

where Ait corresponds to location li (with the appropriate resets and invariant) and the sub-

process []nj=1(φj ↪→ (α∗j ≺ A
(i+1)j
t)) corresponds to the edge from li to the location l(i+1)j with

label (α∗j , φj), 1 ≤ j ≤ n, such that α∗j is the first enabled action (due to the valid condition at
li) among the n processes. In case there are more than one enabled action at the same time, it
can be treated in the same way as the non-deterministic choices.

In case there is not any outgoing edge from li we have the following process definitions for each
type of target process:

Ait = ‖κ(li)‖ ∂(li) . nil

We omit the case where the target process is the parallel composition of other processes.
Finally, we provide the notion of timed labeled bisimilarity that can be seen as a combination of a
timed bisimilarity defined for timed automata [8], and the labeled bisimilarity defined in applied
π-calculus.

The novel Definition 7 describes the timed labeled bisimulation for crypt time processes to prove
timing attacks against security protocols.

Definition 7. (Timed labeled bisimulation for crypttime processes)
Let TTSi(A

i
t, v0) = (Si,

∑
× R≥0, si0, −→TTSi, U i), i ∈ {1, 2} be two timed transition systems

for crypttime processes. Timed labeled bisimilarity (≈T) is the largest symmetric relation R, R ⊆
S1 × S2 with s10 R s20, where each si is the pair of a closed crypttime process and a same initial
valuation v0 ∈ Vc, (Ait, v0), such that s1 R s2 implies:

1. A1 ≈s A2;

2. if s1
(τ,d)−→TTS1 s

′
1, then ∃ s′2 such that s2

(τ,
∑
di)

=⇒ TTS2 s
′
2 and s′1 R s′2, and d = f(

∑
di) for

some function f ;

3. if s1
(α,d)−→TTS1 s

′
1 and fv(α) ⊆ dom(A1) ∧ bn(α) ∩ fn(A2) = ∅, then ∃ s′2 such that s2

(α,
∑
dj)

=⇒ TTS2 s′2 and s′1 R s′2, and d = f(
∑
dj) for some function f . Again, dom(A1)

represents the domain of A1.

Where the extended processes A1 and A2 are the “untimed” version of the processes A1
t and A2

t ,
respectively, by removing all time constructs in them.

The arrow
α

=⇒TTS is the same as
τ−→
∗
TTS

α−→TTS
τ−→
∗
TTS , where

τ−→
∗
TTS represents a series

(formally, a transitive closure) of sequential transitions
τ−→TTS .

∑
di on =⇒TTS is the sum of

the time elapsed at each transition, and represents the total time elapsed during the sequence of
transitions. Note that fn(A2

t) and dom(A1
t) is the same as fn(A2) and dom(A1). Moreover, a

process At is closed if its untimed counterpart A is closed.

19

Intuitively, in case A1
t and A2

t represent two protocols (or two variants of a protocol), then
this means that (i) the outputs of the two processes cannot be distinguished by the environment
during their behaviors; (ii) the time that the protocols spend on the performed operations until
they reach the corresponding points is in some relationship defined by a function f . Here f depends
on the specific definition of the security property, for instance, it can return d itself, hence, the
requirement for time consumption would be d =

∑
di. In particular, the first point means that at

first A1
t and A2

t are statically equivalent, that is, the environment cannot distinguish the behavior
of the two protocols based on their outputs; the second point says that A1

t and A2
t remain statically

equivalent after silent transition (internal reduction) steps. Finally, the third point says that the
behavior of the two protocols matches in transition with the action α.

4 cryptprobtime: The probabilistic timed calculus for crypto-
graphic protocols

cryptprobtime is the extension of crypt time with probabilistic syntax and semantics. This is a new
probabilistic timed calculus for cryptographic protocols, and to the best of our knowledge, it is
the first of its kind. The definition of cryptprobtime is inspired by the syntax and semantics of the
probabilistic extension of the applied π-calculus in [14], and the probabilistic automata in [8].

We extend the set of processes At defined in crypt time (Section 3) with the probabilistic choice.
Let us denote the probabilistic timed process by Apt, which is an extended process in crypt with
time constructs and probabilistic choice: A1

pt⊕pA2
pt. Formally, we have the following probabilistic

timed processes for cryptprobtime:

Apt ::= A | α∗ ≺pi Apt | φ ↪→ Apt | ‖CR‖Apt | A1
pt [] A2

pt | A1
pt ⊕p A2

pt

| (A1
pt|A2

pt) | Xpt

Process A1
pt ⊕p A2

pt behaves like A1
pt with probability p, and with (1−p) it behaves as A2

pt.
α∗ ≺π Apt performs α∗ as the first (not timed) action with the distribution π, at any time, and
then it behaves like Apt. We extend the definition of predicates fvc and bvc with free and bound
clock variables in the probabilistic choice: fvc(A1

pt ⊕p A2
pt), bvc(A

1
pt ⊕p A2

pt). The other rules are
defined similarly as in case of timed processes but with replacing At by Apt in them.

Definition 8. We extend the definition of predicates fvc and bvc with free and bound clock variables
in the probabilistic choice: fvc(A1

pt ⊕p A2
pt), bvc(A

1
pt ⊕p A2

pt). The other rules are similar as in
case of timed processes but At is replaces by Apt.

• fvc(A) = ∅: The pure extended process contains no clock variables.

• fvc(α∗ ≺ Apt) = fvc(Apt): The set of free clock variables is not affected by action.

• fvc(φ ↪→ Apt) = clock(φ) ∪ fvc(Apt): Edge guards contains free clock variables.

• fvc(φ . Apt) = clock(φ) ∪ fvc(Apt): Invariant contains free clock variables.

• fvc(‖CR‖At) = fvc(At)\CR: Clocks to be reset are bound clock variables.

• fvc(A1
pt [] A2

pt) = fvc(A1
pt) ∪ fvc(A2

pt): Union of free clock variables.

• fvc(A1
pt ⊕p A2

pt) = fvc(A1
pt) ∪ fvc(A2

pt): Union of free clock variables.

• fvc(A1
pt | A2

pt) = fvc(A1
pt) ∪ fvc(A2

pt): Union of free clock variables.

and for bound clock variables

20

• bvc(A) = ∅: The pure extended process contains no clock variables.

• bvc(α∗ ≺ Apt) = bvc(Apt): The set of bound clock variables is not affected by action.

• bvc(φ ↪→ Apt) = bvc(Apt): Edge guards contains no bound clock variables.

• bvc(φ . Apt) = bvc(Apt): Invariant contains no bound clock variables.

• bvc(‖CR‖Apt) = bvc(Apt) ∪ CR: Clocks to be reset are bound clock variables.

• bvc(A1
pt [] A2

pt) = bvc(A1
pt) ∪ bvc(A2

pt): Union of free clock variables.

• bvc(A1
pt ⊕p A2

pt) = bvc(A1
pt) ∪ bvc(A2

pt): Union of free clock variables.

• bvc(A1
pt | A2

pt) = bvc(A1
pt) ∪ bvc(A2

pt): Union of free clock variables.

Xpt is a process variable, defined as Xpt
def
= P (x1, x2, . . . , xn), for a plain process P , and

describing recursive process invocation. Since Xpt only binds plain processes it does not have any
free/bound clock variables.

For cryptprobtime the following rule is added to the definition of the predicate ncv (non-conflict of
variables):

ncv(A1
pt ⊕p A2

pt) iff ncv(A1
pt) ∧ ncv(A2

pt) ∧ (κ(A1
pt) ∩ fvc(A2

pt) = ∅) ∧ (κ(A2
pt) ∩ fvc(A1

pt) = ∅)

For the functions κ and ∂ we have the following two additional rules:

rk. κ(A1
pt ⊕p A2

pt) = κ(A1
pt) ∪ κ(A2

pt); ri. ∂ (A1
pt ⊕p A2

pt) = ∂(A1
pt) ∨ ∂(A2

pt);

In addition, we give probabilistic timed transition rules for cryptprobtime processes that are corre-
sponding to the edges in probabilistic timed automata:

t8. Apt
α∗−→π A

′
pt if Apt

α∗−→ π and π(A′pt) > 0;

t9. α∗ ≺ Apt
α∗, tt, 1

−−−−−→π Apt if α∗ ≺ Apt
α∗−→ π and π(Apt) = 1;

t10. φ ↪→ (α∗ ≺ Apt)
α∗, φ, 1

−−−−−→π Apt; if φ ↪→ (α∗ ≺ Apt)
α∗−→ π and π(Apt) = 1;

t11. φ ↪→ (φ′ ↪→ (α∗ ≺ Apt))
α∗,φ∧φ′, 1

−−−−−−→π Apt; if φ ↪→ (φ′ ↪→ (α∗ ≺ Apt))
α∗−→ π and π(Apt) = 1;

t12. (φ ↪→ (α∗ ≺ A1
pt)) [] A2

pt

α∗, φ, 1

−−−−−→π A
1
pt; if φ ↪→ (α∗ ≺ A1

pt)
α∗−→ π and π(A1

pt) = 1;

t13. (φ ↪→ (α∗ ≺ A1
pt)) | A2

pt

α∗, φ, 1

−−−−−→π A
1
pt; if φ ↪→ (α∗ ≺ A1

pt)
α∗−→ π and π(A1

pt) = 1;

t14. ‖CR‖(φ ↪→ (α∗ ≺ Apt))
α∗, φ, 1

−−−−−→π Apt; if ‖CR‖(φ ↪→ (α∗ ≺ Apt))
α∗−→ π and π(Apt) = 1;

t15. φ′ . (φ ↪→ (α∗ ≺ Apt))
α∗, φ, 1

−−−−−→π Apt; if φ′ . (φ ↪→ (α∗ ≺ Apt))
α∗−→ π and π(Apt) = 1;

t16/a. A1
pt ⊕p A2

pt

α∗, p

−−−→π1
A1′

pt if A1
pt

α∗−→π1
A1′

pt and π1(A1′

pt) = p;

t16/b. A1
pt ⊕p A2

pt

α∗, 1−p
−−−−−→π2

A2′

pt if A2
pt

α∗−→π2
A2′

pt and π2(A2′

pt) = 1− p;

t17. (φ ↪→ (α∗ ≺ A1
pt)) ⊕p A2

pt

α∗, φ, p

−−−−−→π1 A
1
pt if φ ↪→ (α∗ ≺ A1

pt)
α∗−→π1 A

1
pt and π1(A1

pt) = p.

21

Rule t8 says that from process Apt we can reach process A′pt by performing the action α∗, with

the distribution π. Apt
α∗−→ π and π(A′pt) > 0 says that from Apt we can perform α∗ according

to the distribution π such that the probability of reaching A′pt is larger than 0. Rule t9 says that
from process α∗ ≺ Apt we can reach Apt with probability 1, and without an edge guard limitation,
(ie., φ is true, denoted by tt). This rule is equivalent to (or comes from) the assumptions α∗ ≺
Apt

α∗−→ π and π(Apt) = 1. Rules t10 and t11 are similar to t9 except that the edge guards are
not tt but φ and φ ∧ φ′. Rule t12 is concerned with the semantics of the choice construct, saying
that if the process on the left side of the choice operator is activated first then the action α∗ is
performed with probability 1. In case the processes in both sides of [] are enabled at the same
time, then we talk about non-deterministic choice. Rule t13 describes the case for the parallel
composition construct similarly as in the choice case. Rule t14 says that after resetting the clocks
in CR process φ ↪→ (α∗ ≺ Apt) proceeds to Apt with probability 1. Rule t15 considers the case of
clock invariant, while rules 16/a, 16/b and 17 describe the action rules for probabilistic choice.

The operational semantics of cryptprobtime can be constructed by compounding the semantics of
crypt time and the probabilistic extension of the applied π-calculus [14], making it also respect
the operational semantics of the probabilistic timed automata [19]. Similarly as in probabilistic

timed automata, we define a state s in cryptprobtime that is composed of a probabilistic timed process
Apt, and a clock valuation v, namely, s = (Apt, v). In [8] the time passage and the timed action
transitions are modelled with the predicate until Ud(s), and the action transition with a label s
α∗(d)

−−−−→PTTS s
′. The action transition says that the action α∗ = α ∪ τ is performed at time d for

some d ∈ R≥0, which means that the system stays at s until time d, and then leaves it. We use
an equivalent interpretation, namely, performing either a visible α or invisible (silent) τ action
consumes d time units. However, not like [8] where the idling time at s is d and executing an
action takes no time, we interpret d as the time for executing action α∗, and there is no idling
time at s before performing an action.

We extend the label on transitions with the distribution π of the action α∗, s
α∗(d), π

−−−−−→PTTS

s′. For si−1 = (Ai−1pt , vi−1) and si = (Aipt, vi), a transition si−1
α∗i−1(d), πi−1

−−−−−−−−−−→PTTS si is enabled

if there is a labeled transition Ai−1pt

α∗i−1, φi−1, p

−−−−−−−−−→πi−1
Aipt such that vi |= φi−1, vi |= inv(Ai−1pt) ∧

inv(Aipt), where vi = vi−1[κ(Ai−1pt) := 0] + d, inv(Ai−1pt) and κ(Ai−1pt) are the invariant predicate as

well as the set of clocks to be reset defined at Ai−1pt , respectively. We denote the set of transitions
enabled at state s by EN (s), and the set of transitions that lead from s to a certain s′ through a
given action α∗ by EN (s, α∗, s′). A state s = (Apt, v) is called terminal iff EN (s′) = ∅ for all s′

= (Apt, v + d′), d′ ∈ R≥0.
Let us define a finite set of probability distributions, Π = {π1, . . . , πn}, where each πi specifies

a distribution of transitions. The scheduler F chooses non-deterministically the distribution of
action transition steps. The probability of performing a transition step from a state s = (Apt, v)
is based on the defined distribution π.

An (probabilistic timed) action execution of s0 = (A0
pt, v0), denoted by Execs0 , is a finite (or

infinite) sequence of transition steps

e = s0
α∗0(d0), π0

−−−−−−−→PTTS sn1

α∗1(d1), π1

−−−−−−−→PTTS . . .
α∗k−1(dk−1), πk−1

−−−−−−−−−−−−→PTTS snk . . .

where each transition s
α∗i (di), πi

−−−−−−→PTTS s′ in Execs is modelled by s

∑
dj=di

−−−−−→PTTS
∗

α∗i , π

−−−−→PTTS

s′, in which every (time step or action) transition is enabled. We denote

∑
dj=d

−−−−−→PTTS
∗ as a series

of time step transitions, where
∑
dj = d means that the sum of time amounts of the time step

transitions is d. In case the execution is finite we denote with enk , for a finite nk, where

enk = s0
α∗0(d0), π0

−−−−−−−→PTTS sn1

α∗1(d1), π1

−−−−−−−→PTTS . . .
α∗k−1(dk−1), πk−1

−−−−−−−−−−−−→PTTS snk ,

22

and denote the last state of enk by last(enk) (e.g., last(enk) = snk).

A scheduler F defined in cryptprobtime resolves both the non-deterministic and the probabilistic
choices. F is a partial function from execution fragment F : Execs 7→ Π ∪ R>0. Given a scheduler
F and an execution fragment enk we assume that F is defined for enk if and only if there exists a

reachable state s such that last(enk)
α∗, π

−−−−−−→PTTS s, for α∗ ∈ α ∪ {τ}, or last(enk)
d′−→PTTS s,

for d′∈R>0.
The execution fragments ExecFs0 from s0 according to a scheduler F is defined as the set of

executions

s0
α∗0(d0), π0

−−−−−−−→PTTS sn1

α∗1(d1), π1

−−−−−−−→PTTS . . .
α∗k−1(dk−1), πk−1

−−−−−−−−−−−−→PTTS snk . . .

such that (i) whenever F (ei−1) = d′, for d′ ∈ R>0, meaning that a time step has been chosen
at state si−1, and (ii) whenever F returns a distribution πi−1 ∈ Π: F (ei−1) = πi−1, there is an

enabled transition si−1
α∗i−1, πi−1

−−−−−−−→PTTS si, where πi−1(ei−1)>0.
The probability PF (enk) of the execution fragment

enk = s0
α∗0(d0), π0

−−−−−−→PTTS sn1

α∗1(d1), π1

−−−−−−→PTTS . . .
α∗k−1(dk−1), πk−1

−−−−−−−−−−−−→PTTS snk ,

based on the scheduler F is defined as follows:

• if nk = 0 then PF (enk) = 1.

• if nk ≥ 1 then PF (enk) = PF (enk−1) ∗ p.

where the probability of the enabled transition with action α̃nk−1 from the state snk−1 to snk is
defined as

p =

∑
pttr∈EN (snk−1, α̃nk−1, snk)

(F (enk−1))(pttr)∑
pttr∈EN (snk−1)

(F (enk−1))(pttr)
if α̃nk−1 ∈ α ∪ {τ}

The first point of the formula says that for action transitions the probability p is the ratio of
(i) the total probability of the enabled transitions with action αnk−1 from snk−1 to snk , based on
the scheduler F , and (ii) the total probability from the enabled transitions from snk−1, based on
F . Note that for action transitions F (enk−1) returns some distribution πnk−1 ∈ Π. The second
point of the formula says that the probability of time passage steps is 1, hence, whenever a time
step is chosen (non-deterministically) it will be performed. We note that the probability of the
action transition going from snk−1 to snk , labeled with αnk−1 is re-normalized according to the
transitions enabled in snk−1. The reason of re-normalizing the probability is that the number of
enabled transitions in snk−1 varies according to the validity of edge guards and location invariants
[8].

The operational semantics of cryptprobtime is given by a probabilistic timed transition system
(PTTS). The PTTS of a process Apt with the initial clock valuation v0 and scheduler F , denoted
by PTTS (Apt, v0, F), is defined by the tuple (Spt,

∑
× R≥0 × Π, (Apt, v0), −→PTTS , U , F)

where −→PTTS and U are the least set satisfying the rules u1 -u8 in Section 3 where Apt and Xpt

takes place instead of At and Xt, and we also add a new rule for probabilistic choice:

u9. Ud(A1
pt ⊕p A2

pt, v) if Ud(A1
pt, v) ∨ Ud(A2

pt, v);

The probabilistic timed transition rules for cryptprobtime is the following:

23

a1. (α∗ ≺π Apt, v)
α∗(d), π

−−−−−−→PTTS (Apt, v + d) if α∗ ≺π Apt
α∗, true

−−−−−→π Apt;

a2. (‖CR‖ Apt, v)
α∗(d), π

−−−−−−→PTTS (A′pt, v
′) if (Apt, v[rst : CR])

α∗(d), true

−−−−−−→π (A′pt, v
′);

a3. (φ ↪→ Apt, v)
α∗(d), π

−−−−−−→PTTS (A′pt, v
′) if (Apt, v)

α∗(d), φ

−−−−−−→π (A′pt, v
′) ∧ (v + d)(φ);

a4. (φ . Apt, v)
α∗(d), π

−−−−−−→PTTS (A′pt, v
′) if (Apt, v)

α∗(d), true

−−−−−−→π (A′pt, v
′) ∧ (v + d)(φ);

a5. (Apt, v)
α∗(d), π

−−−−−−→PTTS (φ . A′pt, v
′) if (Apt, v)

α∗(d), true

−−−−−−→π (A′pt, v
′) ∧ (v + d)(φ);

a6. (A1
pt [] A2

pt, v)
α∗(d), π

−−−−−−→PTTS (A1′

pt, v
′) if (A1

pt, v)
α∗(d), true

−−−−−−→π (A1′

pt, v
′);

a7/a. (A1
pt ⊕p A2

pt, v)
α∗(d), π(p)

−−−−−−→PTTS (A1′

pt, v
′) if A1

pt ⊕p A2
pt

α∗, true

−−−→ π(p) A
1′

pt

a7/b. (A1
pt ⊕p A2

pt, v)
α∗(d), π(1−p)
−−−−−−→ PTTS (A2′

pt, v
′) if A1

pt ⊕p A2
pt

α∗, true)

−−−−−−−→π(1−p) A
2′

pt

a8. (A1
pt | A2

pt, v)
α∗(d), π

−−−−−−→PTTS (A1′

pt | norst(A2
pt), v

′) if (A1
pt, v)

α∗(d), true

−−−−−−→π (A1′

pt, v
′);

a9. (Xpt, v)
α∗(d), π

−−−−−−→PTTS (P ′, v′) if (P [P/Xpt], v)
α∗(d), true

−−−−−−→π (P ′, v′).

In rule a2 v′ = v[rst : CR] + d, and in the rest rules v′ = v + d. v[rst : CR] represents the
valuation v where the clocks in CR are reset. Each rule should be interpreted that the PTTS
transition on the left side can be performed if there is an edge in a corresponding automaton.

For instance, rule a1 applies if there is an edge α∗ ≺π Apt
α∗, true

−−−−−→π Apt in the correspoding
automaton. Rule a1 says that after performing action α∗ with d time units the system gets to
the process Apt with the clock valuation after d time units elapsed. Rule a2 says that by the time
‖CR‖ Apt proceeds to Apt, the clocks in CR will have been reset. In the rules a3 and a4 the timed
transition can be performed if (v+d)(φ) holds, which means that the valuation v + d must satisfy
the clock guard φ. Rules a5-a6 describe the case when process A1

pt is activated (the rules for
activating A2

pt are similar). π(p) and π(1− p) in rules a7/a-b mean that in distribution π the first
and second transitions (edges) are chosen with probability p and (1 − p). In a8 to avoid conflict
of clock variables, we require that after performing the transition process A2

pt cannot perform
resetting at the beginning. The last rule is the action rule for recursive process variable Xpt. It
can be proven, based on the rules u1-u9 and a1-a9, that probabilistic timed transition system of
cryptprobtime satisfies axioms Until and Delay, hence, it is well defined.

Finally, we provide two novel bisimilarity definitions, called weak prob-timed labeled bisimi-
larity and strong prob-timed labeled bisimilarity, for cryptprobtime which enable us to prove or refute
the security of probabilistic timed systems. In our proposed bisimulations, we extend the static
equivalence with time and probabilistic elements. The meaning of weak is that in this paper we
want to examine whether the attackers can distinguish the behavior of two processes, based on
the information they can observe. Hence, in weak prob-timed labeled bisimulation, we do not
require the equivalence of the probability of two action traces, because practically an observer
cannot distinguish if an action is performed with 1/2 or 1/3 probability. The definition of strong
prob-timed labeled bisimulation is stricter, since it also distinguishes two processes based on the
probability of their corresponding action traces.

As mentioned before, the definition, notations and notion of static equivalence and frames are

24

kept unchanged in cryptprobtime. The definition of probabilistic labeled bisimilarity is based on the
well-known static equivalent from the applied π-calculus [12].

Definition 9. (Weak prob-timed labeled bisimulation for cryptprobtime states)
Let PTTSi(A

i
pt, v0, F) = (Si, α × R≥0 × Π, si0, −→PTTSi, U i, F), i ∈ {1, 2} be two probabilistic

timed transition systems for cryptprobtime processes. Weak prob-timed labeled bisimilarity (≈pt) is the
largest symmetric relation R, R ⊆ S1 × S2 with s10 R s20, where each si is the pair of a closed

cryptprobtime process and a same initial valuation v0 ∈ Vc, (Aipt, v0), such that s1 R s2 implies:

1. A1 ≈s A2;

2. if s1
τ(d), π

−−−−→PTTS1 s
′
1 for a scheduler F , then ∃ s′2 such that s2

τ(
∑
di), πi

=⇒ PTTS2 s
′
2 for the

same F , with d = f(
∑
di) for some function f , and s′1 R s′2;

3. if s1
α(d), π

−−−−→PTTS1 s
′
1 for a scheduler F and fv(α) ⊆ dom(A1) ∧ bn(α) ∩ fn(A2) = ∅, then

∃ s′2 such that s2
α(

∑
dj), πi

=⇒ PTTS2 s
′
2 for the same F , with d = f(

∑
dj) for some function

f , and s′1 R s′2. Again, dom(Ai) represents the domain of Ai;

and vice versa. A1 and A2 are the extended processes we get by removing all the probabilistic and
timed elements from A1

pt and A2
pt, respectively.

Basically, the definition of weak prob-timed labeled bisimulation is the same as the definition of
timed labeled bisimulation, but it is valid to probabilistic timed processes. The interpretation of
weak prob-timed labeled bisimulation is similar to the case of timed labeled bisimulation.

Given a scheduler F , similarly as in [8], σFieldF is the smallest sigma field on ExecF that
contains the basic cylinders e ↑, where e ∈ ExecF . The probability measure ProbF is the unique
measure on σFieldF such that ProbF (e ↑) = PF (e).

Definition 10. (Strong prob-timed labeled bisimilarity for cryptprobtime states)
Let PTTSi(A

i
pt, v0, F) = (Si, α × R≥0 × Π, si0, −→PTTSi, U i, F), i ∈ {1, 2} be two probabilistic

timed transition systems for cryptprobtime processes. Strong prob-timed labeled bisimilarity (≈spt) is
the largest symmetric relation R, R ⊆ S1 × S2 with s10 R s20, where each si is the pair of a closed

cryptprobtime process and a same initial valuation v0 ∈ Vc, (Aipt, v0), such that s1 R s2 implies:

1. A1 ≈s A2;

2. if s1
τ(d), π

−−−−→PTTS1 s
′
1 for a scheduler F , then ∃ s′2 such that s2

τ(
∑
di), πi

=⇒ PTTS2 s
′
2 and

(a) ProbF (s1
τ(d), π

−−−−→PTTS1 s
′
1) = ProbF (s2

τ(
∑
di), πi

=⇒ PTTS2 s
′
2);

(b) d = f(
∑
di) for some function f ;

(c) s′1 R s′2.

3. if s1
α(d), π

−−−−→PTTS1 s
′
1 and fv(α) ⊆ dom(A1) ∧ bn(α) ∩ fn(A2) = ∅, then ∃ s′2 such that s2

α(
∑
dj), πi

=⇒ PTTS2 s
′
2 and

(a) ProbF (s1
α(d), π

−−−−→PTTS1 s
′
1) = ProbF (s2

α(
∑
dj), πi

=⇒ PTTS2 s
′
2);

(b) d = f(
∑
di) for some function f ;

(c) s′1 R s′2;

and vice versa. The extended processes A1 and A2 are the processes A1
pt and A2

pt after removing
probabilistic and time constructs, respectively.

25

fn(A2
pt) and dom(A1

pt) is the same as fn(A2) and dom(A1). Moreover, a process Apt is closed if
its untimed and probability free counterpart A is closed. Intuitively, in case A1

pt and A2
pt represent

two protocols (or two variants of a protocol), then Definition 10 means that (i) the outputs of the
two processes cannot be distinguished by the environment during their behaviors; (ii) the time
that the protocols spend on the performed operations until they reach the corresponding points
is in some relationship defined by a function f . Here f depends on the specific definition of the
security property, for instance, it can return d itself, hence, the requirement for time consumption

would be d =
∑
di; (iii) the probability of the two corresponding executions s1

τ(d), π

−−−−→PTTS1 s
′
1

and s2
τ(

∑
di), πi

=⇒ PTTS2 s
′
2, and s1

α(d), π

−−−−→PTTS1 s
′
1 and s2

α(
∑
dj), πi

=⇒ PTTS2 s
′
2 are equal.

In particular, the first point means that at first A1
pt and A2

pt are statically equivalent, that is,
the environment cannot distinguish the behavior of the two protocols based on their outputs; the
second point says that A1

pt and A2
pt remain statically equivalent after silent transition (internal

reduction) steps. Finally, the third point says that the behavior of the two protocols matches in
transition with the action α.

In order to reason about the difference between the two systems (or two variants of a system)
where for instance, in one system a clock, say xc, is reset at some point during the operation,
while in the another system xc is not reset, we need a bisimilarity definition that distinguishes the
current valuation of the clocks. The following definitions enable us to reason about the difference
of clock valuations in two systems:

Definition 11. (Weak clock-val labeled bisimulation for cryptprobtime states)
Let PTTSi(A

i
pt, v0, F) = (Si, α × R≥0 × Π, si0, −→PTTSi, U i, F), i ∈ {1, 2} be two probabilistic

timed transition systems for cryptprobtime processes. Weak clock-val labeled bisimilarity (≈cv) is the
largest symmetric relation R, R ⊆ S1 × S2 with s10 R s20, where each si is the pair of a closed

cryptprobtime process and a same initial valuation v0 ∈ Vc, (Aipt, v0), such that s1 R s2 implies:

1. A1 ≈s A2;

2. if s1
τ(d), π

−−−−→PTTS1 s
′
1 for a scheduler F , then ∃ s′2 such that s2

τ(
∑
di), πi

=⇒ PTTS2 s
′
2 for the

same F , with v′1 = f(v′2), for some function f , and s′1 R s′2;

3. if s1
α(d), π

−−−−→PTTS1 s
′
1 for a scheduler F and fv(α) ⊆ dom(A1) ∧ bn(α) ∩ fn(A2) = ∅, then

∃ s′2 such that s2
α(

∑
dj), πi

=⇒ PTTS2 s
′
2 for the same F , with v′1 = f(v′2), for some function f ,

and s′1 R s′2, dom(Ai) represents the domain of Ai;

and vice versa. A1 and A2 are the extended processes we get by removing all the probabilistic and
timed elements from A1

pt and A2
pt, respectively. v′1 and v′2 are the clock valuations at the states s′1

and s′2, respectively. The function f can be applied to a subset of the entire set of clocks defined
in the second system.

We also add the corresponding strong clock-val labeled bisimilarity definition for the strong prob-
timed labeled bisimilarity by adding the requirement v′1 = f(v′2) in the second and third points of
the definition. Of course, if needed we can also provide the definition in which we keep both the
requirements d = f1(

∑
di) and v′1 = f2(v′2) for some function f1 and f2.

5 DTSN - Distributed Transport for Sensor Networks

DTSN [20] is a reliable transport protocol developed for sensor networks where intermediate nodes
between the source and the destination of a data flow cache data packets in a probabilistic manner
such that they can retransmit them upon request. The main advantages of DTSN compared
to a transport protocol that uses a fully end-to-end retransmission mechanism is that it allows
intermediate nodes to cache and retransmit data packets, hence, the average number of hops a

26

retransmitted data packet must travel is smaller than the length of the route between the source
and the destination. Intermediate nodes do not store all packets but only store packets with some
probability p, which makes it be more efficient. Note that in the case of a fully end-to-end reliability
mechanism, where only the source is allowed to retransmit lost data packets, retransmitted data
packets always travel through the entire route from the source to the destination. Thus, DTSN
improves the energy efficiency of the network compared to a transport protocol that uses a fully
end-to-end retransmission mechanism.

DTSN uses special packets to control caching and retransmissions. More specifically, there
are three types of such control packets: Explicit Acknowledgement Requests (EARs), Positive
Acknowledgements (ACK s), and Negative Acknowledgements (NACK s). The source sends an
EAR packet after the transmission of a certain number of data packets, or when its output buffer
becomes full, or when the application has not requested the transmission of any data during a
predefined timeout period or due to the expiration of the EAR timer (EAR timer).

The activity timer and the EAR timer are launched by the source for ensuring that a session
will finish in a finite period of time. The activity timer is launched when the source starts to
handle the first data packet in a session, and it is reset when a new packet is stored, or when an
ACK or a NACK has been handled by the source. When the activity timer has expired, depending
on the number of unconfirmed data packets, the session will be terminated or reset. The EAR
timer is launched whenever an EAR packet or a data packet with the EAR bit set is sent.

Figure 1: The behavior of the source node in DTSN, taken from [20].

An EAR may take the form of a bit flag piggybacked on the last data packet or an independent
control packet. An EAR is also sent by an intermediate node or the source after retransmission
of a series of data packets, piggybacked on the last retransmitted data packet [20]. Upon receipt
of an EAR packet the destination sends an ACK or a NACK packet, depending on the existence
of gaps in the received data packet stream. An ACK refers to a data packet sequence number

27

n, and it should be interpreted such that all data packets with sequence number smaller than or
equal to n were received by the destination. A NACK refers to a base sequence number n and
it also contains a bitmap, in which each bit represents a different sequence number starting from
the base sequence number n. A NACK should be interpreted such that all data packets with
sequence number smaller than or equal to n were received by the destination and the data packets
corresponding to the set bits in the bitmap are missing.

Within a session, data packets are sequentially numbered. The Acknowledgement Window
(AW) is defined as the number of data packets that the source transmits before generating and
sending an EAR. The output buffer at the sender works as a sliding window, which can span
more than one AW . Its size depends on the specific scenario, namely on the memory constraints
of individual nodes.

Figure 2: The behavior of the intermediate node in DTSN, taken from [20].

In DTSN, besides the source, intermediate nodes also process ACK and NACK packets. When
an ACK packet with sequence number n is received by an intermediate node, it deletes all data
packets with sequence number smaller than or equal to n from its cache and passes the ACK
packet on to the next node on the route towards the source. When a NACK packet with base
sequence number n is received by an intermediate node, it deletes all data packets with sequence
number smaller than or equal to n from its cache and, in addition, it retransmits those missing
data packets that are indicated in the NACK packet and stored in the cache of the intermediate
node. The bits that correspond to the retransmitted data packets are cleared in the NACK packet,

28

which is then passed on to the next node on the route towards the source. If all bits are cleared
in the NACK , then the NACK packet essentially becomes an ACK referring to the base sequence
number, and it is processed accordingly. In addition, the intermediate node sets the EAR flag in
the last retransmitted data packet. The source manages its cache and retransmissions in the same
way as the intermediate nodes, without passing on any ACK and NACK packets.

Figure 3: The behavior of the destination node in DTSN, taken from [20].

Security issues in DTSN. Upon receiving an ACK packet, intermediate nodes delete from
their cache the stored messages whose sequence number is less than or equal to the sequence number
in the ACK packet, because the intermediate nodes believe that acknowledged packets have been
delivered successfully. Therefore, an attacker may cause permanent loss of some data packets by
forging or altering ACK packets. This may put the reliability service provided by the protocol in
danger. Moreover, an attacker can trigger unnecessary retransmission of the corresponding data
packets by either setting bits in the bit map of the NACK packets or forging/altering NACK
packets. Any unnecessary retransmission can lead to energy consumption and interference. Note
that, unnecessary retransmissions do not directly harm the reliability, but it is clear that such
inefficiency is still undesirable.

The destination sends ACK or NACK packets upon reception of an EAR. Therefore, attacks
aiming at replaying or forging EAR information, where the attacker always sets the EAR flag to
0 or 1, can have a harmful effect. Always setting the EAR flag to 0 prevents the destination from
sending an ACK or NACK packet, while always setting it to 1 forces the destination send control
packets unnecessarily.

5.1 DTSN in cryptprobtime

We assume the network topology S−I−D, where “ − ” represents a bi-directional link, while S,
I, D denote the source, an intermediate node, and the destination node, respectively. We also
include the presence of the application that uses DTSN and SDTP, because it sends packet delivery
requests to the source, and it receives delivered packets. In the rest of the paper we refer to the
application as the upper layer.

Note that the attack scenarios which can be found and proved in this topology is also valid in
other topologies including more intermediate nodes. Moreover, we assume that each node has three

29

cache entries, denoted by esk, eik and edk, 1≤k≤ 3. For brevity we let es1−3 range over es from index
1 to 3, and the same is true for ei1−3 and ed1−3. We define symmetric channels between the upper
layer and the source, csup; the upper layer and the destination, cdup; the source and intermedate
node, csi; the intermediate node and the destination cid. Moreover, we define additional channels
cerror and csessionEND for sending and receiving error and session-end signals.

We define cryptprobtime processes upLayer, Src, Int, Dst for specifying the behavior of the upper
layer, the source, intermediate, and destination nodes. The DTSN protocol for the given topology
is specified by the parallel composition of these four processes.

———–
The specification of the DTSN protocol:

Prot(params)
def
=

let (es1, es2 , es3, ei1, ei2, ei3, ed1, ed2 , ed3, cntsq) = (E, E, E, E, E, E, E, E, E, 1)
in INITDTSN();

INITDTSN ()
def
= csup〈cntsq〉.DTSN (params)

DTSN (params)
def
=

upLayer(incr(cntsq)) | initSrc(s, d, apID, es1−3, sID, earAtmp) |
Int(ei1−3) | Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq);

———–

We refer to the tuple of parameters (cntsq, s, d, apID, ei1−3, sID, earAtmp, ei1−3, ed1−3, ackNbr,
nackNbr, toRTX1, nxtsq) by (params). The process Prot(params) describes DTSN with variable
initializations. The let construct is used to initialize the value of the cache entries to E, and the
current sequence number to 1. The unique name E is used to represent the empty content. In
the following, we give a brief overwiew of the main processes in our specification. Each main
process is composed of additional sub-processes, which we skip discussing here. The processes are
recursively invoked in a way to model replication.

We introduce two clock variables: xactc for the activity timer, and xearc for the ear timer.
According to the specification of the DTSN protocol [20], to model timeout we make use of the
clock invariant defined on the process Src. The initial state of DTSN for the given topology is
specified as the process ‖ xactc , xearc ‖ Prot(params), which simply resets the timers at the beginning.
We define the time amount of the activity and ear timers by Tact and Tear, respectively. We assume
that the activity timer is launched after the upper layer has sent the first request for the source,
which is specified in INITDTSN ().

In process INITDTSN (), first of all, the request for sending the first packet with sequence
number cntsq is sent. Then, the next request, cntsq + 1, is enqueued in upLayer(incr(cntsq)).
The parameters of process Src are the IDs of the source and the destination; the application ID;
the three cache entries, the session ID; and the latest number of EAR attempts. Process Int has
the content of the three cache entries as parameter. Process Dst includes the cache entries; the
ACK/NACK numbers for composing acknowlegement messages; the packet to be re-transmitted
and the next expected packet.

In the following, we give a brief overwiew of each process upLayer, Src, Int, Dst, which are the
main processes in our specification. Each main process is composed of additional sub-processes.
For shortening the code we present the syntax sugar upLayer(decr(cntsq)) as the shorthand of
process let cntsq = decr(cntsq) in upLayer(cntsq). Intuitively, this process says that upLayer
has the parameter which is cntsq − 1. Similarly, process upLayer(incr(cntsq)) gets the argument
cntsq + 1.

Process that models the behavior of the upper layer:

upLayer(cntsq)
def
=

csup(= PRV OK).hndlePck(cntsq) [] cerror(= ERROR).upLayer(decr(cntsq))
[] csessionEND(= SEND).nil [] cdup(xpck).upLayer(cntsq);

30

Process upLayer has the current sequence number as parameter, denoted by cntsq, which
is used to keep track of the next or previous sequence number. Process csup(= PRV OK).
hndlePck(cntsq) first waits for a feedback from Src indicating that the source has received and
handled the request regarding cntsq. Input process csup(= PRV OK) checks if the received mes-
sage is equal to the constant PRVOK, meaning that the source has already handled the latest
request, hence, the upper layer can go on with the next request, this is described in process
hndlePck(cntsq).

hndlePck(cntsq)
def
=

[cntsq ≤ mxSQ] (csup〈cntsq〉.upLayer(incr(cntsq)))
else upLayer(cntsq);

Intuitively, in case cntsq is less than or equal to the maximal sequence number, denoted by
mxSQ, the request for delivering packet cntsq is initiated by sending cntsq via channel csup,
followed by the recursive invocation of upLayer with the next sequence number. Otherwise,
upLayer is invoked again with cntsq unchanged.

Whenever the upper layer receives an error message, which is specified by the input of the
constant ERROR on channel cerror, process upLayer is invoked with cntsq − 1. Namely, this
addresses the scenario when the source cannot handle the latest delivery request, hence, the upper
layer repeats this request. Whenever, a session-end signal, which is defined as the constant SEND,
is received the upper layer terminates its operation. Finally, when the upper layer receives a data
packet, on channel cdup, delivered by the destination it continues its operation.

———–
The source handling the activity timer expiration:

InitSrc(s, d, apID, es1−3, sID, earAtmp)
def
=

1. csup(xsq).(
{ xactc ≤ Tact } . (xactc ≤ Tact) ↪→ initFwdDt(s, d, apID, es1−3, sID, xsq)
[] {xactc ≤ Tact} . (xactc ≤ Tact) ↪→ initRcvACKS (s, d, apID, es1−3, sID, earAtmp)
[] {xactc ≤ Tact} . (xactc ≤ Tact) ↪→ initRcvNACKS (s, d, apID, es1−3, sID, earAtmp)

)
2. [] {xactc ≤ Tact} . (xactc ≤ Tact) ↪→ csessionEND(= SEND).nil
3. [] (xactc ≥ Tact) ↪→ actTimeOut ;
———–

The process initSrc specifies the source node starting with the first packet delivery, when the
source does not launch the EAR timer yet, but only the ACT (activity) timer. The sub-process
actTimeOut describes the behavior of the protocol when the ACT timer has expired. Similarly,
for the EAR timer we define the process earTimeOut.

The three choice options represent the “wait for event” activity of the source. The choice is
resolved after the corresponding event occurs. Each choice option represents a scenario: The last
(third) option in point 3 describes the case when the activity timer has elapsed. According to
the definition of the source in DTSN and SDTP (Figure 1), the source checks the expiration of
the EAR and the ACT timers, only when it returned to the status Wait for event. This means
that within a branch corresponding to the received message (a data, an ACK , a NACK), timer
expirations do not interrupt the behavior of the source immediately. Moreover, whenever the
source steps into one branch, in case of DTSN, the timers will be reset within the branch, before
returning to the status waiting for event. The process (xactc ≥ Tact) ↪→ actTimeOut says that when
the ACT timer has expired the protocol proceeds with the process actTimeOut, which describes
the defined behavior of Src after timeout. The second choice (point 2.) is for the case when
the session is terminated, which happens when the constant SEND has been sent on the private
channel csessionEnd by the source [20]. Each node is defined such that it waits for SEND by the
construct csessionEND(= SEND), where =SEND is used to check if the received data is equal to

31

SEND. This construct is basically the abbreviation of the process csessionEND(xSEND). [xSEND
= SEND]. After receiving the session end signal each node terminates its operation.

We assume that the session termination cannot be interrupted by the timeouts, basically, it
can be seen as an atomic action. When the first option has been chosen, it means that in that step
the source received the delivery request from the upper layer, and that no session end or timeouts
happen during this input action.

Specifically, in initFwdDt(s, d, apID, es1−3, sID, sq), after checking that the buffer is not full,
the source stores the packet in a cache entry, then, after reseting the ACT timer, it proceeds with
checking the saturation of the buffer.

———–
The source stores the received packet and resets the ACT timer:

initFwdDt(s, d, apID, es1−3, sID, sq)
def
=

.
let esi = (s, d, apID, sID, sq) in
‖ xactc ‖ checkBuffandAW (s, d, apID, es1−3, sID, sq, earAtmp)

———–

First, the packet is stored in one of the cache entries, i ∈ {1, 2, 3}. The process ‖ xactc ‖ {
xactc ≤ Tact } . (xactc ≤ Tact) checkBuffandAW resets the ACT timer and continues the behavior
of the source by checking whether the buffer is full and if sq is AW multiple. For simplicity, we
assume AW be 2, hence, we need only to check if sq is equal to 2 or 4, because we consider at most
4 packets in a session. After that, the source launches the EAR timer and sets the EAR attempt
to 1, followed by repeating its operation (i.e., it waits for an event).

Checking buffer full and launches the EAR timer:

checkBuffandAW (s, d, apID, es1−3, sID, sq, earAtmp)
def
=

.
csi〈(s, d, apID, sID, sq, ear, rtx)〉. let earAtmp = 1 in ‖ xearc ‖ Src(s, d, apID, es1−3, sID, earAtmp)

We only discuss such portion of process checkBuffandAW which is related to the timing issue
such as lauching the EAR timer. First, the packet with the sequence number sq and ear bit set
to 1, is sent to I. Then, after setting the EAR attempt to 1, it launches the EAR timer. We
note that the appearance of xactc in {xactc ≤ Tact, x

ear
c ≤ Tear} does not means that it has been

reset/launched again, but only that the time invariant for the clock xactc is carried forward.
The processes initRcvACKS and initRcvNACKS are activated when an ACK/NACK message

is received by the source node at the very beginning of the protocol. At the beginning, no packet
is stored, hence, these two processes are very simple: basically, whatever is input on the channels
csiACK , csiNACK they proceed to the process {xactc ≤ Tact} . Src(parameters).

Process Src(s, d, apID, es1−3, sID, earAtmp) is a bit differ from initSrc(s, d, apID, es1−3, sID,
earAtmp) in that the EAR timer will be launched in it. Src considers the case when the source
has already stored some packets, and is located within the process checkBuffandAW after the
source sent the current data packet, and it is located in initRcvACKS, and initRcvNACKS after
the source has finished deleting its buffer and re-transmitting the required packets, according to
the received ACK and NACK packets.

———–
The source’s activity after it has already stored packets :

Src(s, d, apID, es1−3, sID, earAtmp)
def
=

5. csup(xsq). { xactc ≤ Tact, xearc ≤ Tear } . (xactc ≤ Tact, x
ear
c ≤ Tear) ↪→

fwdDt(s, d, apID, es1−3, sID, xsq)
[] csiACK(xack). { xactc ≤ Tact, xearc ≤ Tear } . (xactc ≤ Tact, x

ear
c ≤ Tear) ↪→

rcvACKS (s, d, apID, es1−3, sID, earAtmp, xack)
[] csiNACK(xnack). { xactc ≤ Tact, xearc ≤ Tear } . (xactc ≤ Tact, x

ear
c ≤ Tear) ↪→

32

rcvNACKS (s, d, apID, es1−3, sID, earAtmp, xnack)
6. [] { xactc ≤ Tact, xearc ≤ Tear } . (xactc ≤ Tact, x

ear
c ≤ Tear) ↪→ csessionEND(= SEND).nil

7. [] (xactc ≥ Tact) ↪→ actTimeOut
8. [] (xearc ≥ Tear) ↪→ earTimeOut ;
———–

Beside the ACT timer, points 5-8 also include the reseting of the EAR timer, hence, the clock
invariant {xactc ≤ Tact} in points 1-3 is extended with {xearc ≤ Tear}, and the action guard becomes
(xactc ≤ Tact, xearc ≤ Tear). In addition, the processes fwdDt, rcvACKS and rcvNACKS differ from
initFwdDt, initRcvACKS, and initRcvNACKS, such that in the first three processes, the source
has to perform some searching steps. Finally, in process Src, the timeout of the EAR timer should
be taken into account (in point 8). The process Src is located at the end of the processes fwdDt,
rcvACKS and rcvNACKS to model the recursive behavior of the source, until the session end.

———–
The source handles activity timer expiration:

actTimeOut
def
=

[nbrUnConfirmed = 0] csessionEND 〈SEND〉.nil
[] [nbrUnConfirmed > 0] csi 〈EAR〉.
‖ xactc , xearc ‖ Src(s, d, apID, es1−3, sID, earAtmp);

———–

In actTimeOut, according the definition of DTSN, if there is not any unconfirmed packet in
the buffer, the session is terminated. Otherwise, the EAR packet is sent on channel csi, then, the
ACT and EAR timers are reset, followed by waiting for an event after invoking recursively the
process Src.

Process earTimeOut defines the behavior of the source in case of EAR timeout, namely, the
EAR attempt is increased. Then, if the EAR attempt exceeds the MAX nnumber, the session is
terminates, otherwise, the ACT and EAR timers are reset, and it waits for events.

———–
the source handles EAR timer expiration:

earTimeOut
def
=

let earAtmp = incr(earAtmp) in
(

[earAtmp > earMAX] csessionEND 〈SEND〉.nil
[]
[earAtmp ≤ earMAX] csi 〈EAR〉.
‖ xactc , xearc ‖ Src(s, d, apID, es1−3, sID, earAtmp)

);
———–

In process earTimeOut, the EAR attempts are increased. Then, if the EAR attempts exceed the
MAX number, the session is terminates, otherwise, the ACT and EAR timers are reset, and it
waits for events by invoking recursively the process Src.

In addition, we have to add the resetting of the timers at the source node after handling
ACK/NACK packets. Hence, the processes rcvACKS and rcvNACKS are extended as follows:

rcvACKS (s, d, apID, es1−3, sID, earAtmp)
def
=

csiACK(xacknum).hndleACK (s, d, apID, es1−3, sID, xacknum);

hndleACK (s, d, apID, es1−3, sID, acknum)
def
=

[5(es1) ≤ acknum] checkE1 (s, d, apID, es1−3, sID, acknum) else
[5(es2) ≤ acknum] checkE2 (s, d, apID, es1−3, sID, acknum) else

33

[5(es3) ≤ acknum] checkE3 (s, d, apID, es1−3, sID, acknum) else
/* Here we add the resetting of the two timers on process Src */

let (earAtmp = 0) in ‖ xactc , xearc ‖ Src(s, d, apID, es1−3, sID, earAtmp);

Process hndleACK specifying how the source behaves after receiving an ACK message. It starts
with checking if the packet in the first cache entry has a sequence number less than the received
acknum. The construct 5(esi) specifies the 5-th element of the packet stored in the i-th cache entry
esi , which is the sequence number. In case (5(es1) ≤ acknum), the source deletes the content of es1,
and continues with checking the sequence number in the second cache entry. These are included
in the process checkE1, where E1 refers to the first cache entry. Otherwise, if (5(es1) > acknum)
holds, then the source continues with the same steps for the second entry, and so on. The last two
rows say that after examining every cache entry the source sets the EAR attempts to zero, and
resets the EAR and ACT timers.

The processes checkE1, checkE2 and checkE3 starts with deleting the corresponding cache
entry by using the process let (esi = E) in . . . , which gives the special name E (i.e., “Empty”)
to esi , then continues with the same steps as in hndleACK. For instance, the code of checkE1 is
as follows:

checkE1 (s, d, apID, es1−3, sID, acknum)
def
= let (es1 = E) in

[5(es2) ≤ acknum] checkE2 (s, d, apID, es1−3, sID, acknum) else
[5(es3) ≤ acknum] checkE3 (s, d, apID, es1−3, sID, acknum) else

/* Here we add the resetting of the two timers on process Src */
let (earAtmp = 0) in ‖ xactc , xearc ‖ Src(s, d, apID, es1−3, sID, earAtmp);

According to the definition of DTSN [20], the activity timer expiration also affects the behavior
of the destination. Upon activity timer expiration, the destination checks if all the packets has
been received and confirmed, and in case yes the session terminates with success, otherwise, it
terminates with error. We simplify the model, without lost of correctness, by not specify explicitly
this behavior for the destination, but by the channel cendSession. When activity timer expired the
source sends session-end signal, which is then received by the destination (and intermediate node)
on channel cendSession which followed by the special process nil. Intuitively, the end session
command is given by the source which is then performed by the other processes. Recall that the
attacker cannot interfere the information sent on cendSession, because it is private. We can omit
the specification of the time constructs in the rest processes, hence, avoiding the conflict of clock
variables. Specifically, we extend the scope of clocks resets on Src to the rest processes, applying
the scope extrusion rule for parallel composition:

(‖C‖ A1
t) | A2

t ≡ ‖C‖ (A1
t | A2

t) if C ∩ fvc(A2
t) = ∅

The denotation ≡ refers to the notion of structural equivalence, which is well-known in process
calculi. It is used to define when two processes are structurally equivalence. For example, A1 | A2

is equivalence to A2 | A1. The rule above says that if the set of clocks to be reset are not among
the free clock variables of A2

t , then ‖C‖ can be extended. For the process ‖C‖ (A1
t | A2

t) we can
define the corresponding location in timed automata.

Process that models the behavior of an intermediate node:

Int(ei1−3)
def
=

csi((xs, xd, xapID, xsID, xsq, xear, xrtx)).hndleDtI (s, d, apID, sID, sq, ear, rtx, ei1−3)
[] rcvACKI (ei1−3) [] rcvNACKI (ei1−3) [] csessionEND(= SEND).nil;

In process Int the intermediate node may receive a data packet on channel csi and handles the
received packet according to the definition of DTSN, it can receive and handle an ACK or NACK
message, and it can terminate its operation when it gets the signal.

34

Process that models the behavior of the destination:

Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq)
def
=

cid((xs, xd, xapID, xsID, xsq, xear, xrtx)).hndleDtDst [] csessionEND(= sEND).nil;

For the process Dst, the destination can either receive a data packet on channel cid or receive
a session end signal. In the first case, Dst proceeds with hndleDtDst in which the destination
performs the verification steps and delivers the packet to the upper layer, or sending an ACK or
a NACK.

In the following, we extend the description of the DTSN protocol in crypt time with a proba-
bilistic choice. According to the definition of the DTSN protocol, the probabilistic choice is placed
within process Int(eii−3), which is the specification of intermediate nodes. In particular, after re-
ceiving a packet an intermediate node stores the packet in its cache with probability p. To model
this behavior we add the probabilistic choice construct in the sub-process hndleDtI, “reponsible”
for handling a received data packet.

hndleDtI (s, d, apID, sID, sq, ear, rtx, ei1−3)
def
=

[ei1 = (s, d, apID, sID, sq)] cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3) else
[ei2 = (s, d, apID, sID, sq)] cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3) else
[ei3 = (s, d, apID, sID, sq)] cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3) else
strAndFwI (s, d, apID, sID, sq, ear, rtx, ei1−3) ⊕p FwI (s, d, apID, sID, sq, ear, rtx, ei1−3);

FwI (s, d, apID, sID, sq, ear, rtx, ei1−3)
def
= cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3);

we add the probabilistic choice

strAndFwI (s, d, apID, sID, sq, ear, rtx, ei1−3) ⊕p FwI (s, d, apID, sID, sq, ear, rtx, ei1−3),

in which process strAndFwI that describes when the intermediate node stores the received packet,
is chosen with probability p, and process FwI that specifies that the received packet is forwarded
without storing, is selected with 1− p.

6 SDTP - A Secure Distributed Transport Protocol for
WSNs

SDTP is a security extension of DTSN aiming at patching the security holes in DTSN. SDTP
ensures that an intermediate node can verify if an acknowledgment or negative acknowledgment
information has really been issued by the destination, if and only if the intermediate node actually
has in its cache the data packet referred to by the ACK or NACK. Forged control information can
propagate in the network, but only until it hits an intermediate node that cached the corresponding
data packet; this node can detect the forgery and drop the forged control packet.

In particular, the security solution of SDTP works as follows [6]: each data packet is extended
with an ACK MAC and a NACK MAC, which are computed over the whole packet with two
different keys, an ACK key (KACK) and a NACK key (KNACK). Both keys are known only to
the source and the destination and are specific to the data packet; hence, these keys are referred
to as per-packet keys.

When the destination receives a data packet, it can check the authenticity and integrity of
each received data packet by verifying the two MAC values. Upon receipt of an EAR packet,
the destination sends an ACK or a NACK packet, depending on the gaps in the received data
buffer. If the destination sends an ACK referring to a data packet with sequence number n, the
destination reveals (included in the ACK packet) the corresponding ACK key; similarly, when it
wants to signal that this data packet is missing, the destination reveals the corresponding NACK
key by including it in the NACK packet. Any intermediate node that stores the packets in question
can verify if the ACK or NACK message it receives is authentic by checking if the appropriate

35

MAC in the stored data packet verifies correctly with the ACK key included in the ACK packet.
In case of successful verification, the intermediate node deletes the corresponding data packets
(whose sequence number is smaller than or equal to n) from its cache.

When an ACK packet is received by an intermediate node or the source, the node first checks
if it has the corresponding data packet. If not, then the ACK packet is simply passed on to the
next node towards the source. Otherwise, the node uses the ACK key obtained from the ACK
packet to verify the ACK MAC value in the data packet. If this verification is successful, then
the data packet can be deleted from the cache, and the ACK packet is passed on to the next
node towards the source. If the verification of the MAC is not successful, then the ACK packet is
silently dropped.

When a NACK packet is received by an intermediate node or the source, the node processes
the acknowledgement part of the NACK packet as described above. In addition, it also checks if it
has any of the data packets that correspond to the set bits in the bitmap of the NACK packet. If it
does not have any of those data packets, it passes on the NACK without modification. Otherwise,
for each data packet that it has and that is marked as missing in the NACK packet, it verifies
the NACK MAC of the data packet with the corresponding NACK key obtained from the NACK
packet. If this verification is successful, then the data packet is scheduled for re-transmission, the
corresponding bit in the NACK packet is cleared, and the NACK key is removed from the NACK
packet. After these modifications, the NACK packet is passed on to the next node towards the
source.

The ACK and NACK key generation and management in SDTP is as follows: The source and
the destination share a secret which we call the session master key, and we denote it by K. From
this, both the source and destination derive an ACK master key KACK and a NACK master key
KNACK for a given session as follows:

KACK = PRF(K;“ACK master key”; SessionID)
KNACK = PRF(K;“NACK master key”; SessionID)

where PRF is a pseudo-random function [9], and SessionID is a session identifier.
SDTP assumes a pre-established shared secret value, such as a node key shared by the node and

the base station, which can be configured manually in the node before its deployment. Denoting
the shared secret by S, the session master key K is then derived as follows:

K = PRF(S; “session master key”; SessionID)

The ACK key K
(n)
ACK and the NACK key K

(n)
NACK for the n-th packet (i.e., whose sequence

number is n) are computed as follows:

K
(n)
ACK = PRF(KACK ; “per packet ACK key”; n)

K
(n)
NACK = PRF(KNACK ; “per packet NACK key”; n)

Note that both the source and the destination can compute all these keys as they both possess
the session master key K. Moreover, PRF is a one-way function, therefore, when the ACK and
NACK keys are revealed, the master keys cannot be computed from them, and consequently, as
yet unrevealed ACK and NACK keys remain secrets too.

Security issues in SDTP. The rationality behind this security solution is that the shared
secret S is never leaked, and hence, only the source and the destination can produce the right
ACK and NACK master keys and per-packet keys. Since the source never reveals these keys,
the intermediate node can be sure that the control information has been sent by the destination.
In addition, because the perpacket keys are computed by a one-way function, when the ACK
and NACK keys are revealed, the master keys cannot be computed from them; hence, the yet
unrevealed ACK and NACK keys cannot be derived. These issues give the protocol designers an
impression that SDTP is secure, however, we will formally prove that SDTP is still vulnerable and
showing a tricky attack against it.

36

Figure 4: The NACK in SDTP, taken from [6].

6.1 SDTP in cryptprobtime

The non-cryptographic parts of SDTP including the timing and probabilistic elements are specified
in the same way as in case of the DTSN protocol. Hence, I focus on the cryptographic parts
of SDTP. To model the cryptographic primitives and operations in SDTP, I add the following
equations into the set of equational theories:

Functions: K (n, ACK); K (n, NACK); mac(t, K (n, ACK)); mac(t, K (n, NACK));

Equations: checkmac(mac(t, K (n, ACK)), K (n, ACK)) = ok;
checkmac(mac(t, K (n, NACK)), K (n, NACK)) = ok.

where functions K (n, ACK) and K (n, NACK) specify the ACK and NACK per-packet keys
corresponding to the packet with sequence number n. The functions mac(t, K (n, ACK)) and
mac(t, K (n, NACK)) compute the MAC on the message t, using the ACK and the NACK keys
for the n-th packet. In order to simplify the modelling procedure, without violating the correctness
of SDTP, I make an abstraction of the key hierarchy given in [6], where the per-packet keys are
computed with a one-way function based on the shared secret unknown to the attacker. Instead,
I assume that K (n, ACK) and K (n, NACK) cannot be generated (but can be intercepted) by

37

the attackers. The attackers can only generate keys that are differ from these keys. With this, I
model the fact that the shared secret will never be revealed during the protocol.

One most important change, compared to DTSN, resulted from the specification of the SDTP
is that the destination node includes ACK and NACK keys in the ACK and NACK messages. To
model the SDTP protocol we extend the specification of the DTSN protocol in the following way.
First, the source node extends each packet with an ACK MAC and a NACK MAC, then sends it
to node I, which is accomplished by the following code part in the process Src. Let us consider,
for example, the process checkBuffandAW discussed above.

Checking buffer full and launches the EAR timer:

checkBuffandAW (s, d, apID, es1−3, sID, sq, earAtmp)
def
=

.
let ear=val1 in let rtx=val2 in let earAtmp=val3 in
let Kack = K(sq, ACK) in let Knack = K(sq, NACK) in
let ACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Kack) in
let NACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Knack) in
csi〈(s, d, apID, sID, sq, ear, rtx, ACKMAC, NACKMAC)〉.let earAtmp = 1 in
‖ xearc ‖ Src(s, d, apID, es1−3, sID, earAtmp);

In the first row the variables ear, rtx, and earAtmp are given some values val1, val2 and val3,
respectively. In the second row the ACK/NACK keys Kack and Knack are generated, while in the
third and fourth rows the ACK/NACK MACs are computed using the generated ACK/NACK
keys. Finally, the whole packet is output on channel csi and the process Src is recursively invoked.

In addition, we have to extend the cryptprobtime specification of DSTN with the verification of
ACK MACs and NACK MACs when the source receives ACK and NACK packets. Formally, we
extend the processes

rcvACKS (s, d, apID, es1−3, sID, earAtmp)
def
=

csiACK(acknum, ackkey, nackkey).
hndleACK (s, d, apID, es1−3, sID, acknum, ackkey, nackkey);

such that the expected data on channel csiACK is extended by ackkey, nackkey that represent
per-packet ACK and NACK keys, which are also included as the parameters of process hndleACK
and its sub-processes. We extend the specification of hndleACK with the verification of the stored
ACK MAC using the keys included in the received ACK packets. This is modelled by the if
construct in cryptprobtime: [checkmac(6(esi), ackkey) = ok]. In particular, checkmac(6(esi), ackkey) is
the verification of the received ACK MAC, which is stored in the 6-th place in the cache entry esi ,
denoted and defined by the function 6(esi). The same verification is applied in the sub-processes.

When a NACK packet has been received the SDTP protocol includes verification of ACK
MAC and NACK MACs. The structure of the NACK packet compared to DTSN case is ex-
tended with an ACK key (if any) and some NACK keys depending on the number of bits in the
NACK packet. Hence, the expected data on channel csiNACK is extended with the ackkey and
nackkey parameters, for instance, instead of csiNACK(acknum, b1) we have csiNACK(acknum, b1,
ackkey, nackkey1). Namely, the verification part [5(esi) ≤ acknum], which examines if the 5-th
element of the entry esi (i.e. the stored sequence number sq) is less or equal to the received ack-
num, is extended with the verification of the ACK/NACK MACs [checkmac(6(esi), ackkey) = ok]
[checkmac(7(esi), nackkey) = ok] for each i ∈ {1, 2, 3}.

Now we turn to modify the process Int(ei1−3) according to the definition of the SDTP protocol.
Beside the parameters already defined in case of DTSN, the process Int in SDTP also includes
ackmac and nackmac parameters. Each cache entry at intermediate nodes stores the packets that
contains an ACK MAC and NACK MAC at the 6-th and 7-th places, respectively.

38

In process rcvACKI, which describes the behavior of node I after receiving an ACK, the
ACK message format on channel cidACK is extended with ackkey, (acknum, ackkey), and process
hndleACKI also contains ackkey as its parameter.

rcvACKI (ei1−3)
def
=

cidACK(acknum, ackkey).hndleACKI(s, d, apID, ei1−3, sID, acknum, ackkey);

The specifications of processes hndleACKI, and the sub-processes within hndleACKI are modified
similarly as in case of hndleACK and its sub-processes in DTSN.

We define a process, called rcvNACKI, which specifies the behavior when node I receives a
NACK message. In this process the expected messsage format on channel cidNACK includes the
ack number and the packets need to be retransmitted, and the corresponding ACK/NACK keys,
e.g., cidNACK(xacknum, xb1, xackkey, xnackkey).

Finally, the process Dst for the destination node is modified such that the expected message
on channel cid, is extended with the ACK and NACK MACs. Then, Dst performs the verification
operations on ACK/NACK MACs.

7 Security Analysis of DTSN and SDTP using cryptprobtime

In the next two subsections, we formally prove the insecurity of the DTSN and SDTP protocols
using the weak prob-timed bisimilarity defined in cryptprobtime, and we also specify their behavior

using the syntax of cryptprobtime.
In our formal proofs we apply the proof technique that is usual in process algebras, such as

the spi [2] and the applied π calculi. Namely, we define an ideal version of the protocol run, in
which we specify the ideal/secure operation of the real protocol. This ideal operation, for example,
can be that honest nodes always know what is the correct message they should receive/send, and
always follows the protocol correctly, despite the presence of attackers. Then, we examine whether
the real and the ideal versions, besides the same attacker(s), are probabilistic timed bisimilar.

Definition 12. Let the processes Prot() and Protideal() specify the real and ideal versions of some
protocol Prot, respectively. We say that Prot is secure (up to the strictness of the ideal version) if
Prot() and Protideal() are probabilistic timed bisimilar: Prot() ≈pt Protideal().

The strictness of the security requirement, which we expect a protocol to fullfil, depends on
how “perfectly” we specify the ideal version. Intuitively, Definition 12 says that Prot is secure if
the attackers, who can observe the output messages, cannot distinguish the operation of the two
instances.

7.1 Security Analysis of the DTSN protocol

The security properties we want to check in case of DTSN protocol is that how secure it is against
the manipulation of control and data packets. In particular, can the manipulation of packets
results in unintentional closing of a session or preventing DTSN from achieving its design goal.
Due to lack of security mechanisms, DTSN is vulnerable to the manipulation of control packets,
where the attacker can modify the base number in ACK packets causing that the stored packets
are deleted from the cache although they should not be (by increasing the base number), or
causing unnecessary storage of the already delivered packets (by decreasing the base number). In
this section we demonsrate how to formally prove the security or vulnerability of DTSN using
cryptprobtime.

The attacker model MA: We assume that an attacker can intercept the outputs of the
honest nodes on public channels, and modify them according to its knowledge and computation
ability. The attacker’s knowledge consists of the intercepted outputs during the protocol run and
the information it can create, for instance, its private keys or fake data such as packet IDs, etc.
The ability of the attacker(s) is that it can modify the elements of the plaintexts, such as the

39

base number and the bits of the ACK/NACK messages, the EAR and RTX bits and sequence
number in data packets. The attacker can also create entire data or control packets including data
it posseses. Further, attacker(s) can send packets to its neighborhood. We also assume several
attackers who can share information with each other.

To describe the activity of the attacker(s) we apply the concept of the environment, used
in the applied π-calculus that model the presence of the attacker(s) in an implicit way. This
concept enables us to model more than one attacker who can even cooperate with each other.
Every message that is output on a public channel is available for the environment, that is, the
environment can be seen as a group of attackers who can share information with each other, for
instance, via a side channel. In particular, in our model we consider a specific topology of honest
nodes.

Figure 5: The difference between the real and ideal version of DTSN and SDTP.

We define the ideal version of the process Prot(params), denoted by Protideal(params), which
contains the ideal version of DTSN(params):

/* The ideal version of the DTSN protocol for the given topology */

Protideal(params)
def
=

let (es1, es2 , es3, ei1, ei2, ei3, ed1, ed2 , ed3, cntsq) = (E, E, E, E, E, E, E, E, E, 1)
in INITDTSNideal();

where process INITDTSNideal() contains DTSNideal(params) instead of DTSN(params). The main
difference between DTSNideal(params) and DTSN(params) is that in DTSNideal(params) honest
nodes always are informed about what kind of packets or messages they should receive from
the honest sender node. This can be achieved by defining hidden or private channels between
honest parties, on which the communication cannot be observed by attacker(s). In Figure 5 we
show the difference in more details. In the ideal case, three private channels are defined that are
not available the attacker(s). Src, Int and Dst denote the source, intermediate and destination.
Channels cprivSD, cprivID and cprivSI are defined between Src and Dst, Int and Dst, Src and Int,
respectively. Whenever S sends a packet pck on public channel csi, it also informs I about what
should I receive, by sending at the same time pck directly via private channel cprivSI to I, so
when I receives a packet via csi it compares the message with pck. The same happens when I
sends a packet to D. The channels cprivSD and cprivID can be used by the destination to inform
S and I about the messages to be retransmitted. We recall that the communication via a private
channel is not observable by the environment, hence, it can be seen as a silent τ transition. Note
that for simplicity we omitted to include the upper layer and channel csup in the Figure. Finally,
we also add additional public channels cemptyC and cncknot0 for signalling that the cache has been
emptied, and that the number of packets to be re-transmitted at the destination is larger than
0, respectively. These additional channels are defined for applying bisimilarities (observational
equivalence) in the security proofs.

With this definition of Protideal(params) we ensure that the source and intermediate nodes
are not susceptible to the modification or forging of ACK and NACK messages since they make
the correct decision either on retransmitting or deleting the stored packets independently from

40

the content of the control/data messages. Therefore, to show that DTSN is vulnerable to the
modification or forging of ACK and NACK messages we prove that the running of Prot(params)
and Protideal(params) are not probabilistic timed bisimilar.

First of all, in Prot(params) and Protideal(params) the source and intermediate nodes output
the constants CacheEmptyS and CacheEmptyI respectively whenever they have emptied their
buffers after processing an ACK or NACK message. This is defined by the following cryptprobtime

code fragment (for i ∈ {1, 2, 3}):

checkEi(s, d, apID, es1−3, sID, acknum)
def
=

/* Cache entry esi is emptied and the number of the empty caches is increased */
let (esi , nbrEcacheS) = (E, inc(nbrEcacheS)) in
.

/* Here we add the resetting of the two timers on process Src */
{xactc ≤ Tact, xearc ≤ Tear} . (xactc ≤ Tact, x

ear
c ≤ Tear) ↪→ let (earAtmp = 0) in

[emptycacheS = 3]
/* If the cache has been emptied then CacheEmptyS is output */

cemptyC〈CacheEmptyS〉. ‖ xactc , xearc ‖ { xactc ≤ Tact } .
(xactc ≤ Tact) ↪→ Src(s, d, apID, es1−3, sID, earAtmp)

else ‖ xactc , xearc ‖ Src(s, d, apID, es1−3, sID, earAtmp);

In case of the source node (process Src), outputting of the constant CacheEmptyS is placed
at the end of processes checkE1, checkE2 and checkE3, and the processes that handles a NACK
message. The constant CacheEmptyS is output whenever the number of the empty cache entries,
emptycacheS, is 3, which means that the cache is emptied.

With the analogous concept, in process Int the output of the constant CacheEmptyI is placed
at the end of the corresponding processes checkE1I, checkE2I, checkE3I, and the NACK handling
processes.

For the destination node we specify the process Dst such that nackNbr, which is the number of
the message to be re-transmitted (or the number of bits within the NACK message to be sent), is
output via a public channel cncknot0 (i) whenever the source outputs the constant CacheEmptyS,

and (ii) (nackNbr > 0) hold at the same time. This is solved by the following cryptprobtime code part
in process Dst.

[nackNbr > 0] cemptyC(= CacheEmptyS).cncknot0〈nackNbr〉.
Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq);

This process says that if (nackNbr > 0) and Dst receives the constant CacheEmptyS on channel
cemptyC then it outputs nackNbr on channel cncknot0, followed by invoking recursively process Dst.

Let process Prot’(params) be a process such that its frame ϕ(Prot’(params)) contains the substi-
tution σ1 = {. . . , CacheEmptyS/xi, nackNbr/xj , . . . } which captures the state that CacheEmptyS
and nackNbr have been output right after each other; or σ2 = {. . . , CacheEmptyI /yi, nackNbr/yj ,
CacheEmptyS/xi, nackNbr/xj , . . . }. In case of σ1 the fact that CacheEmptyS and nackNbr is
next to each other in this order, represents the state when all the cache entries of the source have
been deleted and the number of packets to be retransmitted is greater than zero, and σ2 means
that both the caches of the intermediate and source node has been emptied, however, the number
of packets to be retransmitted is greater than zero.

Both σ1 and σ2 represent an undesired situation because according to the specification of
DTSN the source should store the packets to be retransmitted when a NACK packet is sent by
the destination.

To capture the above mentioned situations as security holes, we need to modify the
definition of static equivalence by adding the following problem specific requirements
to the base definition of static equivalence (defined in Definition 1):

Definition 13. (Modified static equivalence for DTSN and SDTP) Two extended processes
A1 and A2 are statically equivalent, denoted as A1≈sA2, if their frames are statically equivalent.

41

Two frames ϕ1 and ϕ2 are statically equivalent if they includes the same number of active sub-
stitutions and same domain; and any two terms that are equal in ϕ1 are equal in ϕ2 as well. In
addition, we require that

• if σ1 = {. . . , CacheEmptyS/xi, nackNbr/xj, . . . } then σ2 also includes the outputs of
CacheEmptyS and nackNbr right after each other in this order.

• if σ1 = {. . . , CacheEmptyI/yi, nackNbr/yj, CacheEmptyS/xi, nackNbr/xj, . . . } then σ2
also includes the outputs of CacheEmptyI, nackNbr and CacheEmptyS right after each other
in this order.

Beside this definition we have the following Lemma, which declares the insecurity of DTSN:

Lemma 1. Besides the defined attacker modelMA, the DTSN protocol is insecure against message
manipulation attacks.

According to Definition 9 processes Prot(params) and Protideal(params) are not probabilistic
timed bisimilar because each point of the definition is violated. According to the semantics of
cryptprobtime, let define states s = (Prot(params), v) and sideal = (Protideal(params), v), where v
denotes the initial clock valuation (i.e., when the two clocks xactc and xearc are set to zero) at both
states s and sideal. Further, let s′ = (Prot’(params), v′), where Prot’(params) and v′ is the process
that represents one of the above discussed undesired states, and the corresponding valuation,
respectively. We assume that starting from s and sideal the Definition 9 is satisfied until some
state pair (si, s

ideal
i) on the execution path from s and sideal, respectively. Finally, we assume that

each operation (verification, sending, receiving on public channel) takes an equal amount of time d.
We assume that sending and receiving on private/hidden channels cprvSI , cprvDI , and cprvSD takes
zero time amount. The first reason of this assumption is that, in the ideal version, we want the
sending/receiving on each public channel and the corresponding private channel being performed
at once. Specifically, the sending (receiving) on public channels and its private counterparts are
placed next to each other, for example: cprivSI 〈tmsg〉.csi 〈tmsg〉, and cprivSI(x

rcv
should).csi(x

rcv
really).

The second reason is that for the proofs, we want to assure that the transition csi 〈tmsg〉, in the
real system, is timed simulated by cprivSI 〈tmsg〉.csi 〈tmsg〉 in the ideal system. We note that the
sending/receiving perfomed on the private channels is semantically described by a silent transition,
that is, they cannot be observed by the environment.

In case of DTSN and SDTP protocols the set of distributions contains only one distribution
π, Π = {π}, which is valid either in case of Prot(params) or Protideal(params). Hence, in every
case the scheduler F defined for DTSN and SDTP chooses π at each transition step. In order
to prove the insecurity of DTSN, without lost of generality, we define π such that it chooses the
transition leads to state (strAndFwI, vk) with probability p, and to (FwI, vk) with 1− p. All the
other transitions are chosen with probability 1, after resolving the choices, if any.
We define the function f that returns

∑
dj itself, and we assume that every action takes an equal

amount of time, say d. Due to the requirement s′ R s
′
ideal , the processes in the two states have

to be static equivalent (the first point of Definition 9), which means (according to the definition
of static equivelance) that the frame of the proces in s

′
ideal has to contain the constants nackNbr,

CacheEmptyS and CacheEmptyI. Recall that to be static equivalence it is required that these
constants are in the same places as in the σ1 or σ2 (Definition 13).

To explain the proof we denote the source, intermediate and destination node by S, I and D.
We distinguish three types of attacks that concern (separately) the violation of the three points
of Definition 9, respectively.

Scenario 1 (SC-1): In the first attack scenario the third point of Definition 9 is violated.
The following execution from state s cannot be simulated by any execution trace from sideal in
terms of probabilistic timed bisimilarity.

• s
α1(d), π

−−−−→PTTS1 s1, where α1 = νz1.csup〈z1〉 with {1/z1}. The upper layer requests the source
to forward the packet with sequence number 1.

42

• s1
α2(d), π

−−−−→PTTS1 s2, where α2 = csup(z1). The source S receives the request to forward the
packet with sequence number 1.

• s′2
α3(d), π

−−−−→PTTS1 s3, where α3 = νz2.csi〈z2〉 with {(s, d, apID, sID, 1, 0, 0)/z2}. State s′2
can be reached from s2 via silent transitions that model the verification steps. The source
sends (s, d, apID, sID, 1, 0, 0) to the intermediate node. This message can be obtained by
the attacker(s) (i.e., the environment).

• s3
α4(d), π

−−−−→PTTS1 s4, where α4 = csiACK(5(z2)), and 5(z2) represents the 5th element of the
packet, which is the sequence number 1. The packet sent by S in the 2nd point is intercepted
by the attacker(s) who, instead of forwarding it, sends an ACK with base number 1 to S. S
received this message on csiACK at state s4.

• s′4
α5(d), π

−−−−→PTTS1 s5, where α5 = νz3.cemptyC〈z3〉 with {CacheEmptyS/z3}. State s′4 can be
reached from s4 via silent transitions. The constant CacheEmptyS is output by S after it
has erased all of its cache entries.

Based on this action transition trace, we can see that ProbF (s′4
α5(d), π

−−−−→PTTS1 s5) > 0 while there

is no any sideal5 such that ProbF (sideal
′

4

α5(d), π
=⇒PTTS2 s

ideal
5) > 0, which violates the third point of

Definition 9. We note that from s to s′4 Prot ideal(params) can simulate Prot(params) via the same
actions and the corresponding states from sideal to sideal

′

4 .
Intuitively, in Prot(params) the attacker can achieve that S or I (or both) empties its cache

(via some action trace) with probability pr > 0, which cannot be simulated (via the corresponding
action trace) in the ideal process Protideal(params), in which S or I (or both) empties its cache
only with zero probability. This kind of attack scenario comes with the topologies S − A − I −
D or S − I − A − D, where A represents a compromised node. In the first topology, A does
not forward the packets arrived from S, instead, it sends a fake ACK message with a large base
number to S. This results in deleting the buffer of S. Similarly, in the second topology A can
make I and S erase their buffers. It is critical that the attacker can be successful without the
presence of the destination.

7.2 Security Analysis of the SDTP protocol

We define the ideal version of process ProtSDTP(params), denoted by ProtSDTPideal(params),
in the same concept as in Protideal(params). The only difference is that in SDTP, the processes
Src and Int are defined such that whenever the verification made by S and I on the received
ACK/NACK message has failed, S and I output a predefined constant BadControl via the public
channel cbadpck. Note that this extension does not affect the correctness of SDTP, and only plays
a role in the proofs of probabilistic timed bisimilarity.

Since the main purpose of SDTP is using cryptographic means to patch the security holes of
DTSN, we examine the security of SDTP according to each discussed attack scenario to which
DTSN is vulnerable.

Scenario 1 (SC-1): First, we prove that SDTP is not vulnerable to the attack scenario (SC-1)
by showing that ProtSDTPideal(params) can simulate (according to Definition 9) the transition
trace produced by ProtSDTP(params). Let us consider the action traces given in case of DTSN.

• The transition s
α1(d), π

−−−−→PTTS1 s1, where α1 = νz1.csup〈z1〉 with {1/z1}, can be simulated

by the transition sideal
α1(d), π

−−−−→PTTS2 s
ideal
1 in ProtSDTPideal(params).

• s1
α2(d), π

−−−−→PTTS1 s2, where α2 = csup(z1), can be simulated by the corresponding transition

sideal1

α2(d), π

−−−−→PTTS2 s
ideal
2 .

43

• s′2
α3(d), π

−−−−→PTTS1 s3, where α3 = νz2.csi〈z2〉 with {(s, d, apID, sID, 1, 0, 0, ACKMAC1,

NACKMAC1)/z2}, can be simulated by the two transitions sideal
′

2

τ(0), π

−−−−→PTTS2 sideal
′′

2
α3(d), π

−−−−→PTTS2 s
ideal
3 . The first transition is a silent transition and represents sending on the

hidden channel cprvSI . We note that in case of SDTP the packet sent by S includes the ACK
MAC and NACK MAC. This packet is available for the attacker(s) who can manipulate it
and send it to the neighbor nodes.

• In DTSN, the next transition in ProtSDTP(params) is s3
α4(d), π

−−−−→PTTS1 s4, where α4 =
csiACK(t), describes that the attacker sends the ACK message to S with some content t.
In DTSN t was 5(z2), however, in SDTP the format of ACK also includes an ACK key. In
general, t can be defined by fa(K ∪ z2), where fa is a subset of functions that define the
operations performed by the attacker using its knowledge base K ∪ z2 (K is its knowledge,
which is extended constantly during the protocol run). It can be shown that for all possible
behaviors (fa ⊆ B, where B describes attacker’s computation ability, defined by the set
of functions available for the attacker), ProtSDTPideal(params) can simulate this with the

corresponding transition sideal3

α4(d), π

−−−−→PTTS2 s
ideal
4 .

• Due to the fact that the ACK key of the packet sent by S has not been output yet on
a public channel, the attacker cannot construct the correct ACK message for the packet.
Formally, we can say that Kack /∈ K ∪ z2 and B does not contain any function that returns
the correct ACK/NACK keys for the packets sent by the source, hence, fa(K ∪ z2) cannot
be the correct ACK message for the first packet sent by S.

Therefore, for any t in ProtSDTP(params) we have the transition s′4
α5(d), π

−−−−→PTTS1 s5, where
α5 = νz3.cbadpck〈z3〉 with {BadControl/z3}, which can be simulated by a transition sideal

′

4
α5(d), π

−−−−→PTTS2 s
ideal
5 in ProtSDTPideal(params).

Note that in SDTP, regarding the attack trace against DTSN, when S received the incorrect
ACK sent byA, instead of deleting its buffer and outputing CacheEmptyS, the constant BadControl
is output because of ACK MAC verification fail, in both the real and ideal systems.

Nevertheless, based on Definition 12, the SDTP is not secure because the real and ideal pro-
cesses are not probabilistic timed bisimilar.

Lemma 2. The SDTP protocol is insecure besides the attacker model MA.

Since there can be the case when only the attacker sends a message, there is not any commu-
nication on private/hidden channels. To handle this situation, in each process of the ideal version,
besides the receiving process of form cprivCH(xrcvshould).cch(xrcvreally).Proc1, we also define an another
choice option cch(xrcvreally).Proc2. In particular:

cprvCH(xrcvshould).cch(xrcvreally).Proc1 [] cch(xrcv).Proc2

where cch and cprvCH represent a public channel and its private counterpart. In Proc1 the com-
parison of the two received messages is performed, and the node continues its operation according
to the protocol in case they are the same, otherwise, it interrupts its normal operation. When the
process cch(xrcv).Proc2 is “activated” the node interrupts its normal operation, because it knows
that the packet has not been sent by a honest node.

To prove the vulnernability of SDTP using probabilistic timed bisimilarity, we relax the def-
inition of the ideal version such that the honest nodes only compare the received ACK/NACK
messages with the expected ones. When they receive a data packet they proceed in the same way
as the real version, namely, without any comparion with the expected message. Formally, in the
above process, cprvCH and cch range over the channels for ACK and NACK messages.

44

To prove Lemma 2, we show that the following action traces in the real version of the SDTP
protocol cannot be simulated in the ideal version. The trace desribes the topology S − A1 − I −
A2. For the sake of brevity, we omit to detail the transitions describing the first data packet sent
from S to A1, and the request from uppler layer to S. The first transition that we consider below
is when A1 has received the first packet from S.

1. s
α1(d), π

−−−−→PTTS1 s1, where α1 = csi(tpck) with tpck is (s, d, apID, sID, 1, 0, 0, ACKMACatt,
NACKMACatt). A1 replaces the MACs of S by its computed MACs on the same data, and
sends the modified packet to I. α1 means that the packet is received by I.

2. The trace s1
τ(d), 1

−−−−→PTTS1 . . . si1
τ(d), p

−−−−→PTTS1 s
i+1
1 . . .

τ(d), 1

−−−−→PTTS1 s′1, is a series of silent

transitions modelling internal computations made by I. si1
τ(d), p

−−−−→PTTS1 si+1
1 says that

the received packet is stored (with probability p) by I. These can be simulated by the
corresponding silent transitions.

3. Node I forwards the packet to A2 via the transition s′1
α2(d), π

−−−−→PTTS1 s2, where α2 =
νz1.cid〈z1〉 with {(s, d, apID, sID, 1, 0, 0, ACKMACatt, NACKMACatt)/z1}, which can

be simulated by the transition sideal
′

1

α2(d), π

−−−−→PTTS2 s
ideal
2 in ProtSDTPideal(params).

4. s2
α3(d), π

−−−−→PTTS1 s3, where α3 = cidACK(tack) with tack is (1, ACKKEYatt). A2 sends
the ACK message for the data packet to I, including the correct ACK Key for the MAC
ACKMAC att. Label α3 means that the ACK message is received by I. This can be simulated

by the transition sideal
′

2

α3(d), π

−−−−→PTTS2 s
ideal
3 .

5. As the result, node I deletes its buffer and outputs the constant CacheEmptyI on the
public channel cemptyC . This transition cannot be simulated by any corresponding transition
trace in ProtSDTPideal(params). This is because the ACK sent by A2 will be received on
cidACK(xrcv), then, node I interrupts its operation. Hence, CacheEmptyI will never be
output.

8 SDTP+ - A Secure Distributed Transport Protocol for
WSNs based on Hash-chain and Merkle-tree

We propose SDTP+ [10], in order to patch the security weaknesses can be found in DTSN and
SDTP. SDTP+ aims at enhancing the authentication and integrity protection of control packets,
and is based on an efficient application of asymmetric key crypto and authentication values, which
are new compared to SDTP. The security mechanism of SDTP+ is based on the application of
Merkle-tree [22] and hash chain [7], which have been used for designing different security protocols
such as Castor [13], a scalable secure routing protocols for ad-hoc networks, and Ariadne [17].
My contribution is applying Merkle-tree and hash chain in a new context. The general idea of
SDTP+ is the following: two types of “per-packet” authentication values are used, ACK and
NACK authentication values. The ACK authentication value is used to verify the ACK packet
by any intermediate node and the source, whilst the NACK authentication value is used to verify
the NACK packet by any intermediate node and the source. The ACK authentication value is an
element of a hash chain [7], whilst the NACK authentication value is a leaf and its corresponding
sibling nodes along the path from the leaf to the root in a Merkle-tree [22]. Each data packet
is extended with one Message Authentication Code (MAC) value (the MAC function is HMAC),
instead of two MACs as in SDTP.

SDTP+ adopt the notion and notations of the pre-shared secret S, ACK , and NACK master
secrets KACK , KNACK , which are defined and computed in exactly the same way as in SDTP

45

(Section 6). However, in SDTP+ the generation and management of the per-packet keys K
(n)
ACK ,

K
(n)
NACK is based on the application of hash-chain and Merkle-trees, which is different from SDTP.

8.1 The ACK Authentication Values

The ACK authentication values are defined to verify the authenticity and the origin of ACK
messages. The number of data packets that the source wants to send in a given session, denoted
by m, is assumed to be available. At the beginning of each session, the source generates the ACK
master secret KACK (like in Section 6) and calculates a hash chain of size (m + 1) by hashing
KACK (m+ 1) times, which is illustrated in Figure 6. Each element of the calculated hash-chain

represents a per packet ACK authentication value as follows: K
(m)
ACK ,K

(m−1)
ACK ...,K

(1)
ACK ,K

(0)
ACK ,

where K
(i)
ACK = h(K

(i+1)
ACK) and h is a one-way hash function. The value K

(0)
ACK is the root of the

hash-chain, and K
(i)
ACK represents the ACK authentication value corresponding to the packet with

sequence number i. When the destination wants to acknowledge the successful delivery of the i-th

data packet, it reveals the corresponding K
(i)
ACK in the ACK packet.

Figure 6: The element K
(i)
ACK , i ∈ { 1, . . . , m}, of the hash-chain is used for authenticating the packet

with the sequence number i. The root of the hash-chain, K
(0)
ACK , which we get after hashing (m+ 1) times

the ACK master key KACK . This root is sent to every intermediate node in the open session packet, which
is digitally signed by the source.

8.2 The NACK Authentication Values

For authenticating the NACK packets, SDTP+ applies a Merkle-tree (also known as hash-tree),
which is illustrated in Figure 7. When a session has started, the source computes, in the same

way like in Section 6, the NACK per-packet keys K
(n)
NACK for each packet to be sent in a given

session. Afterwards, these NACK per-packet keys are hashed and assigned to the leaves of the

Merkle-tree: K
′(n)
NACK = h(K

(n)
NACK). The internal nodes of the Merkle-tree are computed as the

hash of the (ordered) concatenation of its children. The root of the Merkle-tree, H(hp, Sp), is sent
by the source to intermediate nodes in the same open session packet that includes the root of the

hash-chain. For each K
(j)
NACK , j ∈ {j1, . . . , jm}, the so called sibling values Sj1, . . . , Sjt , for some

t, are defined such that the root of the Merkle-tree can be computed from them. For instance, the

sibling values of K
(j1)
NACK are K

(j2)
NACK , S1, . . . , Sp. From these values H(hp, Sp) can be computed.

8.3 The operation of the source

When a session is opened, first, the source computes the ACK and NACK master keys KACK

and KNACK , respectively. Then, the source calculates the hash-chain and the Merkle-tree for
the session. Afterwards, the source sends an open session message with the following parameters:

the roots of the hash chain (K
(0)
ACK) and of the Merkle-tree (H(hp, Sp)), the length of the hash

chain (m + 1), the session SessionID , the source and destination IDs. Before sending the open

46

Figure 7: The structure of Merkle-tree used in SDTP+. Each internal node is computed as the hash of
the ordered concatenation of its children. The root of the tree, H(hp, Sp), is sent out by the source.

session packet, the source digitally signs it to prevent the attackers from sending fake open session
packets.

After receiving an ACK message corresponding to the session open packet, from the desti-
nation, the source starts to send data packets. Each data packet is extended with the MAC,
computed over the whole packet (except for the EAR and RTX flags), using the shared secret
between the source and the destination.

When the source node receives an ACK packet that includes the ACK authentication value

(K
(i)
ACK), corresponding to the packet of sequence number i, it hashes iteratively the ACK au-

thentication value i times. If the result is equal to the stored root hash value K
(0)
ACK , then the

ACK packet is accepted and the source removes all the packets of sequence number smaller than
or equal to i from its cache. Otherwise, the ACK packet is ignored and dropped.

Assume that the source node receives a NACK packet,

NACK = (i, [j1, . . . , jk], K
(i)
ACK , [K

(j1)
NACK ,. . . , K

(jk)
NACK , Sj11 , . . . , Sj1r , . . . , Sjk1 , . . . , Sjkn]),

where i and [j1, . . . , jk] are the sequence numbers of the acknowledged packets, and the list of pack-

ets to be re-transmitted. K
(i)
ACK is the ACK authentication value for packet i, and K

(j1)
NACK ,. . . ,

K
(jk)
NACK are the NACK authentication values for the packets j1, . . . , jk. Sj11 , . . . , Sj1r are the sib-

ling values corresponding to K
(j1)
NACK , and Sjk1 , . . . , Sjkn are the values corresponding to K

(jk)
NACK ,

required for the source to compute the root of the Merkle-tree.
The source first checks the ACK authentication value and performs the same steps as described

above for ACK authentication. Then the source continues with verifying the NACK authentication
values. For each j in [j1, . . . , jk], the source re-computes the root of the Merkle-tree based on

the received NACK authentication values, K
(j)
NACK , Sj1, . . . , Sjq , and compares the root of the

resultant tree with the stored root. If the two roots are equal, then the NACK packet is accepted
and the source retransmits the required packets.

8.4 The operation of the destination

When the destination node receives an open-session packet sent by the source, it verifies the
signature computed on the packet. Upon success, the destination starts to generate the ACK and
NACK master keys, the hash-chain, and the Merkle-tree. Finally, the destination sends an ACK
packet to the source for acknowledging the delivery of the open session packet. Upon receiving
a data packet with sequence number i, first, the destination checks MAC using the secret shared
between the source and the destination. Upon success, the destination delivers the packet to the
upper layer. Otherwise, the packet is ignored and dropped. Upon the receipt of a packet with a

47

set EAR flag, the destination sends an ACK or a NACK packet depending on the existence of
gaps in the received data packet stream. The ACK packet that refers to sequence number i is

composed of the pair (i, K
(i)
ACK). Similarly, the NACK packet with base sequence number i is

extended with the ACK authentication value (K
(i)
ACK), and if the destination wants to request for

re-transmission of some packet j, then it also includes the corresponding NACK authentication

values K
(j)
NACK , Sj1, . . . , Sjq in the NACK packet.

8.5 The operation of the intermediate nodes

Upon receipt of an open session packet and the corresponding ACK packet, an intermediate node
verifies signature computed on the packet, and in case of success, it stores the root values of the
hash chain and the Merkle-tree, the session ID, SessionID , and forwards the packet towards the
destination. Otherwise, an intermediate node changes its probability to store packets in the current
session to zero. Upon receipt of a data packet, an intermediate node stores with probability p the
data packet and forwards the data packet towards the destination.

When an intermediate node receives an ACK packet, (i, K
(i)
ACK), it verifies the authenticity

and the origin of the ACK message by hashing K
(i)
ACK i times, and comparing the result with the

stored root value of the hash chain. If the two values are equal (i.e., K
(0)
ACK = hi(K

(i)
ACK)), then all

the stored packets with the sequence number less than or equal to i are deleted. Afterwards, the
intermediate node passes on the ACK packet towards the source. Otherwise, the ACK packet is
ignored and dropped. When intermediate nodes receive a NACK packet that refers to the sequence
numbers i and [j1, . . . , jk], they perform verification steps in the same way as the source. Namely,
based on the ACK authentication value, the root of the hash-chain is re-computed, while based
on the received NACK authentication values the root of the Merkle-tree is re-generated. The
resultant roots are compared with the stored roots, and in case of equality, the cache entries
are deleted based on i and the stored data packets are re-transmitted based on [j1, . . . , jk].
Afterwards, the intermediate node removes from [j1, . . . , jk] the sequence numbers of the packets
it has already re-transmitted, and forwards the NACK with the modified list towards the source.

8.6 Reasoning about the security of SDTP+

The main difference between SDTP and SDTP+ is that intermediate nodes verify the authenticity
of the roots of the hash-chain and the Merkle-tree. Hence, based on the revealed ACK and
NACK authentication values, the stored roots can only be computed if they are revealed by the
destination.

In case of modifying the ack value n to a larger m in ACK packets, to be successful, beside

changing the ACK value the attacker has to include a correct ACK authentication value K
(m)
ACK .

Note that only K
(0)
ACK , . . . , K

(n)
ACK are revealed so far by the destination, and the ACK authen-

tication values are the elements of a hash-chain. Therefore, computing K
(m)
ACK based on K

(0)
ACK ,

. . . , K
(n)
ACK is very hard because the hash function used in generating the hash-chain is one-way.

As for the case of NACK packets forgery, injecting valid NACK packets by either creating a
whole NACK packet or modifying some sequence numbers of the packets to be re-transmitted. To
be successful an attacker has to include a valid NACK authentication value (NACK authentication
values and their siblings) into the NACK packet. Specifically, the attackers have to be able to
compute the leaves of the Merkle-tree, however, computing the leaves based on the upper level
hash values is hard because the hash function used to generate the Merkle-tree is one-way.

The attackers can forge the roots of the hash-chain and the Merkle-trees by modifying the
open session packet, however, the open session packet is digitally signed by the source. Hence, the
attackers have to forge the signature, which is also very hard.

48

9 SDTP+ in cryptprobtime

Again, the non-cryptographic parts of SDTP+ including the timing and probabilistic elements are
specified in the same way as in the DTSN protocol. We focus on the processes that are related to
the security mechanism of SDTP+. SDTP+ uses all the cryptographic primitives and operations
defined in SDTP, and in addition to these, the following special names, functions and equations
are also required for specifying SDTP+:

Names: sksrc, pksrc, Kack; Knack; Ksd;
Functions: sign(t, sksrc); H (t);
Equations: checksign(sign(t, sksrc), pksrc) = ok;

where sksrc and pksrc represent the secret and public key of the source node. Kack, Knack and
Ksd represent the ACK /NACK master keys, and the shared key of the source and the destination
for a given session, which are freshly generated at the beginning of each session. The functions
sign(t, sksrc) and H (t) define the digital signature computed on the message t using the secret key
sksrc, and the one-way hash computed on t, respectively. The equation checksign(sign(t, sksrc),
pksrc) = ok defines the signature verification, using the corresponding public key pksrc. We do
not define an equation for the hash function H(t) in order to ensure its one-way property. Namely,
H(t) does not have a corresponding inverse function which returns t, and H(t1) = H(t2) holds
only when t1 and t2 are the same.

The specification of the SDTP+ protocol is defined by the process ProtSDTPplus(params),
where params is the same parameter list specified in DTSN and SDTP. In the following, I only
discuss the main differences of SDTP+ compared to DTSN and SDTP. According to the specifi-
cation of SDTP+, I examine the activities of each node, which are related to the hash-chain and
Merkle-tree. we assume that a session contains four packets with the sequence number from 1 to
4. The source node, besides computing the ACK and NACK master keys KACK and KNACK , it
also generates the hash-chain and the Merkle-tree.

———–
The source sends the open session packet in SDTP+

1. let (h4, h3, h2, h1, hroot) = (H(Kack), H(h4), H(h3), H(h2), H(h1)) in
2. let (K1

nack, K2
nack, K3

nack, K4
nack) = (K(1, Knack), K(2, Knack), K(3, Knack), K(4, Knack))

3. in let (K1′

nack, K2′

nack, K3′

nack, K4′

nack) = (H(K1
nack), H(K2

nack), H(K3
nack), H(K4

nack)) in

4. let (S1, S2) = (H(K1′

nack,K
2′

nack), H(K3′

nack,K
4′

nack)) in let Sroot = H(S1, S2) in
5. let sigsrc = sign((s, d, sID, 5, hroot, Sroot), sksrc) in
6. csi〈(s, d, sID, 5, hroot, Sroot, sigsrc)〉.
———–

The hash-chain of length 5 is computed in the first row. Note that the process in the first row
is the shorthand (syntax sugar) of the process let h4 = H(Kack) in let h3 = H(h4) in let h2 =
H(h3) in let h1 = H(h2) in let hroot = H(h1). In the second row, the NACK keys for each packet
are generated, based on the NACK master key and the sequence numbers. The leaves of the
Merkle-tree are computed by hashing the per-packer NACK keys in the third row. In the fourth
row the two first level nodes and the root value are generated. Finally, in rows 5-6, the signature
are computed on the open session packet, which is sent to the intermediate node.

After receiving the ACK packet for the open session packet on the channel csiACK , the source
starts to send data packets (on the channel csi), which contains the message part and the MAC
computed on the message. This part is specified in the similar way as in the SDTP protocol,
hence, we omit to discuss it in details. Instead we turn to discuss the case when an ACK packet
is received:

———–
The source received an ACK packet in SDTP+

49

7. csiACK(= 4, xackauthval). let (hc3, hc2, hc1, hcroot) = (H(xackauthval), H(hc3), H(hc2), H(hc1)) in
8. [hcroot = hroot] DeleteCacheEntries(4);
9. [] csiACK(= 3, xackauthval). let (hc2, hc1, hcroot) = (H(xackauthval), H(hc2), H(hc1)) in
10. [hcroot = hroot] DeleteCacheEntries(3);
11. [] csiACK(= 2, xackauthval). let (hc1, hcroot) = (H(xackauthval), H(hc1)) in
12. [hcroot = hroot] DeleteCacheEntries(2);
13. [] csiACK(= 1, xackauthval). let hcroot = H(xackauthval) in
14. [hcroot = hroot] DeleteCacheEntries(1);
———–

In this process, four cases are examined according to the sequence number referred to by the
ACK message: when the received ACK packet refers to the sequence number i, i ∈ {1, 2, 3,
4}, the source hashes the received ACK authentication value i times, and compares the result
with the stored hroot. In case the two values are equal, the source proceeds to delete the cache
entries that contains the packets with sequence numbers less than i. This is specified in process
DeleteCacheEntries(i).

When specifying the source’s behavior after receiving a NACK packet, within each of the four
cases of the ACK message, We further examine different scenarios regarding the values of the
sequence numbers of the packets to be re-transmitted. Basically, the NACK case can be specified
by the consecutive evaluation of the if constructs.

In SDTP+, when the intermediate nodes receive an open session packet on the public channel
csiOPEN , they verify the attached signature with public key of the source, then, they store the
packet and forward it towards the destination on the public channel cidOPEN . The elements of
the open session packet are placed in the k-th entry, eik = (s, d, sID, 5, hroot, Sroot), such that the
fifth and sixth elements of eik store the hash-chain and the Merkle-tree roots, respectively: 5(eik)
= hroot and 6(eik) = Sroot.

———–
The intermediate node received the open session packet

15. csiOPEN (xs, xd, xsID, xm+1, xroothash, xroottree, xsig). [checksign(xsig, pksrc) = ok] [eik = ⊗]

16. let eik = (xs, xd, xsID, xm+1, xroothash, xroottree) in cidOPEN 〈(xs, xd, xsID, xm+1, x
root
hash, x

root
tree, xsig)〉

———–

The crypt timeprob processes that specify the cases when the intermediate node receives an ACK
and a NACK packet are received, can be specified in the similar concept to the corresponding
processes of the source. The only difference is that the intermediate node forwards the ACK and
NACK packets to the source on the channels csiACK and csiNACK , respectively.

When the destination receives the open session packet, it verifies whether the signature is valid.
If so, the hash-chain and the Merkle-tree are generated in the same way as the source (points 1-4).
The signature verification can be specified like in point 15 without the if process [eik = ⊗], while
the hash-chain and the Merkle-tree generation can be defined like in points 1-4. We continue with
specifying the behavior of the destination when it sends an ACK and a NACK . Let denote the
tuple of variables (xs, xd, xsID, xapID, xsq, xear, xrtx, xmac) by datapckvar.

———–
The destination node sends an ACK packet

17. cid(datapckvar). [checkmac(xmac, K sd) = ok] [nackNbr = 0] [xear = 1] UpdateVariables()
18. [] [ackNbr = 1]. csiACK〈(1, h1)〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq))
19. [] [ackNbr = 2]. csiACK〈(2, h2)〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq))
20. [] [ackNbr = 3]. csiACK〈(3, h3)〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq))
21. [] [ackNbr = 4]. csiACK〈(4, h4)〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq))

50

———–

In rows 17, after receiving the data packet with sequence number xsq and the EAR bit, xear = 1,
the destination checks the MAC with the key K sd that it shares with the source. If nackNbr = 0,
that is, the number of missing packets is zero, then the destination sends the ACK packet according
to the number of the packets received so far (points 18-21). In the process UpdateVariables(), the
value of variables, such as nackNbr and ackNbr, are updated. In case nackNbr is greater than 0, the
destination composes and sends the NACK packet. Within each value of ackNbr, the destination
sends NACK packets on channel cidNACK according to the gaps between two received packets.

Finally, in ProtSDTPplus(params), process Dst and process Int output the predefined constant
BadOpen on channel cbadOPEN when the verification of the signature computed on the open session
packet fails. Process Dst outputs the constant BadData on cbadPCK when the verification of the
MAC computed on a given data packet fails. After receiving an ACK or a NACK , the processes
Src and Int output the constant BadControl on cbadPCK when the verifications of the hash-chain
and Merkle-tree roots fail.

10 Security analysis of SDTP+

In the ideal version of process ProtSDTPplus(params), denoted by ProtSDTPplusideal(params),
the specification of the processes Src, Int, and Dst are extended with some additional equality
checks between the messages sent on the corresponding private and public channels. Specifically,
processes Dst and Int output the predefined constant BadOpen on channel cbadOPEN when they
receive an unexpected open session packet. Namely, when the message which they receive on the
public channels csiOPEN and cidOPEN is not equal to the corresponding correct open session packet
are received on the private channels cprivSI and cprivID, respectively. Process Dst outputs the
constant BadData on cbadPCK when it receives an unexpected data packet. Finally, after receiving
an unexpected ACK or a NACK , the processes Src and Int output the constant BadControl on
cbadPCK . Similarly to SDTP, the attack scenarios SC-1 and SC-2 do not work in SDTP+:

• Scenario SC-1: SDTP+ is not vulnerable to the attack scenario (SC-1) because process
ProtSDTPplusideal(params) can simulate (according to Definition 9) the transition traces
produced by ProtSDTPplus(params). In SDTP+, S verifies the ACK and the NACK packets
by comparing the stored roots of the hash-chain and the Merkle-tree with the re-computed
roots. Because I did not define any equation for the hash function H(t), from H(hi) the
value of hi cannot be derived.

Assume that the source are storing the first three packets for a given session. The buffer of
the source will be emptied only when the ACK packet, ACK = (m,hm), is received such
that m = 3. This is because the root of the hash-chain, hroot = H(H(H(H(H(Kack))))),
and based on the fact that H(t1) = H(t2) if and only if t1 = t2, the m-time hashing on hm
must be H(H(H(H(H(Kack))))). To empty the buffer, m must be at least 3. In case m
= 4, hm must be H(Kack). This hash value cannot be computed by the attackers because
the source and the destination never reveals Kack. Hence, the attackers must receive or
intercept H(Kack) from a honest node, which means that H(Kack) has been revealed by the
destination. m cannot be greater than four, otherwise, the attackers must have Kack, or the
destination must revealed Kack, which according to the protocol, will never happen. When
m = 3, hm must be H(H(Kack)), which cannot be computed by attacker nodes. Therefore,
either the attacker sends a correct ACK or the ACK with incorrect authentication value,
the ideal and the real systems can simulate each other. In the first case, the constant
EmptyCacheS, while in the second case BadControl is output in both systems.

• Scenario SC-2: Recall that in SDTP+ additional timers and restrictions are used in order
to limit the destination to send back an ACK or a NACK , after receiving a data packet
in which the attacker modified the EAR flag to 1. For reasoning about the scenario SC-2,
we modify the ideal version of SDTP+ as follows: we limit the number of the ACK /NACK

51

that the destination sends when it receives a data packet in which the EAR flag is set
to 1 by the attacker. Based on the concept of private channels where the destination is
informed about the message sent by a honest node, in the ideal system, the destination is
able to distinguish between the EAR flag set by the attacker and the flag set by a honest
node. In the ideal system, we modify the specification of the destination such that within
a session, the destination will only handle according to the protocol, the first MAX badear

packets in which the EAR flag is set to 1 by the attacker, and sends back the corresponding
ACK /NACK for them. Formally, for the first MAX badear packets with an incorrectly set
EAR flag, the destination does not output the constant BadData on channel cbadPCK , but
only from the following incorrect packet. The constant MAX badear is an application specific
security treshold.

In the SDTP+ protocol, to alleviate the impact of the EAR setting attack, the destination
limits the number of responses for the packets with the EAR flag set by either an attacker
or a honest node [1]. Within a finite period of time, called destination EAR timer (denoted
by dest EAR timer), the destination node will not send more than D control packets in
total, for some given security treshold D. Within a session, the destination launches the
timer dest EAR timer when it has received the first packet containing a set EAR flag. Until
the session ends, dest EAR timer is continually reset upon timeout. Let tmrdst be the
upperbound of the number of launching/resetting dest EAR timer within a session. The
values of dest EAR timer and D are set such that D×tmrdst ≤ MAX badear.

The main difference between the ideal and the real SDTP+ specifications, procSDTPplus
and procSDTPplusideal, is that in the ideal case the destination does not need to launch
the timer dest EAR timer, because it is aware of the packets with an incorrectly set EAR
flag. Instead, the destination only limits the total number of responses for the incorrect
packets to MAX badear. To prove the security of SDTP+ regarding SC-2, we relax the formal
definition of security given in Definition 9 as follows: Instead of requiring the prob-time
bisimilarity of the real and the ideal specifications of SDTP+, we prove that the SDTP+

protocol is secure regarding the scenario SC-2, by showing that procSDTPplusideal weak
prob-time simulates the real system procSDTPplus. Intuitively, this means that the set of
probabilistic timed transitions of procSDTPplus is a subset of the set of probabilistic timed
transitions of procSDTPplusideal. The reverse direction that procSDTPplus can simulate
procSDTPplusideal, is not required for this scenario.

In procSDTPplusideal, the cryptprobtime specification of the destination is modified compared
to the SDTP protocol as follows. First, the variable xbadear is defined to keep track of how
many ACK -s and NACK -s have been sent by the destination in response to the modified
EAR flags. The variable xbadear is one of the parameters of process procDst. Then, a clock
variable xdstearc is declared for the timer dest EAR timer, and let the timeout value of xcdstear
be Tdstear. The corresponding cryptprobtime code part of the destination node is as follows: In
SDTP+, due to the destination also launches a timer when it receives the first packet with the
modified EAR flag, we distinguish between the processes procDstInit and procDst. In DstInit,
the timer dest EAR timer has not been launched yet, and it will be launched only when the
first packet with the modified EAR flag is received. Therefore, in DstInit the scenarios
for dest EAR timer timeout will not be considered. In process procDst, dest EAR timer has
already been launched, and in case of dest EAR timer timeout, the timer is reset and xbadear
is set to 0.

procUpdateVariables is the process “let (x1, . . . , xk) = (n1, . . . , nk) in”, which gives the
values n1, . . . , nk to the corresponding variables x1, . . . , xk, respectively.

The main difference between procSDTPplus and procSDTPplusideal is that in the first case,
dest EAR timer is launched and reset by the destination. However, according to the speci-
fication of SDTP+, resetting dest EAR timer only induces the difference between the clock
valuation of xdstearc in the two protocol specifications. Namely, in procSDTPplus, the value
of xdstearc is 0, while in procSDTPplusideal it is larger than 0. This difference between the

52

clock valuations does not affect the three points of Definition 9. Based on the specifica-
tion of procSDTPplus and procSDTPplusideal, along with the assumption that D×tmrdst ≤
MAX badear, it follows that the set of probabilistic timed transitions of procSDTPplus is a
subset of the set of probabilistic timed transitions of procSDTPplusideal.

• Scenario SC-3: This scenario examine whether the attackers can make the intermediate
node incorrectly empty its buffer. Let us assume that I has already accepted the open
session packet and has stored the hash-chain root, denoted by hroot, in it. The signature in
the open session packet must be computed with the secret key of the source, sksrc. This is
because after receiving a packet on channel csiOPEN , process Int performs the verification
[checksign(xsig, pksrc) = ok], and only the signature computed with sksrc can be verified
with pksrc. However, this means that hroot must be generated by the source, that is, hroot
= H(H(H(H(H(Kack))))). Again, assume that in the current state I stores the first three
data packets. From this point, the reasoning is similar to the scenario SC-1, namely, either
the constant EmptyCacheI or BadControl is output in both the ideal and the real systems.
Hence, the sandwich attack does not work in SDTP+.

11 Automated security verification using the PAT process
analysis toolkit

Related Methods: SPIN model-checker [24] and UPPAAL [3] are general purpose model-
checking tools. CPAL-ES [21], and ProVerif [4] are automatic verification tools developed for
verifying security protocols. The main drawback of them is that they lack sematics and syntax for
defining the systems that include probabilistic and real-time behavior. Hence, they cannot be used
to verify WSN transport protocols such as DTSN and SDTP. PRISM model-checker [18] supports
probabilistic and real time systems but its limited specification language does not enable us to
verify protocols/sytems that may perform complex computations.
Our Method: Our method is based on the PAT process analysis toolkit. PAT [11] is a self-
contained framework to specify and automatically verify different properties of concurrent (i.e.
supporting parallel compositions construct), real-time systems with probabilistic behavior. It pro-
vides user friendly graphical interface, featured model editor and animated simulator for debugging
purposes. PAT implements various state-of-the-art model checking techniques for different prop-
erties such as deadlock-freeness, divergence-freeness, reachability, LTL properties with fairness
assumptions, refinement checking and probabilistic model checking. To handle large state space,
the framework also includes many well-known model-checking optimization methods such as par-
tial order reduction, symmetry reduction, parallel model checking, etc. An another advantage of
PAT is that it allows user to build customized model checkers easily.

Currently it contains eleven modules to deal with problems in different domains including real
time and probabilistic systems. PAT has been used to model and verify a variety of systems, such
as distributed algorithms, and real-world systems like multi-lift and pacemaker systems. However,
PAT (so far) does not provide syntax and semantics for specifying cryptographic primitives and
operations, such as digital signature, MAC, encryptions and decryptions, one-way hash function.
Hence, we model cryptographic operations used by SDTP in an abstract, simplified way. Note
that the simplication has been made in an intuitive way, and does not endanger the correctness
of the protocol.

PAT is basically designed as a general purpose tool, not specifically for security protocols or
any specific problem. It provides a CSP [15] (the well-known process algebra) like syntax, but
it is more expressive than CSP because it also includes the language constructs for time and
probabilistic issues. PAT also provides programming elements like comminucation channels, array
of variables and channels, similarly as Promela [16] (Process Meta Language), the specification
language used by the SPIN [16] model-checker. PAT handles time in a tricky way, namely, instead
of modelling clocks and clock resets in an explicit manner, to make the automatic verification

53

be more effective it applies an implicit representation of time (clocks) by defining specific time
expressions such as TIMEOUT, WAITUNTIL, INTERRUPT, etc.

Next, we briefly introduce the features provided by the main modules of PAT that we use to
verify the security of DTSN and SDTP.

Communicating Sequential Programs (CSP#) Module. The CSP# module supports a
rich modelling language named CSP# (a modified variant of CSP) that combines high-level mod-
eling operators like (conditional or non-deterministic) choices, interrupt, (alphabetized) parallel
composition, interleaving, hiding, asynchronous message passing channel.

The high-level operators are based on the classic process algebra Communicating Sequential
Processes (CSP). Beside keeping the original CSP as a sub-language, CSP# offering a connection
to the data states and executable data operations.

Global constant is defined using the syntax

#define constname val

where constname is the name of the constant and val is the value of the constant. Variables
and array can be defined as follows

1. var varname = val; 2. var arrayname = [val_1,..., val_n]; 3. var arrayname[n]

In PAT variables can take integer values. The first point defines the variable with name
varname with the initial value val ; the second point defines the fix size array with n values, and
the third point declares the array of size n, where each element is initialized to 0. To assign values
to specific elements in an array, event prefix is used as follows:

P () = assignvalEV {arrayname[i] = val} -> Skip,

where the assignment of the ith element of the array arrayname is performed within the scope of
the event assignvalEV.

In PAT, process may communicate through message passing on channels. Channels, and
output/input actions on a channel can be declared using the next syntax:

1. (declaration of channel channame): channel channame size;

2. (output of the msg tuple (m1,m2,m3) on channame): channame!m1.m2.m3;

3. (input a msg (m1,m2,m3) on the channel channame): channame?x1.x2.x3;

channel is a keyword for declaring channels only, channame is the channel name and size is the
channel buffer size. It is important that a channel with buffer size 0 sends/receives messages
synchronously. A process is a relevant specification element in PAT that is defined as an equation

P(x1, x2, ..., xn) = ProcExp;

where ProcExp defines the behavior of process P . PAT defines special processes to make coding be
more convenient: Process Stop is the deadlock process that does nothing; process Skip terminates
immediately and then behaves exactly the same as Stop.

Events are defined in PAT to make debugging be more straightforward and to make the returned
attack traces be more readable. A simple event is a name for representing an observation. Given
a process P, the syntax ev -> P describes a process which performs ev first and then behaves as
P . An event ev can be a simple event or can be attached with assignments which update global
variables as in the following example, ev{x = x+ 1; } -> Stop; where x is a global variable.

A sequential composition of two processes P and Q is written as P ;Q in which P starts first
and Q starts only when P has finished. A (general) choice is written as P [] Q, which states
that either P or Q may execute. If P performs an event first, then P takes control. Otherwise,
Q takes control. Interleaving represents two processes which run concurrently, and is denoted
by P ||| Q. Parallel composition represents two processes with barrier synchronization is written
as P || Q, where || denotes parallel composition. Not like interleaving, P and Q may perform

54

lock-step synchronization, i.e., P and Q simultaneously perform an event. For instance, if P is a
-> c -> Stop and Q is c -> Stop, because c is both in the alphabet of P and Q, it becomes a
synchronization barrier.

Assertion : An assertion is a query about the system behaviors. PAT provides queries for
deadlock-freeness, divergence-freeness, deterministic, nonterminating, reachabiliy, respectively as
in the following syntax:

1. #assert P() deadlockfree; /* asks if P() is deadlock-free or not. */

2. #assert P() divergencefree; /* asks if P() is divergence-free or not. */

3. #assert P() deterministic; /* asks if P() is deterministic or not. */

4. #assert P() nonterminating; /* asks if P() is nonterminating or not. */

5. #assert P() reaches cond; /* asks if P() can reach a state where cond

is satisfied. */

PAT’s model checker performs Depth-First-Search or Breath-First-Search algorithm to repeat-
edly explore unvisited states until a deadlock state (i.e., a state with no further move).

Linear Temporal Logic (LTL): PAT supports the full set of LTL syntax. Given a process
P (), the following assertion asks whether P () satisfies the LTL formula.

#assert P() |= F;

where F is an LTL formula whose syntax is defined as the following rules,

F = e | prop | [] F | <> F | X F | F1 U F2 | F1 R F2

where e is an event, prop is a pre-defined proposition, [] reads as ”always”, <> reads as ”eventu-
ally”, X reads as ”next”, U reads as ”until” and R reads as ”Release”. For example, the following
assertion asks whether the P () can always eventually reach the state where goal evaluates to true.

#assert P() |= []<> goal;

A goal (badstate, goodstate, etc.) is a boolean expression, for example, if we want to define the
goal that the value of x is 5, we write the following

#define goal (x==5);

In PAT the mathematical operations and expressions can be specified in the C like style. PAT
supports FDR’s approach for checking whether an implementation satisfies a specification or not.
Differ from LTL assertions, an assertion for refinement compares the whole behaviors of a given
process with another process, e.g., whether there is a subset relationship. There are in total 3
different notions of refinement relationship, which can be written in the following syntax.

/* whether P() refines Q() in the trace semantics; */

#assert P() refines Q()

/* whether P() refines Q() in the stable failures semantics; */

#assert P() refines<F> Q()

/* whether P() refines Q() in the failures divergence semantics; */

#assert P() refines<FD> Q()

Real-Time System (RTS) Module. The RTS module in PAT enables us to specify and
analyse real-time systems and verify time concerned properties. To make the automatic verification
be more efficient, unlike timed automata that define explicit clock variables and capturing real-
time constraints by explicitly setting/reseting clock variables, PAT defines several timed behavioral
patterns are used to capture high-level quantitative timing requirements wait, timeout, deadline,
waituntil, timed interrupt, within.

55

1. Wait : A wait process, denoted by Wait[t], delays the system execution for a period of t
time units then terminates. For instance, process Wait[t] ;P delays the starting time of P
by exactly t time units.

2. Timeout : Process P timeout[t] Q passes control to process Q if no event has occurred in
process P before t time units have elapsed.

3. Timed Interrupt : Process P interrupt[t] Q behaves as P until t time units elapse and
then switches to Q. For instance, process (ev1 -> ev2 -> . . .) interrupt[t] Q may engage in
event ev1, ev2 . . . as long as t time units haven’t elapsed. Once t time units have elapsed,
then the process transforms to Q.

4. Deadline : Process P deadline[t] is constrained to terminate within t time units.

5. Within : The within operator forces the process to make an observable move within the
given time frame. For example, P within[t] says the first visible event of P must be engaged
within t time units.

Probability RTS (PRTS) Module. The PRTS module supports means for analysing prob-
abilistic real-timed systems by extending RTS module with probabilistic choices and assertions.

The most important extension added by the PRTS modul is the probabilistic choice (defined
with the keyword pcase):

prtsP = pcase {

[prob1] : prtsQ1

[prob2] : prtsQ2

...

[probn] : prtsQn

};

where prtsP, prtsQ1,. . . , prtsQn are PRTS processes which can be a normal process, a timed
process, a probabilistic process or a probabilistic timed process. prtsP can proceed as prtsQ1,
prtsQ2, . . . , prtsQn with probability prob1, prob2, . . . , probn, respectively.

For user’s convenience, PAT supports another format of representing probabilities by using
weights instead of probs in the pcase construct. In particular, instead of prob1, . . . , probn we can
define weight1, . . . , weightn, respectively, such that the probability that prtsP proceeds as prtsQ1
is weight1 / (weight1 + weight2 + . . . + weightn).

Probabilistic Assertions: A probabilistic assertion is a query about the system probabilistic
behaviors. PAT provides queries for deadlock-freeness with probability, reachabiliy with proba-
bility, Linear Temporal Logic (LTL) with probability, and refinement checking with probability,
respectively as in the following syntax:

1. #assert prtsP() deadlockfree with pmin/ pmax/ prob;

2. #assert prtsP() reaches cond with prob/ pmin/ pmax;

3. #assert prtsP() |= F with prob/ pmin/ pmax;

4. #assert prtsP() refines Spec() with prob/ pmin/ pmax;

5. #assert Implementation() refines<T> TimedSpec();

The first assertion asks the (min/max/both) probability that prtsP() is deadlock-free or not; the
second assertion asks the (min/max/both) probability that prtsP() can reach a state at which

56

some given condition cond is satisfied; the third point asks the (min/max/both) probability that
prtsP() satisfies the LTL formula F . PAT also supports refinement checking in case of probabilistic
processes. The last assertion ask the probability that the system behaves under the constraint of
the specification (i.e., an ideal version of a process). PRTS module also supports timed refinement
checking. The fifth assertion allows user to define the specification which has real-time features
and check if the implementation could work under the constraint of timed specification.

11.1 Specifying the ACT and the EAR timers in the PAT analysis
toolkit

In this subsection, we discuss the approach for specifying timers using the high-level timed patterns
defined in PAT. Unlike timed automata, in PAT there is no possibility for defining explicit clock
variables and capturing real-time constraints by explicitly setting/reseting clock variables. Hence,
specifying systems and protocols that launch and reset clocks, and defining timers, is a challenging
task in PAT. In order to achieve an equivalent specification of timers, we have to use the high-level
timed patterns of PAT in tricky manner. In the following, we will discuss each timed behavioral
pattern defined in PAT, and we reason about whether it can be used for modelling timers defined
in DTSN and SDTP.

1. Wait : A wait process Wait[t] ;P delays the starting time of P by exactly t time units. This
cannot be used for the timers in DTSN and SDTP because the source node does not perform
a delay during its operation.

2. Timeout : Process P timeout[t] Q passes control to process Q if no event has occurred
in P before t time units have elapsed. Otherwise, if there is any event occured within t,
the process P is continued without switching to Q. This timed pattern can be used for
the timers in DTSN and SDTP as follows: SrcWaitsforPck() timeout[t] SrcAfterTimeout(),
where SrcWaitsforPck() and SrcAfterTimeout() specify the behavior of the source waiting for
a message (packet), or when a timeout happens without receiving any message. Intuitively,
this process says that if the source receives a message (a data, an ACK , or a NACK) during
waiting for an event, which is the first visible event in SrcWaitsforPck(), then the source
will continue its operation with processing the received message. Otherwise, the source will
handle the expiration of the ACT or the EAR timer.

3. Deadline : Process P deadline[t] is constrained to terminate within t time units. In DTSN
and SDTP the nodes are not required to be finish within any time constraint, instead, they
only change their behavior upon timeout. Hence, this timed pattern cannot be used in our
case.

4. Within : The within operator forces the process to make an observable action (event) within
the given time frame. For example, P within[t] says the first visible event of P must be
engaged within t time units. For the same reason like in case of deadline, this is not suitable
for modelling the timers in DTSN and SDTP.

5. Timed Interrupt : Process P interrupt[t] Q behaves as P until t time units and then
switches to Q. Intuitively, timed interrupt could be used to model the timers in DTSN and
SDTP, for instance with SourceBeforeTimeout() interrupt[t] SourceAfterTimeout(), where
after timeout, SourceAfterTimeout() is activated. However, the main problem with this
process is that within SourceBeforeTimeout(), the timer(s) can be reset, and there is no
possibility for reset the value of t in interrupt[t]. In other words, we cannot “jump” out-
side the scope of interrupt[t], hence, the reset performed in SourceBeforeTimeout() can be
overwritten by interrupt[t].

In the following, we show in details how to apply the timeout pattern in PAT to model the EAR
and ACT timers. According to the definition of the source in DTSN and SDTP (Figure 1), the
source checks the expiration of the EAR and the ACT timers, only when it returned to the status

57

Wait for event. This means that within a branch corresponding to the received message (a data,
an ACK , a NACK), timer expirations do not interrupt the behavior of the source immediately.
Moreover, whenever the source steps into one branch, in case of DTSN, the timers will be reset
within the branch, before returning to the status waiting for event. This can be modelled by the
following process in PAT: We distinguish three cases

Src(x, y) =

if (x==y){SrcWaitsforPck() timeout[x] SrcAfterActTimeout()

<>

SrcWaitsforPck() timeout[y] SrcAfterEarTimeout()}

else if (x > y) {SrcWaitsforPck() timeout[y] SrcAfterActTimeout()}

else if (x < y) {SrcWaitsforPck() timeout[x] SrcAfterActTimeout()}

The behavior of the source after both the ACT and EAR timers have already been launched can
be modelled as the process Src(x, y), where the process variables x and y capture the value of
the ACT and EAR timers, respectively. We distinguish three cases: (i) the value of x and y are
equal; (ii) the value of x is greater than y; and (ii) the value of x is less than y. In case of x = y,
we call the non-deterministic choice of the two processes that represent the case when the ACT
timer (first choice), or the EAR timer (second choice) expires, respectively. When (x > y) the
timeout of y will happen earlier, and in the last case the timeout of x will occur before y.

SrcWaitsforPck() = SrcRcvPck() [] SrcRcvAck() [] SrcRcvNack();

SrcWaitsforPck() specifies the source waiting for a packet (a data, an ACK , a NACK packet).
If within x (ACT timer) or y (EAR timer) time units no packet has been received, the source
handles the corresponding timeout.

SrcRcvPck() = chSIPck?seq.ear.rtx -> HandlePck(seq,ear,rtx);

SrcRcvAck() = chSIAck?ack -> HandleAck(ack);

SrcRcvNack() = chSINack?nack -> HandleNack(nack);

Within each branch represented by the processes HandlePck(seq,ear,rtx), HandleAck(ack), and
HandleNack(nack), the timers will be (certainly) reset in case of DTSN (Figure 1).

HandleAck(ack) =

FreeBuff(ack); RstEarAtmpt(); SndEar(); Src(Tact, Tear);

HandleNack(nack) =

RtxPckts(nack); FreeBuff(nack); RstEarAtmpt(); SndEar(); Src(Tact, Tear);

In process HandleAck(ack), according to the Figure 1, the source frees its buffer based on the
received ACK , then the EAR is reset to zero, and the EAR packet is sent. Finally, both the EAR
and the ACT timers are reset before the source returns to wait. We specify the timer resets by
invoking the process Src(Tact, Tear). The specification of SrcRcvPck() is little more complicated
because the reset of the ACT timer is not performed at the end of the branch, at the moment
when the source returns to wait. Hence, we have to take into account the time elapsed since the
ACT timer is reset (after the source stored the received data packet), until the source returns to
wait. We assume that each operation sequence consumes a certain amount of time, namely:

• the branch NotOutBufFull → NotAWmultiple → SndDt consumes T1 time units;

• the branch NotOutBufFull → AWmultiple → SndEARPigyBack → SetEARAtmpTo1 con-
sumes T2 time units;

• the branch OutBufFull → SndEARPigyBack → SetEARAtmpTo1 consumes T3 time units.

58

Therefore, at the end of the three branches, the process Src(x, y) is called but with different time
values:

HandlePck(seq,ear,rtx) = UntilActReset(); Branch1(); Src(Tact-T1, Tear);

HandlePck(seq,ear,rtx) = UntilActReset(); Branch2(); Src(Tact-T2, Tear);

HandlePck(seq,ear,rtx) = UntilActReset(); Branch3(); Src(Tact-T3, Tear);

Finally, the processes SrcAfterEarTimeout() and SrcAfterActTimeout() which specify how the
source handles the EAR and ACT timeouts, respectively, are defined as follows:

SrcAfterEarTimeout() = incEAR{earatmpt = earatmpt+1;} -> EarAtmptLargerMax();

EarAtmptLargerMax() =

if (earatmpt > MAXEARATT) {chErr!ERROR -> chSEnd!SESSIONEND -> Stop;}

else {chEar!EAR -> Src(Tact, Tear)};

Process SrcEarTimeout() defines the behavior of the source after the EAR timer expired. Ac-
cording to the definition of the source node, first, the value of the EAR attempts is increased and
then the source examines if the updated value exceeds the upperbound of the EAR attempts (this
examination is specified by process EarAtmptLargerMax ()). The else branch of EarAtmptLarger-
Max () says that if the value of the EAR attempts is less or equal to the maximal value, the source
sends an EAR packet and then resets the EAR and ACT timers.

SrcActTimeOut() =

if (OutBufL == 0) {chSEnd!SESSIONEND -> Stop}

else if (OutBufL > 0 && EarPending == 1) {Src()}

else if (OutBufL > 0 && EarPending == 0){chEar!EAR -> Src(Tact, Tear)};

Process SrcActTimeOut() specifies the behavior of the source node after an ACT timeout. Based
on the definition of the source, first, the source checks if there is any unconfirmed data packet.
Namely, the length (i.e., the occupied entries) of the output buffer is zero or not. In case all of the
data packets have been confirmed, the source sends the session-end signal, “commanding” all the
participant nodes to finish the session, and then it stops. If there is at least one unconfirmed data
packet, the source checks whether it has sent an EAR and waiting for the corresponding ACK or
NACK (i.e., whether there is an EAR pending). If yes, the source returns to wait for event, which
is modelled by invoking Src(Tact, Tear). Otherwise, the source sends an EAR packet and resets
the EAR and ACT timers.

The case of SDTP is a bit different from DTSN, because in SDTP after receiving an ACK
or a NACK , the source node performs MAC verifications. In case all the MAC verifications are
successful, the source continues its operation and resets the timers like in DTSN. However, if only
one MAC verification fails, then the source returns to wait without resetting any timers. Hence,
in SDTP we have to consider the time elapsed due to the MAC verifications until the failed one.
For this purpose, we assume that one MAC verification consumes Tmac time units.

In case of the verification of an ACK packet fails the source returns to wait with the updated
timeout [Tact − Tmac] and timeout [Tear − Tmac], that is, invoking Src(Tact − Tmac, Tear
− Tmac). When a MAC verification failed at the n-th verification step, the source returns to
wait with the updated timeout [Tact − n×Tmac] and timeout [Tear − n×Tmac], that is, calling
Src(Tact − n×Tmac, Tear − n×Tmac). The case of successful verifications is similar as in DTSN.
Of course if (Tear − n×Tmac) or (Tact − n×Tmac) becomes negative, then we choose the zero
value instead.

59

11.2 On verifying DTSN using the PAT process analysis toolkit

Following the concept in Section 7, we define public (symmetric) channels between each node pair.
The channels chSIPck, chDIPck are for transfering data packet, while chSIAck, chSINack, chDI-
Ack, chDINack, chSIEar, and chDIEar are for ACK, NACK, and EAR messages, respectively. In
addition, we add channels chUpSPck and chUpDPck between the upper layer and S, D, respec-
tively. We also define the channel chEndSession between the source and the other entities, for
indicating the end of a session.

We define different constants such as the ERROR for signalling errors according to DTSN, and
the time values of timers, the size of buffers, the maximal value of packet for a session, and the
constant EARPCK that represents a stand-alone EAR packet. We assume that the probability
that a packet sent by a node has been lost and does not reach the addresee, denoted by the
constant PLOST. The probability that an intermediate node stores a packet, denoted by the
constant PSTORE. The value of activity timer is denoted by the constant TACT, while the value
of the ear timer is named by TEAR. Finally, we defined the maximal number of EAR attempts
with the constant MAXEAR. We give each of these constants a value, which are only (intuitively
meaningful) examples for building and running the program code.

One of the biggest advantage of PAT compared with the other solutions is that it supports
probabilistic and timed, CSP-like behavioral syntax and semantics, which are important in our
case. The main drawback of PAT is that it is not optimized for verifying security protocols
in presence of adversaries, hence, in the current form it does not support a convenient way for
modelling attackers. In PAT the attacker(s) are not included by default, and the user has to define
the attacker’s behavior and its place in the network explicitly.

To analyse the security of DTSN we define the attacker process(es) based on the following
scenarios. We examine different places of the attacker(s) in the network: Top1. S − A − I −
D; Top2. S − I − A − D; Top3. S − A1 − I − A2 − D. We recall the assumption that the
source and destination cannot be the attacker. For each scenario, we define additional symmetric
channels chASPck, chASAck, chASNack, chASEAR, chADPck, chADAck, chADNack, chADEAR,
between the attacker(s) and its(their) honest neighbors.

The attacker model MPAT
A : In order to reduce the state space during the verification (for

preventing run out of memory), we limit the attacker’s ability according to the messages exchanged
in DTSN. More specifically, the attacker intercepts every message sent by its neighbors, and it can
modify the content of the intercepted packet as follows:

• it can increase, decrease or replace the sequence number in data packets;

• it can set/unset the EAR bit and RTX bit in each data packet;

• it can increase, decrease or replace the base (ack) number in ACK/NACK packets;

• it can change the bits in NACK packets;

• it can include or replace the correct MACs with the self computed MACs (with owned keys).

• the combination of these actions.

and finally it can forward the modified packets to the neighbor nodes. In addition, we we
assume that an attacker has no memory, namely, it can construct messages only based on the
latest information it receives, or its generated data. To check the security property based on
bisimilarity and equivalence, we define the process DTSNideal() for the ideal version of DTSN, in
a similar concept as in Section 7. We specify the following bad states, in the form of assertions and
goals in PAT, which represent the insecurity of the protocol, and we run automatic verification to
see whether these bad states can be reached.

Let us consider the topologies Top1 and Top2. The first main design goal of DTSN is to provide
reliable delivery of packets. Hence, if the attacker(s) MPAT

A can achieve that the probability of
delivery of some packet in a session (i.e., the probability of the delivery of all packets in a session)

60

is zero, then we say that DTSN is not secure in the presence of the defined adversaries. The
assertion, denoted by violategoal1, for verifying the security of DTSN regarding this first main
goal is the following:

#define violategoal1 (OutBufL == 0 && BufI == 0 && numNACK > 0)

where the (global) variables OutBufL, BufI are the number of the occupied entries at the soure
and intermediate node, respectively, while the variable numNACK is the number of the packet
that the destination has not received, and are requiring to be retransmitted. Hence, (OutBufL
== 0) and (BufI == 0) represent that the cache of S and I are emptied, but at the same time
(numNACK > 0), which means that D has not received all of the packets.

A1. #assert DTSN () reaches violategoal1 ;
A2. #assert DTSNideal() reaches violategoal1 ;
A3. #assert DTSN () reaches violategoal1 with pmax ;
A4. #assert DTSNideal() reaches violategoal1 with pmax ;
A5. DTSNidealHide() refines DTSNHide().

For the topology Top2, we run the PAT model-checker with the default settings for (A1) and
(A2) and get the following results: (A1) is Valid and (A2) is Not Valid , which means that DTSN
can be attacked, while the ideal version is not susceptible to this weakness. PAT also returns an
attack scenario for A1. Running PAT for (A3) and (A4) we receive the result that the maximum
probability of reaching violategoal1 in DTSN () is greater than 0, while in case of DTSNideal()
it is 0. Because in PAT the refinement check between two processes is based on the equivalence
of their traces of visible events, hence, to make the verification of refinement defined in (A5) be
meaningful, in DTSNideal() and DTSN () we have to hide (i.e. make invisible) the events that is
not defined in the code of the another version. Note that we specify DTSNideal() and DTSN () in
such a way that, making these events invisible is meaningful and the correctness of the verification
is not corrupted.

Now let us consider the topology Top3 that includes two attackers A1 and A2. we specify the
bad states for DTSN and SDTP, and we run the model-checking to see if these bad states can be
reached. The bad states, and the verification goals can be defined in PAT’s language in the form
of logical formulae and assertions, respectively.

Let the number of buffer entries that are freed at node I after receiving an ACK/NACK
message, be freenum, and the number of packets received in sequence by node D, be acknum. The
bad state violategoal2 specifies the state where (freenum > acknum).

PAT code:

#define violategoal2 (freenum > acknum)

A6. #assert DTSNsubA1subA2() reaches violategoal2

A7. #assert DTSNA1A2() reaches violategoal2

In case the process DTSNA1A2() reaches violategoal2, it can be seen as a security hole or an
undesired property of DTSN, because according to the definition of I, it should always empty at
most as many cache entries as the ack number it receives in ACK/NACK messages (acknum).

Unfortunately, for one process, PAT only returns one attack trace, and always the same one.
Hence, to obtain different attack scenarios we have to modify DTSNA1A2 () by changing the
ability of the attackers. In particular, besides DTSNA1A2(), which contains the full ability of
the attackers, we limit their abilities by including different subprocceses of procA1 and procA2,
namely, subA1 and subA2. We denote DTSNsubA1subA2() as the process which includes different
sub-processes of procA1() and procA2(). Then, we examine if there is any DTSNsubA1subA2()
that reaches violategoal2.

First, we define the attacker A1 such that 1.) it sends a data packet to I without receiving
any message (this is defined by process A1NotRcvSndPck2I ()); or after receiving a data packet

61

seq.ear.rtx from S, 2.) it sends a data packet to I (defined by process A1RcvPckSndPck2I ()); or 3.)
it forwards the packet unchanged to I. The second attacker A2 is defined such that 1.) it sends an
ACK to I without receiving any message (defined by process A2NotRcvSndAck2I ()); or 2.) after
receiving a data packet from I, it sends an ACK to I (defined by process A2RcvPckSndAck2I ());

subA1() =

A1NotRcvSndPck2I()

[] chSAPck?seq.ear.rtx ->

(

A1RcvPckSndPck2I() [] chIAPck!seq.ear.rtx -> subA1()

)

subA2() =

A2NotRcvSndAck2I()

[] chIAPck?seq.ear.rtx -> A2RcvPckSndAck2I()

DTSNsubA1subA2() =

UpLayer() ||| procS() ||| subA1() ||| procI() ||| subA2() ||| procD()

After running the PAT model-checker for the assertion (B6), the tool returned Valid along
with the following scenario:

1. A1 gets the first data from S, and changes the seq number 1 to seqA2

2. A1 sends I the packet seqA2.ear.rtx (chIAPck!seqA2.ear.rtx)

3. I stores this packet and forwards it to A2 (chIAPck!seqA2.ear.rtx)

4. A2, after obtaining this packet (chIAPck?seqA2.ear.rtx), sends to I the ACK with ack num-
ber seqA2 (chIAAck!seqA2)

5. I erases its entire buffer, while D has not received any data yet.

As the result, basically, the attackers A1 and A2 can always achieve that the buffer of I is
emptied, because by definition, seqA2 is the largest possible sequence number, hence will be larger
than every seq number stored by I. In the worst case, node I is always prevented from caching
packets which corrupts the design goal of DTSN. We note that for the assertion (A7), due to
the complexity of the attackers in DTSNA1A2 (), the model-checker returns Valid after a larger
amount of time and with a much longer attack trace. This long trace essentially shows the same
type of attack as the shorter one, detected in the first assertion.

Moreover, in DTSN, when we extend the subprocess subA1() above such that A1 also forwards
the ACK message it received from I to node S PAT returns an attack scenario where both S and
I empty their buffer.

11.3 On verifying SDTP using the PAT process analysis toolkit

Next we examine the security of SDTP using the PAT toolkit. First of all we give some impor-
tant code parts in PAT’s specification language that specifies the behavior of the SDTP protocol
assuming the topologies Top1 : S − A1 − I − D, Top2 : S − I − A2 − D, and Top3 : S − A1 −
I − A2 − D.

As already mentioned earlier, PAT does not support language elements for specifying crypto-
graphic primitives and operations in an explicit way. We specify the operation of SDTP with the
implicit representation of MACs and ACK/NACK keys.

First, recall that in SDTP the per-packet ACK and NACK keys are generated as

K
(n)
ACK = PRF(KACK ; “per packet ACK key”; n)

K
(n)
ACK = PRF(KKACK ; “per packet NACK key”; n).

62

Following this concept, in PAT we define the ACK key and NACK key for the packet with se-
quence number n by the “pair” n.Kack and n.Knack , respectively. To reduce the verifica-
tion complexity we made abstraction on the key generation procedure, and model the session
ACK/NACK master keys by the unique constants Kack and Knack. Then we specify the pack-
ets sent by the source node as follows: sq.ear.rtx.sq.sq.Kack.sq.sq.Knack, where the first part
sq.ear.rtx contains the packet’s sequence number, the EAR and RTX bits, respectively; the second
part sq.sq.Kack and the third part sq.sq.Knack represent the ACK MAC and NACK MAC com-
puted over the packet sq without the EAR and RTX bits, using the per-packet ACK and NACK
keys sq.Kack, and sq.Knack. An ACK message has the following forms: acknbr.acknbr.Kack,
where acknbr.Kack is the correspoding ACK key of acknbr. A NACK message has the format
acknbr.nckb1.acknbr.Kack.nckb.Knack, where nckb.Knack is the NACK key of the packet to be
retransmitted, nckb. The NACK message can include more bits, in a similar concept.

By default, the attackers do not posses the two master keys Kack and Knack of honest nodes,
but only their keys Katt. Because honest nodes are specified to waiting for these MACs format, the
attackers should compose the MACs in this format as well, namely, sqA.sqA.Katt. The attackers
cannot use the master keys to construct the per-packet ACK/NACK keys, and when it obtains a
MAC, e.g., sq.sq.Kack, it cannot use sq.Kack, only in case it receives sq.Kack itself.

Now we turn to discuss the automatic verification of SDTP in PAT. First, to see if SDTP
reaches its design goals in a hostile environment we define the ideal version of SDTP, in the same
concept as in the manual analysis, in Section 7, and modelled it by process SDTPideal().

Basically, the design goal of SDTP is to make DTSN achieve its goals in a hostile environment.
Hence, we examine every assertion that has already been defined in case of DTSN. We specify the
behavior of the attacker(s) in case of the DTSN protocol. We distinguish the following scenarios
and examine the possible ability of the attacker(s). The behaviors of the attackers are defined as
the processes procA1() and procA2(). In our model, by default the attackers have two sequence
number seqA1 and seqA2 which are the smallest (i.e., 1) and the largest possible sequence numbers,
respectively. The attackers can include earA ∈ {0, 1}, rtxA ∈ {0, 1} in their data packets. The
attackers, in addition, posses the pre-defined values bA1,. . . , bA4 for requiring re-transmission in
NACK messages.

Process procA1(), which defines the behavior of the first attacker A1, is specified as a external
choice of the following four activities. Each of them is composed of additional choice options.

1. Without receiving any message: (i.) A1 sends a data packet, with seqA1.earA.rtxA or
seqA2.earA.rtxA, to I; (ii.) A1 sends an ACK, for the packet seqA1 or seqA2, to I or to S;
(iii.) A1 sends a NACK, with the ack number seqA1 or seqA2, and a combination of bA1,
. . . , bA4, to I or to S.

2. After receiving a data packet (chSAPck?seq.ear.rtx): (i.) A1 sends a data packet, with the
sequence number seq, seqA1 or seqA2, and different values ear/rtx bits, to I; (ii.) A1 sends
an ACK, with the ack number seq, seqA1 or seqA2, to I or S; (iii.) A1 sends a NACK, with
the ack number seq, seqA1 or seqA2, and a combination of bA1,. . . , bA4, to I or to S .

3. After receiving an ACK (chIAAck?ack): (i.) A1 sends a data packet, with the sequence
number ack, seqA1 or seqA2, to I; (ii.) A1 sends an ACK, with the ack number ack, seqA1
or seqA2, to I or to S; (iii.) A1 sends a NACK, with the ack number ack, seqA1 or seqA2,
and a combination of bA1,. . . , bA4, to I or to S.

4. After receiving a NACK with 1-4 bits (chIANack?ack.b1 [] chIANack?ack.b1.b2 [] chI-
ANack?ack.b1.b2.b3 [] chIANack?ack.b1.b2.b3.b4): (i.) A1 sends a data packet, with with
the sequence number ack, seqA1 or seqA2, to I; (ii.) A1 sends an ACK, with the sequence
number ack, seqA1 or seqA2, and a combination of bA1,. . . , bA4, b1, b2, b3, b4, to I or to S;
(iii.) A1 sends a NACK to I or to S. We recall that the attacker, besides the self-generated
data, can only use the information in the latest received messages. Hence, when the attacker
receives the NACK ack.b1, it can only use (besides its own data) ack and b1.

63

The DTSN protocol with the second topology is specified as the parallel compositions of each
honest node and the attacker A1:

DTSNA1() = procS() ||| procA1() ||| procI() ||| procD()

For the second topology S - I - A2 - D, the scenarios and PAT codes are the same as in the
case of the first topology S - A1 - I - D except that the used channels at each corresponding step
are changed as follows: In the first topology, A1 receives data packets from S on chSAPck, which
is changed to chIAPck in the second case because now data packets come from I. Similarly, the
inputs on chSAAck and chSANack are changed to chDAAack and chDANack, respectively. The
outputs by A on chIAPck, chIAAck, chIANack, chSAAck and chSANack are changed to chDAPck,
chDAAck, chDANack, chIAAck and chIANack, respectively. The attacker process procA2() de-
scribing the behavior of A2 is specified in the same way as procA1(), but with different channels.

The DTSN protocol with the second topology is specified as the following parallel compositions:

DTSNA2() = UpLayer() ||| procS() ||| procI() ||| procA2() ||| procD()

For the third topology S - A1 - I - A2 - D, we apply both the specification of processes A1 and
A2. The DTSN protocol with the third topology is specified as the parallel compositions of each
honest node and the two attackers:

DTSNA1A2() = UpLayer() ||| procS() ||| procA1() ||| procI() ||| procA2() ||| procD()

For the SDTP protocol, there are the same three topologies and the attacker’s behavior scenar-
ios are specified similarly as in case of DTSN, however, with different message formats. We simply
extend the process specification given in DTSN() with the corresponding ACK/NACK MACs and
per-packet keys.

The following defined PAT codes is applied for asking if these bad states can be reached in
SDTP:

B1. #assert SDTP() reaches violategoal1p1 ;
B2. #assert SDTPideal() reaches violategoal1p1 ;
B3. #assert SDTP() reaches violategoal1p1 with pmax ;
B4. #assert SDTPideal() reaches violategoal1p1 with pmax ;
B5. SDTPidealHide() refines SDTPHide().

We run PAT to model-check (B1), which is related to the first main design goal of DTSN, for
SDTP, and get the result Not Valid. This means that in the presence of the same attacker(s),
DTSN can be corrupted such that D has not received some packets and required retransmissions
but the buffers of S and I are emptied, however, it cannot be happen in the SDTP protocol.
Assertion (B2) also results in Not valid. Assertions (B3), (B4) return 0 as the maximal prob-
ability pmax. Finally, checking (B5) also ends with Valid. We note that SDTPidealHide() and
SDTPHide() are defined in the similar concepts as in DTSN case, hiding the events belonging to
the communication on private channels.

In the following, we examine the vulnerability describes by the assertion violategoal2 for SDTP.
We take the same violategoal2 and consider the similar assertions.

B6. #assert SDTPA1A2() reaches violategoal2

B7. #assert SDTPsubA1subA2() reaches violategoal2

SDTPA1A2() and SDTPsubA1subA2() are defined in the similar concept as in DTSN. We run
the PAT model-checker with the attackers processes:

subA1() =

/* A1 sends a data packet to I, without receiving any message, OR */

A1NotRcvSndPck2I()

64

/* After receiving a data packet on channel chSAPck */

[] chSAPck?seq.ear.rtx.seq1.seq2.Kack.seq3.seq4.Knack ->

(

/* A1 sends a data packet to I, OR */

A1RcvPckSndPck2I()

/* A1 forwards the packet unchanged to I */

[] chIAPck!seq.ear.rtx.seq1.seq2.Kack.seq3.seq4.Knack -> subA1()

)

subA2() =

/* A2 sends a data packet to I, without receiving any message, OR */

A2NotRcvSndAck2I()

/* After getting a data on channel chIAPck, A2 sends ACK with seqA2 to I */

[] chIAPck?seq.ear.rtx.seq1.seq2.Kack.seq3.seq4.Knack -> A2RcvPckSndAck2I()

SDTPsubA1subA2() =

UpLayer() ||| procS() ||| subA1() ||| procI() ||| subA2() ||| procD()

And like in DTSN, the tool returned Valid for the assertion (B6) along with the following
trace:

1. A1 sends to I a data pck seqA2.ear.rtx with the corresponding ACK MACs:

seqA2.seqA2.Katt and NACK MACs: seqA2.seqA2.Katt

2. I stores this pck and forwards it (unchanged) to A2.

3. A2 received this packet and sends to I the ACK for seqA2: seqA2.seqA2.Katt.seqA2.Katt
with the 2 keys seqA2.Katt and seqA2.Katt

4. As result, I deletes all the packets stored in its buffer because the key seqA2.Katt and the
MAC seqA2.seqA2.Katt match.

In summary, we get the result that both DTSN and SDTP are susceptible for this sandwich
style attack scenario. The main reason for this weakness is that in SDTP the intermediate nodes
do not verify the origin of the received messages, they only check if the stored ACK/NACK MACs
match the received ACK/NACK keys.

Note that we also performed verification and showed other weaknesses of SDTP, the reader
can find them in the Appendix.

12 Conclusion

In this paper, we addressed the problem of formal and automated security verification of WSN
transport protocols that may perform cryptographic operations. The verification of this class
of protocols is difficult because they typically consist of complex behavioral characteristics, such
as real-time, probabilistic, and cryptographic operations. To solve this problem, we proposed a
probabilistic timed calculus for cryptographic protocols, and demonstrated how to use this formal
language for proving security or vulnerability of protocols. To the best of our knowledge, this
is the first such process calculus that supports an expressive syntax and semantics, real-time,
probabilistic, and cryptographic issues at the same time. Hence, it can be used to verify systems
that involve these three properties. In addition, we proposed an automatic verification method,
based on the PAT process analysis toolkit for this class of protocols. For demonstration purposes,
we apply the proposed manual and automatic proof methods for verifying the security of DTSN
and SDTP, which are two of the recently proposed WSN tranport protocols, and showed that

65

(i.) DTSN is vulnerable to packet manipulation attacks, (ii.) SDTP successfully patched some
security holes found in DTSN, and (iii.) SDTP is still vulnerable to the sandwitch type attack.

In the future, we focus on improving the automatic security verification for this class of sys-
tems/protocols. Currently we found that PAT is the most suitable tool because it enables us to
define concurrent, non-deterministic, real time, and probabilistic behavior of systems in a con-
venient way. However, in its current form it does not support (or only in a very limited way)
cryptographic primitives and operations, as well as the behavior of strong (external or insider)
attackers. Finally, we believe that our proposed methods can be applied for verifying other similar
systems, which we will show in our follow up work.

13 Acknowledgement

The work described in this paper has been supported by the grant TAMOP - 4.2.2.B-10/12010-
0009 at the Budapest University of Technology and Economics. The authors are very thankful to
Dr. Levente Buttyán, for his encouragement, guidance, and supports.

References

[1] http://www.crysys.hu/members/tvthong/SDTP/DvirBTh12SDTPTech.pdf.

[2] M. Abadi and A. Gordon, A calculus for cryptographic protocols: the Spi calculus, Tech.
Report SRC RR 149, Digital Equipment Corporation, Systems Research Center, January
1998.

[3] J. Bengtsson and F. Larsson, Uppaal a tool for automatic verification of real-time systems,
Technical Report,Uppsala University, (96/67) (1996).

[4] Bruno Blanchet, Automatic Proof of Strong Secrecy for Security Protocols, IEEE Symposium
on Security and Privacy (Oakland, California), May 2004, pp. 86–100.

[5] L. Buttyan and L. Csik, Security analysis of reliable transport layer protocols for wireless
sensor networks, Proceedings of the IEEE Workshop on Sensor Networks and Systems for
Pervasive Computing (PerSeNS) (Mannheim, Germany), March 2010, pp. 1–6.

[6] L. Buttyan and A. M. Grilo, A Secure Distributed Transport Protocol for Wireless Sensor
Networks, IEEE International Conference on Communications (Kyoto, Japan), June 2011,
pp. 1–6.

[7] D. Coppersmith and M. Jakobsson, Almost optimal hash sequence traversal, Fourth Confer-
ence on Financial Cryptography (Southampton, Bermuda), March 2002, pp. 102–119.

[8] Pedro R. D’Argenio and Ed Brinksma, A calculus for timed automata, Tech. report, Theo-
retical Computer Science, 1996.

[9] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.2, RFC
5246, Internet Engineering Task Force, August 2008.

[10] Amit Dvir, Levente Buttyan, and Ta Vinh Thong, SDTP+:Securing a Distributed Transport
Protocol for WSNs using Merkle Trees and Hash Chains, IEEE International Conference on
Communications (Budapest, Hungary), June 2013, pp. 1–6.

[11] Liu Yang et. al., Pat: process analysis toolkit.

[12] C. Fournet and M. Abadi, Mobile values, new names, and secure communication, In Proceed-
ings of the 28th ACM Symposium on Principles of Programming, POPL’01, 2001, pp. 104–
115.

66

[13] W. Galuba, P. Papadimitratos, M. Poturalski, K. Aberer, Z. Despotovic, and W. Kellerer,
Castor: Scalable secure routing for ad hoc networks, INFOCOM, 2010 Proceedings IEEE,
2010, pp. 1–9.

[14] Jean Goubault-larrecq, Catuscia Palamidessi, and Angelo Troina, A probabilistic applied pi-
calculus, 2007.

[15] C. A. R. Hoare, Communicating sequential processes, Commun. ACM 21 (1978), no. 8, 666–
677.

[16] Gerard Holzmann, Spin model checker, the: primer and reference manual, first ed., Addison-
Wesley Professional, 2003.

[17] Y.-C. Hu, A. Perrig, and D. B. Johnson, Ariadne: a secure on-demand routing protocol for
ad hoc networks, Wirel. Netw. 11 (2005), no. 1-2, 21–38.

[18] M. Kwiatkowska, G. Norman, and D. Parker, PRISM 4.0: Verification of probabilistic real-
time systems, Proc. 23rd International Conference on Computer Aided Verification (CAV’11)
(G. Gopalakrishnan and S. Qadeer, eds.), LNCS, vol. 6806, Springer, 2011, pp. 585–591.

[19] Ruggero Lanotte, Andrea Maggiolo-Schettini, and Angelo Troina, Weak bisimulation for prob-
abilistic timed automata, PROC. OF SEFM03, IEEE CS, Press, 2003, pp. 34–43.

[20] B. Marchi, A. Grilo, and M. Nunes, DTSN - distributed transport for sensor networks, Pro-
ceedings of the IEEE Symposium on Computers and Communications (Aveiro, Portugal),
July 2007, pp. 165–172.

[21] John D. Marshall, II, and Xin Yuan, An analysis of the secure routing protocol for mobile
ad hoc network route discovery: Using intuitive reasoning and formal verification to identify
flaws, Tech. report, THE FLORIDA STATE UNIVERSITY, 2003.

[22] R. C. Merkle, Protocols for Public Key Cryptosystems, Symposium on Security and Privacy
(California, USA), April 1980, pp. 122–134.

[23] R. Milner, J. Parrow, and D. Walker, A calculus of mobile processes, parts i and ii, Information
and Computation (1992).

[24] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J.D. Tygar, SPINS: security protocols for
sensor networks, ACM MobiCom (Rome, Italy), July 2001.

[25] F. Rocha, A. Grilo, P. Rogrio Pereira, M. Serafim Nunes, and A. Casaca, Performance eval-
uation of DTSN in wireless sensor networks, EuroNGI - Network of Excellence Workshop
(Barcelona, Spain), Jan. 2008, pp. 1–9.

[26] J. Yicka, B. Mukherjeea, and D. Ghosal, Wireless sensor network survey, Computer Networks
52 (2008), no. 12, 2292–2330.

A The detailed specification of DTSN in cryptprobtime

In this section, we provide the detailed description (of the real version) of the DTSN protocol.

Prot(params)
def
=

let (es1, es2 , es3, ei1, ei2, ei3, ed1, ed2 , ed3, cntsq) = (E, E, E, E, E, E, E, E, E, 1)
in INITDTSN();

INITDTSN ()
def
= csup〈cntsq〉.DTSN (params)

DTSN (params)
def
=

upLayer(incr(cntsq)) | initSrc(s, d, apID, es1−3, sID, earAtmp) |
Int(ei1−3) | Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq);

67

==

Process that models the behavior of the upper layer (application that uses DTSN):

upLayer(cntsq)
def
=

csup(= PRV OK).hndlePck(cntsq) [] cerror(= ERROR).upLayer(decr(cntsq))
[] csessionEND(= SEND).nil [] cdup(xpck).upLayer(cntsq);

hndlePck(cntsq)
def
=

[cntsq ≤ mxSQ] (csup〈cntsq〉.upLayer(incr(cntsq))) else upLayer(cntsq);

———–
The source handling the activity timer expiration:

InitSrc(s, d, apID, es1−3, sID, earAtmp)
def
=

csup(xsq).(
{ xactc ≤ Tact } . (xactc ≤ Tact) ↪→ initFwdDt(s, d, apID, es1−3, sID, xsq)
[] {xactc ≤ Tact} . (xactc ≤ Tact) ↪→ initRcvACKS (s, d, apID, es1−3, sID, earAtmp)
[] {xactc ≤ Tact} . (xactc ≤ Tact) ↪→ initRcvNACKS (s, d, apID, es1−3, sID, earAtmp)

)
[] {xactc ≤ Tact} . (xactc ≤ Tact) ↪→ csessionEND(= SEND).nil
[] (xactc ≥ Tact) ↪→ actTimeOut ;

———–

———–
The source stores the received packet and resets the ACT timer:

initFwdDt(s, d, apID, es1−3, sID, sq)
def
=

.
let esi = (s, d, apID, sID, sq) in ‖ xactc ‖ { xactc ≤ Tact } . (xactc ≤ Tact)
↪→ checkBuffandAW (s, d, apID, es1−3, sID, sq, earAtmp)

———–

——

checkBuffandAW (s, d, apID, es1−3, sID, sq, earAtmp)
def
=

[sq = AW] (let (ear, rtx, earAtmp) = (1, 0, 1) in csi〈s, d, apID, sID, sq, ear, rtx〉.
Src(s, d, apID, es1−3, sID) else
(let (ear, rtx)= (0,0) in csi〈s, d, apID, sID, sq, ear, rtx〉. Src(s, d, apID, es1−3, sID, earAtmp)
[] csessionEND(= SEND).nil

———–

==

The source’s activity after it has already stored packets :

Src(s, d, apID, es1−3, sID, earAtmp)
def
=

csup(xsq). { xactc ≤ Tact, xearc ≤ Tear } . (xactc ≤ Tact, x
ear
c ≤ Tear) ↪→

fwdDt(s, d, apID, es1−3, sID, xsq)
[] csiACK(xack). { xactc ≤ Tact, xearc ≤ Tear } . (xactc ≤ Tact, x

ear
c ≤ Tear) ↪→

rcvACKS (s, d, apID, es1−3, sID, earAtmp, xack)
[] csiNACK(xnack). { xactc ≤ Tact, xearc ≤ Tear } . (xactc ≤ Tact, x

ear
c ≤ Tear) ↪→

rcvNACKS (s, d, apID, es1−3, sID, earAtmp, xnack)
[] { xactc ≤ Tact, xearc ≤ Tear } . (xactc ≤ Tact, x

ear
c ≤ Tear) ↪→ csessionEND(= SEND).nil

[] (xactc ≥ Tact) ↪→ actTimeOut
[] (xearc ≥ Tear) ↪→ earTimeOut ;

==

68

——

fwdDt(s, d, apID, es1−3, sID, sq)
def
=

[es1 = E] let es1 = (s, d, apID, sID, sq) in nxtStp1 (s, d, apID, es1−3, sID, sq) else
[es2 = E] let es2 = (s, d, apID, sID, sq) in nxtStp2 (s, d, apID, es1−3, sID, sq) else
[es3 = E] let es3 = (s, d, apID, sID, sq) in nxtStp3 (s, d, apID, es1−3, sID, sq) else cerror〈ERROR〉.
Src(s, d, apID, es1−3, sID, earAtmp)
[] csessionEND(= SEND).nil

——

——

nxtStp1 (s, d, apID, es1−3, sID, sq)
def
=

[es2 = E] checkAW (s, d, apID, es1−3, sID, sq) else
[es3 = E] checkAW (s, d, apID, es1−3, sID, sq) else
let (ear, rtx, earAtmp) = (1, 0, 1) in (
csi〈s, d, apID, sID, sq, ear, rtx〉. Src(s, d, apID, es1−3, sID, earAtmp)

)
[] csessionEND(= SEND).nil

nxtStp2 (s, d, apID, es1−3, sID, sq)
def
=

[es3 = E] checkAW (s, d, apID, es1−3, sID, sq) else
let (ear, rtx, earAtmp) = (1, 0, 1) in (
csi〈s, d, apID, sID, sq, ear, rtx〉. Src(s, d, apID, es1−3, sID, earAtmp)

)
[] csessionEND(= SEND).nil

nxtStp3 (s, d, apID, es1−3, sID, sq)
def
=

let (ear, rtx, earAtmp) = (1, 0, 1) in (
csi〈s, d, apID, sID, sq, ear, rtx〉. Src(s, d, apID, es1−3, sID, earAtmp)

)
[] csessionEND(= SEND).nil

——

checkAW (s, d, apID, es1−3, sID, sq)
def
=

[sq = AW] let (ear, rtx, earAtmp) = (1, 0, 1) in
(
csi〈s, d, apID, sID, sq, ear, rtx〉. Src(s, d, apID, es1−3, sID))

) else
(

let (ear, rtx) = (0,0) in
(
csi〈s, d, apID, sID, sq, ear, rtx〉. Src(s, d, apID, es1−3, sID, earAtmp)

)
)

[] csessionEND(= SEND).nil

==

rcvACKS (s, d, apID, es1−3, sID, earAtmp)
def
=

69

csiACK(acknum). hndleACK (s, d, apID, es1−3, sID, acknum)
[] csessionEND(= SEND).nil

hndleACK (s, d, apID, es1−3, sID, acknum)
def
=

[5(es1) ≤ acknum] checkE1 (s, d, apID, es1−3, sID, acknum) else
[5(es2) ≤ acknum] checkE2 (s, d, apID, es1−3, sID, acknum) else
[5(es3) ≤ acknum] checkE3 (s, d, apID, es1−3, sID, acknum) else
let (earAtmp = 0) in ‖ xactc ‖ Src(s, d, apID, es1−3, sID, earAtmp)
[] csessionEND(= SEND).nil

——

checkE1 (s, d, apID, es1−3, sID, acknum)
def
= let (es1 = E) in

[5(es2) ≤ acknum] checkE2 (s, d, apID, es1−3, sID, acknum) else
[5(es3) ≤ acknum] checkE3 (s, d, apID, es1−3, sID, acknum) else
let (earAtmp = 0) in ‖ xactc ‖ Src(s, d, apID, es1−3, sID, earAtmp)
[] csessionEND(= SEND).nil

checkE2 (s, d, apID, es1−3, sID, acknum)
def
= let (es2 = E) in

[5(es3) ≤ acknum] checkE3 (s, d, apID, es1−3, sID, acknum) else
let (earAtmp = 0) in ‖ xactc ‖ Src(s, d, apID, es1−3, sID, earAtmp)
[] csessionEND(= SEND).nil

checkE3 (s, d, apID, es1−3, sID, acknum)
def
= let (es3 = E) in

let (earAtmp = 0) in ‖ xactc ‖ Src(s, d, apID, es1−3, sID, earAtmp)
[] csessionEND(= SEND).nil

==

rcvNACKS (s, d, apID, es1−3, sID, earAtmp)
def
=

csiNACK(acknum,b1). hndleACKNACKS1 (s, d, apID, es1−3, sID, acknum, b1)
[] csiNACK(acknum,b1,b2). hndleACKNACKS2 (s, d, apID, es1−3, sID, acknum, b1, b2)
[] csiNACK(acknum,b1,b2,b3). hndleACKNACKS3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3)
[] csessionEND(= SEND).nil

hndleACKNACKS1 (s, d, apID, es1−3, sID, acknum, b1)
def
= let (es1 = E) in

[5(es1) ≤ acknum] checkE1Nck1 (s, d, apID, es1−3, sID, acknum, b1) else
[5(es2) ≤ acknum] checkE2Nck1 (s, d, apID, es1−3, sID, acknum, b1) else
[5(es3) ≤ acknum] checkE3Nck1 (s, d, apID, es1−3, sID, acknum, b1) else
let (earAtmp = 0) in isSetLst(s, d, apID, es1−3, sID, acknum, b1)
[] csessionEND(= SEND).nil

checkE1Nck1 (s, d, apID, es1−3, sID, acknum, b1)
def
=

[5(es2) ≤ acknum] checkE2Nck1 (s, d, apID, es1−3, sID, acknum, b1) else
[5(es3) ≤ acknum] checkE3Nck1 (s, d, apID, es1−3, sID, acknum, b1) else
let (earAtmp = 0) in isSetLst(s, d, apID, es1−3, sID, acknum, b1)
[] csessionEND(= SEND).nil

70

checkE2Nck1 (s, d, apID, es1−3, sID, acknum, b1)
def
= let (es2 = E) in

[5(es3) ≤ acknum] checkE3Nck1 (s, d, apID, es1−3, sID, acknum, b1) else
let (earAtmp = 0) in isSetLst(s, d, apID, es1−3, sID, acknum, b1)
[] csessionEND(= SEND).nil

checkE3Nck1 (s, d, apID, es1−3, sID, acknum, b1)
def
= let (es3, earAtmp) = (E, 0) in

isSetLst(s, d, apID, es1−3, sID, acknum, b1)
[] csessionEND(= SEND).nil

——

hndleACKNACKS2 (s, d, apID, es1−3, sID, acknum, b1, b2)
def
=

[5(es1) ≤ acknum] checkE1Nck2 (s, d, apID, es1−3, sID, acknum, b1, b2) else
[5(es2) ≤ acknum] checkE2Nck2 (s, d, apID, es1−3, sID, acknum, b1, b2) else
[5(es3) ≤ acknum] checkE3Nck2 (s, d, apID, es1−3, sID, acknum, b1, b2) else
let (earAtmp = 0) in isSet(s, d, apID, es1−3, sID, acknum, b1).
isSetLst(s, d, apID, es1−3, sID, acknum, b2)
[] csessionEND(= SEND).nil

checkE1Nck2 (s, d, apID, es1−3, sID, acknum, b1, b2)
def
= let (es1 = E) in

[5(es2) ≤ acknum] checkE2Nck2 (s, d, apID, es1−3, sID, acknum, b1, b2) else
[5(es3) ≤ acknum] checkE3Nck2 (s, d, apID, es1−3, sID, acknum, b1, b2) else
let (earAtmp = 0) in isSet(s, d, apID, es1−3, sID, acknum, b1).
isSetLst(s, d, apID, es1−3, sID, acknum, b2)
[] csessionEND(= SEND).nil

checkE2Nck2 (s, d, apID, es1−3, sID, acknum, b1, b2)
def
= let (es2 = E) in

[5(es3) ≤ acknum] checkE3Nck1 (s, d, apID, es1−3, sID, acknum, b1, b2) else
let (earAtmp = 0) in isSet(s, d, apID, es1−3, sID, acknum, b1).
isSetLst(s, d, apID, es1−3, sID, acknum, b2)
[] csessionEND(= SEND).nil

checkE3Nck2 (s, d, apID, es1−3, sID, acknum, b1, b2)
def
= let (es3, earAtmp) = (E, 0) in

isSet(s, d, apID, es1−3, sID, acknum, b1).isSetLst(s, d, apID, es1−3, sID, acknum, b2)
[] csessionEND(= SEND).nil

——

hndleACKNACKS3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3)
def
=

[5(es1) ≤ acknum] checkE1Nck3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3) else
[5(es2) ≤ acknum] checkE2Nck3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3) else
[5(es3) ≤ acknum] checkE3Nck3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3) else
let (earAtmp = 0) in isSet(s, d, apID, es1−3, sID, acknum, b1).
isSet(s, d, apID, es1−3, sID, acknum, b2).isSetLst(s, d, apID, es1−3, sID, acknum, b3)
[] csessionEND(= SEND).nil

checkE1Nck3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3)
def
=

let (es1 = E) in

71

[5(es2) ≤ acknum] checkE2Nck3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3) else
[5(es3) ≤ acknum] checkE3Nck3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3) else
let (earAtmp = 0) in isSet(s, d, apID, es1−3, sID, acknum, b1)
isSet(s, d, apID, es1−3, sID, acknum, b2). isSetLst(s, d, apID, es1−3, sID, acknum, b3)
[] csessionEND(= SEND).nil

checkE2Nck3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3)
def
=

let (es2 = E) in
[5(es3) ≤ acknum] checkE3Nck3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3) else
let (earAtmp = 0) in isSet(s, d, apID, es1−3, sID, acknum, b1).
isSet(s, d, apID, es1−3, sID, acknum, b2).isSetLst(s, d, apID, es1−3, sID, acknum, b3)
[] csessionEND(= SEND).nil

checkE3Nck3 (s, d, apID, es1−3, sID, acknum, b1, b2, b3)
def
=

let (es3, earAtmp) = (E, 0) in isSet(s, d, apID, es1−3, sID, acknum, b1).
isSet(s, d, apID, es1−3, sID, acknum, b2). isSetLst(s, d, apID, es1−3, sID, acknum, b3)
[] csessionEND(= SEND).nil

——

isSet(s, d, apID, es1−3, sID, acknum, bt)
def
=

[5(es1) = bt] rtxPck(s, d, apID, es1−3, sID, acknum, bt) else
[5(es2) = bt] rtxPck(s, d, apID, es1−3, sID, acknum, bt) else
[5(es3) = bt] rtxPck(s, d, apID, es1−3, sID, acknum, bt) else nil
[] csessionEND(= SEND).nil

rtxPck(s, d, apID, es1−3, sID, acknum, bt)
def
=

[5(es1) = bt] let (ear, rtx) = (0,1) in csi〈s, d, apID, sID, bt, ear, rtx〉.nil
[] csessionEND(= SEND).nil

isSetLst(s, d, apID, es1−3, sID, acknum, bt)
def
=

[5(es1) = bt] rtxPckLst(s, d, apID, es1−3, sID, acknum, bt) else
[5(es2) = bt] rtxPckLst(s, d, apID, es1−3, sID, acknum, bt) else
[5(es3) = bt] rtxPckLst(s, d, apID, es1−3, sID, acknum, bt) else
‖ xactc ‖ Src(s, d, apID, es1−3, sID, earAtmp)
[] csessionEND(= SEND).nil

rtxPckLst(s, d, apID, es1−3, sID, acknum, bt)
def
=

(let (ear,rtx) = (1,1) in csi〈s, d, apID, sID, bt, ear, rtx〉.
‖ xactc ‖ Src(s, d, apID, es1−3, sID, earAtmp)
[] csessionEND(= SEND).nil

==
==

Process that models the (probabilistic) behavior of an intermediate node:

72

Int(ei1−3)
def
=

csi(s, d, apID, sID, sq, ear, rtx).hndleDtI (s, d, apID, sID, sq, ear, rtx, ei1−3)
[] rcvACKI (ei1−3) [] rcvNACKI (ei1−3) [] csessionEND(= sEND).nil;

==

/* Adding a probabilistic choice for storing a pck or not */

hndleDtI (s, d, apID, sID, sq, ear, rtx, ei1−3)
def
=

[ei1 = (s, d, apID, sID, sq)] cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3) else
[ei2 = (s, d, apID, sID, sq)] cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3) else
[ei3 = (s, d, apID, sID, sq)] cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3) else
strAndFwI (s, d, apID, sID, sq, ear, rtx, ei1−3) ⊕p FwI (s, d, apID, sID, sq, ear, rtx, ei1−3);

FwI (s, d, apID, sID, sq, ear, rtx, ei1−3)
def
= cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3);

strAndFwI (s, d, apID, sID, sq, ear, rtx, ei1−3)
def
=

[ei1 = E] let ei1 = (s, d, apID, sID, sq) in cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3) else
[ei2 = E] let ei2 = (s, d, apID, sID, sq) in cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3) else
[ei3 = E] let ei3 = (s, d, apID, sID, sq) in cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3) else
cid〈s, d, apID, sID, bt, ear, rtx〉.Int(ei1−3);

==

rcvACKI (ei1−3)
def
=

cidACK(acknum).hndleACKI(s, d, apID, ei1−3, sID, acknum);

hndleACKI (s, d, apID, ei1−3, sID, acknum)
def
=

[5(ei1) ≤ acknum] checkE1I (s, d, apID, ei1−3, sID, acknum) else
[5(ei2) ≤ acknum] checkE2I (s, d, apID, ei1−3, sID, acknum) else
[5(ei3) ≤ acknum] checkE3I (s, d, apID, ei1−3, sID, acknum) else csiACK〈acknum〉.Int(ei1−3);

checkE1I (s, d, apID, ei1−3, sID, acknum)
def
=

let (ei1 = E) in [ei2 ≤ acknum] checkE2I (s, d, apID, ei1−3, sID, acknum) else
[5(ei3) ≤ acknum] checkE3I (s, d, apID, ei1−3, sID, acknum) else csiACK〈acknum〉.Int(ei1−3);

checkE2I (s, d, apID, ei1−3, sID, acknum)
def
=

let (ei2 = E) in [5(ei3) ≤ acknum] checkE3I (s, d, apID, ei1−3, sID, acknum) else
csiACK〈acknum〉.Int(ei1−3);

checkE3I (s, d, apID, ei1−3, sID, acknum)
def
=

let (ei3 = E) in csiACK〈acknum〉.Int(ei1−3);

==

rcvNACKI (s, d, apID, ei1−3, sID, earAtmp)
def
=

cidNACK(acknum,b1).hndleACKNACKI1(s, d, apID, ei1−3, sID, acknum, b1)
[] cidNACK(acknum,b1,b2).hndleACKNACKI2(s, d, apID, ei1−3, sID, acknum, b1, b2)
[] cidNACK(acknum,b1,b2,b3).hndleACKNACKI3(s, d, apID, ei1−3, sID, acknum, b1, b2, b3);

hndleACKNACKI1 (s, d, apID, ei1−3, sID, acknum, b1)
def
=

[5(ei1) ≤ acknum] checkE1NckI1 (s, d, apID, ei1−3, sID, acknum, b1) else
[5(ei2) ≤ acknum] checkE2NckI1 (s, d, apID, ei1−3, sID, acknum, b1) else
[5(ei3) ≤ acknum] checkE3NckI1 (s, d, apID, ei1−3, sID, acknum, b1) else
hndleNACKI1 (s, d, apID, ei1−3, sID, acknum, b1);

73

checkE1NckI1 (s, d, apID, ei1−3, sID, acknum, b1)
def
=

let (ei1 = E) in [5(ei2) ≤ acknum] checkENck2I1 (s, d, apID, ei1−3, sID, acknum, b1) else
[5(ei3) ≤ acknum] checkE3NckI1 (s, d, apID, ei1−3, sID, acknum, b1) else
hndleNACKI1 (s, d, apID, ei1−3, sID, acknum, b1);

checkE2NckI1 (s, d, apID, ei1−3, sID, acknum, b1)
def
=

let (ei2 = E) in [5(ei3) ≤ acknum] checkE3NckI1 (s, d, apID, ei1−3, sID, acknum, b1) else
hndleNACKI1 (s, d, apID, ei1−3, sID, acknum, b1);

checkE3NckI1 (s, d, apID, ei1−3, sID, acknum, b1)
def
=

let (ei3 = E) in hndleNACKI1 (s, d, apID, ei1−3, sID, acknum, b1);

==

hndleNACKI1 (s, d, apID, ei1−3, sID, acknum, bt)
def
=

[5(ei1) = bt] rtxPckfwAck1 (s, d, apID, ei1−3, sID, acknum, bt) else
[5(ei2) = bt] rtxPckfwAck1 (s, d, apID, ei1−3, sID, acknum, bt) else
[5(ei3) = bt] rtxPckfwAck1 (s, d, apID, ei1−3, sID, acknum, bt) else csiNACK〈acknum, bt〉.nil;

rtxPckfwAck1 (s, d, apID, ei1−3, sID, acknum, bt)
def
=

let (ear = 0) in let (rtx = 1) in cid〈s, d, apID, sID, bt, ear, rtx〉.csiACK〈acknum〉.nil;

==

hndleACKNACKI2 (s, d, apID, ei1−3, sID, acknum, b1, b2)
def
=

[5(ei1) ≤ acknum] checkE1NckI2 (s, d, apID, ei1−3, sID, acknum, b1, b2) else
[5(ei2) ≤ acknum] checkE2NckI2 (s, d, apID, ei1−3, sID, acknum, b1, b2) else
[5(ei3) ≤ acknum] checkE3NckI2 (s, d, apID, ei1−3, sID, acknum, b1, b2) else
hndleNACKI2 (s, d, apID, ei1−3, sID, acknum, b1, b2);

checkE1NckI2 (s, d, apID, ei1−3, sID, acknum, b1, b2)
def
=

let (ei1 = E) in [5(ei2) ≤ acknum] checkENck2I2 (s, d, apID, ei1−3, sID, acknum, b1, b2) else
[5(ei3) ≤ acknum] checkE3NckI2 (s, d, apID, ei1−3, sID, acknum, b1, b2) else
hndleNACKI2 (s, d, apID, ei1−3, sID, acknum, b1, b2);

checkE2NckI2 (s, d, apID, ei1−3, sID, acknum, b1, b2)
def
=

let (ei2 = E) in [5(ei3) ≤ acknum] checkE3NckI2 (s, d, apID, ei1−3, sID, acknum, b1, b2) else
hndleNACKI2 (s, d, apID, ei1−3, sID, acknum, b1, b2);

checkE3NckI2 (s, d, apID, ei1−3, sID, acknum, b1, b2)
def
=

let (ei3 = E) in hndleNACKI2 (s, d, apID, ei1−3, sID, acknum, b1, b2);

==

hndleNACKI2 (s, d, apID, ei1−3, sID, acknum, b1, b2)
def
=

[5(ei1) = b1] let (ear = 0) in let (rtx = 1) in cid〈s, d, apID, sID, b1, ear, rtx〉.
b1YesNxtb2 (s, d, apID, ei1−3, sID, acknum, b2) else

[5(ei2) = b1] let (ear = 0) in let (rtx = 1) in cid〈s, d, apID, sID, b1, ear, rtx〉.
b1YesNxtb2 (s, d, apID, ei1−3, sID, acknum, b2) else

[5(ei3) = b1] let (ear = 0) in let (rtx = 1) in cid〈s, d, apID, sID, b1, ear, rtx〉.
b1YesNxtb2 (s, d, apID, ei1−3, sID, acknum, b2) else

b1NotNxtb2 (s, d, apID, ei1−3, sID, acknum, b2);

74

b1YesNxtb2 (s, d, apID, ei1−3, sID, acknum, b2)
def
=

[5(ei1) = b2] b1Yesb2Yes(s, d, apID, ei1−3, sID, acknum, b2) else
[5(ei2) = b2] b1Yesb2Yes(s, d, apID, ei1−3, sID, acknum, b2) else
[5(ei3) = b2] b1Yesb2Yes(s, d, apID, ei1−3, sID, acknum, b2) else csiNACK〈acknum, b2〉.nil;

b1Yesb2Yes(s, d, apID, ei1−3, sID, acknum, bt)
def
=

let (ear = 0) in let (rtx = 1) in cid〈s, d, apID, sID, bt, ear, rtx〉.csiACK〈acknum〉.nil;

b1NotNxtb2 (s, d, apID, ei1−3, sID, acknum, b2)
def
=

[5(ei1) = b2] b1Notb2Yes(s, d, apID, ei1−3, sID, acknum, b2) else
[5(ei2) = b2] b1Notb2Yes(s, d, apID, ei1−3, sID, acknum, b2) else
[5(ei3) = b2] b1Notb2Yes(s, d, apID, ei1−3, sID, acknum, b2) else csiNACK〈acknum, b1, b2〉.nil;

b1Notb2Yes(s, d, apID, ei1−3, sID, acknum, bt)
def
=

let (ear = 0) in let (rtx = 1) in cid〈s, d, apID, sID, bt, ear, rtx〉.csiNACK〈acknum, b1〉.nil;

==

hndleACKNACKI3 (s, d, apID, ei1−3, sID, acknum, b1, b2, b3)
def
=

[5(ei1) ≤ acknum] checkE1NckI3 (s, d, apID, ei1−3, sID, acknum, b1, b2, b3) else
[5(ei2) ≤ acknum] checkE2NckI3 (s, d, apID, ei1−3, sID, acknum, b1, b2, b3) else
[5(ei3) ≤ acknum] checkE3NckI3 (s, d, apID, ei1−3, sID, acknum, b1, b2, b3) else
hndleNACKI3 (s, d, apID, ei1−3, sID, acknum, b1, b2, b3);

The functions checkE1NckI3, checkE2NckI3, checkE3NckI3 and hndleNACKI3 are specified
in the same concept as the functions checkE1NckI3, checkE2NckI3, and hndleNACKI2. Next we
turn to specify the behavior of the destination node.

==
==

Process that models the behavior of the destination:

Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq)
def
=

cid(s, d, apID, sID, sq, ear, rtx).hndleDtDst [] csessionEND(= sEND).nil;

hndleDtDst
def
=

/* Duplicated → check if EAR bit is set → missing packets */
[ed1 = (s, d, apID, sID, sq)] checkEARis1 else
[ed2 = (s, d, apID, sID, sq)] checkEARis1 else

/* NOT duplicated → store → fw to uplayer in-seq packets */
[ed3 = (s, d, apID, sID, sq)] checkEARis1 else strAndFwDst ;

checkEARis1
def
=

[ear = 1] sndACKNACKDst else Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq);

sndACK1NACKDst
def
=

/* if nackNbr = 0 snd ACK, if nackNbr > 0 snd NACK*/
[nackNbr = 0] cidACK〈ackNbr〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[nackNbr = 1] 1BitInNACK else
[nackNbr = 2] 2BitInNACK else

/* We allow this case for modelling the attacker ability to set sq in EAR to 4. */
[nackNbr = 3] cidNACK〈ackNbr, 1, 2, 3〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq);

75

1BitInNACK
def
=

/* Assume dst knows it should get: 1, 2, 3. Hence num of NACK bits ≤ 3 */
[sq = 2] cidNACK〈ackNbr, 1〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[sq = 3] let sqnm=1 in checkMissingPcktsSQE3 else
[sq > 3] let sqnm=1 in checkMissingPcktsSQG3;

checkMissingPcktsSQE3
def
=

[sqnm ≤ 2] goOnMissingPcktsSQE3 else Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq);

goOnMissingPcktsSQE3
def
=

[5(ed1) = sqnm] cidNACK〈ackNbr, sqnm〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[5(ed2) = sqnm] cidNACK〈ackNbr, sqnm〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[5(ed3) = sqnm] cidNACK〈ackNbr, sqnm〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
let sqnm=incr(sqnm) in checkMissingPcktsSQE3 ;

checkMissingPcktsSQG3
def
=

[sqnm ≤ 3] goOnMissingPcktsSQG3 else Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq);

goOnMissingPcktsSQG3
def
=

[5(ed1) = sqnm] cidNACK〈ackNbr, sqnm〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[5(ed2) = sqnm] cidNACK〈ackNbr, sqnm〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[5(ed3) = sqnm] cidNACK〈ackNbr, sqnm〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
let sqnm=incr(sqnm) in checkMissingPcktsSQG3 ;

2BitInNACK
def
=

/* Assume dst knows it should get: 1, 2, 3. Hence num of NACK bits ≤ 3 */
[sq = 3] cidNACK〈ackNbr, 1, 2〉.Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[sq > 3] let sqnm=1 in check2BitMissingPckts1stBit ;

check2BitMissingPckts1stBit
def
=

[sqnm > 3] Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[5(ed1) = sqnm] let toRTX1=sqnm in let sqnm=incr(sqnm) in goOn2BitMissingPckts2ndBit else
[5(ed2) = sqnm] let toRTX1=sqnm in let sqnm=incr(sqnm) in goOn2BitMissingPckts2ndBit else
[5(ed3) = sqnm] let toRTX1=sqnm in let sqnm=incr(sqnm) in goOn2BitMissingPckts2ndBit else
let sqnm=incr(sqnm) in goOn2BitMissingPckts1stBit ;

check2BitMissingPckts2ndBit
def
=

[sqnm > 3] Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[5(ed1) = sqnm] cidNACK〈ackNbr, toRTX1, sqnm〉.

Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[5(ed2) = sqnm] cidNACK〈ackNbr, toRTX1, sqnm〉.

Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[5(ed3) = sqnm] cidNACK〈ackNbr, toRTX1, sqnm〉.

Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
let sqnm=incr(sqnm) in goOn2BitMissingPckts2ndBit ;

strAndFwDst
def
=

/* If in-seq (i.e., nxtsq = sq) → store and fw to upLayer, else only store */
[sq = nxtsq] strSndUp else [sq > nxtsq] strOnly ;

strSndUp
def
=

/* Store and send to upLayer */

76

[ed1 = E] let ed1 = (s, d, apID, sID, sq) in cdup〈s, d, apID, sID, sq〉.
/* Decrease nackNbr, update ackNbr, increase nxtsq, finally check the EAR bit */

let nackNbr = dec(nackNbr) in let ackNbr = nxtsq in let nxtsq = incr(nxtsq) in
checkEARis1 else [ed2 = E] let ed2 = (s, d, apID, sID, sq) in cdup〈s, d, apID, sID, sq〉.
let nackNbr = dec(nackNbr) in let ackNbr = nxtsq in let nxtsq = incr(nxtsq) in
checkEARis1 else [ed3 = E] let ed3 = (s, d, apID, sID, sq) in cdup〈s, d, apID, sID, sq〉.
let nackNbr = dec(nackNbr) in let ackNbr = nxtsq in let nxtsq = incr(nxtsq) in
checkEARis1 ;

strOnly
def
=

/* Store and increase nackNbr, finally check EAR bit */
[ed1 = E] let ed1 = (s, d, apID, sID, sq) in let nackNbr = incr(nackNbr) in checkEARis1 else
[ed2 = E] let ed2 = (s, d, apID, sID, sq) in let nackNbr = incr(nackNbr) in checkEARis1 else
[ed3 = E] let ed3 = (s, d, apID, sID, sq) in let nackNbr = incr(nackNbr) in checkEARis1 ;

B The detailed specification of SDTP in cryptprobtime

B.1 Real SDTP version

To model the SDTP protocol we extend the specification of the DTSN protocol in the following
way. First, the source node extends each packet with an ACK MAC and a NACK MAC, which
is accomplished by modifying the subprocesses nxtStp1, nxtStp2, nxtStp3 and checkAW within
process fwdDt of Src.

nxtStp1 (s, d, apID, es1−3, sID, sq)
def
=

[es2 = E] checkAW (s, d, apID, es1−3, sID, sq) else
[es3 = E] checkAW (s, d, apID, es1−3, sID, sq) else
let ear=1 in let rtx=0 in let earAtmp=1 in
let Kack = K(sq, ACK) in let Knack = K(sq, NACK) in
let ACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Kack) in
let NACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Knack) in
csi〈s, d, apID, sID, sq, ear, rtx, ACKMAC, NACKMAC〉. Src(s, d, apID, es1−3, sID, earAtmp);

nxtStp2 (s, d, apID, es1−3, sID, sq)
def
=

[es3 = E] checkAW (s, d, apID, es1−3, sID, sq) else
let ear=1 in let rtx=0 in let earAtmp=1 in
let Kack = K(sq, ACK) in let Knack = K(sq, NACK) in
let ACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Kack) in
let NACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Knack) in
csi〈s, d, apID, sID, sq, ear, rtx, ACKMAC, NACKMAC〉. Src(s, d, apID, es1−3, sID, earAtmp);

nxtStp3 (s, d, apID, es1−3, sID, sq)
def
=

let ear=1 in let rtx=0 in let earAtmp=1 in
let Kack = K(sq, ACK) in let Knack = K(sq, NACK) in
let ACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Kack) in
let NACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Knack) in
csi〈s, d, apID, sID, sq, ear, rtx, ACKMAC, NACKMAC〉. Src(s, d, apID, es1−3, sID, earAtmp);

checkAW (s, d, apID, es1−3, sID, sq)
def
=

[sq = AW] (let ear=1 in let rtx=0 in let earAtmp=1 in
let Kack = K(sq, ACK) in let Knack = K(sq, NACK) in
let ACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Kack) in
let NACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Knack) in

77

csi〈s, d, apID, sID, sq, ear, rtx, ACKMAC, NACKMAC〉.Src(s, d, apID, es1−3, sID)) else
(

let ear=0 in let rtx=0 in
let Kack = K(sq, ACK) in let Knack = K(sq, NACK) in
let ACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Kack) in
let NACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Knack) in
csi〈s, d, apID, sID, sq, ear, rtx, ACKMAC, NACKMAC〉.
Src(s, d, apID, es1−3, sID, earAtmp)

);

In addition, we have to extend the cryptprobtime specification of DSTN with the verification of
ACK MACs and NACK MACs when the source receives ACK and NACK packets. Formally, we
extend the processes

rcvACKS (s, d, apID, es1−3, sID, earAtmp)
def
=

csiACK(acknum, ackkey, nackkey).hndleACK(s, d, apID, es1−3, sID, acknum, ackkey, nackkey);

the expected data on channel csiACK is extended by ackkey, nackkey that represent per-packet
ACK and NACK keys, which are also included as the parameters of process hndleACK and its
sub-processes checkE1, checkE2 and checkE3.

hndleACK (s, d, apID, es1−3, sID, acknum, ackkey, nackkey)
def
=

[5(es1) ≤ acknum] [CheckMac(6(es1), ackkey) = ok]
checkE1 (s, d, apID, es1−3, sID, acknum, ackkey, nackkey) else
[5(es2) ≤ acknum] [CheckMac(6(es2), ackkey) = ok]
checkE2 (s, d, apID, es1−3, sID, acknum, ackkey, nackkey) else
[5(es3) ≤ acknum] [CheckMac(6(es3), ackkey) = ok]
checkE3 (s, d, apID, es1−3, sID, acknum, ackkey, nackkey) else
let (earAtmp = Null) in Src(s, d, apID, es1−3, sID, earAtmp);

we extend the specification of hndleACK with the verification of the stored ACK MAC using
the keys included in the received ACK packets. This is modelley by the if construct in cryptprobtime:
[CheckMac(6(esi), ackkey) = ok]. In particular, CheckMac(6(esi), ackkey) is the verification of ACK
MAC, which is stored in the 6-th place in the cache entry esi . The same extension is applied in
processes checkE1, checkE2 and checkE3.

When a NACK packet has been received the SDTP protocol includes verification of ACK
MAC and NACK MACs. The structure of the NACK packet compared to DTSN case is extended
with an ACK key (if any) and some NACK keys depending on the number of bits in the NACK
packet. Hence, the expected data on channel csiNACK is extended with the ackkey and nackkey
parameters, for instance, instead of csiNACK(acknum, b1) we have csiNACK(acknum, b1, ackkey,
nackkey1). Each process hndleACKNACKSi and checkEiNckj includes the received ACK key and
NACK keys as process parameters. Namely, the verification part [5(esi) ≤ acknum] is extended
with [CheckMac(6(esi), ackkey) = ok] [CheckMac(7(esi), nackkey) = ok] for each i ∈ {1, 2, 3}.

The parameters of processes isSet(s, d, apID, es1−3, sID, acknum, b) and isSetLst(s, d, apID,
es1−3, sID, acknum, b) are extended with the corresponding ackkey and nackkey. Finally, processes
rtxPck and rtxPckLst are modified as follows:

rtxPck(s, d, apID, es1−3, sID, acknum, bt)
def
=

let Kack = K(sq, ACK) in let Knack = K(sq, NACK) in
let ACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Kack) in
let NACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Knack) in
let (ear = 0) in let (rtx = 1) in csi〈s, d, apID, sID, bt, ear, rtx, ACKMAC, NACKMAC〉.nil;

78

and

rtxPckLst(s, d, apID, es1−3, sID, acknum, bt)
def
=

let Kack = K(sq, ACK) in let Knack = K(sq, NACK) in
let ACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Kack) in
let NACKMAC = MAC((s, d, apID, sID, sq, ear, rtx), Knack) in
let (ear = 1) in let (rtx = 1) in csi〈s, d, apID, sID, bt, ear, rtx, ACKMAC, NACKMAC〉.
Src(s, d, apID, es1−3, sID, earAtmp);

Now we turn to modifying process Int(ei1−3) according to the definition of the SDTP protocol.
Process hndleDtI beside the parameters defined in case of DTSN, also includes ackmac and nack-
mac. Each cache entry at intermediate nodes stores the packets that contains an ACK MAC and
NACK MAC at the 6-th and 7-th places, respectively.

hndleDtI (s, d, apID, sID, sq, ear, rtx, ei1−3, ackmac, nackmac)
def
=

[ei1 = (s, d, apID, sID, sq, ackmac, nackmac)]
cid〈s, d, apID, sID, bt, ear, rtx, ackmac, nackmac〉.Int(ei1−3) else
[ei2 = (s, d, apID, sID, sq, ackmac, nackmac)]
cid〈s, d, apID, sID, bt, ear, rtx, ackmac, nackmac〉.Int(ei1−3) else
[ei3 = (s, d, apID, sID, sq, ackmac, nackmac)]
cid〈s, d, apID, sID, bt, ear, rtx, ackmac, nackmac〉.Int(ei1−3) else
strAndFwI (s, d, apID, sID, sq, ear, rtx, ei1−3, ackmac, nackmac);

In process strAndFwI each data packet is stored in the cache entry and then forwarded to the
next node:

strAndFwI (s, d, apID, sID, sq, ear, rtx, ei1−3, ackmac, nackmac)
def
=

[ei1 = E] let ei1 = (s, d, apID, sID, sq, ackmac, nackmac)
in cid〈s, d, apID, sID, bt, ear, rtx, ackmac, nackmac〉.Int(ei1−3) else
[ei2 = E] let ei2 = (s, d, apID, sID, sq, ackmac, nackmac)
in cid〈s, d, apID, sID, bt, ear, rtx, ackmac, nackmac〉.Int(ei1−3) else
[ei3 = E] let ei3 = (s, d, apID, sID, sq, ackmac, nackmac)
in cid〈s, d, apID, sID, bt, ear, rtx, ackmac, nackmac〉.Int(ei1−3) else
cid〈s, d, apID, sID, bt, ear, rtx, ackmac, nackmac〉.Int(ei1−3);

in process rcvACKI the ACK message format required to be received on channel cidACK is (ack-
num, ackkey), and process hndleACKI contains ackkey as its parameter.

rcvACKI (ei1−3)
def
=

cidACK(acknum, ackkey).hndleACKI(s, d, apID, ei1−3, sID, acknum, ackkey);

The specifications of processes hndleACKI, checkE1I, checkE2I and checkE3I are modified sim-
ilarly as in case of processes hndleACK and its sub-processes checkE1, checkE2 and checkE3 of
the Src process.

Regarding process rcvNACKI (s, d, apID, ei1−3, sID, earAtmp) that specifies the behavior when
an intermediate node receives a NACK message, the expected messsage format on channel cidNACK
is the format of NACK messages, e.g., cidNACK(acknum,b1) is modified to cidNACK(acknum, b1,
ackkey, nackkey). Processes hndleACKNACKIi for i ∈ {1, 2, 3} are extended with paramemeters
ackkey and a given number of nackkey.

Finally, the process Dst for the destination node is modified such that an SDTP packet is
expected on channel cid, namely, cid(s, d, apID, sID, sq, ear, rtx, ackmac, nackmac). In process
hndleDtDst the comparison [edi = (s, d, apID, sID, sq, ackmac, nackmac)] is changed to [edi = (s,

79

d, apID, sID, sq, ackmac, nackmac)]. One most important change resulted from the specification
of the SDTP is that the destination node includes ACK and NACK keys in the ACK and NACK
messages. These relevant changes is made in the process sndACK1NACKDst.

sndACK1NACKDst
def
=

/* if nackNbr = Null snd ACK, if nackNbr > 0 snd NACK*/
[nackNbr = 0] let Kack = K(ackNbr, ACK) in cidACK〈ackNbr, Kack〉.

Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq) else
[nackNbr = 1] 1BitInNACK else
[nackNbr = 2] 2BitInNACK else

/* We allow this case for modelling the attacker ability to set sq in EAR to 4. */
[nackNbr = 3] let Kack = K(ackNbr, ACK) in let Knack1 = K(1, NACK) in

let Knack2 = K(2, NACK) in let Knack3 = K(3, NACK) in
cidNACK〈ackNbr, 1, 2, 3, Kack, Knack1, Knack2, Knack3〉.
Dst(ed1−3, ackNbr, nackNbr, toRTX1, nxtsq);

The let constructs of type let Kack = K(ackNbr, ACK) in and let Knack1 = K(1, NACK) in are
used to represent that the destination generates the ACK and NACK keys for ACK and NACK
messages, respectively. The rest two cases where there is one bit or there are two bits in NACK
message, represented by processes 1BitInNACK and 2BitInNACK are modified in the same way.

B.2 Ideal SDTP version

We introduce the new syntax sugar of cryptcal to shorten the specification of complex systems
and protocols.

(R1) [t1 = t2] or [t3 = t4] P else Q;
(R2) let (x1, x2, . . . , xn) = (t1, t2, . . . , tn) in P

The first rule (R1) is the syntax sugar for [t1 = t2] P else ([t3 = t4] P else Q), and the second
rule (R2) is the shorthand for process let (x1 = t1) in let (x2 = t2) in . . . let (xn = tn) in P .

In the following, we discuss how the operation of the ideal version differs from the real version
of the intermediate node. In the ideal version, the intermediate node I is informed about the
message it should receive from S and D, whenever they sent a message to I. This kind of hidden
channel communication is performed via private channels cprivSI and cprivID. Below we denote
variables xrcvshould and xrcvreally to represent the message should be received and the one that I actually
received, respectively.

cprivSI(x
rcv
should).csi(x

rcv
really).[xrcvshould = xrcvreally] procHndleMsg ;

cprivID(xrcvshould).cid(x
rcv
really).[xrcvshould = xrcvreally] procHndleMsg ;

where procHndleMsg represents the process in which I continues to handle the received message (ei-
ther a data packet or a control message) in the similar way as in the real version. More specifically,
procHndleMsg can be hndleDtI (s, d, apID, sID, sq, ear, rtx, ei1− 3), hndleACKI (s, d, apID, ei1−3,
sID, acknum), or hndleACKNACKI1 (s, d, apID, ei1−3, sID, acknum, b1), hndleACKNACKI2 (s,
d, apID, ei1−3, sID, acknum, b1, b2), hndleACKNACKI3 (s, d, apID, ei1−3, sID, acknum, b1, b2,
b3).

For the ideal version of SDTP, beside the extension given in case of DTSN, the specification
of node I also includes the scenarios related to the verification of ACK MAC and NACK MAC.
Whenever the verification of the MACs fails, the constant BadControl is output on the public
channel cbadpck. Namely,

rcvACKI (ei1−3)
def
=

cidACK(acknum, ackkey).

80

[CheckMac(6(es1), ackkey) = ok] or [CheckMac(6(es2), ackkey) = ok] or
[CheckMac(6(es3), ackkey) = ok] hndleACKI (s, d, apID, ei1−3, sID, acknum) else
cbadpck 〈BadControl〉.Int(ei1−3);

and similarly when I receives a NACK message

rcvNACKI (s, d, apID, ei1−3, sID, earAtmp)
def
=

cidNACK(acknum, b1, ackkey, nackkeyb1).[CheckMac(6(es1), ackkey) = ok] or
[CheckMac(6(es2), ackkey) = ok] or [CheckMac(6(es3), ackkey) = ok]
checkNACKMACKIb1 else cbadpck 〈BadControl〉.Int(ei1−3);
[]
cidNACK(acknum, b1, b2, ackkey, nackkeyb1, nackkeyb2).[CheckMac(6(es1), ackkey) = ok] or
[CheckMac(6(es2), ackkey) = ok] or [CheckMac(6(es3), ackkey) = ok]
checkNACKMACKIb1b2 else cbadpck 〈BadControl〉.Int(ei1−3);
[]
cidNACK(acknum,b1, b2, b3, ackkey, nackkeyb1, nackkeyb2, nackkeyb3).
[CheckMac(6(es1), ackkey) = ok] or [CheckMac(6(es2), ackkey) = ok] or
[CheckMac(6(es3), ackkey) = ok]
checkNACKMACKIb1b2b3 else cbadpck 〈BadControl〉.Int(ei1−3);

checkNACKMACKIb1
def
=

[CheckMac(7(es1), nackkeyb1) = ok] or [CheckMac(7(es2), nackkeyb1) = ok] or
[CheckMac(7(es3), nackkeyb1) = ok] hndleACKNACKI1 (s, d, apID, ei1−3, sID, acknum, b1)
else cbadpck 〈BadControl〉.Int(ei1−3);

checkNACKMACKIb1b2
def
=

[CheckMac(7(es1), nackkeyb1) = ok] or [CheckMac(7(es2), nackkeyb1) = ok] or
[CheckMac(7(es3), nackkeyb1) = ok] checkNACKMACKIb2
else cbadpck 〈BadControl〉.Int(ei1−3);

checkNACKMACKIb2
def
=

[CheckMac(7(es1), nackkeyb2) = ok] or [CheckMac(7(es2), nackkeyb2) = ok] or
[CheckMac(7(es3), nackkeyb2) = ok] hndleACKNACKI2 (s, d, apID, ei1−3, sID, acknum, b1, b2)
else cbadpck 〈BadControl〉.Int(ei1−3);

checkNACKMACKIb1b2b3
def
=

[CheckMac(7(es1), nackkeyb1) = ok] or [CheckMac(7(es2), nackkeyb1) = ok] or
[CheckMac(7(es3), nackkeyb1) = ok] checkNACKMACKIb2b3
else cbadpck 〈BadControl〉.Int(ei1−3);

checkNACKMACKIb2b3
def
=

[CheckMac(7(es1), nackkeyb2) = ok] or [CheckMac(7(es2), nackkeyb2) = ok] or
[CheckMac(7(es3), nackkeyb2) = ok] checkNACKMACKIb3
else cbadpck 〈BadControl〉.Int(ei1−3);

checkNACKMACKIb3
def
=

[CheckMac(7(es1), nackkeyb3) = ok] or [CheckMac(7(es2), nackkeyb3) = ok] or
[CheckMac(7(es3), nackkeyb3) = ok] hndleACKNACKI3 (s, d, apID, ei1−3, sID, acknum, b1, b2, b3)
else cbadpck 〈BadControl〉.Int(ei1−3);

For the case of the source node S, we extend the behavior of process Src specified in the real
version with the subprocess

81

cprivSI(x
rcv
should).csi(x

rcv
really).[xrcvshould = xrcvreally] procHndleMsgS ;

where procHndleMsgS represents the process in which S continues to handle the received message
(either a data packet or a control message) in the similar way as in the real version. More
specifically, procHndleMsgS can be fwdDt(s, d, apID, ei1−3, sID, sq), hndleACKS (s, d, apID, ei1−3,
sID, acknum), or hndleACKNACKS1 (s, d, apID, ei1−3, sID, acknum, b1), hndleACKNACKS2 (s,
d, apID, ei1−3, sID, acknum, b1, b2), hndleACKNACKS3 (s, d, apID, ei1−3, sID, acknum, b1, b2,
b3).

Further, in a similar concept we have the addition output action of the constant BadControl,
cbadpck 〈BadControl〉, when the verification of ACK MAC or NACK MAC fails.

rcvACKS (ei1−3)
def
=

csiACK(acknum, ackkey).
[CheckMac(6(es1), ackkey) = ok] or [CheckMac(6(es2), ackkey) = ok] or
[CheckMac(6(es3), ackkey) = ok] hndleACK (s, d, apID, es1−3, sID, acknum) else
cbadpck 〈BadControl〉.Src(s, d, apID, es1−3, sID, earAtmp);

the expected data on channel csiACK is the extended by ackkey that represents per-packet ACK
key. When S receives a NACK message it examines the ACK MAC and NACK MAC with the
included keys, and it outputs the constant BadControl if the verification fails:

rcvNACKS (s, d, apID, ei1−3, sID, earAtmp)
def
=

csiNACK(acknum, b1, ackkey, nackkeyb1).[CheckMac(6(es1), ackkey) = ok] or
[CheckMac(6(es2), ackkey) = ok] or [CheckMac(6(es3), ackkey) = ok]
checkNACKMACKSb1 else cbadpck 〈BadControl〉. Src(s, d, apID, es1−3, sID, earAtmp);
[]
csiNACK(acknum, b1, b2, ackkey, nackkeyb1, nackkeyb2).[CheckMac(6(es1), ackkey) = ok] or
[CheckMac(6(es2), ackkey) = ok] or [CheckMac(6(es3), ackkey) = ok]
checkNACKMACKSb1b2 else cbadpck 〈BadControl〉. Src(s, d, apID, es1−3, sID, earAtmp);
[]
cidNACK(acknum,b1, b2, b3, ackkey, nackkeyb1, nackkeyb2, nackkeyb3).
[CheckMac(6(es1), ackkey) = ok] or [CheckMac(6(es2), ackkey) = ok] or
[CheckMac(6(es3), ackkey) = ok]
checkNACKMACKSb1b2b3 else cbadpck 〈BadControl〉. Src(s, d, apID, es1−3, sID, earAtmp);

checkNACKMACKSb1
def
=

[CheckMac(7(es1), nackkeyb1) = ok] or [CheckMac(7(es2), nackkeyb1) = ok] or
[CheckMac(7(es3), nackkeyb1) = ok] hndleACKNACKS1 (s, d, apID, ei1−3, sID, acknum, b1)
else cbadpck 〈BadControl〉. Src(s, d, apID, es1−3, sID, earAtmp);

checkNACKMACKSb1b2
def
=

[CheckMac(7(es1), nackkeyb1) = ok] or [CheckMac(7(es2), nackkeyb1) = ok] or
[CheckMac(7(es3), nackkeyb1) = ok] checkNACKMACKSb2
else cbadpck 〈BadControl〉. Src(s, d, apID, es1−3, sID, earAtmp);

checkNACKMACKSb2
def
=

[CheckMac(7(es1), nackkeyb2) = ok] or [CheckMac(7(es2), nackkeyb2) = ok] or
[CheckMac(7(es3), nackkeyb2) = ok] hndleACKNACKS2 (s, d, apID, ei1−3, sID, acknum, b1, b2)
else cbadpck 〈BadControl〉. Src(s, d, apID, es1−3, sID, earAtmp);

checkNACKMACKSb1b2b3
def
=

[CheckMac(7(es1), nackkeyb1) = ok] or [CheckMac(7(es2), nackkeyb1) = ok] or
[CheckMac(7(es3), nackkeyb1) = ok] checkNACKMACKSb2b3
else cbadpck 〈BadControl〉. Src(s, d, apID, es1−3, sID, earAtmp);

82

checkNACKMACKSb2b3
def
=

[CheckMac(7(es1), nackkeyb2) = ok] or [CheckMac(7(es2), nackkeyb2) = ok] or
[CheckMac(7(es3), nackkeyb2) = ok] checkNACKMACKSb3
else cbadpck 〈BadControl〉. Src(s, d, apID, es1−3, sID, earAtmp);

checkNACKMACKSb3
def
=

[CheckMac(7(es1), nackkeyb3) = ok] or [CheckMac(7(es2), nackkeyb3) = ok] or
[CheckMac(7(es3), nackkeyb3) = ok] hndleACKNACKS3 (s, d, apID, ei1−3, sID, acknum, b1, b2, b3)
else cbadpck 〈BadControl〉. Src(s, d, apID, es1−3, sID, earAtmp);

Finally, for D the behavior of process Dst specified in the real version is extended with the
subprocess

cprivID(xrcvshould).cid(x
rcv
really).[xrcvshould = xrcvreally] hndleDtDst ;

where hndleDtDst represents the process in which D continues to handle the received data packets
specified in the real version.

C The specification and verification of DTSN and SDTP in
the PAT process analysis toolkit

C.1 Verifying the DTSN protocol

We specify the behavior of the attacker(s) in case of the DTSN protocol. We distinguish the
following scenarios and examine the possible ability of the attacker(s). The behaviors of the
attackers are defined as the processes procA1() and procA2(), which are composed of different
subprocesses that we discuss below:

1. For the topology S - A1 - I - D

• Without receiving any msg:

– A1 sends a data packet to I

PAT code:

A1NotRcvSndPck2I()=

chIAPck!seqA1.earA.rtxA -> procA1()

[] chIAPck!seqA2.earA.rtxA -> procA1()

(where earA = {0,1}; rtxA = {0,1})

Due to the PAT process analysis toolkit is not optimized for handling security
protocols in the presence of attackers with unlimited ability, to avoid running out
of memory we assume that an attacker has no memory, namely, it can construct
messages only based on the latest information it receives, or its owned data. In
our model, by default the attackers have two sequence number seqA1 and seqA2
which are the smallest (i.e., 1) and the largest possible sequence number, respec-
tively. The attackers, in addition, posses the pre-defined values bA1,. . . , bA4 for
requiring re-transmission in NACK messages. The code part chIAPck!seqA1.ear.rtx
-> procA1() says that after sending the data packet seqA1.ear.rtx, A1 repeats its
operation. We denote this sub-process of procA1() by A1NotRcvSndPck2I().

– A1 sends an ACK to I or S

PAT code:

A1NotRcvSndAck2I() =

chIAAck!seqA1 -> procA1()

[] chIAAck!seqA2 -> procA1()

83

A1NotRcvSndAck2S() =

chSAAck!seqA1 -> procA1()

[] chSAAck!seqA2 -> procA1()

The attacker constructs two ACK messages based on its knowledge and chooses
to send one of them to node I or S. Note that we do not consider the scenario
where A1 sends ACK to both nodes at the same time, because I will forward to S
the ACK, which would lead to the same effect. We denote these sub-processes of
procA1() by A1NotRcvSndAck2I () and A1NotRcvSndAck2S ().

– A1 sends a NACK to I or S

PAT code:

to I:

A1NotRcvSndNack2I()=

chIANack!seqA1.bA1 -> procA1()

[] chIANack!seqA1.bA1.bA2 -> procA1()

[] chIANack!seqA1.bA1.bA2.bA3 -> procA1()

[] chIANack!seqA1.bA1.bA2.bA3.bA4 -> procA1()

[] chIANack!seqA2.bA1 -> procA1()

[] chIANack!seqA2.bA1.bA2 -> procA1()

[] chIANack!seqA2.bA1.bA2.bA3 -> procA1()

[] chIANack!seqA2.bA1.bA2.bA3.bA4 -> procA1()

to S:

A1NotRcvSndNack2S()=

chSANack!seqA1.bA1 -> procA1()

[] chSANack!seqA1.bA1.bA2 -> procA1()

[] chSANack!seqA1.bA1.bA2.bA3 -> procA1()

[] chSANack!seqA1.bA1.bA2.bA3.bA4 -> procA1()

[] chSANack!seqA2.bA1 -> procA1()

[] chSANack!seqA2.bA1.bA2 -> procA1()

[] chSANack!seqA2.bA1.bA2.bA3 -> procA1()

[] chSANack!seqA2.bA1.bA2.bA3.bA4 -> procA1()

The attacker A1 sends the NACKs to I or S using the elements it posseses. We de-
note these sub-processes of procA1() by A1NotRcvSndNack2I () and A1NotRcvSndNack2S ().

• After receiving a data pck, chSAPck?seq.ear.rtx :

– A1 sends a data packet to I

A1RcvPckSndPck2I()=

chIAPck!seqA1.ear.rtx -> procA1()

[] chIAPck!seqA2.ear.rtx -> procA1()

[] chIAPck!seq.near.rtx -> procA1()

[] chIAPck!seq.ear.nrtx -> procA1()

[] chIAPck!seq.near.nrtx -> procA1()

[] chIAPck!seqA1.near.rtx -> procA1()

[] chIAPck!seqA1.ear.nrtx -> procA1()

[] chIAPck!seqA1.near.nrtx -> procA1()

[] chIAPck!seqA2.near.rtx -> procA1()

[] chIAPck!seqA2.ear.nrtx -> procA1()

[] chIAPck!seqA2.near.nrtx -> procA1()

In this case, besides the sequence numbers seqA1 and seqA2 the attacker can use
the received seq, ear and rtx. The notations near and nrtx represent the negation
of ear and rtx. We denote this sub-processes by A1RcvPckSndPck2I ().

– A1 sends an ACK to I or S

A1RcvPckSndAck2I()=

84

chIAAck!seqA1 -> procA1()

[] chIAAck!seqA2 -> procA1()

[] chIAAck!seq -> procA1()

A1RcvPckSndAck2S()=

chSAAck!seqA1 -> procA1()

[] chSAAck!seqA2 -> procA1()

[] chSAAck!seq -> procA1()

– A1 sends a NACK to I or S

to I:

A1RcvPckSndNack2I()=

A:{seqA1,seqA2,seq};B1:{bA1,seq}@chIANack!A.B1 -> procA1()

[] A:{seqA1,seqA2,seq};B1:{bA1,seq};

B2:{bA2,seq}@chIANack!A.B1.B2 -> procA1()

[] A:{seqA1,seqA2,seq};B1:{bA1,seq};B2:{bA2,seq};

B3:{bA3,seq}@chIANack!A.B1.B2.B3 -> procA1()

[] A:{seqA1,seqA2,seq};B1:{bA1,seq};B2:{bA2,seq};

B3:{bA3,seq};B4:{bA4,seq}@chIANack!A.B1.B2.B3.B4 -> procA1()

to S:

A1RcvPckSndNack2S()=

A:{seqA1,seqA2,seq};B1:{bA1,seq}@chSANack!A.B1 -> procA1()

[] A:{seqA1,seqA2,seq};B1:{bA1,seq};

B2:{bA2,seq}@chSANack!A.B1.B2 -> procA1()

[] A:{seqA1,seqA2,seq};B1:{bA1,seq};B2:{bA2,seq};

B3:{bA3,seq}@chSANack!A.B1.B2.B3 -> procA1()

[] A:{seqA1,seqA2,seq};B1:{bA1,seq};B2:{bA2,seq};

B3:{bA3,seq};B4:{bA4,seq}@chSANack!A.B1.B2.B3.B4 -> procA1()

The attacker A1 chooses an option to send NACK message which is composed of
the information available to the attacker. Beside the pre-defined knowledge, the
attacker can use the received seq as well. The language constuct

x:{v1..vn}; y:w1..wm@Proc(x,y)

represents the operation of the process Proc with the variables x and y whose values
are taken from the sets v1..vn and w1..wm, respectively.

• After receiving an ACK, chIAAck?ack :

– A1 sends a data packet to I

A1RcvAckSndPck2()=

chIAPck!seqA1.ear.rtx -> procA1()

[] chIAPck!seqA2.ear.rtx -> procA1()

[] chIAPck!ack.ear.rtx -> procA1()

– A1 sends an ACK to I or S

A1RcvAckSndAck2I()=

chIAAck!seqA1 -> procA1()

[] chIAAck!seqA2 -> procA1()

[] chIAAck!ack -> procA1()

A1RcvAckSndAck2S()=

chSAAck!seqA1 -> procA1()

[] chSAAck!seqA2 -> procA1()

[] chSAAck!ack -> procA1()

85

– A1 sends a NACK to I or S

to I:

A1RcvAckSndNack2I()=

A:{seqA1,seqA2,ack};B1:{bA1,ack}@chIANack!A.B1 -> procA1()

[] A:{seqA1,seqA2,ack};B1:{bA1,ack};

B2{bA2,ack}@chIANack!A.B1.B2 -> procA1()

[] A:{seqA1,seqA2,ack};B1:{bA1,ack};B2:{bA2,ack};

B3:{bA3,ack}@chIANack!A.B1.B2.B3 -> procA1()

[] A:{seqA1,seqA2,ack};B1:{bA1,ack};B2:{bA2,ack};

B3:{bA3,ack}; B4:{bA4,ack}@chIANack!A.B1.B2.B3.B4 -> procA1()

A1RcvAckSndNack2S()=

to S:

A:{seqA1,seqA2,ack};B1:{bA1,ack}@chSANack!A.B1 -> procA1()

[] A:{seqA1,seqA2,ack};B1:{bA1,ack};

B2{bA2,ack}@chSANack!A.B1.B2 -> procA1()

[] A:{seqA1,seqA2,ack};B1:{bA1,ack};B2:{bA2,ack};

B3:{bA3,ack}@chSANack!A.B1.B2.B3 -> procA1()

[] A:{seqA1,seqA2,ack};B1:{bA1,ack};B2:{bA2,ack};

B3:{bA3,ack};B4:{bA4,ack}@chSANack!A.B1.B2.B3.B4 -> procA1()

• After receiving a NACK

chIANack?ack.b1 [] chIANack?ack.b1.b2 [] chIANack?ack.b1.b2.b3 [] chIANack?ack.b1.b2.b3.b4 :

– A1 sends a data packet to I

A1RcvNack-1Bit-SndPck2I()=

chIAPck!seqA1.earA.rtxA -> procA1()

[] chIAPck!seqA2.earA.rtxA -> procA1()

[] chIAPck!ack.earA.rtxA -> procA1()

[] chIAPck!b1.earA.rtxA -> procA1()

A1RcvNack-2Bit-SndPck2I()=

chIAPck!seqA1.earA.rtxA -> procA1()

[] chIAPck!seqA2.earA.rtxA -> procA1()

[] chIAPck!ack.earA.rtxA -> procA1()

[] chIAPck!b1.earA.rtxA -> procA1()

[] chIAPck!b2.earA.rtxA -> procA1()

A1RcvNack-3Bit-SndPck2I()=

chIAPck!seqA1.earA.rtxA -> procA1()

[] chIAPck!seqA2.earA.rtxA -> procA1()

[] chIAPck!ack.earA.rtxA -> procA1()

[] chIAPck!b1.earA.rtxA -> procA1()

[] chIAPck!b2.earA.rtxA -> procA1()

[] chIAPck!b3.earA.rtxA -> procA1()

A1RcvNack-4Bit-SndPck2I()=

chIAPck!seqA1.ear.rtx -> procA1()

[] chIAPck!seqA2.earA.rtxA -> procA1()

[] chIAPck!ack.earA.rtxA -> procA1()

[] chIAPck!b1.earA.rtxA -> procA1()

(earA = {0,1}; rtxA = {0,1}) & we assume that b1, ..., b4 are seqnum

of the packets to be RTXd.

– A1 sends an ACK to I or S

86

to I:

A1RcvNack-1Bit-SndAck2I()=

chIAAck!seqA1 -> procA1()

[] chIAAck!seqA2 -> procA1()

[] chIAAck!ack -> procA1()

[] chIAAck!b1 -> procA1()

A1RcvNack-2Bit-SndAck2I()=

chIAAck!seqA1 -> procA1()

[] chIAAck!seqA2 -> procA1()

[] chIAAck!ack -> procA1()

[] chIAAck!b1 -> procA1()

[] chIAAck!b2 -> procA1()

A1RcvNack-3Bit-SndAck2I()=

chIAAck!seqA1 -> procA1()

[] chIAAck!seqA2 -> procA1()

[] chIAAck!ack -> procA1()

[] chIAAck!b1 -> procA1()

[] chIAAck!b2 -> procA1()

[] chIAAck!b3 -> procA1()

A1RcvNack-4Bit-SndAck2I()=

chIAAck!seqA1 -> procA1()

[] chIAAck!seqA2 -> procA1()

[] chIAAck!ack -> procA1()

[] chIAAck!b1 -> procA1()

[] chIAAck!b2 -> procA1()

[] chIAAck!b3 -> procA1()

[] chIAAck!b4 -> procA1()

to S:

A1RcvNack-1Bit-SndAck2S()=

chSAAck!seqA1 -> procA1()

[] chSAAck!seqA2 -> procA1()

[] chSAAck!ack -> procA1()

[] chSAAck!b1 -> procA1()

A1RcvNack-2Bit-SndAck2S()=

chSAAck!seqA1 -> procA1()

[] chSAAck!seqA2 -> procA1()

[] chSAAck!ack -> procA1()

[] chSAAck!b1 -> procA1()

[] chSAAck!b2 -> procA1()

A1RcvNack-3Bit-SndAck2S()=

chSAAck!seqA1 -> procA1()

[] chSAAck!seqA2 -> procA1()

[] chSAAck!ack -> procA1()

[] chSAAck!b1 -> procA1()

[] chSAAck!b2 -> procA1()

[] chSAAck!b3 -> procA1()

87

A1RcvNack-4Bit-SndAck2S()=

chSAAck!seqA1 -> procA1()

[] chSAAck!seqA2 -> procA1()

[] chSAAck!ack -> procA1()

[] chSAAck!b1 -> procA1()

[] chSAAck!b2 -> procA1()

[] chSAAck!b3 -> procA1()

[] chSAAck!b4 -> procA1()

– A1 sends a NACK to I or S

to I:

snd NACK to I, after the action chIANack?ack.b1:

A1RcvNack-1Bit-SndNack2I-1Bit()=

A:{seqA1,seqA2,ack,b1};B1:{bA1,ack,b1}@chIANack!A.B1 -> procA1()

[] A:{seqA1,seqA2,ack,b1};B1:{bA1, ack,b1};B2:{bA2,ack,b1}

@chIANack!A.B1.B2 -> procA1()

[] A:{seqA1,seqA2,ack,b1};B1:{bA1,ack,b1};B2:{bA2,ack,b1};

B3:{bA3,ack,b1}@chIANack!A.B1.B2.B3 -> procA1()

[] A:{seqA1,seqA2,ack,b1}; B1:{bA1,ack,b1};B2:{bA2,ack,b1};

B3:{bA3,ack,b1};B4:{bA4,ack,b1}@chIANack!A.B1.B2.B3.B4 -> procA1()

snd NACK to I, after the action chIANack?ack.b1.b2:

A1RcvNack-2Bit-SndNack2I-2Bit()=

A:{seqA1,seqA2,ack,b1,b2};B1:{bA1,ack,b1,b2}@chIANack!A.B1 -> procA1()

[] A:{seqA1,seqA2,ack,b1,b2};B1:{bA1,ack,b1,b2};

B2:{bA2,ack,b1,b2}@chIANack!A.B1.B2 -> procA1()

[] A:{seqA1,seqA2,ack,b1,b2};B1:{bA1,ack,b1,b2};B2:{bA2,ack,b1,b2};

B3:{bA3,ack,b1,b2}@chIANack!A.B1.B2.B3 -> procA1()

[] A:{seqA1,seqA2,ack,b1,b2};B1:{bA1,ack,b1,b2};B2:{bA2,ack,b1,b2};

B3:{bA3,ack,b1,b2};B4:{bA4,ack,b1,b2}

@chIANack!A.B1.B2.B3.B4 -> procA1()

snd NACK to I, after the actionchIANack?ack.b1.b2.b3:

A1RcvNack-3Bit-SndNack2I-3Bit()=

A:{seqA1,seqA2,ack,b1,b2,b3};B1:{bA1,ack,b1,b2,b3}

@chIANack!A.B1 -> procA1()

[] A:{seqA1,seqA2,ack,b1,b2,b3};B1:{bA1,ack,b1,b2,b3};

B2:{bA2,ack,b1,b2,b3}@chIANack!A.B1.B2 -> procA1()

[] A:{seqA1,seqA2,ack,b1,b2,b3};B1:{bA1,ack,b1,b2,b3};B2:{bA2,ack,

b1,b2,b3};B3:{bA3,ack,b1,b2,b3}@chIANack!A.B1.B2.B3 -> procA1()

[] A:{seqA1,seqA2,ack,b1,b2,b3};B1:{bA1,ack,b1,b2,b3};

B2:{bA2,ack,b1,b2,b3};B3:{bA3,ack,b1,b2,b3};

B4:{bA4,ack,b1,b2,b3}@chIANack!A.B1.B2.B3.B4 -> procA1()

snd NACK to I, after the action chIANack?ack.b1.b2.b3.b4:

A1RcvNack-4Bit-SndNack2I-4Bit()=

A:{seqA1,seqA2,ack,b1,b2,b3,b4};B1:{bA1,ack,b1,b2,b3,b4}

@chIANack!A.B1 -> procA1()

[] A:{seqA1,seqA2, ack,b1,b2,b3,b4};B1:{bA1, ack,b1,b2,b3,b4}.

88

B2:{bA2, ack,b1,b2,b3,b4}@chIANack!A.B1.B2 -> procA1()

[] A:{seqA1,seqA2,ack,b1,b2,b3,b4};B2:{bA1,ack,b1,b2,b3,b4};

B3:{bA2,ack,b1,b2,b3,b4};B4:{bA3,ack,b1,b2,b3,b4}

@chIANack!A.B1.B2.B3 -> procA1()

[] A:{seqA1,seqA2,ack,b1,b2,b3,b4};B1:{bA1,ack,b1,b2,b3,b4};

B2:{bA2,ack,b1,b2,b3,b4};B3:{bA3,ack,b1,b2,b3,b4};

B4:{bA4,ack,b1,b2,b3,b4}@chIANack!A.B1.B2.B3.B4 -> procA1()

to S:

snd NACK to S, after the action chSANack?ack.b1:

A1RcvNack-1Bit-SndNack2S-1Bit()=

A:{seqA1,seqA2,ack,b1};B1:{bA1,ack,b1}@chSANack!A.B1 -> procA1()

[] A:{seqA1,seqA2,ack,b1};B1:{bA1, ack,b1};B2:{bA2,ack,b1}

@chSANack!A.B1.B2 -> procA1()

[] A:{seqA1,seqA2,ack,b1};B1:{bA1,ack,b1};B2:{bA2,ack,b1};

B3:{bA3,ack,b1}@chSANack!A.B1.B2.B3 -> procA1()

[] A:{seqA1,seqA2,ack,b1}; B1:{bA1,ack,b1};B2:{bA2,ack,b1};

B3:{bA3,ack,b1};B4:{bA4,ack,b1}

@chSANack!A.B1.B2.B3.B4 -> procA1()

A1RcvNack-2Bit-SndNack2S-2Bit()=

A:{seqA1,seqA2,ack,b1,b2};B1:{bA1,ack,b1,b2}

@chSANack!A.B1 -> procA1()

[] A:{seqA1,seqA2,ack,b1,b2};B1:{bA1,ack,b1,b2};

B2:{bA2,ack,b1,b2}@chSANack!A.B1.B2 -> procA1()

[] A:{seqA1,seqA2,ack,b1,b2};B1:{bA1,ack,b1,b2};B2:{bA2,ack,b1,b2};

B3:{bA3,ack,b1,b2}@chSANack!A.B1.B2.B3 -> procA1()

[] A:{seqA1,seqA2,ack,b1,b2};B1:{bA1,ack,b1,b2};B2:{bA2,ack,b1,b2};

B3:{bA3,ack,b1,b2};B4:{bA4,ack,b1,b2}

@chSANack!A.B1.B2.B3.B4 -> procA1()

snd NACK to S, after the action chSANack?ack.b1.b2.b3

A1RcvNack-3Bit-SndNack2S-3Bit()=

A:{seqA1,seqA2,ack,b1,b2,b3};B1:{bA1,ack,b1,b2,b3}

@chSANack!A.B1 -> procA1()

[] A:{seqA1,seqA2,ack,b1,b2,b3};B1:{bA1,ack,b1,b2,b3};

B2:{bA2,ack,b1,b2,b3}@chSANack!A.B1.B2 -> procA1()

[] A:{seqA1,seqA2, ack,b1,b2,b3};B1:{bA1, ack,b1,b2,b3};

B2:{bA2, ack,b1,b2,b3};B3:{bA3,ack,b1,b2,b3}

@chSANack!A.B1.B2.B3 -> procA1()

[] A:{seqA1,seqA2,ack,b1,b2,b3};B1:{bA1,ack,b1,b2,b3};

B2:{bA2,ack,b1,b2,b3};B3:{bA3,ack,b1,b2,b3};

B4:{bA4,ack,b1,b2,b3}@chSANack!A.B1.B2.B3.B4 -> procA1()

snd NACK to S, after the action chSANack?ack.b1.b2.b3.b4:

A1RcvNack-4Bit-SndNack2S-4Bit()=

A:{seqA1,seqA2,ack,b1,b2,b3,b4};B1:{bA1,ack,b1,b2,b3,b4}

@chSANack!A.B1 -> procA1()

[] A:{seqA1,seqA2, ack,b1,b2,b3,b4};B1:{bA1, ack,b1,b2,b3,b4}.

B2:{bA2,ack,b1,b2,b3,b4}@chSANack!A.B1.B2 -> procA1()

[] A:{seqA1,seqA2,ack,b1,b2,b3,b4};B2:{bA1,ack,b1,b2,b3,b4};

89

B3:{bA2,ack,b1,b2,b3,b4};B4:{bA3,ack,b1,b2,b3,b4}

@chSANack!A.B1.B2.B3 -> procA1()

[] A:{seqA1,seqA2,ack,b1,b2,b3,b4};B1:{bA1,ack,b1,b2,b3,b4};

B2:{bA2,ack,b1,b2,b3,b4};B3:{bA3,ack,b1,b2,b3,b4};

B4:{bA4,ack,b1,b2,b3,b4}@chSANack!A.B1.B2.B3.B4 -> procA1()

The behavior of the attacker A1 is specified by process procA1() which is composed of
the non-deterministic choices of each sub-process.

ProcA1() =

A1NotRcvSndPck2I()

[] A1NotRcvSndAck2I() [] A1NotRcvSndNack2I()

[] A1NotRcvSndAck2S() [] A1NotRcvSndNack2S()

[] chSAPck?seq.ear.rtx ->

(

A1RcvPckSndPck2I() [] A1RcvPckSndAck2S()

[] A1RcvPckSndNack2I() [] A1RcvPckSndNack2S()

[] chIAPck!seq.ear.rtx -> procA1()

)

[] chIAPck?ack ->

(

A1RcvAckSndPck2I()

[] A1RcvAckSndAck2I() [] A1RcvAckSndAck2S()

[] A1RcvAckSndNack2I() [] A1RcvAckSndNack2S()

[] chSAAck!ack -> procA1()

)

[] chIAPck?ack.b1 ->

(

A1RcvNack-1Bit-SndPck2I() []

[] A1RcvNack-1Bit-SndAck2I() [] A1RcvNack-1Bit-SndAck2S()

[] A1RcvNack-1Bit-SndNack2I-1Bit() [] A1RcvNack-1Bit-SndNack2S-1Bit()

[] chSAAck!ack.b1 -> procA1()

)

[] chIAPck?ack.b1.b2 ->

(

A1RcvNack-2Bit-SndPck2I() []

[] A1RcvNack-2Bit-SndAck2I() [] A1RcvNack-2Bit-SndAck2S()

[] A1RcvNack-2Bit-SndNack2I-1Bit() [] A1RcvNack-2Bit-SndNack2I-2Bit()

[] A1RcvNack-2Bit-SndNack2S-1Bit() [] A1RcvNack-2Bit-SndNack2S-2Bit()

[] chSAAck!ack.b1.b2 -> procA1()

)

[] chIAPck?ack.b1.b2.b3 ->

(

A1RcvNack-3Bit-SndPck2I() []

[] A1RcvNack-3Bit-SndAck2I() [] A1RcvNack-4Bit-SndAck2S()

[] A1RcvNack-3Bit-SndNack2I-1Bit() [] A1RcvNack-3Bit-SndNack2I-2Bit()

[] A1RcvNack-3Bit-SndNack2I-3Bit()

[] A1RcvNack-3Bit-SndNack2S-1Bit() [] A1RcvNack-3Bit-SndNack2S-2Bit()

[] A1RcvNack-3Bit-SndNack2S-3Bit()

[] chSAAck!ack.b1.b2.b3 -> procA1()

)

[] chIAPck?ack.b1.b2.b3.b4 ->

(

A1RcvNack-4Bit-SndPck2I() []

[] A1RcvNack-4Bit-SndAck2I() [] A1RcvNack-4Bit-SndAck2S()

90

[] A1RcvNack-4Bit-SndNack2I-1Bit() [] A1RcvNack-4Bit-SndNack2I-2Bit()

[] A1RcvNack-4Bit-SndNack2I-3Bit() [] A1RcvNack-4Bit-SndNack2I-4Bit()

[] A1RcvNack-4Bit-SndNack2S-1Bit() [] A1RcvNack-4Bit-SndNack2S-2Bit()

[] A1RcvNack-4Bit-SndNack2S-3Bit() [] A1RcvNack-4Bit-SndNack2S-4Bit()

[] chSAAck!ack.b1.b2.b3.b4 -> procA1()

)

The last choice at each case/branch represents the scenario when the attacker follows the
protocol and forwards the correct messages to I and S.

The DTSN protocol with the second topology is specified as the parallel compositions of
each honest node and the attacker A1:

DTSNA1() = procS() ||| procA1() ||| procI() ||| procD()

2. For the second topology S - I - A2 - D, the scenarios and PAT codes are the same as in the case
of the first topology S - A1 - I - D except that the used channels at each corresponding step
are changed as follows: In the first topology, A1 receives data packets from S on chSAPck,
which is changed to chIAPck in the second case because now data packets come from I.
Similarly, the inputs on chSAAck and chSANack are changed to chDAAack and chDANack,
respectively. The outputs by A on chIAPck, chIAAck, chIANack, chSAAck and chSANack
are changed to chDAPck, chDAAck, chDANack, chIAAck and chIANack, respectively. The
attacker process procA2() describing the behavior of A2 is specified in the same way as
procA1(), but with different channels.

The DTSN protocol with the second topology is specified as the following parallel composi-
tions:

DTSNA2() = UpLayer() ||| procS() ||| procI() ||| procA2() ||| procD()

3. For the third topology S - A1 - I - A2 - D, we apply both the specification of processes A1
and A2. The DTSN protocol with the third topology is specified as the parallel compositions
of each honest node and the two attackers:

DTSNA1A2() = UpLayer() ||| procS() ||| procA1() ||| procI() ||| procA2() ||| procD()

C.2 Verifying the SDTP protocol

For the SDTP protocol, there are the same three topologies and the attacker’s behavior scenarios
are specified similarly as in case of DTSN, however, with different message formats. In the fol-
lowing, we only discuss the first some scenarios in detail, the rest parts are based on the similar
concepts and can be continued in a straightforward way:

1. For the topology S - A1 - I - D

• Without receiving any msg (SDTP): (no memory)

– A1 sends a data packet to I

PAT code:

chIAPck!seqA1.near.nrtx.seqA1.seqA1.Katt.seqA1.seqA1.Katt

[] chIAPck!seqA2.seqA2.earA.rtxA.seqA2.seqA2.Katt.seqA2.seqA2.Katt

[] chIAPck!seqA2.seqA2.earA.rtxA.seqA1.seqA1.Katt.seqA1.seqA1.Katt

[] chIAPck!seqA1.seqA1.earA.rtxA.seqA2.seqA2.Katt.seqA2.seqA2.Katt

[] chIAPck!seqA2.seqA2.earA.rtxA.seqA1.seqA1.Katt.seqA1.seqA1.Katt

[] chIAPck!seqA1.seqA1.earA.rtxA.seqA2.seqA2.Katt.seqA2.seqA2.Katt

(where earA = {0,1}; rtxA = {0,1})

91

The attacker, according to the data packet’s format in SDTP, includes combinations
of the ACK and NACK MACs in each sent message. Recall that the ACK MAC is
represented in the form seq.seq.Kack, where the first seq represents the data packet
with the sequence number seq, and the second part seq.Kack represents the the
ACK key corresponding to seq. Hence, the triple seq.seq.Kack is the ACK MAC
computed on the packet seq using the ACK key seq.Kack. Similarly, seq.seq.Knack
represents the NACK MAC of the packet seq. The attackers does not posses the two
master keys Kack and Knack of honest nodes, but only their keys Katt. Because
honest nodes are specified to waiting for these MACs format, the attackers should
compose the MACs in this format as well, namely, seqA.seqA.Katt.

• On receiving a data on chSAPck, chSAPck?seq.ear.rtx.seq1.seq2.Kack.seq3.seq4.Knack :

– A1 sends a data packet to I:
Regarding the options in the choice defined for DTSN, A1 includes the correspond-
ing ACK MAC and NACK MACs in each sent data packets. In addition, these
choice options are extended with the branches with the data packets including
the combinations of available ACK/NACK MACs seq1.seq2.Kack, seq3.seq4.Knack,
seqA1.seqA1.Katt, seqA2.seqA2.Katt, seqA2.seqA2.Katt, and seqA2.seqA2.Katt.

– A1 sends an ACK to I or S:
Similarly, A1 extends the sent ACK messages defined in DTSN with a combinations
of the incorrect ACK and NACK keys, seqA1.Katt and seqA2.Katt.

– A1 sends a NACK to I or S: For each of the four cases, A1 extends the sent NACK
messages defined in DTSN with a combinations of the incorrect ACK and NACK
keys, seqA1.Katt and seqA2.Katt.

The rest cases are defined in a very similar way, by extending the scenarios and the PAT codes
given in DTSN with different combinations of ACK/NACK MACs, and ACK/NACK keys.

In the following, we specify the bad states for DTSN and SDTP, and run the model-checking
if these bad states can be reached. The bad states, and the verification goals can be defined in
PAT’s language in the form of logical formulae and assertions, respectively.

Let the number of buffer entries that are freed at node I after receiving an ACK/NACK
message, be freenum, and the number of packets received in sequence by node D be acknum. The
bad state BadState1 specifies the state where (freenum > acknum).

PAT code:

#define BadState1 (freenum > acknum)

#assert SDTPA1A2() reaches BadState1

#assert SDTPsubA1subA2() reaches BadState1

In case the process SDTPA1A2() reaches BadState, it can be seen as a security hole or an
undesired property of SDTP, because according to the definition of I, it should always empty at
most as many entries as the ack number it receives in ACK/NACK messages, which is acknum.
Note that we can also define a bad state as (freenum > rcvnum), where rcvnum is the number of
received packets (not necessarily in sequence).

Let us denote SDTPsubA1subA2() as the process which, intead of the whole processes, in-
cludes different sub-processes of procA1() and procA2(). To shorten the code and reduce the
complexity of the verification, besides considering SDTPA1A2(), we also examine if there is any
SDTPsubA1subA2() that reaches BadState1. In case there is such a SDTPsubA1subA2() then it
follows that the “bigger” SDTPA1A2() reaches BadState1 as well.

After running the PAT model-checker with

subA1() =

A1NotRcvSndPck2I()

[] chSAPck?seq.ear.rtx ->

92

(

A1RcvPckSndPck2I() [] chIAPck!seq.ear.rtx -> subA1()

)

subA2() =

A1NotRcvSndAck2I()

[] chIAPck?seq.ear.rtx -> A1RcvPckSndAck2I()

SDTPsubA1subA2() =

UpLayer() ||| procS() ||| subA1() ||| procI() ||| subA2() ||| procD()

the tool returned Valid for the second assertion along with the following scenario:

1. A1 sends I a data pck seqA2.ear.rtx: chIAPck!seqA2.ear.rtx

2. I stores this pck and forwards it to A2: chIAPck!seqA2.ear.rtx

3. A2, after the input chIAPck?seqA2.ear.rtx, sends to I seqA2: chIAAck!seqA2

4. As result, I deletes all the packets stored in its buffer.

As the result, basically, the attackers A1 and A2 can always achieve that the buffer of I is
emptied, because by definition seqA2 is the largest possible sequence number, hence will be larger
than every seq number stored by I. In the worst case, node I is always prevented from caching
packets which corrupts the design goal of SDTP. For the first assertion, because of the complexity
of the attacker processes and the search algorithm used by PAT, the model-checker returns Valid
after a bigger amount of time and with a much longer attack trace. This long trace essentially
shows the same type of attack as the shorter one, detected in the first assertion.

Note that in case of SDTP, PAT returns an attack scenario where both S and I empty their
cache, with the unchanged subA2() and the subprocesses subA1()

subA1() =

A1NotRcvSndPck2I()

[] chSAPck?seq.ear.rtx ->

(

A1RcvPckSndPck2I() [] chIAPck!seq.ear.rtx -> subA1()

)

[] chIAAck?ack ->

(

A1RcvAckSndAck2S() [] chIAPck!ack -> subA1()

)

in which A1 forwards the ACK message it received from I to node S.
In the following we examine the existence of this vulnerability for the case of SDTP. We take

the same BadState1 and consider the similar assertions.

#assert SDTPA1A2() reaches BadState1

#assert SDTPsubA1subA2() reaches BadState1

SDTPA1A2() and SDTPsubA1subA2() are defined in the similar concept as in DTSN. After
running the PAT model-checker with

subA1() =

A1NotRcvSndPck2I()

[] chSAPck?seq.ear.rtx.seq1.seq2.Kack.seq3.seq4.Knack ->

(

A1RcvPckSndPck2I()

[] chIAPck!seq.ear.rtx.seq1.seq2.Kack.seq3.seq4.Knack -> subA1()

93

)

subA2() =

A1NotRcvSndAck2I()

[] chIAPck?seq.ear.rtx.seq1.seq2.Kack.seq3.seq4.Knack -> A1RcvPckSndAck2I()

SDTPsubA1subA2() =

UpLayer() ||| procS() ||| subA1() ||| procI() ||| subA2() ||| procD()

the tool returned Valid for the second assertion along with the following scenario:

1. A1 sends to I a data pck seqA2.ear.rtx with the corresponding

ACK MACs: seqA2.seqA2.Katt and NACK MACs: seqA2.seqA2.Katt

2. I stores this pck and forwards it (unchanged) to A2.

3. A2 received this packet and sends to I the ACK for seqA2:

seqA2.seqA2.Katt.seqA2.Katt with the 2 keys seqA2.Katt and seqA2.Katt

4. As result, I deletes all the packets stored in its buffer because

the key seqA2.Katt and the MACK seqA2.seqA2.Katt matches.

In summary, we get the result that both DTSN and SDTP are susceptible for this sandwich
style attack scenario.

C.3 Some additional vulnerabilities of DTSN and SDTP found with
PAT

To examine the next potential vulnerability of DTSN and SDTP, we specify the bad state in which
the buffer of node I is not empty, however, I does not re-transmit any message during the session.
In effect, the attackers can prevent DTSN and SDTP from achieving their design goal.

For the DTSN protocol, let us consider the following attack scenario: S sends data packets
to A1, each case A1 replaces (with probability 1) the correct sequence number in them to non-
existent numbers and sends these modified packets to I. Node I stores some of these packets and
forwards them to A2, who modified each packet back to the correct ones and sends it to D (we
assume that there is a side channel between node A1 and A2, hence, they can share information
with each other. This is modelled by using the same channels chIA, chSA for A1 and A2. Note
that in case we do not want any side channel between attackers we should use different channels
between A1, A2 and I, S for example chIA1, chSA1, chIA2, chSA2).

This can be seen as an attack scenario because node I will never retransmit, since it stores
non-existent sequence numbers, and according to the definition of DTSN, re-transmission only
happens when node I stores the particular packet. This means that the attackers can corrupt the
design goal of DTSN and bringing it back to the end-to-end retransmission scheme, which is an
undesired status.

The verification technique for this attack scenario using PAT is as follows:

1. In the first step, we show the (maximum) probability that node I stores at least one packet
sent by A1 is larger than 0 (or some percent). We run PAT for the assertion DTSNA1A2()
reaches goal with pmax, where goal is (BufIL ≥ 1) with BufIL representing the number of
occupied entries in the buffer.

2. In the second step

• We define DTSNA1A2InotRTX(), such version of DTSN in which node I never re-
transmit. The process is the same as the original DTSNA1A2() except that when
receiving ACK/NACK messages I does not re-transmit to D. Specifically, only the
output actions of the form IDpck!seq.ear.1 are removed from DTSNA1A2().

94

• We define DTSNA1A2Ircvdwith1() in which we set the probability that I receives a
packet sent by A1 to 1. Namely, we concentrate on the case when node I received at
least one packet fron A1, which can happen as it is already proved in the first point.

• We run PAT for the assertion DTSNA1A2Ircvdwith1() refines DTSNA1A2InotRTX(),
which returns Valid, meaning that there is not any event which DTSNA1A2Ircvdwith1()
can produce but DTSNA1A2InotRTX() cannot. Hence, the defined attackers can pre-
vent DTSN from reaching its goal.

• We define IDEALDTSNA1A2Ircvdwith1() which is the ideal version of DTSNA1A2Ircvdwith1()
in which the ideal versions of S, I and D are defined in the same way as in case of IDE-
ALDTSNA1A2().

• We run the model-checker and show that the assertion IDEALA1A2SDTPIrcvdwith1()
refines DTSNA1A2InotRTX() does not hold, because IDEALDTSNIrcvdwith1() can
produce the (input/output synch) event DIPck.seq.ear.1 while DTSNIrcvdwith1() can-
not.

For the SDTP protocol, let us consider the following attack scenario: S sends data packets to
A1, each case A1 replaces (with probability 1) the correct ACK/NACK MACs in them to incorrect
MACs and sends these modified packets to I. Node I stores some of these packets and forwards
them to A2, who replaces the two MACs in each packet to the correct ones (we assume that there
is a side channel between node A1 and A2). The scenario for each packet is as follows:

1. A1 receives a data packet “seq.ear.rtx.seq1.seq2.xKack.seq3.seq4.xKnack” from S;

2. A1 changes the correct ACK MAC “seq1.seq2.xKack” and NACK MACs “seq3.seq4.xKnack”
to its MACs, generated using its key: “seq.ear.rtx.seqA.seqA.Katt.seqA.seqA.Katt”, and
sends it to node I.

3. A2 (either after receiving the packet sent by I or not) sends the correct data packet (originally
sent by S) “seq.ear.rtx.seq1.seq2.xKack.seq3.seq4.xKnack” to D.

4. A2 forwards correctly the ACK/NACK messages that come from D to I.

This can be seen as an attack scenario because node I will never retransmit, since it stores
incorrect MACs, and according to the definition of SDTP, retransmission only happens when I
successfully verify the MACs. This means that the attackers can corrupt the design goal of SDTP
bringing it back to the end-to-end retransmission which SDTP aimed to prevent.

The verification technique for this attack scenario using PAT is as follows:

1. In the first step, we show the (maximum) probability that node I stores at least one packet
sent by A1 is larger than 0 (or some percent). We run PAT for the assertion SDTPA1A2()
reaches goal with pmax, where goal is (BufIL ≥ 1) with BufIL representing the number of
occupied entries in the buffer.

2. In the second step

• We define SDTPA1A2InotRTX(), such version of SDTP in which node I never re-
transmit. The process is the same as the original SDTPA1A2() except that when
receiving ACK/NACK messages I does not re-transmit to D. Specifically, only the
output actions of the form IDpck!seq.ear.1.seq.seq.Kack.seq.seq.Knack for some seq and
ear, are removed from SDTPA1A2().

• We define SDTPA1A2Ircvdwith1() in which we set the probability that I receives a
packet sent by A1 to 1. Namely, we concentrate on the case when node I received at
least one packet fron A1, which can happen as it is already proved in the first point.

95

• We run PAT for the assertion SDTPA1A2Ircvdwith1() refines SDTPA1A2InotRTX(),
which returns Valid, meaning that there is not any event which SDTPA1A2Ircvdwith1()
can produce but SDTPA1A2InotRTX() cannot. Hence, the defined attackers can pre-
vent SDTP from reaching its goal.

• We define IDEALSDTPA1A2Ircvdwith1() which is the ideal version of SDTPA1A2Ircvdwith1()
in which the ideal versions of S, I and D are defined in the same way as in case of IDE-
ALSDTPA1A2().

• We run the model-checker and show that the assertion IDEALA1A2SDTPIrcvdwith1()
refines SDTPA1A2InotRTX() does not hold, because IDEALSDTPIrcvdwith1() can
produce the (input/output synch) event DIPck.seq.ear.1.seq.seq.Kack.seq.seq.Knack for
some seq and ear, while SDTPIrcvdwith1() cannot.

96

