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Abstract

In the public key cryptosystems, revocation functionality is required when a secret key is corrupted
by hacking or the period of a contract expires. In the public key infrastructure setting, numerous
solutions have been proposed, and in the Identity Based Encryption (IBE) setting, a recent series of
papers proposed revocable IBE schemes. Delegation of key generation is also an important functionality
in cryptography from a practical standpoint since it allows reduction of excessive workload for a single
key generation authority. Although efficient solutions for either revocation or delegation of key generation
in IBE systems have been proposed, an important open problem is efficiently delegating both the key
generation and revocation functionalities in IBE systems. Libert and Vergnaud, for instance, left this
as an open problem in their CT-RSA 2009 paper. In this paper, we propose the first solution for this
problem. We prove the selective-ID security of our proposal under the Decisional Bilinear Diffie-Hellman
assumption in the standard model.

1 Introduction

Shamir introduced the concept of the Identity-based Encryption (IBE) scheme, a public key encryption
scheme allowing any bit-string (e.g., e-mail address) to be a public key of a user that chooses such a bit-
string [24]. Since Boneh and Franklin’s first realization of IBE using bilinear pairings over elliptic curves,
IBE systems have been applied in numerous applications. Several variations of IBE systems have also been
proposed for adding other functionalities. In particular, the hierarchical identity-based encryption (HIBE)
scheme allows the key generation center (KGC) to delegate the key generation functionality to users [11]
and the revocable IBE (RIBE) scheme allows the KGC to efficiently revoke users for each time period [2].

Revocation Functionality in IBE. In public key cryptosystems, we need revocation functionality when
a secret key is corrupted by hacking or the period of a contract expires. In the public key infrastructure
setting, numerous solutions have been proposed, and in the IBE setting, a series of recent papers has proposed
scalable RIBE schemes since Boldyreva et al. [2]. In fact, Boneh and Franklin [5] already proposed a trivial
solution for revocation functionality, wherein new decryption keys are issued for each time period. However,
their solution introduces huge overheads for the KGC that are linearly increased in the number of users.
Boldyreva et al. and all subsequent works were aimed at constructing a scalable RIBE scheme, that is, the
KGC’s overhead increases logarithmically in the number of users. All proposed scalable RIBE schemes used
the same methodology for revocation by using a binary tree structure. Each user ID is assigned to a leaf node
ζID of the binary tree structure and has keys corresponding to the nodes on the path between the assigned
leaf node and the root node. By using the technique called the Complete Subtree (CS) method [20], which is
widely accepted for broadcast encryption, the KGC broadcasts the key update for each time period (i.e., no
secure channel is required in this phase) such that only non-revoked users can generate the decryption key
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for that time period from their secret key and the key update. For a non-revoked user, there is at least one
subkey among the logN size key, where N is the maximum number of users. Since the CS method is secure
against colluding and allows short key updates, the resulting RIBE scheme is well scalable and secure.1

Delegation Functionality in IBE. For a large network, a single KGC has an excessive workload for per-
forming computationally expensive key generation and establishing secure channels to transmit each user’s
secret key. To mitigate this problem, Horwitz and Lynn [14] introduced the concept of HIBE such that the
responsibility for key generation is distributed to the lower-level KGC by delegating key generation function-
ality. Numerous constructions for HIBE schemes and variants with additional properties have subsequently
been proposed [11, 3, 4, 6, 10, 23, 25, 16].

Delegation of Both Key Generation and Revocation Functionalities in IBE. Although IBE schemes
with either efficient revocation or efficient delegation for key generation functionality have been proposed, it
is non-trivial to achieve both functionalities at the same time, and in fact Libert and Vergnaud left this as an
open problem at CT-RSA 2009 [18]. We simply call such a scheme having both functionalities a Revocable
HIBE (RHIBE) scheme. There are some difficulties in achieving RHIBE.

1. Trivial approaches will lead to exponentially large secret keys in the corresponding hierarchical level.

2. Key generations and key updates are recursively defined: this leads some difficulty in the security
proof.

All existing scalable RIBE schemes utilize binary tree structures, that is the CS method, for revocation.
In the scalable RIBE scheme using the CS method, a secret key of each user consists of logN subkeys, where
N is the number of all users and at least one subkey of a non-revoked user ID can be used to generate a
decryption key dkID,T from the key update kuT on a time period T. If we extend the RIBE scheme for the
RHIBE scheme in a natural way, the second-level user has to have (logN)2 subkeys since one of the subkeys
of the paraent’s key can be used in each time period so that a child should have a logN subkey for each
parent’s subkey. In general, ℓ-level users have (logN)ℓ subkeys, so the size of the secret key exponentially
grows in the corresponding hierarchical depth.

For constructing RHIBE, if we follow the same strategy used by all scalable RIBE schemes, KGC may not
be able to directly generate secret keys of descendants (except for the first-level user). Each intermediate-
level user’s secret key is generated according to the shape of the binary tree structure, which is managed by
its parent. However, the KGC does not know such a binary tree, so the KGC cannot create secret keys of
intermediate-level users. (Note that the KGC can generate decryption keys for all descendants.) Therefore,
the secret key and key updates have to be recursively defined. This makes the situation more complicated. In
particular, in the security model the adversary can query secret keys of descendants of the challenge identity,
but it is non-trivial to recursively generate such secret keys without knowing the challenge identity’s secret
key. We explain the detailed difficulty in Section 4.

Our Contribution. In this paper, we study a way to efficiently delegate both key generation and revocation
functionalities in the IBE system. In particular, we propose the first realization of RHIBE. Our RHIBE
construction is based on the Boneh-Boyen HIBE (BB-HIBE) scheme [3]. We carefully deal with the difficulties
mentioned above. The ciphertext size of our RHIBE is almost the same as that of the BB-HIBE (only one
additional group element is required) and the revocation cost of each user is the same as that of the Boldyreva
et al. one. Nevertheless, our scheme enables hierarchical structures of identities. Moreover, a user (of a
level ℓ) needs to manage O(ℓ2 logN)-size secret key (polynomial in the hierarchical depth). Our RHIBE is
selective-ID secure under the Decisional Bilinear Diffie-Hellman (DBDH) assumption in the standard model.

Related Work. Boldyreva et al. [2] proposed the first RIBE by applying the fuzzy IBE scheme [21].
Thanks to the collusion resistance of the underlying fuzzy IBE, no revoked users can compute a decryption
key from their own secret key and publicly available key update information. Moreover, by applying the CS

1The security model for the RIBE scheme is almost equal to that of the conventional IBE scheme. The only difference is
that the adversary of the RIBE scheme is allowed to query for the challenge identity ID∗, but in this case the challenge identity
should be revoked on the challenge time T∗.
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method [20], the Boldyreva et al. scheme is scalable in the sense that the costs of the KGC logarithmically
depend on the number of users. Although their scheme is secure under a relatively weaker notion, called
selective-ID security, Libert and Vergnaud [18] proposed adaptive-ID secure RIBE by applying a variant of
the Waters IBE scheme [19]. In the proof of the Libert-Vergnaud RIBE scheme, the simulator can construct
all the secret keys (as in the Gentry IBE [9]) to answer the secret key query for the challenge user. Recently,
a RIBE scheme from lattices [7] was proposed.

In R(H)IBE, each decryption key is computed from the long-term secret key and key update information.
Dodis et al. considered a similar functionality which we call key-insulated PKE [8, 1, 17] and IBE [13, 12, 26].
A user computes its decryption key from the long-term secret key and a helper key served in physically
insulated storage. A difference between key-insulated PKE and RIBE is that the former requires a secure
channel between a user and the storage for every key update, but the latter needs a secure channel only
once for transmitting each user’s secret key from its ancestor. Moreover, since each helper key is generated
for each user, the total size of the helper key linearly depends on the number of total users, whereas it
logarithmically depends on the number of total (i.e., non-revoked) users in RIBE.

Outline. This paper is organized as follows. The next section gives preliminaries. In Section 3, we define a
syntax and a security model for the RHIBE scheme and we propose our RHIBE construction in Section 4.
Lastly, we analyze the security of the proposed scheme and give a conclusion with interesting open problems.

2 Preliminaries

This section gives the definition of the bilinear groups, the DBDH assumption, the KUNode algorithm [2],
and the definition of HIBE, and introduce the BB-HIBE scheme.

Definition 2.1 (Bilinear Groups). The bilinear group generator G(·) is an algorithm that takes as input a
security parameter λ and outputs a bilinear group (p,G,Gt, e), where p is a prime of size 2λ, G and Gt are
cyclic groups of order p, and e is an efficiently computable bilinear map e : G×G→ GT with

• Bilinearity : for all u, u′, v, v′ ∈ G, e(uu′, v) = e(u, v)e(u′, v) and e(u, vv′) = e(u, v)e(u, v′),

• Non-degeneracy : for a generator g of G, e(g, g) ̸= 1Gt , where 1Gt is identity element in Gt.

Definition 2.2 (Decision Bilinear Diffie-Hellman (DBDH) Assumption). Given a bilinear group (p,G,Gt, e)
generated by G(λ), define two distributions D0(λ) = (g, ga, gb, gc, e(g, g)abc) and D1(λ) = (g, ga, gb, gc, e(g, g)z),

where g
$← G and a, b, c, z

$← Zp. The DBDH problem in the bilinear group (p,G,Gt, e) is to decide a bit b

from given Db, where b
$← {0, 1}. The advantage of A in solving the DBDH problem in the bilinear group

(p,G,Gt, e) is defined by

AdvDBDH
G,A (λ) =

∣∣∣Pr[A(D0(λ))→ 1]− Pr[A(D1(λ))→ 1]
∣∣∣.

We say that the DBDH assumption holds in the bilinear group (p,G,Gt, e) if no Probabilistic Polynomial
Time (PPT) algorithm has a non-negligible advantage in solving the DBDH problem in the bilinear group
(p,G,Gt, e).

Our RHIBE scheme is based on the BB-HIBE scheme [3], which is IND-sID-CPA secure under the
DBDH assumption. The revocation method in each level of our construction follows Boldyreva et al.’s way
using binary tree structure. The following KUNode algorithm is essentially used for revoking users in our
construction.

Definition 2.3 (The KUNode Algorithm [2]). This algorithm takes as input a binary tree BT, revocation list
RL, and time T , and outputs a set of nodes. A formal description of this algorithm is as follows: If x is a
non-leaf node, then xleft and xright denote the left and right child of x, respectively. Each user is assigned
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Figure 1: Example of KUNode(BT, RL, T ): We revoke the user u4 (that is assigned to x11). Then, all users,
except u4, have a node x ∈ Y = {x3, x4, x10} (we checked these nodes) that is contained in the set of nodes
on the path from each user’s assigned node to root.

to a leaf node. If a user (that is assigned to ζ) is revoked on time T , then (ζ, T ) ∈ RL. Path(ζ) denotes the
set of nodes on the path from ζ to root. The description of KUNode is given below.

KUNode(BT, RL, T ) :

X, Y← ∅;
∀(ζ, Ti) ∈ RL

If Ti ≤ T then add Path(ζi) to X

∀x ∈ X

If xleft ̸∈ X then add xleft to Y

If xright ̸∈ X then add xright to Y

If Y = ∅ then add root to Y

Return Y

We give a simple example of KUNode in the fugure 1.
Next, we define HIBE and introduce the BB-HIBE scheme as follows.

Definition 2.4. A hierarchical identity-based encryption (HIBE) consists of four algorithms Setup, KeyGen2,
Enc, and Dec. The specification of each algorithm is as follows.

Setup(λ,N,L): It takes a security parameter λ, the maximum number of users N , and the maximum length
of the hierarchy of identity L as input. Then, it outputs a master public key mpk and a master secret
key msk. We assume that the message space M and the identity space I (which is an union of all
length of identity set), the time space T , and the ciphertext space CT are contained in mpk.

KeyGen(skID|ℓ , ID|ℓ+1,mpk): On input of a private key skID|ℓ , a children’s identity ID|ℓ+1 and the master
public key mpk, it outputs a private key skID|ℓ+1

.

Enc(ID|ℓ,M,mpk): This algorithm takes an identity ID|ℓ ∈ I, a message M ∈ M, and the master public
key mpk as input, outputs a ciphertexts CT ∈ CT .

Dec(skID|ℓ ,CT,mpk): Given a private key skID|ℓ , a ciphertext CT ∈ CT , and the master public key mpk, it
outputs a message M ∈M or ⊥ (invalid ciphertext).

2We equate the key derivation algorithm and the KeyGen algorithm in this paper.
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Definition 2.5 (IND-sID-CPA). Let HIBE=(Setup, KeyGen, Enc, Dec) be a HIBE scheme. The KeyGen(·)
oracle is defined as follows.

KeyGen(·) is the private key generation oracle. It takes an identity ID|ℓ of length ℓ as input, runs the KeyGen
algorithm to get the private key skID|ℓ and returns skID|ℓ .

Next, we define the security of HIBE, called the IND-sID-CPA security.

ExpIND-sID-CPA
HIBE,A (λ)

(ID∗
|ℓ∗)← A(state)

(mpk,msk)← Setup(λ,N,L)
(M∗

0,M
∗
1, state)← AKeyGen(·)(state,mpk)

b
$← {0, 1}

CT∗ ← Enc(ID∗
|ℓ∗ ,M

∗
b ,mpk)

b′ ← AKeyGen(·)(state,mpk,CT∗)

Return

{
1 if b = b′

0 otherwise
.

There are conditions that A should follow.

1. The challenge messages M∗
0 and M∗

1 should have the same length.

2. No KeyGen(·) is queried on the challenge identity ID∗
|ℓ∗ or its ancestors.

The advantage of the adversary A is defined as

AdvIND-sID-CPA
HIBE,A (λ) =

∣∣∣Pr[ExpIND-sID-CPA
HIBE,A (λ) = 1]− 1

2

∣∣∣.
If the function AdvIND-sID-CPA

HIBE,A is negligible in the security parameter λ, the we say that the scheme HIBE
is IND-sID-CPA secure.

The BB-HIBE scheme is described as follows.

Setup(λ,N,L): WLOG, we assume that N = 2n for some n. Randomly choose g, g2, h1, . . . , hL
$← G and

α
$← Zp. Set mpk = {g, g1 = gα, g2, h1 . . . , hL}, msk = {gα2 }.

KeyGen(skID|ℓ , ID|ℓ+1,mpk): Let Fℓ(x) := gx1hℓ for ℓ ∈ [1, L].

ℓ = 0 : Note that skID|1 = msk. Choose a random value r1
$← Zp, and return skID|1 = (msk ·

F1(I1)
r1 , gr1), where ID|1 = I1.

ℓ > 0 : Parse skID|ℓ = (d′, d1, . . . , dℓ). Choose a random value rℓ+1
$← Zp, and return skID|ℓ+1

=
(d′ · Fℓ+1(Iℓ+1)

rℓ+1 , d1, . . . , dℓ, g
rℓ+1), where ID|ℓ+1 = (I1, . . . , Iℓ+1).

Enc(ID|ℓ,M,mpk): Choose a random value t
$← Zp and return

CT = (M · e(g1, g2)t, gt, F1(I1)
t, . . . , Fℓ(Iℓ)

t).

Dec(skID|ℓ ,CT,mpk): Parse CT = (A,B,C1, . . . , Cℓ) and skID|ℓ = (d′, d1, . . . , dℓ) and return

A ·
∏ℓ

i=1 e(Ci, di)

e(B, d′)
= M.

Theorem 2.1 ([3]). If the DBDH assumption holds in the bilinear group (p,G,Gt, e), then the BB-HIBE
scheme over (p,G,Gt, e) is IND-sID-CPA secure.
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Figure 2: The Hierarchical Structures: Each user (except the last level user) in the hierarchy of IBE system
has his own binary tree for revocation functionality.

3 Syntax and Security Model of RHIBE

We give formal definitions of the hierarchical identity-based encryption with efficient revocation scheme, which
is simply called the Revocable Hierarchical Identity-Based Encryption (RHIBE) scheme, and its security by
extending those of the revocable IBE in [2]. An RHIBE scheme consists of seven algorithms: Setup, KeyGen,
KeyUp, DKG, Enc, Dec, and Revk. Roughly speaking, the Setup algorithm is run by the trusted authority
called the Key Generation Center (KGC) for system parameters and a corresponding master secret key.
When a user (possibly the KGC) generates a child’s key, it can run the KeyGen algorithm with its secret key
(the master secret key for the KGC) and a child’s identity. If some users are revoked, the identities of revoked
users should be updated along with each user’s revocation time period. A (ℓ− 1)-th level user ID|ℓ−1 issues
key update information kuID|ℓ−1,T at every time period T by running the KeyUp algorithm. This information
is managed by the binary tree BTID|ℓ−1

which is served in the state stID|ℓ−1
. While performing revocation,

senders do not need to be updated and can encrypt a message using the receiver’s identity, a time period
that the receiver can decrypt, and the Enc algorithm. Every user ID|ℓ that is not revoked on time T can
create a decryption key dkIDℓ,T from kuID|ℓ−1,T by running the DKG algorithm, so that only a non-revoked
user ID|ℓ (on time T) can decrypt an encrypted message for the identity ID|ℓ and the time period T by using
the decryption key dkID|ℓ,T and the Dec algorithm. Figure 2 explains the hierarchical structure with binary
tree structures and we also provide the formal syntax of the RHIBE scheme below.

Definition 3.1. An RHIBE scheme consists of seven algorithms: Setup, KeyGen, KeyUp, DKG, Enc, Dec,
and Revk. The specification of each algorithm is as follows:

Setup(λ,N,L): It takes a security parameter λ, maximum number of users in each level N , and maximum
length of the hierarchy of identity L as input. It then outputs a master public key mpk, a master secret
key msk, initial state st0, and an empty revocation list RL. We assume that the message spaceM and
the identity space I (which is a union of all levels of identities), time space T , and ciphertext space
CT are contained in mpk.
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KeyGen(skID|ℓ , stID|ℓ , ID|ℓ+1,mpk): On input of a private key skID|ℓ and state stID|ℓ , children’s identity ID|ℓ+1

and the master public key mpk, it outputs a private key skID|ℓ+1
and updates state stID|ℓ .

KeyUp(skID|ℓ ,T,RLID|ℓ , stID|ℓ , kuID|ℓ−1,T,mpk): It takes a private key skID|ℓ of ID|ℓ ∈ I, key update time
T ∈ T , a revocation list RLID|ℓ , state stID|ℓ of ID|ℓ, key update kuID|ℓ−1,T published by ID|ℓ−1, and the
master public key mpk as input, and outputs a key update kuID|ℓ,T or ⊥ (when ID|ℓ is revoked).

DKG(skID|ℓ , kuID|ℓ−1,T,T,mpk): Given private key skID|ℓ , key update kuID|ℓ−1,T, and the master public key
mpk, it outputs a decryption key dkID|ℓ,T that can be used during a time period T or ⊥ that means the
identity ID|ℓ is revoked for some time period T′ ≤ T.

Enc(ID|ℓ,T,M,mpk): This algorithm takes an identity ID|ℓ ∈ I, time T ∈ T , a message M ∈ M, and the
master public key mpk as input, and outputs a ciphertext CT ∈ CT .

Dec(dkID|ℓ,T,CT,mpk): Given a decryption key dkID|ℓ,T, a ciphertext CT ∈ CT , and the master public key
mpk, it outputs a message M ∈M or ⊥ (invalid ciphertext).

Revk(ID|ℓ,T,RLID|ℓ−1
, stID|ℓ−1

): It takes an identity ID|ℓ ∈ I, time T ∈ T , the revocation list RLID|ℓ−1

managed by ID|ℓ−1 and state stID|ℓ−1
, and updates the revocation list RLID|ℓ−1

by adding ID|ℓ as a
revoked user at time T.

Note that two algorithms KeyGen and Revk are stateful, and if ID|ℓ is revoked at time period T, then all
descendants should be revoked at the time T. For rigorous definition, if ℓ = 0, then let skID|0 = msk,
stID|0 = st0, RLID|0 = RL0, kuID|−1,t be msk, and kuID|0,T = ku0,T.

We require the following correctness condition: For any output (mpk,msk) of Setup, any message M ∈M,
any identity ID|ℓ (of length ℓ ≤ L), any time T ∈ T , all possible states {stID|i}i∈[0,ℓ−1] and revocation lists
{RLID|i}i∈[0,ℓ−1], if ID|ℓ is not revoked (and so all ancestors of ID|ℓ are not revoked) by time T, the following
probability should be 1.

Pr
[
Dec(dkID|ℓ ,Enc(ID|ℓ,T,M,mpk),mpk) = M

∣∣∣
for i ∈ [1, ℓ], KeyGen(skID|i−1

, stID|i−1
, ID|i,mpk)→ skID|i ,

KeyUp(skID|i−1
,T,RLID|i−1

, stID|i−1
, kuID|i−2,T,mpk)→ kuID|i−1,T;

DKG(skID|ℓ , kuID|ℓ−1,T,mpk)→ dkID|ℓ,T.

]
We provide the security definition for a revocable HIBE scheme by extending Boldyreva et al.’s security

definition for a revocable IBE scheme [2]. Our security definition allows the adversary to access several
oracles: KeyGen, KeyUp, and Revk. We provide the precise definition of the oracles and new security notion
for RHIBE using such oracles.

Definition 3.2 (IND-sRID-CPA). Let RHIBE=(Setup, KeyGen, KeyUp, DKG, Enc, Dec, Revk) be an
RHIBE scheme. First, we define three oracles.

KeyGen(·) is the private key generation oracle. It takes an identity ID|ℓ of length ℓ as input, runs the KeyGen
algorithm to get the private key skID|ℓ , and returns skID|ℓ .

KeyUp(·, ·) is the key update oracle that takes time T and an identity ID|ℓ of length ℓ as input, runs the
KeyUp algorithm to obtain the key update kuID|ℓ,T, and returns it.

Revk(·, ·, ·) is the revocation oracle. It takes an identity ID|ℓ of length ℓ, its child identity ID|ℓ+1, and time
T as input, runs the the Revk algorithm to revoke ID|ℓ+1, and updates RLID|ℓ .

We assume that all oracles share a state. Next, we define the security of RHIBE, called IND-sRID-CPA
security.
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ExpIND-sRID-CPA
RHIBE,A (λ)

(ID∗
|ℓ∗ ,T

∗, state)← A(state)
(mpk,msk,RL0, st0)← Setup(λ,N,L)
(M∗

0,M
∗
1, state)← AKeyGen(·),KeyUp(·,·),Revk(·,·,·)(state,mpk)

b
$← {0, 1}

CT∗ ← Enc(ID∗
|ℓ∗ ,T

∗,M∗
b ,mpk)

b′ ← AKeyGen(·),KeyUp(·,·),Revk(·,·,·)(state,mpk,CT∗)

Return

{
1 if b = b′

0 otherwise
.

There are three conditions that A should follow.

1. The challenge messages M∗
0 and M∗

1 should have the same length.

2. KeyUp(·, ·) and Revk(·, ·, ·) can be queried at a time that is greater than or equal to the time of all
previous queries; i.e. the adversary is allowed to query only in non-decreasing order of time. Also,
Revk(·, ·, ·) cannot be queried on a time T if KeyUp(·, ·) was queried on T.

3. If KeyGen(·) is queried on ID∗
|ℓ, which is an ancestor’s identity of the challenge identity (that is, ℓ < ℓ∗),

then Revk(·, ·, ·) must be queried to revoke ID∗
|ℓ at a time T for some T ≤ T∗; hence, ID∗

|ℓ∗ is also directly
revoked on the time T < T∗.

The advantage of the adversary A is defined as

AdvIND-sRID-CPA
RHIBE,A (λ) =

∣∣∣Pr[ExpIND-sRID-CPA
RHIBE,A (λ) = 1]− 1

2

∣∣∣.
If the function AdvIND-sRID-CPA

RHIBE,A is negligible in the security parameter λ, we say that the scheme RHIBE
is IND-sRID-CPA secure.

4 Our Construction

In this section, we propose our main construction for the RHIBE scheme. For revocation, we use the same
methodology using binary structures as that used in all prior scalable RIBE schemes. In the RHIBE scheme,
each intermediate level user ID|ℓ−1 has its own binary tree BTID|ℓ−1

for revoking capabilities and issues the
key update kuID|ℓ−1,T at each time period T. Then, a non-revoked child user ID|ℓ can generate dkID|ℓ,T from
the key update kuID|ℓ−1,T and its secret key skID|ℓ .

Before providing our construction, we first define several notations for simple description of the proposed
construction, which is given in Table 1. Our RHIBE scheme is based on the BB-HIBE scheme [3]. As we
mentioned before, a trivial approach for delegation of revocation functionality will end up with exponential
secret key size in the hierarchical level. Therefore, our main contribution is to propose an efficient way of
dealing with delegation of revoking capabilities and show that the proposed methodology does not harm the
semantic security of the underlying BB-HIBE scheme; that is, in the security proof, we give a reduction to
the IND-sID-CPA security of the BB-HIBE scheme.

For a decryption key of a user ID|ℓ at a time period T, we use a hierarchical extension as follows:

dkID|ℓ,T =
(
gα2 · (gT1 h0)

s0 ·
∏

i∈[1,ℓ]

(gIi1 hi)
si , gs0 , gs1 . . . , gsℓ

)
∈ Gℓ+2,

where g, g1, g2, h0, . . . , hℓ are public parameters, gα2 is a master key, ID|ℓ = (I1, . . . , Iℓ), and s0, . . . , sℓ are
random integers chosen from Zp. If we use the notation in Table 1, then

dkID|ℓ,T =
(
gα2 ·
−→
F (T, ID|ℓ)

−→s , g
−→s
)
where −→s = (s0, . . . , sℓ).
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Preparation Notation Meaning

For g ∈ G and −→r = (r1, . . . , rm) ∈ Zm
p , g

−→r (gr1 , . . . , grm) ∈ Gm

For (g1, . . . , gm) ∈ Gm

and −→r = (r1, . . . , rm) ∈ Zm
p , (g1, . . . , gm)

−→r ∏m
i=1 g

ri
i ∈ G

For g
−→r = (gr1 , . . . , grm)

and g
−→s = (gs1 , . . . , gsm) ∈ Gm, g

−→r ◦ g
−→s (gr1 · gs1 , . . . , grm · gsm) ∈ Gm

For g
−→r 1 , . . . , g

−→r m ∈ Gm,
⊗m

i=1 g
−→r i g

−→r 1 ◦ · · · ◦ g
−→r m ∈ Gm

For g1, h0, . . . , hL ∈ G and ∀i ∈ [0, L], Fi(x) gx1hi ∈ G
For T ∈ T and ID|ℓ = (I1, . . . , Iℓ) ∈ I,

−→
F (T, ID|ℓ) (F0(T), F1(I1), . . . , Fℓ(Iℓ)) ∈ Gℓ+1

For ID|ℓ = (I1, . . . , Iℓ) ∈ I,
−→
F (∗, ID|ℓ) (1G, F1(I1), . . . , Fℓ(Iℓ)) ∈ Gℓ+1

Table 1: Quick notations

Note that
−→
F (T, ID|ℓ) is a vector in Gℓ+1 so that

−→
F (T, ID|ℓ)

−→s is a group element in G. Information about
decryption keys are divided into secret keys and key updates. In particular, the master key gα2 is randomly
divided into two partsRθ and gα2 /Rθ, where we will explain θ later. The secret key of ID|ℓ contains information
about (

Rθ ·
∏

i∈[1,ℓ]

(gIi1 hi)
si , 1G, g

s1 . . . , gsℓ
)
=

(
Rθ
−→
F (∗, ID|ℓ)

−→s ′
, g

−→s ′
)
,

where −→s ′ = (0, s1, . . . , sℓ) ∈ Zℓ+1
p , and the key update for a time T, which is managed by ID|ℓ−1, contains

information about (
(gα2 /Rθ) · (gT1 h0)

s0 ·
∏

i∈[1,ℓ−1]

(gIi1 hi)
si , gs0 , . . . , gsℓ−1 , 1G

)
=

(
(gα2 /Rθ) ·

−→
F (T, ID|ℓ−1)

−→s ′′
, g

−→s ′′
)
,

where −→s ′′ = (s0, s1, . . . , sℓ−1, 0) ∈ Zℓ+1
p . Let Rθ be assigned in the node θ in BTID|ℓ−1

, ζID|ℓ be the leaf
node assigned for ID|ℓ in BTID|ℓ−1

, and Path(ζID|ℓ) be the path from ζID|ℓ to the root node in BTID|ℓ−1
.

If skID|ℓ contains the above form for all θ on Path(ζID|ℓ) and key update on time T contains the above
form for all θ in KUNode(BTID|ℓ−1

,RLID|ℓ−1
,T), then a non-revoked user ID|ℓ can generate the corresponding

decryption key by a simple product of the above two forms since there exists at least one θ in Path(ζID|ℓ) ∩
KUNode(BTID|ℓ−1

,RLID|ℓ−1
,T).

If we consider revocable IBE schemes, the above method is sufficient. However, when constructing the
RHIBE scheme, we should consider the fact that users can generate valid key updates for children only
during the time period in which they are not revoked. This implies that both secret keys and key updates
should contain information about all ancestor’s secret keys and key updates. To this end, we recursively
define children’s secret keys and key updates from parents’ secret key and key update. Note that if we use
binary tree structures for revocation, the KGC cannot directly generate secret keys of descendants (except
for the first-level user) since the master key parts of decryption keys of descendants are randomly divided into
two parts (each for the secret key and key update) according to the binary tree structure managed by their
parents, which are also intermediate-level users, but the KGC does not know of such a binary tree structure.
Therefore, the secret key and key updates have to be recursively defined, which makes the situation more
complicated.

A simple example helps to explain our construction for delegating the revocation functionality. Assume
that a user ID|1 = I1 is not revoked on time T. The secret key of ID|1 and the key update ku0,T generated
by the KGC are

{(Rθ · (gI11 h1)
γ1 , gγ1)}θ∈Path(ζID|1 )

and {((gα2 /Rθ) · (gT1 h0)
γ0 , gγ0)}θ∈KUNode(BT0,RL0,T),

respectively, where ζID|1 is a leaf node assigned for ID|1 by the KGC. The user ID|1 has its own binary
tree structure BTID|1 for revocation functionality. The revocation methodology used by ID|1 is the same as
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for the KGC. Whenever a child ID|2 registers in the system, it randomly assigns a leaf node ζID|2 of BTID|1

for ID|2. For all nodes θ′ in Path(ζID|2), assign random values Rθ′ . Assume that the secret key of ID|1 is

{(d′θ, dθ) := (Rθ · (gI11 h1)
γ1 , gγ1)}θ∈Path(ζID|1 )

. The secret key skID|2 of a child ID|2 := (I1, I2) is generated as

{(d′θ · (g
I2
1 h2)

γ2 , 1G, dθ, gγ2)}θ∈Path(ζID|1 )

and {(Rθ′ ·
∏

i∈[1,2](g
Ii
1 hi)

γ′
i , 1G, gγ

′
1 , gγ

′
2)}θ′∈Path(ζID|2 )

.

We use notation
−→
d

(1,j)
ID|2

to denote a vector (d′θ · (g
I2
1 h2)

s2 , 1G, dθ, gs2) ∈ G4, where θ is the j-th level node,

and notation
−→
d

(2,j)
ID|2

to denote a vector (Rθ′ ·
∏

i∈[1,2](g
Ii
1 hi)

γi , 1G, gγ1 , gγ2) ∈ G4, where θ′ is the j-th level

node.
The key update on T is computed as follows. Assume that ID|1 is not revoked on time T. Then, ID|1

can choose a node θ in Path(ζID|1) ∩ KUNode(BT0,RL0,T). Let Lv1 be the level of θ in BT0. Note that all
nodes in Path(ζID|1) have different levels, so we can identify nodes from their corresponding levels. Then,

(f1, f2) := ((gα2 /Rθ) · (gT1 h0)
s0 , gs0) is a valid key update for the first level users including ID|1, and the key

update for children of ID|1 is generated as

{({Lv1}, (f1/Rθ′)(gI11 h1)
δ, f2, gδ, 1G)}θ′∈KUNode(BTID|1 ,RLID|1 ,T)

.

We use notation
−→
f ID|1,θ′ to denote a vector ((f1/Rθ′)(gI11 h1)

δ, f2, gδ, 1G) ∈ G4.
The decryption key of ID|2 on time T is generated as follows. First, it identifies the subkey part of skID|1

that is used by its parent for delegation on time T. (It can see from Lv1 in kuID|1,T.) Let θ be the level
Lv1 node on Path(ζID|1). Next, if ID|2 = (I1, I2) is not revoked, it can choose a node θ′ on Path(ζID|2) ∩
KUNode(BTID|1 ,RLID|1 ,T). Let Lv2 be the level of θ′. It then generates the decryption key as⊗2

i=1(
−→
d

(i,Lvi)
ID|2

) ◦
−→
f ID|1,θ′

=
((

d′θ(g
I2
1 h2)

γ2

)(
Rθ′

∏
i∈[1,2](g

Ii
1 hi)

γ′
i

)(
f1/Rθ′(gI11 h1)

δ
)
, f2, dθg

γ′
1gδ, gγ2gγ

′
2

)
.

A simple calculation shows that the above decryption key has the desired form(
gα2 · (gT1 h0)

s0(gIi1 h1)
γ1+γ′

1+δ(gIi1 h2)
γ2+γ′

2 , gs0 , gγ1+γ′
1+δ, gγ2+γ′

2

)
.

In a similar way, we can define the secret keys and key updates for users from other levels. However, the
security of the above construction is not easy to prove since descendants have a great deal of information
about the ancestors’ secret keys. In particular, in the security model the adversary can query skID∗

|ℓ∗+1
,

but the simulator may not generate such a secret key without knowing skID∗
|ℓ∗

since secret key generation

algorithm is recursively defined. (When the challenge identity ID∗
|ℓ∗ is not revoked on the challenge time T∗,

the simulator cannot generate skID∗
|ℓ∗

. If not, the simulator can generate the dkID∗
|ℓ∗ ,T

∗ by itself from skID∗
ℓ∗

and kuIDℓ∗−1,T so that the simulator can solve the underlying problem without a help of the adversary.) To
circumvent this obstacle, we slightly modify the above construction by adding re-randomization processes in
the KeyGen and KeyUp algorithms. Hence, the simulator can generate skID∗

|ℓ∗+1
even when it does not know

skID∗
|ℓ∗

since all randomness used in skID∗
|ℓ∗+1

is independent from skID∗
|ℓ∗

.

Now we describe our RHIBE construction. In our construction, each user ID|ℓ keeps state information
stID|ℓ including a binary tree BTID|ℓ . We sometimes use BTID|ℓ to precisely indicate the state information

associated with the binary tree. stID|ℓ contains the randomness {R̃(i,j)}(i,j)∈[1,ℓ−1]×[1,n] used for the re-
randomization process as well. All states are initialized as empty sets.

Setup(λ,N,L): We assume, without loss of generality, that N = 2n for some n. Randomly choose group

elements g, g2, h0, . . . , hL
$← G and an integer α

$← Zp. Set mpk = {g, g1 = gα, g2, h0 . . . , hL} and
msk = {gα2 }.
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KeyGen(skID|ℓ , stID|ℓ , ID|ℓ+1,mpk): According to the value ℓ, this algorithm is differently defined.

ℓ = 0 : Note that skID|0 = msk and stID|0 = st0. Randomly choose an unassigned leaf ζ from BT0, and
store ID|1 in the node ζ. We sometimes use a notation ζID to precisely indicate that the node ζ is
associated with ID.

For all θ ∈ Path(ζID|1) ⊂ BT0,

1. Recall Rθ from θ in BT0 if it is defined. Otherwise, Rθ
$← G and store it in the node θ ∈ BT0.

2. Choose γθ
$← Zp and compute

−→
d

(1,j)
ID|1

:= (Rθ · F1(ID|1)
γθ , 1G, gγθ ) ∈ G3, where j is the level

of θ on the path Path(ζID|1).

Return skID|1 = {
−→
d

(1,j)
ID|1
∈ G3}j∈[1,n].

ℓ > 0 : Randomly choose an unassigned leaf ζ from BTID|ℓ , and store ID|ℓ+1 in the node ζID|ℓ+1
. Parse

skID|ℓ = {
−→
d

(i,j)
ID|ℓ
∈ Gℓ+2}(i,j)∈[1,ℓ]×[1,n].

For all (i, j) ∈ [1, ℓ]× [1, n],

1. Recall R̃(i,j) from stID|ℓ if it is defined. Otherwise, R̃(i,j)
$← G and store it in stID|ℓ .

2. Choose −→γ (i,j)
$← {0} × Zℓ+1

p and compute
−→
d

(i,j)
ID|ℓ+1

:= (
−→
d

(i,j)
ID|ℓ

, 1G) ◦ (R̃(i,j) ·
−→
F (∗, ID|ℓ+1)

−→γ (i,j) , g
−→γ (i,j)) ∈ Gℓ+3.

For all θ ∈ Path(ζID|ℓ+1
) ⊂ BTID|ℓ ,

1. Recall Rθ from the corresponding node θ in BTID|ℓ if it is defined. Otherwise, Rθ
$← G and

store it in the node θ.

2. Choose −→γ θ
$← {0} × Zℓ+1

p and compute
−→
d

(ℓ+1,j)
ID|ℓ+1

:= (Rθ ·
−→
F (∗, ID|ℓ+1)

−→γ θ , g
−→γ θ ) ∈ Gℓ+3, where j is the level of θ in the tree BTID|ℓ .

Return skID|ℓ+1
= {
−→
d

(i,j)
ID|ℓ+1

∈ Gℓ+3}(i,j)∈[1,ℓ+1]×[1,n].

KeyUp(skID|ℓ ,T,RLID|ℓ , stID|ℓ , kuID|ℓ−1,T,mpk): According to the value ℓ, this algorithm is differently defined.

ℓ = 0 : Note that skID|0 = msk, RLID|0 = RL0, stID|0 = st0, and kuID|−1,T = msk. For all nodes
θ ∈ KUNode(BT0,RL0,T),

1. Recall Rθ from the node θ ∈ BT0. Note that Rθ is already defined during the key generation
process.

2. Choose δθ
$← Zp and compute

−→
f 0,θ by

((gα2 /Rθ)F0(T)
δθ , gδθ , 1G) ∈ G3.

Return ku0,T = {∅,
−→
f 0,θ ∈ G3}θ∈KUNode(BT0,RL0,T).

ℓ > 0 :

1. Parse kuID|ℓ−1,T as

{{Lvi}i∈[1,ℓ−1],
−→
f ID|ℓ−1,θ ∈ Gℓ+2}θ∈KUNode(BTID|ℓ−1

,RLID|ℓ−1
,T).

Note that if ℓ = 1, then {Lvi}i∈[1,0] means ∅.
2. Identify one node θ̃ ∈ KUNode(BTID|ℓ−1

,RLID|ℓ−1
,T) ∩ Path(ζID|ℓ) and set Lvℓ to be the level

of θ̃.

3. For all i ∈ [1, ℓ], recall R̃(i,Lvi) from stID|ℓ .
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For all nodes θ ∈ KUNode(BTID|ℓ ,RLID|ℓ ,T),

1. Recall Rθ from θ ∈ BTID|ℓ . Note that Rθ is already defined during the key generation process.

2. Choose
−→
δ θ

$← Zℓ+1
p and compute

−→
f ID|ℓ,θ by

(
−→
f ID|ℓ−1,θ̃

, 1G) ◦ ((Rθ

∏ℓ
i=1 R̃(i,Lvi))

−1−→F (T, ID|ℓ)
−→
δ θ , g

−→
δ θ , 1G).

Return kuID|ℓ,T = {{Lvi}i∈[1,ℓ],
−→
f ID|ℓ,θ ∈ Gℓ+3}θ∈KUNode(BTID|ℓ ,RLID|ℓ ,T)

.

DKG(skID|ℓ , kuID|ℓ−1,T,T,mpk):

1. Parse skID|ℓ = {
−→
d

(i,j)
ID|ℓ
∈ Gℓ+2}(i,j)∈[1,ℓ]×[1,n] and

kuID|ℓ−1,T = {{Lvi}i∈[1,ℓ−1],
−→
f ID|ℓ−1,θ ∈ Gℓ+2}θ∈J.

2. If J ∩ Path(ζID|ℓ) = ∅, then return ⊥. Otherwise, choose a node θ ∈ J ∩ Path(ζID|ℓ) and let Lvℓ be
the level of θ in Path(ζID|ℓ) ⊂ BTID|ℓ−1

.

3. Compute and output dkID|ℓ,T :=
⊗ℓ

i=1(
−→
d

(i,Lvi)
ID|ℓ ) ◦

−→
f ID|ℓ−1,θ ∈ Gℓ+2.

Enc(ID|ℓ,T,M,mpk): Choose a random value t
$← Zp and return

CT = (M · e(g1, g2)t, gt, F0(T)
t, F1(I1)

t, . . . , Fℓ(Iℓ)
t).

Dec(dkID|ℓ,T,CT,mpk): Parse CT = (A,B,C0, C1, . . . , Cℓ) and dkID|ℓ,T = (D′, D0, . . ., Dℓ) and return

A ·
∏ℓ

i=0 e(Ci, Di)

e(B,D′)
= M.

Revoke(ID|ℓ,T,RLID|ℓ−1
, stID|ℓ−1

): Let ζ be the leaf node in BTID|ℓ−1
associated with ID|ℓ. Update the revo-

cation list by RLID|ℓ−1
← RLID|ℓ−1

∪ {(ζ,T)} and return the updated revocation list.

Efficiency. For encrypting to the ℓ-th level user, the ciphertext consists of ℓ+ 2 group elements in G and
an element in Gt. The decryption algorithm requires ℓ + 2 pairings and ℓ + 3 multiplications in Gt. Each
user in the ℓ-th level keeps (ℓ+ 2)(ℓ+ 1) logN group elements in G as its secret key.

5 Security Analysis

We provide a series of lemmas to thoroughly explain the forms of secret keys, key updates, and decryption
keys well, and then give a theorem for the IND-sRID-CPA security of the proposed construction.

Lemma 5.1. If a secret key skID|ℓ is normally generated, it has the following form:

skID|ℓ =
{−→
d

(i,j)
ID|ℓ
∈ Gℓ+2 for (i, j) ∈ [1, ℓ]× [1, n]

}
,

where

1.
−→
d

(i,j)
ID|ℓ

=
(
R′

(i,j)

−→
F (∗, ID|ℓ)

−→r (i,j) , g
−→r (i,j)

)
for a uniformly distributed vector −→r (i,j) ∈ {0} × Zℓ

p and uni-

formly distributed value R′
(i,j) ∈ G. (This implies that all randomness used in a secret key is indepen-

dent from the parent’s secret key.)
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2. For i ∈ [1, ℓ− 1]× [1, n], all children of ID|ℓ−1 have the same value R′
(i,j).

3. R′
(ℓ,j) is an associated value with the j-th level node on Path(ζID|ℓ) ⊂ BTID|ℓ−1

.

Proof. We prove the lemma using the mathematical induction methodology. When ℓ = 1, the lemma is true
since the output of KeyGen algorithm run by KGC is exactly of the form. Next, we assume that the lemma
is true for ℓ ≥ 2, and then we show that the lemma is true for ℓ+ 1. If we run KeyGen algorithm with skID|ℓ

as input, we obtain the following equalities.

for (i, j) ∈ [1, ℓ]× [1, n],
−→
d

(i,j)
ID|ℓ+1

= (
−→
d

(i,j)
ID|ℓ

, 1G) ◦ (R̃(i,j)
−→
F (∗, ID|ℓ+1)

−→γ (i,j) , g
−→γ (i,j)),

(where −→γ (i,j)
$← {0} × Zℓ+1

p )

= (R′
(i,j)R̃(i,j)

−→
F (∗, ID|ℓ+1)

(−→r (i,j),0)+
−→γ (i,j) , g(

−→r (i,j),0)+
−→γ (i,j)) ∈ Gℓ+3.

for θ ∈ Path(ζID|ℓ+1
),
−→
d

(ℓ+1,j)
ID|ℓ+1

= (Rθ
−→
F (∗, ID|ℓ+1)

−→γ θ , g
−→γ θ ) ∈ Gℓ+3,

where j is the level of θ in BTID|ℓ . In the process of KeyGen, for (i, j) ∈ [1, ℓ]× [1, n], R̃(i,j), which is stored
in stID|ℓ , is commonly used for all children ID|ℓ+1, and R′

(i,j) is also used independently from the children’s
identity by hypothesis. Furthermore, Rθ is an associated value, which is also stored in stID|ℓ , with the j-th
level node θ on Path(ζID|ℓ+1

) ⊂ BTID|ℓ . From these facts and the above two equalities, we can see that skID|ℓ+1

satisfies three conditions in the lemma. In particular, −→γ (i,j), R̃(i,j), and Rθ are uniformly chosen from their
domains, respectively, so that all randomness used in skID|ℓ+1 are independent from those in skID|ℓ . Therefore,
we complete the induction method, and so the proof.

Lemma 5.2. If a key update kuID|ℓ−1,T is normally generated, it has the following form:

kuID|ℓ−1,T =
{
{Lvi}i∈[1,ℓ−1],

−→
f ID|ℓ−1,θ ∈ Gℓ+2

}
θ∈KUNode(BTID|ℓ−1

,RLID|ℓ−1
,T)

,

where for −→s θ ∈ Zℓ
p and

−→
f ID|ℓ−1,θ =

(
gα2 (R

′
θ

∏ℓ−1
i=1 R

′
(i,Lvi)

)−1−→F (T, ID|ℓ−1)
−→s θ , g

−→s θ , 1G

)
, R′

θ is an associated

value with a node θ in BTID|ℓ−1
, and R′

(i,j) is a value defined in the secret key
−→
d

(i,j)
ID|ℓ

of Lemma 5.1, which

is the same for any children ID|ℓ of ID|ℓ−1. Moreover, for some ID|ℓ, if θ ∈ KUNode(BTID|ℓ−1
,RLID|ℓ−1

,T) ∩
Path(ζID|ℓ), then R′

θ = R′
(ℓ,Lvℓ)

, where Lvℓ is the level of θ on Path(ζID|ℓ) ⊂ BTID|ℓ−1
, and R′

(ℓ,Lvℓ)
is a value

defined in the secret key
−→
d

(ℓ,Lvℓ)
ID|ℓ

of Lemma 5.1.

Proof. First, we note that the statement in Lemma is well-defined; kuID|ℓ−1,T is generated by ID|ℓ−1, but

R′
(i,j) is a value defined in the children’s secret key

−→
d

(i,j)
ID|ℓ

. However, by the second condition in Lemma 5.1,

for (i, j) ∈ [1, ℓ − 1] × [1, n], R′
(i,j) is independent from the children’s identity so that the statement is

well-defined.
When ℓ = 1, it is straight from the output of KeyUp. We assume that Lemma is true for ℓ ≥ 2, and show

that the case for ℓ + 1 also holds. A user ID|ℓ, who is not revoked, can generate a key update kuID|ℓ,T by
running KeyUp with kuID|ℓ−1,T as input. The output of KeyUp is

kuID|ℓ,T = {{Lvi}i∈[1,ℓ],
−→
f ID|ℓ,θ ∈ Gℓ+3}θ∈KUNode(BTID|ℓ ,RLID|ℓ ,T)

,

where
−→
f ID|ℓ,θ := (

−→
f ID|ℓ−1,θ̃

, 1G) ◦ ((Rθ

ℓ∏
i=1

R̃(i,Lvi))
−1 ·
−→
F (T, ID|ℓ)

−→
δ θ , g

−→
δ θ , 1G)
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and θ̃ is the Lvℓ-th level node in KUNode(BTID|ℓ−1
,RLID|ℓ−1

,T) ∩ Path(ζID|ℓ). Then, by hypothesis, R′
θ =

R′
(ℓ,Lvℓ)

, and so
−→
f ID|ℓ,θ is equal to

(gα2 (
ℓ∏

i=1

R′
(i,Lvi)

)−1−→F (T, ID|ℓ−1)
−→s θ̃ , g

−→s θ̃ , 1G, 1G) ◦ ((Rθ

ℓ∏
i=1

R̃(i,Lvi))
−1 ·
−→
F (T, ID|ℓ)

−→
δ θ , g

−→
δ θ , 1G).

= (gα2 (Rθ

ℓ∏
i=1

R̃(i,Lvi)R
′
(i,Lvi)

)−1−→F (T, ID|ℓ)
(−→s θ̃,0)+

−→
δ θ , g(

−→s θ̃,0)+
−→
δ θ , 1G),

where for (i, j) ∈ [1, ℓ]× [1, n], R′
(i,j) is a value defined in the secret key

−→
d

(i,j)
ID|ℓ

of Lemma 5.1. As we showed

in the proof of Lemma 5.1, for (i, j) ∈ [1, ℓ] × [1, n],
−→
d

(i,j)
ID|ℓ+1

= (R′
(i,j)R̃(i,j)

−→
F (∗, ID|ℓ+1)

(−→r (i,j),0)+
−→γ (i,j) ,

g(
−→r (i,j),0)+

−→γ (i,j)) and R′
(i,j)R̃(i,j) is a value used in

−→
f ID|ℓ,θ.

Moreover, Rθ is an associated with a node θ by the process of KeyUp and if for some ID|ℓ+1, θ is in the
Lvℓ+1-th level in KUNode(BTID|ℓ ,RLID|ℓ ,T)∩Path(ζID|ℓ+1

), then we can see Rθ is also is used in the generation

of decryption key part by
−→
d

(ℓ+1,Lvℓ+1)
ID|ℓ+1

= (Rθ(ℓ+1,Lvℓ+1)

−→
F (∗, ID|ℓ+1)

−→γ (ℓ+1,Lvℓ+1) , g
−→γ (ℓ+1,Lvℓ+1)). Therefore, we

obtain the desired result. By the induction method, we complete the proof for all ℓ.

Lemma 5.3. If a decryption key dkID|ℓ,T is normally generated, it has the following form:

dkID|ℓ,T = (gα2
−→
F (T, ID|ℓ)

−→s , g
−→s ) ∈ Gℓ+2,

where −→s is a vector in Zℓ+1
p .

Proof. When θ is the Lvℓ-th level node in KUNode(BTID|ℓ−1
,RLID|ℓ−1

,T)∩Path(ζID|ℓ), a decryption key dkID|ℓ,T

is computed by
ℓ⊗

i=1

(
−→
d

(i,Lvi)
ID|ℓ ) ◦

−→
f ID|ℓ−1,θ.

By Lemma 5.1 and Lemma 5.2, this is equal to

ℓ⊗
i=1

(R′
(i,Lvi)

−→
F (∗, ID|ℓ)

−→r (i,Lvi) , g
−→r (i,Lvi)) ◦ (gα2 (

ℓ∏
i=1

R′
(i,Lvi)

)−1−→F (T, ID|ℓ−1)
−→s θ , g

−→s θ , 1G)

=
(
gα2
−→
F (T, ID|ℓ)

∑ℓ
i=1

−→r (i,Lvℓ)
+−→s θ , g

∑ℓ
i=1

−→r (i,Lvℓ)
+(−→s θ,0)

)
.

Even though our KeyGen algorithm (KeyUp algorithm, respectively) is recursively defined, the above
lemmas dictate that the secret key (key update, respectively) in each level has the same format and the
randomness used in each level is totally independent from those in the other levels. This fact gives us an
essential advantage when we construct a simulator in the security proof; when the simulator generates a
secret key (key update, respectively), it is not necessary to generate all ancestor’s secret keys (key updates,
respectively), though KeyGen (KeyUp, respectively) is recursively defined in the real scheme. Instead, in the
proof, the simulator can directly simulate with fresh randomness.

Theorem 5.1. Assume that the original BB-HIBE scheme is IND-sID-CPA secure. Then, the proposed
RHIBE scheme is IND-sRID-CPA secure.
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Proof. We will construct an attacker B of BB-HIBE with L level hierarchy by using an attacker A of our
construction of RHIBE scheme with L level hierarchy. First, B receives the target identity ID∗

|ℓ∗ and time
T∗ from A. Then, we separate adversarial types as follows: Let ID∗

|1, . . . , ID
∗
|ℓ∗−1 be ancestors of ID∗

|ℓ∗ .

• Type-0 adversary: The adversary does not issue any key extraction query for ID∗
|1, . . . , ID

∗
|ℓ∗ .

• Type-1 adversary: The adversary queries for the secret key of ID∗
|1

...

• Type-i adversary: The adversary does not query for the secret key of ID∗
|1, . . . , ID

∗
|i−1, but does for ID

∗
|i.

...

• Type-ℓ∗ adversary: The adversary queries for the secret key of ID∗
|ℓ∗ , but she does not issue any key

extraction query for all ancestor’s secret key.

B can guess the adversarial type by tossing coins and his guess is information-theoretically hidden from
the adversarial view so that B can success in his guess with at least 1/(L+1) probability. During simulation,
B can generate only either secret key of the challenge identity or key update for the challenge identity. (If
not, B can generate decryption key for the challenge ciphertext.) By guessing types of adversary, B can
decide where the (unknown) master key part is contained between secret key and key update. (Recall that
in our construction the master key is randomly divided into secret key and key update.)
B sends ID∗

|ℓ∗ to the IND-sID-CPA game challenger C as B’s target identity. Then, B obtains the master
public key mpk = {g, g1, g2, h1 . . . , hL} of BB-HIBE along with the group description (p,G,Gt, e). It chooses

c
$← Zp, sets h0 = g−T∗

1 gc, and sends the group description and {g, g1, g2, h0, h1 . . . , hL} to A as public
parameters of RHIBE scheme. The corresponding master key of the BB-HIBE scheme is {gα2 }, which is also
the master key of our RHIBE scheme and unknown to B, where g1 = gα.

For other queries such as key update and secret key extraction queries, B responses according to his
guess in the type of adversary. We will describe B’s behaviors separately. However, regardless of the type
of adversary, whenever receiving a key extraction or a key update query regarding ID|ℓ, B assigns nodes
ζID|1 ∈ BT0, . . . , ζID|ℓ ∈ BTID|ℓ at random if they are undefined.

Type-0 adversary

The KeyUp Oracle: Receive ID|ℓ and T. If ID|ℓ is not revoked (more precisely, for i ∈ [1, ℓ], ID|i is a
non-revoked user on the time T), then for i ∈ [1, ℓ] B can always choose a node θ on Path(ζID|i) ∩
KUNode(BTID|i−1

,RLID|i−1
,T) and let Lvi be the level of θ. B keeps (ID|i, θ,T) in its storage. When B

is required to generate an another key update regarding an identity ID′
|ℓ′ on the same time period T,

if ID′
|i = ID|i, then B chooses the same node θ, and so uses the same Lvi in key update.

For (i, j) ∈ [1, ℓ] × [1, n], randomly choose S(i,j) ∈ G and store them in stID|ℓ if they are undefined.
Otherwise, just recall them. For θ ∈ KUNode(BTID|ℓ ,RLID|ℓ ,T), randomly choose Sθ ∈ G and store it

in the node θ in BTID|ℓ if it is undefined. Otherwise, recall it. Randomly choose −→s θ
$← Zℓ+1

p , compute

−→
f ID|ℓ,θ =

(
(Sθ

ℓ∏
i=1

S(i,Lvi))
−1−→F (T, ID|ℓ)

−→s θ , g
−→s θ , 1G

)
,

and return kuID|ℓ,T =
{
{Lvi}i∈[1,ℓ],

−→
f ID|ℓ,θ ∈ Gℓ+3

}
θ∈KUNode(BTID|ℓ ,RLID|ℓ ,T)

.

The KeyGen Oracle: Start with receiving an identity ID|ℓ+1. B sends ID|ℓ+1 to C and receives the corre-
sponding private key (d′, d1, . . . , dℓ+1) from C. (Since ID|ℓ+1 ̸∈ {ID∗

|1, . . . , ID
∗
|ℓ∗}, B can always issue
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such a key extraction query.) For (i, j) ∈ [1, ℓ]× [1, n], recall S(i,j) from stID|ℓ if it is defined. Otherwise,

randomly choose S(i,j)
$← G and store them in stID|ℓ . For a node θ ∈ Path(ζID|ℓ+1

) ⊂ BTID|ℓ , recall Sθ if
it is defined. Otherwise, randomly choose Sθ from G and store it in the node θ ∈ BTID|ℓ . B computes

skID|ℓ+1
=

{−→
d

(i,j)
ID|ℓ+1

∈ Gℓ+3 for (i, j) ∈ [1, ℓ+ 1]× [1, n]
}
as follows.



For (i, j) ∈ [1, ℓ]× [1, n],
−→
d

(i,j)
ID|ℓ+1

=
(
S(i,j)

−→
F (∗, ID|ℓ+1)

−→r (i,j) , g
−→r (i,j)

)
,

where −→r (i,j)
$← {0} × Zℓ+1

p .

For (i, j) ∈ {ℓ+ 1} × [1, n],
−→
d

(i,j)
ID|ℓ+1

=
(
Sθd

′−→F (∗, ID|ℓ+1)
−→r (i,j) , (1G, d1, . . . , dℓ+1) ◦ g

−→r (i,j)

)
,

where −→r (i,j)
$← {0} × Zℓ+1

p and θ is a j-th level node on Path(ζID|ℓ+1
).

Challenge Phase: A sends two messages M∗
0 and M∗

1 ∈ M. B transfers two messages to C as its challenge
messages, and receives the challenge ciphertext CT = (A∗, B∗, C∗

1 , . . . , C
∗
ℓ∗) for the target identity ID∗

|ℓ∗
from C. Then, B sends CT∗ = (A∗, B∗, C∗

0 = (B∗)c, C∗
1 , . . . , C

∗
ℓ ) to A as the challenge ciphertext.

Lastly, B receives A’s output bit and sends the same bit as its output.

Type-k adversary (k ∈ [1, ℓ∗]) For type-k adversary, we carefully deal with queries for ID|ℓ such that
ID|ℓ−1 = ID∗

|i−1 for some i ∈ [k, ℓ∗]. In the case of ID|ℓ−1 = ID∗
|i−1, the leaf node ζID|ℓ , which is assigned for

ID|ℓ, is in BTID|ℓ−1
and the leaf node ζID∗

|i
, which is assigned for ID∗

|i, is also in BTID|ℓ−1
. Therefore, Path(ζID|ℓ)

may have an intersection with Path(ζID∗
|i
). The type-k adversary can obtain secret key for such ID|ℓ, but not

for key update on the challenge time T∗. For θ ∈ Path(ζID∗
|i
), we set the corresponding key update has the

master key part, but the corresponding secret key does not. In the challenge time T∗, B does not need to
generate key update for θ ∈ Path(ζID∗

|i
) and in the other time period B uses the selective security’s technique

to generate key update so that B can simulate all queries related to the node θ ∈ Path(ζID∗
|i
). For other nodes

(that is, θ ̸∈ Path(ζID∗
|i
)), we set the corresponding secret key has the master key part, but the corresponding

key update does not. For secret key queries, θ ̸∈ Path(ζID∗
|i
) means that the corresponding identity is not ID∗

|i
so that B can utilize his own key extraction oracle given from IND-sID-CPA challenge of BB-HIBE scheme.
We provide the detailed description of B below.

The KeyUp Oracle: Take ID|ℓ and T as input. We divide cases according to ID|ℓ−1
?
= ID∗

|i−1 for some
i ∈ [k, ℓ∗].

1. The case of ID|ℓ−1 = ID∗
|i−1 for some i ∈ [k, ℓ∗]: If ID|ℓ−1 is not revoked on time T (more precisely,

for i ∈ [1, ℓ− 1] ID|i is a non-revoked user on time T), then for i ∈ [1, ℓ− 1] B can always choose
a node θ on Path(ζID|i) ∩ KUNode(BTID|i−1

,RLID|i−1
,T) and let Lvi be the level of such node θ. B

keeps (ID|i, θ,T) in its storage. When B is required to generate key update regarding an identity
ID′

|ℓ′ on time period T, if ID′
|i = ID|i, then B chooses the same node θ, and so uses the same Lvi

in key update.

For (i, j) ∈ [1, ℓ]× [1, n], randomly choose S(i,j) ∈ G and store them in stID|ℓ if they are undefined.
Otherwise, just recall them. For θ ∈ KUNode(BTID|ℓ ,RLID|ℓ ,T), randomly choose Sθ ∈ G and store

it in the node θ if it is undefined. Otherwise, recall it. Randomly choose −→s θ
$← Zℓ

p and s
$← Zp,

compute
−→
f ID|ℓ,θ as

(
(Sθ

∏ℓ
i=1 S(i,Lvi))

−1(gT−T∗

1 )sg
− c

(T−T∗)

2 gcs
−→
F (∗, ID|ℓ)

(0,−→s θ), g−
β

(T−T∗)
+s, g

−→s θ , 1G

)
, if θ ∈ Path(ζID∗

|i
)(

(Sθ

∏ℓ
i=1 S(i,Lvi))

−1−→F (T, ID|ℓ)
(s,−→s θ), g(s,

−→s θ), 1G

)
, otherwise.
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and return kuID|ℓ,T =
{
{Lvi}i∈[1,ℓ],

−→
f ID|ℓ,θ ∈ Gℓ+3

}
θ∈KUNode(BTID|ℓ ,RLID|ℓ ,T)

. When T = T∗, ID∗
|i

should be revoked, so that KUNode(BTID|ℓ ,RLID|ℓ ,T) ∩ Path(ζID∗
|i
) = ∅. Therefore, B is still able

to compute
−→
f ID|ℓ,θ as the above.

2. The case of ID|ℓ−1 ̸= ID∗
|i−1 for all i ∈ [k, ℓ∗]: B behaves as the KeyUp oracle in the case of type-0

adversary.

The KeyGen Oracle: Receive ID|ℓ+1 from A. For (i, j) ∈ [1, ℓ]× [1, n], recall S(i,j) from stID|ℓ if it is defined.

Otherwise, randomly choose R′
(i,j)

$← G and store them in stID|ℓ . For a node θ ∈ Path(ζID|ℓ+1
) ⊂ BTID|ℓ ,

recall Sθ if it is defined. Otherwise, randomly choose Sθ from G and store it in the node θ ∈ BTID|ℓ .
Next, B behaves differently according to whether ID|ℓ+1 = ID∗

|m and whether ID|ℓ = ID∗
|m−1 for some

m ∈ [k, ℓ∗].

1. The case of ID|ℓ = ID∗
|m−1 for some m ∈ [k, ℓ∗]: B queries to obtain a private key (d′, d1, . . . , dℓ+1)

for ID|ℓ+1.

For (i, j) ∈ [1, ℓ]× [1, n],
−→
d

(i,j)
ID|ℓ+1

=
(
S(i,j)

−→
F (∗, ID|ℓ)

−→r (i,j) , g
−→r (i,j)

)
, where −→r (i,j)

$← {0} × Zℓ+1
p .

For (i, j) ∈ {ℓ+ 1} × [1, n],

−→
d

(i,j)
ID|ℓ+1

=


(
Sθ
−→
F (∗, ID|ℓ+1)

−→r (i,j) , g
−→r (i,j)

)
if θ ∈ Path(ζID∗

|m
) ⊂ BTID|ℓ ,(

Sθd
′−→F (∗, ID|ℓ+1)

−→r (i,j) , (1G, d1, . . . , dℓ+1) ◦ g
−→r (i,j)

)
, otherwise.

where −→r (i,j)
$← {0} × Zℓ+1

p and θ is the j-th level node on Path(ζID|ℓ+1
) ⊂ BTID|ℓ .

2. The case of ID|ℓ ̸= ID∗
|m−1 for ∀m ∈ [k, ℓ∗]: B behaves as the KeyGen oracle in the case of type-0

adversary.

Challenge Phase: B behaves same as in the challenge phase in the case of type-0 adversary.

Analysis of B: We argue that if B correctly guesses the type of adversary, then B’s advantage in IND-
sID-CPA game is equal to A’s advantage in IND-sRID-CPA game.

In the simulation, B uses the same target identity, time period, and messages as those used by A, and
it delivers the output bit of A to C. Therefore, for proof of Lemma, it is sufficient to show the simulated
transcript between A and B is identical to those in the real experiment.

The public parameter mpk is uniformly distributed since h0 is uniformly and independently distributed
and other parts are given from the public parameter of BB-HIBE. For the challenge ciphertext, B∗ can be
written of the form gt, Then, C0 = F0(T

∗)t = (gT
∗

1 h0)
t = (gT

∗

1 (g−T∗

1 gc))t = (gc)t = Bc. Therefore, the
challenge ciphertext is also well distributed identically to that of real experiment. Next, we consider the
distribution of output of KeyUp(·) and KeyGen(·) oracles. From Lemma 5.1 and Lemma 5.2, we see the form
of each secret key and key update. We show that secret keys and key updates simulated by B have the form
in Lemma 5.1 and Lemma 5.2 according to the types of adversary.

Type-0 adversary: We argue that S(i,j) and Sθg
α
2 in the output of the KeyGen oracle is equal to R′

(i,j) and

R′
(ℓ+1,j) in Lemma 5.1 (when we set i = ℓ + 1 in the lemma), respectively, where θ is the j-th level

node on Path(ζID|ℓ+1
) ⊂ BTID|ℓ . We check that S(i,j) and Sθ satisfy three conditions of R′

(i,j) and R′
θ

in Lemma 5.1. Since S(i,j) and Sθ
$← G and −→r (i,j)

$← Zp, the first condition holds. S(i,j) is stored in
stID|ℓ and it is used for all children so that the second condition also holds. Sθ is stored in the node on
Path(ζID|ℓ+1

) ⊂ BTID|ℓ , and so Sθ is a value associated with the node θ. Therefore, if θ is the j-th level
node, then we can consider Sθg

α
2 as R′

(ℓ+1,j) such that the third condition of Lemma 5.1 holds.
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Next, we show that each key update satisfies all conditions in Lemma 5.2. In the simulation of key
update, Sθ and S(i,Lvi) are used such that Sθ and S(i,j) are also used in the secret key of ID|ℓ+1. From
the above simulation of KeyGen, we know that Sθg

α
2 = R′

(ℓ+1,j) and S(i,Lvi) = R′
(i,Lvi)

, and so

(Sθ

ℓ∏
i=1

S(i,Lvi))
−1 = gα2 (R

′
(ℓ+1,j)

ℓ∏
i=1

R′
(i,Lvi)

)−1.

Therefore, the distribution of ku is equal to that in Lemma 5.2.

Type-k adversary: We argue that S(i,j) and Sθ in the output distribution of KeyGen are distributed with
the following conditions: S(i,j) is equal to R′

(i,j) in Lemma 5.1. Sθ is separately distributed according
to the following cases.

1. The case of ID|ℓ+1 = ID∗
|i for some i ∈ [k, ℓ∗]: Sθ is equal to R′

(ℓ+1,j) in Lemma 5.1 (when we set

i = ℓ+ 1 in the lemma), where θ is the j-th level node on Path(ζID|ℓ+1
) ⊂ BTID|ℓ .

2. The case of ID|ℓ+1 ̸= ID∗
|i but ID|ℓ = ID∗

|i−1 for some i ∈ [k, ℓ∗]: For θ ∈ Path(ζID|ℓ+1
) ⊂ BTID|ℓ ,

if θ ∈ Path(ζID∗
|i
) ⊂ BTID|ℓ , then Sθ is equal to R′

(ℓ+1,j) in Lemma 5.1 (when we set i = ℓ + 1

in the lemma), where θ is the j-th level node on Path(ζID|ℓ+1
) ⊂ BTID|ℓ . Otherwise, that is,

θ ∈ Path(ζID|ℓ+1
) \ Path(ζID∗

|i
), Sθg

α
2 is equal to R′

(ℓ+1,j) in Lemma 5.1.

3. The case of ID|ℓ ̸= ID∗
|i−1 for ∀i ∈ [k, ℓ∗]: Sθg

α
2 is equal to R′

(ℓ+1,j) in Lemma 5.1 (when we set

i = ℓ+ 1 in the lemma), where θ is the j-th level node on Path(ζID|ℓ+1
) ⊂ BTID|ℓ .

We can easily check the above distribution about S(i,j) and Sθ. Since the proof is similar as that of
the type-0 adversary, we omit it.

We can say about the above distribution as follows: Let ID|ℓ be the parent of ID|ℓ+1. If for some
i ∈ [k, ℓ∗], ID|ℓ = ID∗

|i and θ is on Path(ζID∗
|i
) ⊂ BTID|ℓ , then Sθ is equal to R′

(ℓ+1,j), where j is the level

of θ. Otherwise, Sθg
α
2 is equal to R′

(ℓ+1,j), where j is the level of θ.

Next, we show that each key update satisfies all conditions in Lemma 5.2. In the simulation of key
update, Sθ and S(i,Lvi) are used such that Sθ and S(i,j) are also used in the secret key of ID|ℓ+1. From
the above simulation of KeyGen, we know that S(i,Lvi) = R′

(i,Lvi)
and{

Sθ = R′
(ℓ+1,j) if for some i ∈ [k, ℓ∗], ID|ℓ = ID∗

|i and θ is on Path(ζID∗
|i
) ⊂ BTID|ℓ

Sθg
α
2 = R′

(ℓ+1,j) otherwise
.

If for some i ∈ [k, ℓ∗], ID|ℓ = ID∗
|i and θ is on Path(ζID∗

|i
) ⊂ BTID|ℓ , then

−→
f ID|ℓ,θ =

(
(Sθ

∏ℓ
i=1 S(i,Lvi))

−1(gT−T∗

1 gc)sg
− c

(T−T∗)

2

−→
F (∗, ID|ℓ)

−→s θ , g−
β

(T−T∗)
+s, g

−→s θ , 1G

)
=

(
gα2 (Sθ

∏ℓ
i=1 S(i,Lvi))

−1(gT−T∗

1 gc)sg
−α− c

(T−T∗)

2

−→
F (∗, ID|ℓ)

−→s θ , g−
β

(T−T∗)
+s, g

−→s θ , 1G

)
=

(
gα2 (Sθ

∏ℓ
i=1 S(i,Lvi))

−1(gT−T∗

1 gc)sg−β(α+ c
(T−T∗)

)−→F (∗, ID|ℓ)
−→s θ , g−

β
(T−T∗)

+s, g
−→s θ , 1G

)
=

(
gα2 (Sθ

∏ℓ
i=1 S(i,Lvi))

−1(gT−T∗

1 gc)s(gT−T∗

1 gc)−
β

(T−T∗)
−→
F (∗, ID|ℓ)

−→s θ , g−
β

(T−T∗)
+s, g

−→s θ , 1G

)
=

(
gα2 (Sθ

∏ℓ
i=1 S(i,Lvi))

−1(gT−T∗

1 gc)s
′−→
F (∗, ID|ℓ)

−→s θ , gs
′
, g

−→s θ , 1G

)
=

(
gα2 (Sθ

∏ℓ
i=1 S(i,Lvi))

−1−→F (T, ID|ℓ)
(s′,−→s θ), g(s

′,−→s θ), 1G

)
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where s′ = − β
(T−T∗) + s and β = logg g2. Since s is uniformly chosen, s′ is also uniformly distributed.

From the above simulation of the KeyGen oracle, we know that Sθ = R′
(ℓ+1,j) and S(i,Lvi) = R′

(i,Lvi)
.

Therefore,
−→
f ID|ℓ,θ has the desired form(

gα2 (R
′
(ℓ+1,j)

∏ℓ
i=1 R

′
(i,Lvi)

)−1−→F (T, ID|ℓ)
(s′,−→s θ), g(s

′,−→s θ), 1G

)
,

where j is the level of θ.

In the other case (for some i ∈ [k, ℓ∗], ID|ℓ = ID∗
|i and θ is not on Path(ζID∗

|i
) ⊂ BTID|ℓ , or ID|ℓ ̸= ID∗

|i for

all i ∈ [k, ℓ∗]),

−→
f ID|ℓ,θ =

(
(Sθ

∏ℓ
i=1 S(i,Lvi))

−1−→F (T, ID|ℓ)
(s,−→s θ), g(s,

−→s θ), 1G

)
Since Sθ = R′

(ℓ+1,j) and S(i,Lvi)g
α
2 = R′

(i,Lvi)
,

−→
f ID|ℓ,θ =

(
gα2 (R

′
(ℓ+1,j)

ℓ∏
i=1

R′
(i,Lvi)

)−1−→F (T, ID|ℓ)
(s,−→s θ), g(s,

−→s θ), 1G

)
,

where j is the level of θ. Therefore, we complete the proof of theorem.

From the theorem 2.1 and theorem 5.1, we obtain the following corollary.

Corollary 5.1. If the DBDH assumption holds in the bilinear group (p,G,Gt, e), then the proposed RHIBE
scheme over (p,G,Gt, e) is IND-sRID-CPA secure.

6 Summary and Open problems

We proposed the first construction for efficient delegation of both key generating functionality and revocation
functionality in the IBE system.

There are interesting open problems. Our construction is based on the BB-HIBE scheme and we proved
only selective-security of our construction. Natural open problem is to construct RHIBE scheme based on
more efficient (in the sense of the ciphertext size) and secure (in the sense of satisfying adaptive-security)
HIBE scheme (e.g.,[15]). Another open problem is to combine HIBE scheme with so-called Subset Difference
(SD) method [20] (instead of CS). It seems not easy to combine SD with (H)IBE scheme since the SD method
requires more complicated key distributing method than CS method.

Acknolwdgement We thank anonymous reviewers of CT-RSA 2013 and members of Shin-Akarui-Angou-
Benkyou-Kai for their helpful comments.
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