
Nonlinear cryptanalysis of reduced-round Serpent and metaheuristic

search for S-box approximations.

James McLaughlin∗, John A. Clark

Abstract

We utilise a simulated annealing algorithm to find several nonlinear approximations to various S-
boxes which can be used to replace the linear approximations in the outer rounds of existing attacks.
We propose three variants of a new nonlinear cryptanalytic algorithm which overcomes the main
issues that prevented the use of nonlinear approximations in previous research, and we present the
statistical frameworks for calculating the complexity of each version. We present new attacks on
11-round Serpent with better data complexity than any other known-plaintext or chosen-plaintext
attack, and with the best overall time complexity for a 256-bit key.

Keywords: Nonlinear cryptanalysis, generalized linear cryptanalysis, metaheuristics, simu-
lated annealing, multidimensional linear cryptanalysis, Serpent.

1 Introduction.

The basic linear cryptanalytic method [52, 53] has had several extensions and variations proposed
since its discovery in 1993. The use of multiple approximations was first seen, in a somewhat ad hoc
way with limited scope for generalisation, in 1994 [53]. Later that same year, Kaliski and Robshaw
conducted a dedicated investigation into linear cryptanalysis with multiple approximations [41], and
subsequent research in the use of multiple approximations [9, 55] finally culminated in the new method
known as multidimensional linear cryptanalysis [15, 16, 17, 18, 13, 60], used in the best cryptanalysis
to date of reduced-round PRESENT [10] [14] and Serpent [1] [60].

Another research direction proposed was the generalisation of the method to make use of nonlinear
approximations. That is, instead of being restricted to equations of the form xa1 ⊕ xa2 ⊕ . . .⊕ xai ⊕
yb1 ⊕ yb2 ⊕ . . . ⊕ ybj in the input bits xi and output bits yi of cipher components, the cryptanalyst
could make use of higher-degree terms such as xa1xa3 - in other words, terms that needed the AND
operation to be evaluated.

This was first proposed by Harpes, Kramer and Massey [36], and investigated in more depth by
Knudsen and Robshaw [46], in which it was concluded that nonlinear approximations could replace
linear approximations only in the first and last rounds of the distinguisher - and even then, there were
problems (as described by Knudsen and Robshaw) that would not apply in the case of a purely linear
approximation. One of these was the difficulty of finding the nonlinear S-box approximations; for a
DES-sized 6× 4 S-box, the search space for possible approximations was 264 in size, increasing to 2256

for an AES-sized 8× 8 S-box. This was handled by restricting the search to nonlinear approximations
with degree below a certain threshold d; significantly reducing the size of the search space but also
preventing better approximations of higher degree from being found [45].

The assumption that nonlinear approximations could only be used in the outer rounds of the
distinguisher was partially challenged by Courtois [26, 27]. Courtois demonstrated that the use of
nonlinear approximations was in fact possible in other rounds of a Feistel cipher, as long as each
round’s approximation was a bi-linear expression using no nonlinear parts that were not of the form

∗Corresponding author, jmclaugh@cs.york.ac.uk

(Liα ⊕Liβ ⊕ . . .⊕Liω) · (Ria ⊕Rib ⊕ . . .⊕Riq) (where Li and Ri were variables from the left and right-
hand ciphertext blocks in round i respectively). He did, however, have to accept a certain amount
of key-dependence, in that a given bi-linear approximation B could hold with lower bias for some key
values than with others. His attack also strongly relied on the Feistel structure, and could not be
generalised to attack SPN-based ciphers.

The first, and so far only, use of metaheuristics in the context of nonlinear cryptanalysis was the
use of simulated annealing by Clark et al. [21] to evolve nonlinear approximations to the MARS S-box
[11] of the form f(xi1 , xi2 , . . . , xik) = (yj1 ⊕ yj2 ⊕ . . . ⊕ yjk), for use in the first round of nonlinear
distinguishers. Their approach, building on similar work in the context of stream ciphers [20], found
various nonlinear approximations holding with a significantly higher absolute bias (151/512) than the
best-known linear approximations for the MARS S-box (84/512). However, no means of exploiting
these in an attack on reduced-round MARS was known.

In this paper, we attempt to build on the above research in the following directions:

• We look at the question of which moves have a smooth search landscape defined when they
are used as the move function in a local optimisation-based metaheuristic for finding nonlinear
S-box approximations. We adapt the metaheuristic search method of Clark et al. to prioritise
these over the other move types previously defined.

• The cryptanalyst does not know the values of the key bits xored with the bits involved in the
nonlinear approximation. Where n0 denotes the nonlinear function involved, computing n0 on
the bits exposed through partial encryption/decryption means that the cryptanalyst is in fact
computing nα1α2...αl = n0(x1 ⊕ kα1 , x2 ⊕ kα2 , . . . , xl ⊕ kαl). There exist 2l candidates for the
correct function, ni, to compute on these bits, and the cryptanalyst does not know which is
correct. Furthermore, the incorrect functions may still define approximations with nonzero bias,
and hence

– may contain additional information that would be of use even if the cryptanalyst did know
the correct function.

– may not be possible to distinguish from the correct approximation if their biases are too
close to each other.

We devise various statistical frameworks for nonlinear modifications of Matsui’s Algorithm 2
which can succeed in spite of - or even with the assistance of - these “related” functions (or,
equivalently, the “related approximations” they define). We describe the new attack, and how
to incorporate recent advances in linear cryptanalysis into it. We also adapt the metaheuristic
search algorithm to take into account the properties of the related functions. Finally, we present
newly-obtained nonlinear approximations for the S-boxes of various ciphers, with bias in excess
of the best linear approximations for the same, and utilise these in new attacks on reduced-round
Serpent.

Figure 1 below depicts a 1R nonlinear approximation, which we have used successfully in attacking
the Heys toy cipher [40]. The (r − 1)-round approximation is composed of an (r − 2)-round linear
approximation, followed by a nonlinear approximation which replaces the linear approximation to
round (r− 1). As explained above, the cryptanalyst cannot simply guess the bits from the final round
key, but is also forced to deal with the incorrect approximations (and one correct approximation)
derived from guessing the involved values of the penultimate round key bits.

This paper is structured as follows: The remainder of this section provides a brief description of
linear cryptanalysis, as well as an important refinement to it due to Collard et al. [25]. Section 2
discusses the ways in which using nonlinear approximations affects the attack. Section 3 describes
the new attack, including the adaptation of Collard et al.’s improved methodology to the nonlinear
domain and the Feistel structure, and addresses the question of how its complexity is to be calculated.

Figure 1: Diagram of a 1R nonlinear approximation to the Heys toy cipher [40].

At this point in the paper, we will have described a well-defined scenario in which we can use the
evolved nonlinear approximations, and will have addressed in detail the question of how the related
approximations can and should be handled. This means that we will finally be in a position where we
can construct cost functions taking all this into account, and so in Section 4 we will finally describe our
experiments with the new simulated annealing algorithm; including how it differs from that originally
used by Clark et al. [21].

A large proportion of Section 3 is focused on the Data Encryption Standard, as the best-known
example of a Feistel cipher. Section 5 discusses the application of the new technique to the DES
further. It also discusses the application of the new technique to other ciphers. In particular, we:

• Describe new attacks on reduced-round Serpent,

• Give the results of our search for S-box approximations for the AES, DES and PRESENT
S-boxes,

• Demonstrate the workings of an attack on the DES using the best of the new approximations.
The attack is not in practice as efficient as the best-known attack against DES [53]; it is presented
chiefly to demonstrate how a nonlinear attack on a Feistel cipher would work.

Finally, Section 6 discusses avenues for further research.

1.1 Linear cryptanalysis - the three main phases of an Algorithm 2 attack.

Unless otherwise stated, the linear cryptanalytic attack will be assumed to be a 2R attack, in which
the cryptanalyst knows of a linear approximation to rounds 2, 3, . . . , (r−1) of the cipher, and by using
candidate key bit values to partially decipher parts of the known ciphertexts (reversing the effects
of round r on certain key bits), as well as to partially encrypt certain bits in the known plaintexts,
obtains values for the bits on which the probabilistic linear relation should hold. Note in particular
that, unlike the 1R attack shown in the earlier diagram, this means that key bits are guessed in both
round 1 and round r.

The theoretical bias for this linear approximation is calculated by starting with the biases of the
linear approximations to each individual S-box, and then using the Piling-Up Lemma [52]:

Definition 1.1. For 1 ≤ i ≤ n, let Xi be independent Bernoulli random variables such that:

pi = P (Xi = 0)

(1− pi) = P (Xi = 1)

(In the case of linear cryptanalysis, Xi = 0 iff the linear approximation to the ith approximated
S-box holds.)

Then P (X1 ⊕X2 ⊕ . . . Xn = 0) is:

(1/2) + 2n−1
n∏
i=1

(pi − 1/2).

with probability bias:

ε = 2n−1
n∏
i=1

(pi − 1/2)

In reality, the probabilities of the linear approximations to the S-boxes in one round holding are not
independent of the probabilities of the linear approximations to other rounds holding, so the Piling-Up
Lemma only yields an estimate of the true bias. This is usually accurate enough for the purposes of
cryptanalysis, although situations where it is not are discussed by Murphy [56] and Leander [51].

Definition 1.2. Where a linear approximation holds with bias ε, i.e. with probability 1/2 + ε,
the capacity of the approximation is equal to 4 × ε2. More generally, in an attack using multiple
approximations Ai (1 ≤ i ≤ M), each with bias εi, the capacity of the set of the approximations is
4
∑M

i=1 ε
2
i .

We note in particular that the bias (p − 1/2) of the linear approximation xa1 ⊕ xa2 ⊕ . . . xan =
yb1 ⊕ . . .⊕ ybm as calculated using the Piling-Up Lemma may be either positive or negative, and that
the values of various bits in the round keys affecting the approximated rounds may cause the actual
bias to possess the opposite sign. In Algorithm 2, the cryptanalyst is only interested in the magnitude
of the bias and hence this is not a problem; whereas in Algorithm 1 the cryptanalyst actively exploits
this phenomenon to deduce the parity of said key bits.

A linear cryptanalytic attack may be divided into three main phases; each of which we need to
calculate the complexity of separately. These are:

1. The distillation phase. In this phase, the cryptanalyst has access to N pairs (plaintext, corre-
sponding ciphertext), all encrypted with the same key k0. These are “known plaintext” pairs,
as opposed to “chosen plaintext”, because the cryptanalyst is not assumed to have been able to
make any choices regarding any of the N plaintext values encrypted. The cryptanalyst needs to
extract the relevant data from these pairs and discard the rest.

Certain bit positions in the plaintext and ciphertext will have been identified as relevant, in that
they are the bits which must be partially encrypted/decrypted to obtain the values of the bits
involved in the approximation. Let the number of such positions be denoted l. The cryptanalyst
allocates memory for an array COUNTERS 1 of 2l integer variables, each of which must be
capable of holding any integer between 0 and N , and initialises these to 0. These variables are
the first of several sets of counters used in the attack.

For each known plaintext/ciphertext pair in turn, the cryptanalyst extracts the l relevant data
bits. Where j denotes the l-bit value corresponding to the values of the l bits, the cryptanalyst
increments the value in COUNTERS 1[j] by 1, discards the current pair, and moves on to the
next pair until all N pairs have been processed.

Clearly this phase has complexity O(N). Let ε denote the bias of the linear approximation, then
the cryptanalyst needs N to be equal (for some a) to a/ε2. Advice on the value of a to choose
to achieve a desired success probability was provided in Matsui’s original paper [52], and later
updated with a more accurate statistical framework by Selçuk [66].

2. The analysis phase. We shall refer to the set of key bits which are to be recovered as the target
partial subkey (TPS). Let k denote the number of bits therein. For most ciphers, k and l will be
equal; however DES’s expansion phase makes it an example of a cipher for which this is not the
case.

The cryptanalyst allocates memory for an array of integers, COUNTERS 2, with 2k entries,
such that each array entry should be able to take any value between 0 and N . She then, for
every possible TPS value i, uses it to partially encrypt/decrypt every possible value j of the
relevant text bits in turn. If the linear approximation holds for the pair (i, j), COUNTERS 2[i]
is incremented by the value in COUNTERS 1[j].

When this process is complete, the values in COUNTERS 2 should be converted into the
absolute values of the biases with which the approximation held for the various key guesses;
this is done by mapping each value COUNTERS 2[i] to v[i] = |COUNTERS 2[i]−N/2|. The
higher the value of v[i], the more likely it is that i is the correct TPS.

This phase as described has O(2k+l) (usually 22k) time complexity, in that this many partial
encryptions/decryptions must be carried out, each potentially requiring data to be written to an
array in memory. However, this is the phase for which the aforementioned improvement exists,
which we will soon address.

3. The search phase. During this, the correct value of the TPS bits must be obtained from the
counter values calculated in the analysis phase, and the remaining key bits must also be found.

It may be that the cryptanalyst will simply accept the highest value in COUNTERS 2 as
corresponding to the correct key guess. The correct key guess should have reversed the effect of
the outer rounds and yielded bits for which this high bias was expected; the wrong key guesses,
by contrast, would not have resulted in the data bits being mapped to such values and would in
effect have applied a function with a randomizing effect to them.

If the cryptanalyst proceeds thus, various formulae exist in terms of the approximation’s bias
ε [52, 66] which can be used to calculate the number of known plaintexts N required for the
attack to succeed with probability p. The cryptanalyst needs O(2k) time to search the array
v for the highest value therein. After this, where K denotes the key size of the cipher, the
cryptanalyst is faced with the problem of finding the remaining (K − k) key bits, requiring an
exhaustive search (time complexity O(2K−k) encryptions), unless further attacks (whether linear
with another approximation, or some other technique) can be applied to recovering some or all
of these bits.

However, this is not always the strategy employed. The number of possible values for the TPS
bits involved is likely to be extremely high, and some of these will result, by pure chance, in high
biases themselves (rather than the expected near-zero bias). If the number of known plaintexts
N does not provide a sufficiently large sample, some of these biases may be more extreme than
that for the correct TPS.

In Matsui’s attack on the full DES [53], this behaviour was predicted, and dealt with in a way
that allowed a much lower value of N to be used than would otherwise have been the case. The
correct key was expected to result in one of the X highest-ranking values of v[i] (in this case,
X was equal to 213), but not necessarily the highest such value. With this as the goal of the
previous phases, the data complexity was much lower than it would have been had the correct
key been required to yield the highest value of v[i]. However, this came at the cost of increased
time complexity, as the search for the remaining 2K−k key bits was repeated for up to X different
TPS candidates.

This technique is known as key ranking.

The complexity of sorting the vector v to identify the highest biases is O(k2k)). It may, for
small values of X, be faster simply to search for the X highest biases, in at most O(X2k)
time. In either case, starting with the highest-ranked TPS candidate, and continuing on for
each successive candidate until the right one is found among the X highest ranked keys, the
cryptanalyst must (probably through exhaustive search), search for a value for the remaining
(K − k) key bits such that the full key value resulting correctly decrypts the known ciphertexts.

Without key ranking, this stage should be presumed to have complexity O(2k + 2K−k) unless
there is reason (such as another high-bias linear approximation involving the other key bits)
to believe that the remaining key bits can be obtained without exhaustive search. With key
ranking, this stage has a higher complexity of O(min(k,X)·2k + X·2K−k), although as stated
the use of key ranking will probably reduce the number of known plaintexts needed and hence
reduce the time complexity of the distillation phase and the data complexity of the attack as a
whole.

1.1.1 The improved method for the analysis phase, due to Collard, Standaert and
Quisquater.

(Note: we now switch from referring to the ith element of an array a as a[i], and will henceforth use
the notation ai.)

Other methods for the analysis phase do exist, including one used by Biham, Dunkelman and
Keller [6] to overcome a situation in which the time complexity for the naive method described above

would have been infeasible. We focus here on a newer method with very significantly improved time
complexity due to Collard, Standaert and Quisquater [25]; originally defined for 2R linear attacks,
and later adapted to 1R attacks by Nguyen, Wu and Wang [60].

(In both cases, the method applied only to SPN ciphers like AES and Serpent where the number
of active key bits was equal to the number of active text bits (let k denote this number), and not to
Feistel ciphers such as DES. In the particular case of DES, the expansion phase of the round function
was another factor inhibiting compatibility, in addition to the Feistel structure. We will describe an
adaptation of the method that overcomes these obstacles later on in this paper.)

In this method (in the notation of Collard et al.):

• N , as stated earlier, is the number of known plaintext/ciphertext pairs.

• k, as also stated earlier, is the number of key bits in the TPS. It was originally assumed [25]
that this was also the number l of data bits that had to be partially encrypted/decrypted, since
for an SPN cipher each of these key bits would be xored with its corresponding data bit during
said process. In the interests of simplicity, we will limit ourselves for the time being to ciphers
such that this assumption is valid.

• C is a 2k × 2k matrix. If the approximation holds for target partial subkey value i and value j
for the relevant plaintext/ciphertext bits, Cij = 1. If not, Cij = −1.

• Where the “active” text bits are those which we partially encrypt/decrypt during the attack,
x is a vector such that xj is the number of (plaintext, ciphertext) pairs in which the k-bit
number represented by these bits is j. Note that x is the vector we previously referred to as
COUNTERS 1; the computation of x is in fact the distillation phase and has complexity O(N)
as previously stated.

• In the case of a 1R attack, T is calculated during the distillation phase and replaces x in the
algorithm. Tj is defined as (the number of P/C-pairs such that the value of the active ciphertext
bits is j and the parity of the active plaintext bits is 0) - (number of pairs such that the active
ciphertext bits have value j and the active plaintext bits have parity 1.)

The matrix/vector product Cx, when all entries within are divided by 2, is the previously-defined
vector v such that vi is the sample bias for TPS candidate i. We do not need to carry out this
division, as the values currently present (vi = the number of pairs such that the approximation held
for candidate i, minus the number such that it did not hold.) suffice equally well. For this reason,
we will engage in a minor abuse of notation and refer to Cx as v from here on. Where key ranking is
involved, this vector would need to be sorted (in O(k·2k) time); otherwise it would need to be searched
(in O(2k) time) for the maximum absolute value therein.

To compute and store the entire matrix C would require O(22k) time and memory, in addition to
the O(22k) time complexity of the multiplication Cx. However, by relying on various properties of C,
and on the Fast Fourier Transform, we are able to derive the vector v = Cx using only one column of
C. We can do this with time complexity O(2k) to calculate the column of C, O(3·k·2k) to compute
the transforms, and O(2k) memory since only one column of C is needed for the new technique.

This is a significant improvement on the O(22k) complexity of the original algorithm for this phase.
(The key property of the matrix C is that the value of Cij is entirely dependent on (i⊕j). Any Cij

and Cgh such that (i⊕ j) = (g⊕h) will have the same value. This means that the set of values in any
one column of C is the same as the set of values in any other column - just in a different order. This
redundancy is the key to the complexity improvements obtained. We do not have the space to provide
a full explanation here, but refer the reader to Collard et al.’s paper [25] for the full explanation.)

Let us be a little more precise with regards to the memory requirements. The column of C has
2k entries, all -1 or 1. This implies that we need no more than 2k bytes to store it in signed char
variables. Variable types using fewer bits are unlikely to be present on any compiler, or to have the
same speed of implementation.

We also need to store x. This has 2k entries, each of which must be at least log2(N) bits in size.
On a modern processor with 64-bit word size, most ciphers will require no more than 2k+1 words here,
or 2k+4 bytes. We do not know of any block ciphers in widespread use with block size > 128, although
pre-AES versions of Rijndael did support up to a 256-bit block.

During the calculation of Cx, two “interim” arrays, y and z, are used [25]. Based on Carlet’s
description [12] of a version of the FFT using finite-field arithmetic over GF (2)x, which is equivalent
to both the Fast Walsh-Hadamard Transform and the k-dimensional FFT of size 2k [47], and on our
own implementation of the same, we can say with confidence that the same data types can be used
for these as for x, and hence that these arrays should require 2k+5 bytes between them.

This gives us a memory complexity of 2k + 2k+4 + 2k+5 ≈ 2k+5.615 bytes. One of the previous
arrays can presumably be reused to store Cx itself - the space for the array that stored x could be
repurposed for signed instead of unsigned data, for instance.

We now address the question of what the time complexity is in terms of. Clearly the naive
algorithm would require 22k partial encryption/decryptions (PEDs) to calculate C, in addition to
O(22k) arithmetic operations (AOs) and memory accesses (MAs) to calculate Cx. The new algorithm
requires 2k PEDs to calculate the first column of C, followed by O(3·k·2k) memory accesses and AOs
to calculate Cx.

The question of how many arithmetic operations are involved in partially encrypting/decrypting
a cipher varies by cipher, attack, and implementation. It is further complicated if lookup tables are
used for the S-boxes and we are forced to evaluate the complexity of an encryption or decryption in
terms of memory accesses as well, since the complexity of these will vary significantly by CPU. We
will later on make use of approximate complexity in terms of arithmetic operations for reduced-round
versions of Serpent using the optimised bitslice implementation [1, 2].

Based on the aforementioned version of the FFT [12], we estimate ≈ (2k+3)·2k MAs per transform.
(This is only an estimate, since we do not have detailed knowledge of CPU register allocation.) Where
y and z denote the output arrays from the first two transforms, the dot product y · z must then be
calculated, requiring 3×2k memory accesses. Multiplying the per-transform complexity by three, and
adding the complexity of the dot product and the 2k memory accesses when the first column of C
was calculated and written into memory, gives us ≈ (6k + 13) · 2k MAs in total. As for arithmetic
operations, the calculation of the dot product requires 2k AOs, and based on the same evidence as
before we estimate ≈ (2k + 1) · 2k AOs per transform, giving us a total of ≈ (6k + 4) · 2k AOs.

This is a significant improvement over the O(22k) memory accesses of the original analysis phase;
although in most cases that phase was able to access contiguously stored array elements in sequence
(work with COUNTERS 2[i] and COUNTERS 1[j + 1] would occur immediately after work with
COUNTERS 2[i] and COUNTERS 1[j] (stored at the address prior to COUNTERS 1[j + 1]))
and it may be that the extent of the improvement is reduced if this factor aided the CPU’s cache
management/location-seeking in main memory.

We note that equating complexity in terms of memory accesses to complexity in terms of partial
cipher encryptions is a difficult matter [33], depending on several factors such as; whether the CPU’s
memory controller is on-die or off-die, whether the memory access is to L1 cache, L2 cache, higher-level
cache or main memory, the instruction set of the CPU, the efficiency of physical address extension...
Previous work on the cryptanalysis of reduced-round Serpent [6, 8, 7] was not always consistent in
converting between the two, and assumed 3 processor cycles per memory access - which would seem
to require all memory accesses to be to L1 processor cache. Estimates for the time required to access
data in main memory in the event of a cache miss vary from 75 to 300 cycles, and it is not clear if this
figure is likely to increase or decrease over time, as processor performance improvements increasingly
rely on multiple cores and parallel execution rather than increased clock speed. In 2003, the NESSIE
project [65] gave a figure of 50 cycles per encrypted byte on either the PowerPC G3 or G4 processor
as the best performance for full Serpent; if we extrapolate from this to 800 cycles per block we have a
worst-case estimate of 1 MA = 3/8 of a full Serpent encryption, and we do not have up-to-date figures
for more recent processors to compare this to. It is becoming accepted that there is no easy means

to compare complexity in terms of memory accesses to complexity in terms of cipher operations [33],
and this is a problem we ourselves will encounter when discussing the performance of our attacks in
a later section.

For 2R attacks, later research [60] offers a potential performance improvement, trading very slight
increases in MA and AO complexity for reduced memory and PED complexities. Let l1, l2 be such
that (l1 + l2) = k, where l1 denotes the number of TPS bits acting on the plaintext, and l2 the
number of TPS bits acting on the ciphertext. Then instead of 2k partial encryption/decryptions,
the method need only execute 2l1 partial encryptions and 2l2 partial decryptions, in addition to
est. (2l2 · (6l1 + 4) · 2l1 + 2l1 · (6l2 + 4) · 2l2) = (6k + 8) · 2k arithmetic operations and est. (2l2 ·
(6l1 + 13) · 2l1 + 2l1 · (6l2 + 13) · 2l2) = (6k + 26) · 2k memory accesses. Memory complexity is
also improved, since the arrays y and z need only have 2max(l1,l2) entries each, reducing the total to
2k + 2k+4 + 2max(l1,l2)+5 ≈ 2k+4.087 + 2max(l1,l2)+5 bytes.

A generalised version of this algorithm for use in multidimensional linear attacks was also developed
[60], leading to the best cryptanalytic result so far against 12-round Serpent. Where m denotes the
number of dimensions, the generalised algorithm requires 2m× the number of MAs and AOs for the
one-dimensional case, plus the complexity of computing 2l1+l2 more transforms on a data set of size
2m, to convert the experimental correlations to empirical probability distributions.

1.1.2 Generalising the new method to the Feistel structure - an example.

As stated, it is in some cases possible to generalise the improved analysis phase to ciphers other than
substitution-permutation networks. The key fact upon which all of the new methodology relies is that
Cij = f(i⊕j) for key value i and text value j. Let us note that in Matsui’s attack on the full DES,
twelve text bits are xored with twelve key bits prior to being input to f , but the thirteenth (an xor
of eight text bits) is not. Let us therefore introduce a “dummy” key bit, the value of which we know
to be zero (but which we will act as though we do not know), and assume that it is xored with one
of these eight bits at the start or end of the cipher (One such bit, referred to in Matsui’s notation as
CH [29], is not in fact suitable for this; we must use one of the others.) This allows us to treat the
partial encryption/decryption in Matsui’s attack as f(i⊕j), to construct a column of C containing 213

entries, and indeed to carry out the rest of the attack with complexity as described above for k = 13.
The fact that each row for (dummy bit = 1) will be equal to −1×(corresponding row for dummy bit
= 0, all other key bits unchanged), and hence that the matrix will be rank-deficient, will not affect
the attack.

Unfortunately, the analysis phase of Matsui’s attack on the full DES has the least effect on the
overall complexity, and it is this phase which would be optimised by applying the above. Furthermore,
the fact that CH [29] could not be xored with a dummy key bit (since it was already one of the bits
xored with a real key bit) suggests that approximations for DES, and other non-SPN ciphers, may
exist to which this method cannot be applied.

2 How nonlinear approximations affect the attack

2.1 How unbalanced nonlinear components in the approximation affect the attack.

Let us assume that we have set up a 2R linear or nonlinear approximation to the inner rounds of
some cipher. (It will be straightforward to extrapolate the results of this subsection to the case
of 1R attacks.) For a conventional linear approximation, this would be an equation of the form
(xa1 ⊕ xa2 ⊕ . . .⊕ xas)⊕ (yb1 ⊕ . . .⊕ ybt) = 0, where the xa are the input bits to Round 2 and the yb
are the output bits of round r − 1.

Now, this equation, assuming the cipher has acted sufficiently well in randomising its outputs,
should hold with bias 0 if the correct TPS has not been guessed.

We have (balanced function on one set of bits x) ⊕ (balanced function on some other set of bits
y) = 0. Again, assuming the cipher’s randomising effect has been adequate, the value of the first set

Figure 2: Diagram showing the full 16-round DES and the approximation for rounds 2 to 15 used by
Matsui [53]

of bits should be viewed as independent of the second. Then P(approximation = 0) =

P ((xa1 ⊕ . . .⊕ xas = 0) ∩ (ya1 ⊕ . . .⊕ yas = 0))

+ P ((xa1 ⊕ . . .⊕ xas = 1) ∩ (ya1 ⊕ . . .⊕ yas = 1))

= (0.5× 0.5) + (0.5× 0.5)

= 0.5

This only depends on the linear function on the approximation’s input bits (the linear component
at the input end) and the linear function on the approximation’s output bits (the linear component at
the output end) being balanced, not on their being linear. Either or both of these could be replaced
with a balanced nonlinear function without affecting this.

Therefore, for the following configurations for the overall approximation, the attack works as
predicted by the usual probability model:

1. First per-round approximation (Round 2 of the cipher) in overall approximation is linear. Final
per-round approximation (to Round (r − 2)) is also linear.

2. First per-round approximation in overall approximation is a nonlinear approximation with a
balanced nonlinear component. Final per-round approximation is linear.

3. First per-round approximation in overall approximation is linear. Final per-round approximation
is a nonlinear approximation with a balanced nonlinear component.

4. First per-round approximation in overall approximation is a nonlinear approximation with a
balanced nonlinear component. Final per-round approximation is also a nonlinear approximation
with a balanced nonlinear component.

Now, let us assume that either the first per-round approximation, or the final per-round approxi-
mation, is an unbalanced function, and that the other is balanced. Without loss of generality, we may
assume that it is the first per-round approximation, the approximation to Round 2 of the cipher, that
is balanced. Let P(unbalanced component = 0) be denoted α.

Then, for an incorrect key, P(approximation = 0) =

P ((xa1 ⊕ . . .⊕ xas = 0) ∩ (ya1 ⊕ . . .⊕ yas = 0)) + P ((xa1 ⊕ . . .⊕ xas = 1) ∩ (ya1 ⊕ . . .⊕ yas = 1))

= (0.5× α) + (0.5× (1− α))

= (0.5× 1.0)

= 0.5

We see that, as long as either the first or the last round of the approximation is a balanced function
on the input bits to the inner rounds, or the output bits to said rounds, it does not matter whether
the function acting on the bits at the other end is balanced. The question therefore arises: can we use
approximations which are unbalanced at both ends?

Unfortunately, in general we cannot. Let β denote the probability that the nonlinear function at
the input end is zero. Let γ be the probability that the nonlinear function at the output end equates
to zero. Then P(approximation = 0) =

P ((xa1 ⊕ . . .⊕ xas = 0) ∩ (ya1 ⊕ . . .⊕ yas = 0)) + P ((xa1 ⊕ . . .⊕ xas = 1) ∩ (ya1 ⊕ . . .⊕ yas = 1))

= (β × γ) + ((1− β)× (1− γ))

This is not always equal to 0.5. For example, let β = 0.4, γ = 0.6. Then the above is equal
to 0.48, not 0.5. Let β = γ = 0.1 and the probability equates to 0.82, diverging further from 0.5!
Clearly, having an unbalanced function at both ends of the approximation is problematic, and it is for
this reason that we limit ourselves to situations in which at least one end of the approximation is a
balanced function on its respective set of bits.

The reader may, having noted that the related approximations previously referred to define several
different functions at their respective ends of the approximation, be concerned that this will make it
difficult to ensure that they are all balanced. Fortunately, all nonlinear components in a set of related
approximations are balanced if and only if the primary approximation is balanced.

To prove this, let us assume without loss of generality that the correct key is an all-zeroes bitstring,
and that the nonlinear component is in terms of the approximation’s output bits. Consider that the
nonlinear component of the α1α2. . .αlth related approximation, nα1α2...αl , is equal to n0((y1⊕α1), (y2⊕
α2), . . ., (yl ⊕ αl)), where n0 is the nonlinear component of the correct, or primary, approximation.
Clearly, each related approximation ni must have a truth table which is a permutation of that of n0,
the permutation being determined by the fact that ni(y) = n0(y ⊕ i).

2.2 How the related approximations affect the attack.

We have already discussed the difficulty faced by the cryptanalyst in working out which of 2h functions
on the partially-decrypted ciphertext bits (and partially-encrypted plaintext bits) is equivalent to
the nonlinear function on the S-box output/input bits involved in the approximation. One possible
approach would be to compute all possible functions, and for each guess at the key bits involved,
accept the function with the highest probability bias as correct.

Knudsen and Robshaw [46] considered a very simple form of this, in which no partial decryption
was involved. In effect, they carried out a “0R” attack in which the whole cipher (5-round DES) was
nonlinearly approximated, using an approximation that was linear on the plaintext bits but nonlinear
on the ciphertext bits. The nonlinear approximation to the final round had an absolute bias of 24, and
the aim of the attack was to deduce the four key bits kα1 . . . kα4 which were xored with the final-round
S-box input bits involved in the approximation.

The problem that occurred was that several of the “related” functions corresponded to alternative
nonlinear approximations which also possessed high magnitude of bias. One of these possessed the
same absolute bias as the original, and for those which did not, it was not clear how much data would
be required to distinguish, say, the correct function and a bias 24 approximation from an incorrect
function which defined a bias 16 approximation. Or, in some of the situations we encountered when
devising our own approximations, a bias 24 approximation and an incorrect function defining an
approximation with bias −22.

Let us try to demonstrate, using examples, why this problem does not apply in the case of linear
cryptanalysis, and why attacks based on nonlinear cryptanalysis cannot disregard it in the same way
as conventional linear attacks.

In a conventional 2R linear attack, key bits are guessed for S-boxes in the first and last rounds of
the cipher. It is not necessary to guess the key bits affecting the S-boxes in the first and last rounds
of the approximation. Any guess, right or wrong, at these bits simply xors a linear function with a
constant value. Some key guesses will, in effect, always xor the correct function calculation with zero
and leave it unaffected. Others, by always xoring with 1, will merely flip the sign of the bias.

In the context of Matsui’s attack on 16-round DES [53], this means that although the first and
last rounds of the approximation are, respectively, 2 and 14, it is not necessary to guess the round key
bits which are xored with S-box input values in these rounds. Only round key bits from rounds 1 and
16 are needed.

For a nonlinear attack, this is not the case. If either the first or last round of the approximation
involves a nonlinear component, and if the bits involved in said component are xored with key bits
after leaving/before entering the active S-box, these key bits have to be guessed.

Figure 3: Diagram showing the final round and key xors of the Heys toy cipher during a conventional
linear attack.

Let xi denote the ith input bit to whichever S-box we are dealing with, and let yj be the jth
output bit. Let us compare the linear approximation x4 ⊕ x5 = y3 ⊕ y4 to DES S5 with the nonlinear
approximations

• x3 ⊕ x4 = y4 ⊕ y3 ⊕ y1y3

• x3 ⊕ x4 = 1⊕ y1 ⊕ y3 ⊕ y4y1 ⊕ y3y4 ⊕ y3y4y1

to Serpent S3:

Related approximation Linear function Bias

0 x4 ⊕ x5 = y3 ⊕ y4 +6
1 (x4 ⊕ 1)⊕ x5 = y3 ⊕ y4 -6
2 x4 ⊕ (x5 ⊕ 1) = y3 ⊕ y4 -6
3 (x4 ⊕ 1)⊕ (x5 ⊕ 1) = y3 ⊕ y4 +6

Table 1: Linear approximation to DES S5. Note that all relateds are either the original approximation
or 1⊕ it.

Related approximation Nonlinear function Bias

0 x3 ⊕ x4 = y4 ⊕ y3 ⊕ y1y3 +6
1 x3 ⊕ x4 = y4 ⊕ y3 ⊕ (y1 ⊕ 1)y3 0
2 x3 ⊕ x4 = y4 ⊕ (y3 ⊕ 1)⊕ y1(y3 ⊕ 1) 0
3 x3 ⊕ x4 = y4 ⊕ (y3 ⊕ 1)⊕ (y1 ⊕ 1)(y3 ⊕ 1) +2
4 x3 ⊕ x4 = (y4 ⊕ 1)⊕ y3 ⊕ y1y3 -6
5 x3 ⊕ x4 = (y4 ⊕ 1)⊕ y3 ⊕ (y1 ⊕ 1)y3 0
6 x3 ⊕ x4 = (y4 ⊕ 1)⊕ (y3 ⊕ 1)⊕ y1(y3 ⊕ 1) 0
7 x3 ⊕ x4 = (y4 ⊕ 1)⊕ (y3 ⊕ 1)⊕ (y1 ⊕ 1)(y3 ⊕ 1) -2

Table 2: Nonlinear approximation to Serpent S3. In this table, the polynomial forms of the related
approximations are not expanded.

Related approximation Nonlinear function Bias

0 x3 ⊕ x4 = y4 ⊕ y3 ⊕ y1y4 ⊕ y1y3 ⊕ y1y3y4 6
1 x3 ⊕ x4 = 1⊕ y4 ⊕ y3 ⊕ y1 ⊕ y1y4 ⊕ y1y3y4 -4
2 x3 ⊕ x4 = 1⊕ y4 ⊕ y3 ⊕ y1 ⊕ y1y3 ⊕ y1y3y4 -2
3 x3 ⊕ x4 = y4 ⊕ y3 ⊕ y1 ⊕ y1y3y4 2
4 x3 ⊕ x4 = y3y4 ⊕ y1y4 ⊕ y1y3 ⊕ y1y3y4 -2
5 x3 ⊕ x4 = y3 ⊕ y1 ⊕ y3y4 ⊕ y1y4 ⊕ y1y3y4 2
6 x3 ⊕ x4 = y4 ⊕ y1 ⊕ y3y4 ⊕ y1y3 ⊕ y1y3y4 2
7 x3 ⊕ x4 = 1⊕ y4 ⊕ y3 ⊕ y1 ⊕ y3y4 ⊕ y1y3y4 -4

Table 3: Another nonlinear approximation to Serpent S3. In this table, the polynomial forms of the
related approximations are expanded.

For the first nonlinear approximation, in a situation where y1y3 = 1, any wrong guess at key bits
(k1, k3) will result in its value being wrongly calculated as 0. If y1y3 = 0, by contrast, only one of
the three possible wrong guesses for (k1, k3) will result in its value being calculated incorrectly. In
general, an incorrect key guess will not consistently result in the wrong value being assigned to the
nonlinear terms affected by it, and so will not simply leave the overall magnitude of the bias involved
in the attack invariant.

It is therefore necessary to guess at the key bits involved in the first and last rounds of the
approximation, as well as those involved in the first and last rounds of the cipher or reduced-round
variant thereof (in a 2R-attack.), simply to be able to obtain the latter set of key bits. Since having
to guess the values of these bits adds to the time complexity of the attack, we would like to obtain
some information about them.

Let us look again at the approximation x3⊕x4 = y4⊕y3⊕y1y3 above. The related approximations
when k4 is guessed wrongly hold with the same absolute bias as the corresponding relateds for when
it is not, so unfortunately we cannot recover any information about the value of k4. However, the
related for (k4 alone wrong) is the only related with an absolute bias near to that of the correct guess,
so we should be able to recover the values of bits k1 and k3

Now consider x3 ⊕ x4 = 1⊕ y4 ⊕ y3 ⊕ y1y4 ⊕ y1y3 ⊕ y1y3y4. As seen in the table above, no related
approximation has as high a bias as the correct one, so in theory it should be possible to obtain
information on all three key bits involved. In practice, since the relateds for (k4 wrong) and (all three
key bits wrong) both have high bias, the amount of data required to distinguish these from the correct
related will be higher than that for the remainder of the attack.

For this reason, in a search for approximations to use in a straightforward generalisation of the
linear attack, it would seem that the cost function should try to maximise the difference between
the absolute bias of the evolved approximation, and the highest absolute bias of any of the related
approximations. Since the attacker needs to obtain the key bits for the first and last rounds of the
cipher, the need for the “primary” approximation to possess a high absolute bias is also important.

The above was all taken into account by Knudsen and Robshaw. However, what was not observed
was that related approximations with high absolute bias may actually benefit the cryptanalyst during
the search for the key bits in the cipher’s outer rounds. If the correct key is guessed in these rounds,
the related approximations will be expected to hold with their predicted biases; if not they will be
expected to hold with bias 0. By evaluating all possible related approximations, the cryptanalyst can
track the information on the biases of 2l approximations instead of just one, and may be able to use
this extra information to boost the “signal-to-noise ratio” and reduce the data requirements of the
basic attack - in effect trading increased time complexity against reduced data complexity.

Moreover, it may be that the cryptanalyst will decide only to attack the key bits in the outer
rounds, basing the score for each outer-round key candidate on the best experimentally obtained
bias across all of the relateds. If the primary approximation is expected to hold with a particularly
high magnitude of bias, the reduced data complexity resulting from this approach may be deemed a
reasonable tradeoff for the increased time complexity (compared to conventional linear) in evaluating

the full set of related approximations.

3 New statistical frameworks and cryptanalytic techniques.

3.1 Adapting the new analysis phase to nonlinear cryptanalysis of substitution-
permutation networks.

Where the cipher being attacked is a substitution permutation network, we will describe an adaptation
of Collard et al.’s new analysis method [25], as also the improvements due to Nguyen et al. [60] to
nonlinear cryptanalysis. For other cipher structures, such as Feistel ciphers, the intention is to adapt
this method as far as possible - indeed, in the next subsection we will discuss adapting this method
to the Data Encryption Standard.

• Let k denote the target partial subkey; i.e. the set of attacked key bits. Let k1 be the set
consisting of the bits of k interacting with the S-boxes in the outer rounds of the cipher (the
ones which we must partially encrypt/decrypt.) Let k2 be the set of bits of k interacting with
the S-boxes in the outer rounds of the approximation.

• Let f(i, j), where i is the value of the active text bits, and j the value of the bits of k1 with
which they are xored, be a 2|k2|-long string of values ∈ {−1, 1} defined as follows:

1. Partially encrypt/decrypt i using j. This will yield a string of text bits entering/leaving the
outer rounds of the approximation, |k2| of which are involved in the nonlinear component.
Note that this string of text bits is in fact only dependent on the value (i⊕ j).

2. For each possible value µ of k2, xor the |k2| bits mentioned above with the appropriate bits
of µ, and compute the nonlinear function on these. Set the µth entry in the string of values
to −1 if the nonlinear approximation does not hold when this is done. Otherwise, set it to
1.

• The string of 1s and -1s is obtained by applying a sequence of functions to a set of bits determined
entirely by the value of (i⊕ j). This allows the matrix C such that Cij = f(i⊕ j) to be defined
as before, except that Cij is now a string of values instead of just one.

• Where x is the vector containing the frequency with which each value for the involved text bits
has occurred, Cx can also be calculated as before, although each entry in Cx is now a 2|k2|-string
of integers.

(To clarify, let us assume that we have 2|k2| matrices C(y), defined by letting C(y)i,j be equal to
the yth entry in Ci,j . We can calculate C(y)x for each C(y), and then Cx is the vector such that
Cxi is the string of ith entries from each of the C(y)x in order: (C(1)xi, C(2)xi, . . ., C(2|k2|)xi).)

• So far, the memory complexity, and the time complexities in terms of arithmetic operations and
memory accesses, of the corresponding stages of the linear version of this method can simply be
multiplied by 2|k2| to obtain the complexity of the new method up to this point.

• The first problem we are faced with is choosing the correct value of j (i.e. of k1) from this. Each
string of values needs to be assigned a score such that, according to some statistical theory, the
more likely a given k1 candidate is to be correct, the higher the score assigned to its corresponding
string of values.

In conventional linear cryptanalysis using the analysis method of Collard et al., there would be
only one value in this string, the absolute value of which would be the score. The complexity
of going through the values in Cx and setting them to their absolute values would be at most
2|k1|+1 memory accesses (2|k1| reads, and at most 2|k1| writes.) and 2|k1| arithmetic operations.
More generally, the time complexity for this phase for nonlinear cryptanalysis is at least O(2|k1|+
2|k1|+|k2|) memory accesses, to access all values in all strings and to write the scores to an array.

• One way in which we could handle this would be by allocating each string of values a score
equal to the maximum absolute value therein. This approach, which we shall refer to as the
maximum-bias approach, is the simplest possible method, and is probably the best to use when
one of the approximations has a bias of considerably higher magnitude than any of the other
relateds. However, it does fail to make use of most of the information in each vector Cxi.

The vector of scores should need at most (block size of cipher) bits per entry. Currently most
block ciphers have block size ≤ 128, so this usually adds ≤ 16 × 2|k1| bytes to the memory
complexity. The time complexity will be dominated by the O(2|k1|+ 2|k1|+|k2|) memory accesses.

• Another possible approach would be to allocate each string of values a score equal to the sum
of squares of the values therein, before either accepting the value of k1 with the highest score or
key ranking according to this score.

The time complexity for scoring according to this method should not differ substantially from the
maximum-bias method, but the memory required for the vector of scores would be substantially
higher - 2|k1|+|k2|× 2dlog2(N)e bits, ≤ 2|k1|+|k2| ∗ (BLOCK SIZE ∗ 2), since in theory an attack
using the full codebook could result in at least one score equal to 22×BLOCK SIZE . For a 128-bit
block cipher, this leads to an upper bound of ≤ 2|k1|+|k2| ∗ 32 bytes.

If the truth tables of the related approximations are statistically independent, this will allow us
to make use of the χ2-statistic in a way similar (but not identical) to its use in multidimensional
linear cryptanalysis [17, 13].

If they are not, we still gain information from the sum of squares that allows them to be used as
a distinguisher, but we do not gain as much as if they were independent. Since there is no known
statistical framework for a variation of the χ2-statistic where some of the Pearson correlation
coefficients of the variables are not ∈ {0,±1} (i.e. where they are not independent), we will
need to conduct experiments on significantly reduced-round cipher variants to obtain empirical
evidence for the distinguishing advantage obtainable.

• The question arises as to whether we could exploit our knowledge of the theoretically predicted
distribution of the biases of the nonlinear approximation and its relateds. For example, if we
expect the related approximation for k2⊕α for some value α to hold with bias β, and the related
approximation for k2 ⊕ γ ⊕ α (for some value γ) to hold with bias −β, the above approaches
do not currently utilise this knowledge. However, since we do not know in advance the correct
value of k2, this would require us, for each k1, to attempt to match the distribution to every
possible value for k2 - which would result in increased time complexity.

Since the log-likelihood ratio has the optimal data complexity among all methods for distin-
guishing a distribution p from another distribution q [30, 17], we believe that this would be the
most effective means to exploit the information referred to. Since the related approximations
may not have statistically independent truth tables, though, similar problems to those described
for the χ2-statistic may still arise.

There is also the “linear hull” effect to be borne in mind. Approximations with the same input
and output bitmasks, but following different paths through the cipher - i.e. different characteris-
tics - may result in the actual distribution being different to that predicted theoretically. Figure
4 of a recent paper by Collard and Standaert [22] shows the results of experiments conducted
on reduced-round versions of the cipher SmallPRESENT [50], in which this difference is seen to
increase significantly with the number of rounds. In all of these experiments, we note that as
the number of rounds increases, the magnitude of the theoretical bias for a conventional linear
approximation (as calculated using the Piling-Up Lemma) is seen to increasingly underestimate
the magnitude of the actual bias. Furthermore, the extent of this underestimate varies signif-
icantly depending on the key value, although the extent of this variation does not appear to
increase further after five rounds.

For the other methods we have suggested, this would not pose a problem; indeed it would be
beneficial to the attack’s performance. However, for a particular distance metric (the Kullback-
Leibler distance), the LLR statistic in a linear cryptanalysis variant would reward high distance
from the uniform distribution, and low distance from the theoretical distribution, equally. The
linear hull effect would clearly interfere with the second part of this.

Furthermore, experiments conducted on SmallPRESENT are particularly relevant to PRESENT
and Serpent - in fact, SmallPRESENT is parameterisable such that for one particular parameter
value, it is exactly the same as PRESENT! All three ciphers have the following in common:

– An SPN structure, so that round-key xor, application of a layer of substitution boxes to
the entire block, and then a linear diffusion layer, are applied in sequence in each round
(Serpent omits the diffusion layer in the final round), followed by a final key xor at the end
of the cipher.

– All the S-boxes in a given round are identical 4× 4 bijections, with differential uniformity
4, nonlinearity 4, and most/all of the S-box co-ordinate functions having algebraic degree
3. In particular, the S-box used in PRESENT and SmallPRESENT is affine-equivalent to
Serpent’s S2 and S6.

Serpent does have a more effective diffusion layer than the permutation used by PRESENT
and SmallPRESENT, but whether the increased number of active S-boxes resulting from this
exacerbates the problem observed by Collard and Standaert or not is unclear - it seems extremely
unlikely that it could in any way mitigate it.

Where the theoretical prediction is known to be accurate, or where experiments have indicated
that it is likely to be for the particular cipher and number of rounds being attacked, the log-
likelihood ratio (LLR) has been shown in the context of multidimensional linear cryptanalysis
[17] to be superior to the χ2 statistic. Approximations to the LLR statistic also exist which
can be computed much more quickly - one based on its Taylor series expansion [30], another,
slightly less accurate but faster to compute, based on the convolution of probability distributions
[37, 38]. In experiments, the average difference in advantage between the LLR and whichever of
its approximations we are testing has been negligible and has decreased to 0 as N has increased.

• Upon accepting a given value of k1, we next need to find k2. Depending on the various parameters
of the attack, there may be situations where the most practical approach is simply to include the
bits of k2 in the exhaustive search for the non-attacked key bits. For example, it may be that
the incorrect key guesses result in related approximations with too high a bias to be practically
distinguishable from the correct k2 and corresponding approximation.

As an example, let us consider an attack on Serpent in which only the final round of the ap-
proximation contains a nonlinear component; this being in S-box S3 with input bitmask 11 (so
x1⊕x3⊕x4 = some nonlinear function of the output bits with some bias ε.). We have eight non-
linear approximations to this bitmask with bias 6, four of which are of particular interest here.
Each of these four has one related approximation with a bias of −6, one related approximation
with bias 2, and one related approximation with bias −2.

(Approximations with these biases occur frequently for 4×4 S-boxes. They are especially useful
for various reasons:

– Both of the related approximations with absolute bias 2 are statistically independent of the
approximation with bias 6.

– The approximation with bias -6 has a truth table which can be obtained from the truth
table of the bias 6 approximation by flipping all of the bits therein. This means that it
provides no information that the approximation with bias 6 does not, and can safely be
omitted from the attack.

– The approximation with bias 2 is related to the approximation with bias -2 in the same
way. This means that only one of them provides useful information, and the other can be
omitted from the attack. It is up to the cryptanalyst to decide which one.

– Their nonlinear components are balanced.

We are therefore able to handle statistical dependence among the related approximations in an
extremely straightforward fashion, leaving us with a set of completely independent approxima-
tions for which the χ2 statistic is fully valid, and for which the LLR statistic is also valid (barring
issues resulting from the linear hull effect).)

We can use any of the approximations individually, or we can attempt a form of multiple nonlin-
ear cryptanalysis using two or more approximations (or, equivalently, two or more sets of related
approximations) simultaneously. The below pseudocode demonstrates the attack for both the
one-approximation and two-approximation cases.

Algorithm 1 Nonlinear cryptanalysis algorithm

l← the number of active data bits.
h← the length of k2.
for (i⊕ j)← 0, 2l − 1 do

Partially encrypt/decrypt (i⊕ j).
Let m denote the result of this.
Let µ denote the bits of m involved in the nonlinear component(s).
for CURRENT K2 V AL← 0, 2h − 1 do

δ ← µ⊕ CURRENT K2 V AL
if Attack uses one approximation then

Compute nonlinear function on δ
if Approximation holds then

Cij [CURRENT K2 V AL]← 1
else

Cij [CURRENT K2 V AL]← −1
end if

else if Attack uses multiple approximations then
for CURRENT APPROX ← 0, NO OF APPROXIMATIONS do

Compute current nonlinear function on δ
if Current approximation holds then

Cij [CURRENT APPROX][CURRENT K2 V AL]← 1
else

Cij [CURRENT APPROX][CURRENT K2 V AL]← −1
end if

end for
end if

end for
end for
Compute Cx.
We obtain, for each value of k1, a vector of values.
We allocate a score to this vector depending on the statistical method in use.

For each value of k1, based on whichever statistical method is in use (whether maximum-bias,
χ2 or other) we assign a score to the distribution of values in its corresponding Cx entry. For the
maximum-bias and χ2 methods, the scoring system should reward high values for the distance
between the experimentally obtained distribution and the uniform distribution. A randomly-
chosen wrong key is expected to possess much lower distance than the correct key; however (as

noted in subsection 1.1) this does not necessarily mean that the correct key will possess the
highest distance, and some form of key-ranking may be required.

If the LLR method is being used, we assign a score that rewards high LLR values. It is known
[30] that the LLR of the empirical distribution q̂ derived from the experimental data, theoretical
distribution p, and uniform distribution q (denoted LLR(q̂, p, q)) is equal to the Kullback-Leibler
distance between the empirical and uniform distributions, D(q̂||q), minus the distance D(q̂||p)
between the empirical and theoretical distributions. Hence, such a scoring system rewards both
distance from the uniform distribution and closeness to the theoretical distribution.

Definition 3.1. Let p, q be two probability distributions for discrete random variables, each of
which has a set of M + 1 possible values:

p = (p0, . . ., pM)

where pi denotes Pr(random variable with distribution p takes the value i). Similarly:

q = (q0, . . ., qM).

The Kullback-Leibler distance, also known as the Kullback-Leibler divergence or the K-L distance,
between p and q is:

D(p||q) =
∑M

i=0 pilog2(piqi)

The following lemmas [30, 17] are useful in efficiently implementing algorithms to compute the
approximate K-L distance:

Lemma 3.2. The first term in the Taylor series expansion of D(p||q) is:

M∑
i=0

(pi − qi)2

2qi

Lemma 3.3. If, ∀(0 ≤ i ≤ M), |pi − qi| � qi, then D(p||q) can be approximated by the first
term in its Taylor series (as given above).

Definition 3.4. Where the probability distributions p and q are defined as before, let q̂ denote
an empirical distribution derived from experimental data. Let Q denote the true probability
distribution of the data from which the N samples used to derive q̂ were taken.

Assume that we face a decision problem in choosing between the hypotheses H0 : Q = p and
H1 : Q = q, and know one of these to be true. For a given test T, let αT denote the probability
of H0 being accepted when H1 is correct, and let βT denote the probability of H1 being accepted
when H0 is correct. The Neyman-Pearson lemma [30] states that the log-likelihood ratio statistic
is the optimal statistic for distinguishing between the two distributions, in that any test S using
a different statistic in which αS ≤ αT must have βS ≥ βT .

The log-likelihood ratio (LLR) is defined thus:

LLR(q̂, p, q) =
M∑
i=0

Nq̂ilog2

(
pi
qi

)
The higher the value of LLR(q̂, p, q), the more likely it is that distribution p is the correct choice.

Lemma 3.5. The log-likelihood ratio and Kullback-Leibler distance are related thus:

LLR(q̂, p, q) = N×D(q̂||q)−N×D(q̂||p)

An important complexity issue arises. In determining whether the nonlinear approximation holds
for each candidate k2 value, we need to repeatedly evaluate a nonlinear expression, and the complexity
of this compared to evaluating a linear expression in the conventional attack (considered negligible in
most papers) is not clear (although experiments have confirmed that it is considerably higher.)

For example, this is the nonlinear component of an approximation to DES S5:

1⊕ x5 ⊕ x5x6 ⊕ x2x6 ⊕ x1x5 ⊕ x1x2 ⊕ x1x5x6 ⊕ x1x2x6

It is not clear how to compare the complexity of this to the complexity of the full S-box, as it
is unlikely that an S-box implementation would rely solely on XOR, AND and NOT (to add the
constant term) gates. Moreover, the difficulty of finding, for a given basis and function, the circuit
for that function with the smallest number of gates is a difficult and still open problem [29]. It is to
be assumed that the cryptanalyst would be using S-box implementations chosen to maximise speed,
without regard to such factors as resistance to side-channel attacks which most cipher implementations
would have to address.

Since this may be represented by a lookup table with as many elements as the S-box:

1101110111011101100010001000100011111111111111110000000000000000,

and since its algebraic normal form has a much smaller weight than any co-ordinate function of the
S-box it approximates, we will proceed with the assumption that the complexity of calculating this
function is less than or equal to that of computing a full S-box. Since it will have to be calculated
2|k2| times for each partial encryption/decryption, where Sc denotes the total number of S-boxes in all
the rounds of the cipher, we will estimate the time required for each partial encryption/decryption to
be (number of active outer round boxes)/Sc + 2|k2|/Sc of the time required for a full encryption.

3.2 The theoretical complexity of the new attack.

The key question that now arises is how much the use of nonlinear approximations will affect the
known-plaintext requirements for the attack. It seems at first sight that they should be significantly
reduced. For example, if we use the nonlinear approximation to DES S5 above in the final round of
Matsui’s attack [53], instead of one approximation to the whole cipher with bias −1.192 × 2−21, we
have a set of eight related approximations, including one with bias 1.431× 2−21.

(More precisely: one approximation with bias 1.431× 2−21, one with bias 1.907× 2−22, two with
bias −1.907× 2−22, two with bias 1.431× 2−22 and two with bias −1.431× 2−22 - unfortunately, these
are not statistically independent of each other.)

We cannot adapt the complexity predictions from Biryukov et al.’s 2004 work on linear cryptanal-
ysis with multiple approximations [9], since Murphy [57, 58] has demonstrated flaws in the crucial
Corollary 1, and shown that it underestimates the data requirements (increasingly so as the number
of approximations increases.)

We have, instead, focused on adapting the data complexity predictions for multidimensional linear
cryptanalysis, which uses different statistical frameworks not affected by this flaw. However, this does
bring further problems to light.

Before we discuss these, we define the essential concept of advantage:

Definition 3.6. If, in a cryptanalytic attack on a TPS of length n, we are employing key ranking
such that the attack will be considered a success if the correct TPS is one of the 2n−a highest ranked,
the value a is referred to as the advantage of the attack.

We use the following notation:

• a denotes the advantage.

• When discussing the χ2 statistic, b denotes the value Φ−1(1− 2−a). When discussing the LLR,
b denotes the value Φ−1(M+1

√
1− 2−a).

• k0
1 denotes the correct value of k1.

• k0
2 denotes the correct value of k2.

• N denotes the number of known plaintext/ciphertext pairs involved in the attack.

• In nonlinear cryptanalysis, M denotes the number of related approximations. In the case of
multidimensional linear cryptanalysis, M = 2m − 1 is the number of linear approximations
involved in the attack; these being the nonzero linear combinations of the m base approximations.

• PS is the success probability of the attack.

• C(p) is the theoretical capacity of the set of approximations used. Since p is clearly the theoretical
distribution from the context in which this is referred to, we will sometimes simply denote it C.

3.3 Theoretical complexity with the chi-squared statistic.

Consider the complexity calculations for the χ2-statistic in multidimensional linear cryptanalysis [17].

Prior to Theorem 1, the authors state that Φ(−b) ≈ e−b
2/2

√
2π

when b is large. This is not in fact the case -

the approximation was taken from Section 4 of an earlier paper [4], but the authors of this had realised
that the approximation was erroneous and published a correction [54]. The correct approximation for

large b is e−b
2/2

b
√

2π
.

Theorem 1 of this paper relies on rearranging

N ≈ 2
√
Mb+ 4Φ−2(2PS − 1)

C(p)

to obtain

b2 ≈ (NC(p)− 4Φ−2(2PS − 1))2

4M
(3.1)

The authors, relying upon the formula 2−a = Φ(−b), applied the approximation 2−a = Φ(−b) ≈
e−b

2/2
√

2π
, claiming from this that a ≈ b2 and so that the above equation gave an approximate formula

for the advantage of the attack in terms of N . Since
√
e = 1.648721271 6= 2, this is already incorrect.

Allowing for the correction to the approximation, a ≈ b2

2·ln(2) + log2(b)+log2(
√

2π) ≈ 0.72b2 + log2(b)+

log2(
√

2π) ≈ 0.72b2 + log2(b) + 1.325.
The value b is not so large as to allow us to simplify further with a ≈ 0.72b2 + log2(

√
2π); this

would result in a 2-bit underestimate for the advantage in Cho’s attack on PRESENT [14].
We note, however, that for relatively marginal attacks with low advantage, the condition of “large

b” is not satisfied. Later on in this section, we will plot graphs of the estimated advantage based
on this approximation, and on the direct computation of a = −log2(1 − Φ(b)), and show that the
approximation mistakenly predicts that low advantage attacks with data complexity below 227 on
reduced-round Serpent cannot be mounted. We recommend calculating a from b directly if possible.

However, the problems run deeper still. Despite contacting the authors of the key paper [17], we
have not been able to re-derive the approximation

NC(p) ≈ 2
√
Mb+ 4Φ−2(2PS − 1)

One of the authors, taking into account the incorrect Φ(−b) approximation, has stated that there
may have been a mistake, but no longer has access to the software originally used in obtaining the
approximation. In particular, we believe that there is no way to obtain an approximation containing
Φ−2(2PS − 1), and conjecture that this results from a misunderstanding of the formula (2PS − 1) =

erf(Φ−1(PS)√
2

).

Equation 9 of the same paper is:

Φ−1(Ps) =

 µR − µa√
σ2
R + σ2

a

in which:

σ2
a =

2M

2n+aφ(b)2

In solving Equation 9 to obtain a formula for NC(p), the approximation σ2
a ≈ 0 was originally

made [17], and a quadratic equation with NC(p) as the variable is formed. In a later revision [61],
the approximation σ2

a < M is used; and the formula for NC uses σ2
a = M to provide a conservative

value for NC.
As n denotes the number of key bits targeted in the attack, we argue that n ≥ 3 (this value could

in theory result during a 1R linear attack on a cipher using the CTC2 S-box [28]. A block cipher’s
S-boxes cannot have less than 3 input bits if they are to be nonlinear balanced functions. For an SPN
the number of output bits would also have to be 3 and for a Feistel cipher it would only be the number
of S-box input bits that was relevant), hence (n+a) ≥ (3 +a). Moreover, it is clear that (n+a) ≥ 2a.
Exploiting these facts, it is possible to verify that M does represent an upper bound for advantage
≥ 1. (Using the computer algebra package Mathematica, we draw graphs of 2M

23+aφ(b)2
and 2M

22aφ(b)2
to

confirm this.) Using information from the graphs, we were able to obtain a tighter upper-bound of
0.7854M .

Note that depending on how close the advantage is to n, the significance of the overestimate varies
substantially. For example, σ2

a = M
25.2

is attained for a = n = 56. For a smaller advantage of 32 and

n = 56, σ2
a ≤ M

228.35
�M . However, if M=256−1 (as used in various attacks on reduced-round Serpent

[60]), this is not ≈ 0.
(Note that said attacks must in fact have used the log-likelihood ratio, not the χ2-statistic, to

succeed for so high a value of M .)
Replacing σ2

a with 0.7854M in the aforementioned quadratic equation, we use the quadratic formula
to solve the equation in NC and obtain:

NC(p) ≈ 2Φ−2(PS) +
√

2Mb±
√

Φ−2(PS)(4Φ−2(PS) + 4
√

2Mb+ 2.7854M) (3.2)

We note that the expression under the square root sign cannot take on a negative value for Ps > 0.5
as long as the advantage a is greater than or equal to 1 bit - and depending on Ps may still not be
negative even for extraordinarily marginal attacks with lower a. So we are able to accept that the
roots of this equation will be non-complex in real-world attack situations.

The question arises as to whether the larger or the smaller of the two roots should be considered
the solution. For an attack obtaining a 4-bit advantage and probability of success ≥ 0.95, the smaller
root is a negative value, strongly indicating that it cannot be the correct solution. Furthermore, in
email correspondence, we obtained from Nyberg [61] a pessimistic formula for NC relying on certain
assumptions. If we consider situations in which these assumptions hold, we find that the smaller root
diverges massively from the value given by this formula, while the larger root does not differ to such
an extent. Based on this, we conclude that the smaller root does not match the true complexity of
the attack and that the larger root is the correct value of NC: 1

NC(p) ≈ 2Φ−2(PS) +
√

2Mb+

√
Φ−2(PS)(4Φ−2(PS) + 4

√
2Mb+ 2.7854M) (3.3)

1To avoid the use of computer algebra packages in deriving the above formula, it is stated [61] that NC < M
4

and
that this should be substituted for NC in the denominator, resulting in a pessimistic estimate for NC. Although this
seems to have been the case for all multidimensional linear attacks so far, M is often much smaller in nonlinear attacks,
and certainly exceeded 4NC in the attack on DES below, so we were unable to make this substitution.

Figure 4: The graph on the left shows the result of using the approximation to calculate the advantage
from b. We see that the approximation fails for marginal, low-advantage attacks. The graph on the
right shows the result of computing advantage directly.

Using this new model, we find b by using Mathematica to solve the equation above, after which we
can either compute the advantage directly from b or use the “large b” approximation referred to earlier.
For the 4, 7, 10 and 12-dimensional χ2 attacks on 5-round Serpent in Hermelin et al.’s FSE 2009 paper
[17], we use the corresponding capacities to plot new graphs of N against advantage (Figure 4).

Now, the y axes of these graphs show the advantage going up to 12, since this was the number n of
bits in the TPS. However, if we do not use the graph plotting software to impose these restrictions, the
graphs show the advantage continuing to increase indefinitely with an increasingly steep gradient, even
though it should be upper-bounded by n. Furthermore, equation 3.3 does not have n as a variable after
the pessimistic approximation for σa is introduced, suggesting underlying flaws in Selçuk’s statistical
model for conventional linear cryptanalysis [66] that may have been exacerbated in the generalisation
to multiple dimensions.

In Selçuk’s model [66], for all advantages except 0 and maximum advantage a = n, the rth-highest
bias of any wrong key candidate (r = 2n−a) is assumed to have an asymptotic normal distribution.
Let T1 be the lowest bias of any wrong key, T2 the second lowest, . . . , T2n−1 the highest (so that T2n−r
corresponds to r). A value q ≈ (1− 2−a) (0 < q < 1) is defined, such that (2n − r) = bq(2n − 1)c+ 1.
Since there are 2n − 1 wrong key candidates, we can obtain a tighter upper bound for q of q ≤ 2n−1

2n−2 .
As this would correspond to an attack with maximum advantage, for which the precise distribution
of the highest bias of the wrong key candidate is known (assuming the Wrong-Key Randomization
hypothesis), a formula based on this and not the asymptotic Normal approximation is used to calculate
the attack’s complexity.

(A useful topic for future research would be a generalisation of this formula to the multidimen-
sional case, so that the effect of varying the number of dimensions on the accuracy of the Normal
approximations can be investigated.)

We can therefore say, when working with the non-extreme-value asymptotic Normal distribution,
that q < 2n−1

2n−2 , and it also seems reasonable to treat the current statistical model as suspect for
advantage higher than (n− 1).

However, there is also reason to believe that the model may not be valid for some smaller advantages
(n− x) either. In the textbook “Order Statistics” [32], discussing order statistic Xr (where the order
statistics are X1 ≤ X2 ≤ . . .Xn), David states (at the start of Section 9.1):

“If r/n → λ as n → ∞, fundamentally different results are obtained according as 0 < λ < 1 or
λ = 0 or 1, with r or (n− r) fixed.

“In the former case, Xr is a sample quantile and (subject to mild regularity conditions) has an
asymptotic normal distribution. The latter case includes the extremes X1, Xn and corresponds to
the mth extremes Xm, Xn−m+1 with m fixed. These have non-normal limiting distributions. Such
a dichotomy into ‘quantile theory’ and ‘extreme value theory’ is helpful. However, there are also
intermediate situations where r is a more general function of n.”

It is not clear how to deal with this when the value of n is fixed (bear in mind that David’s n
corresponds to our 2n − 1), but it indicates that the m-th most extreme order statistics for some
unknown value of m (or some extreme ratio m/n) may also fail to be described accurately by the
Normal approximation, not just the single highest and lowest. Another useful topic for future research
would be to conduct investigations into the value of this m, or the ratio m/n, for various values of (N
and n).

3.4 Theoretical complexity with the maximum-bias model.

In this model, we can use the maximum absolute bias of all the related approximations to calculate the
data complexity in the same way that the bias of a single linear approximation is used in conventional
linear cryptanalysis.

3.5 Theoretical complexity with the log-likelihood ratio.

The pseudocode below, headed “Algorithm 2”, describes a procedure by which the log-likelihood ratio
can be used to assign a score to each candidate k1. The higher the score, the more likely the candidate
is to be the correct one, k0

1.
In brief, we begin by converting the values in Cx from values of (number of times the approximation

held) - (number of times the approximation did not hold) to fractions of known plaintexts for which the
approximation held. This gives us a set of empirical probability distributions which can be compared
to the theoretical probability distribution. Since we need to know the bias itself, not just its magnitude,
we will have to utilise two probability distributions. One of these, p1 will be the one calculated using
the Piling-Up Lemma. The other, p2, based on the fact that the parity of the key bits involved in
the linear characteristic may have been 1, will be such that all values p2(x) are equal to (1− the
corresponding P1(x)). We will refer to this as the “flipped” distribution.

For each possible candidate k1, we test each possible candidate k2 in turn, by assuming that the
related approximation corresponding to that value is the correct one - the “primary approximation”
- and then comparing the bias with which each related approximation held to its expected bias ac-
cording to the theoretical distribution. We calculate the log-likelihood ratio for each related and its
corresponding theoretical distribution should the current k2 be the correct one, before summing all of
these LLR values. The procedure is repeated for the flipped distribution, and the highest sum of LLR
values is considered to be the “score” T (k1, k2) for the current candidate (k1, k2) pair. The maximum
of all these is the score T (k1) for the current candidate value of k1.

To construct a statistical framework for this method, we are again forced to assume that all
related approximations are statistically independent, and to state that empirical evidence will be
needed for the performance of the attack where this is not so. We build on the statistical framework
for multidimensional linear cryptanalysis with the LLR statistic [17], based in turn on results from
key works on order statistics and statistical frameworks in cryptanalysis [32, 66]. Let l denote the
length of k1, and m the length of k2. Any related approximations which are expected to have zero bias
can be ignored, since they do not contribute anything to the capacity of the overall approximation.
Since if a given k2 is correct we know the values of α such that the related approximation for k2 ⊕ α
has zero bias, it is practical to omit them from consideration. Let the number of relateds with bias
0 be denoted Z and let M = 2m − Z. ri denotes the ith related approximation with nonzero bias
(0 ≤ i < M), and C(ri) the theoretical capacity of this approximation (i.e. 4× the square of the
bias). C or C(p) denotes the overall theoretical capacity (i.e. 4× the sum of squares of the biases, or∑M−1

i=0 C(ri)).
For the correct (k1, k2), and the correct choice of flipped and non-flipped theoretical distribution,

each related’s LLR value is Normally distributed:

LLR(empirical, correct choice of theoretical or flipped, uniform) ∼ N (µRi , σ
2
Ri) (3.4)

where µRi = NC(ri)
2 , and σ2

Ri
= NC(ri).

Algorithm 2 Key-ranking using the log-likelihood ratio

. θ denotes the uniform distribution.
l← the length of k1.
m← the length of k2.
biased relateds← the number of related approximations with nonzero theoretical bias.
for current key←0, 2l − 1 do

for current k2←0, 2m − 1 do
. This is the vector Cx as defined previously.

. We convert the values in Cx to the fraction of known

. plaintexts for which each related approximation held.
Cx[current key][current k2]←(Cx[current key][current k2] +N)/2N

end for
end for

. Allocate memory for a 2D array of floating-point values
llr theoretical← floating-point[2m][biased relateds]

. Allocate memory for another 2D array.
. For the reasons stated in subsection 1.1,

. the signs of the biases may be the
. opposite of those theoretically predicted.

llr flipped← floating-point[2m][biased relateds]
for current k1←0, 2l − 1 do

best llr sum←−∞
for current k2←0, 2m − 1 do

current biased←0
for current related←0, 2m − 1 do

. has nonzero bias is an array of bool.
. has nonzero bias[x] = TRUE if the xth

. related approximation has nonzero theoretical bias.
if has nonzero bias[current related⊕ current k2] = TRUE then

llr theoretical[current k2][current biased]←LLR(Cx[current k1][current related],
theoretical distribution[current related⊕current k2], θ)
llr flipped[current k2][current biased]←LLR(Cx[current k1][current related],
f lipped distribution[current related⊕current k2], θ)
current biased←current biased+ 1

end if
end for
llr sum←

∑biased relateds
i=0 (llr theoretical[current k2][current biased])

flipped llr sum←
∑biased relateds

i=0 (llr flipped[current k2][current biased])
if flipped llr sum > llr sum then

current k2 best sum = flipped llr sum
else

current k2 best sum = llr sum
end if
if current k2 best sum > best llr sum then

best llr sum = current k2 best sum
end if

end for
score[current k1]←best llr sum

end for

For an incorrect value of k1, regardless of whether the distribution is the correct choice of flipped
and non-flipped or not:

LLR(empirical, theoretical or flipped, uniform) ∼ N (µWi , σ
2
Wi

) (3.5)

where µWi = −NC(ri)
2 , and σ2

Wi
= NC(ri).

The sum of two independent Normally distributed random variables, v1 ∼ N (µ1, σ
2
1) and v2 ∼

N (µ2, σ
2
2) is itself Normally distributed: (v1 + v2) ∼ N (µ1 + µ2, σ

2
1 + σ2

2). It follows that the sum of
M independent Normal random variables is Normally distributed with mean

∑M−1
i=0 µi and variance∑M−1

i=0 σ2
i . Therefore, for an incorrect value of k1, the sum of the LLR statistics has mean

µW =
M−1∑
i=0

µWi = −
M−1∑
i=0

NC(ri)

2
= −NC(p)

2

and variance

σ2
W =

M−1∑
i=0

σ2
Wi

=
M−1∑
i=0

NC(ri) = NC(p)

Similarly, for the correct value of k1, we have:

µR =

M−1∑
i=0

µRi =

M−1∑
i=0

NC(ri)

2
=
NC(p)

2

and

σ2
R =

M−1∑
i=0

σ2
Ri =

M−1∑
i=0

NC(ri) = NC(p)

For any given incorrect value for k1, we can deduce [32] that the CDF for the maximal sum of
LLRs with the empirical, theoretical, and uniform distributions will be:

FWmax(x) = ΦµW ,σ2
W

(x)2m−Z = ΦµW ,σ2
W

(x)M

This is also the CDF for the maximal sum of LLRs with the empirical, flipped, and uniform
distributions. We can therefore deduce that the CDF for the maximal sum of LLRs for either of the
theoretical and flipped distributions, for any incorrect value of k1, will be:

FW (x) = ΦµW ,σ2
W

(x)M+1 (3.6)

Differentiating this using the chain rule, we obtain the PDF:

fW (x) = (M + 1)
(

ΦµW ,σ2
W

(x)M
) 1

σW
φ

(
x− µW
σW

)
Now, if we are aiming for advantage a, then the correct k1 must be one of the 2l−a highest-ranked

keys. Using the notation of Hermelin et al. [17], we define r = 2l−a. The correct key must have a score
higher than that of the rth highest-scoring wrong key. Let this score be denoted Tr. We know [17, 66]
that the distribution of Tr is approximately Normal: Tr ∼ N (µa, σ

2
a), where µa ≈ F−1

W (1− 2−a), and:

σ2
a =

q(1− q)
2lfW (µa)2

≈ 2−a(1− 2−a)

2lfW (µa)2
=

2−(a+l) − 2−(2a+l)

fW (µa)2

(As stated in the section on the χ2 statistic, the accuracy of the Normal approximation to Tr’s
distribution breaks down for advantage near the maximum value l, but except for the special case
a = l, no statistical model is known that covers this situation.)

We have:

µa ≈ F−1
W (1− 2−a)

= σWΦ−1(M+1
√

(1− 2−a)) + µW

=
√
NCΦ−1(M+1

√
(1− 2−a))−NC/2

Let b denote Φ−1(M+1
√

(1− 2−a)), and we have µa ≈
√
NCb−NC/2.

Next up, we calculate fW (µa):

fW (µa) = (M + 1)
(

ΦµW ,σ2
W

(µa)
M
) 1

σW
φ

(
µa − µW
σW

)
= (M + 1)(FW (F−1

W (1− 2−a))M/(M+1))
1

σW
φ

(
µa − µW
σW

)
= (M + 1)((1− 2−a)M/(M+1))

1√
NC

φ

(
µa +NC/2√

NC

)
≈ (M + 1)((1− 2−a)1−1/(M+1))

1√
NC

φ

(√
NCb√
NC

)
= (M + 1)((1− 2−a)1−1/(M+1))

1√
NC

φ(b)

from which we derive σ2
a:

σ2
a ≈

2−(a+l) − 2−(2a+l)

fW (µa)2

≈ 2−(a+l) − 2−(2a+l)

(M + 1)2((1− 2−a)2(1−1/(M+1))) 1
NCφ(b)2

=
(2−(a+l) − 2−(2a+l))NC

(M + 1)2((1− 2−a)2(1−1/(M+1)))φ(b)2

It is stated by Hermelin et al. [17], that σ2
a � σ2

R, For clarity, we restate this as σ2
a � NC.

However, due to the presence of φ(b)2 in the denominator, it is not intuitively clear that this is the
case. As M and a increase, M+1

√
1− 2−a → 1, hence Φ−1(M+1

√
1− 2−a)→∞. Since b→∞, φ(b)→ 0.

We attempt to obtain a lower bound for the value σ2
R/σ

2
a. For any fixed pair (a, M), it should be

clear that the lowest value of l such that l ≥ a maximises σ2
a. Therefore, for any fixed value of a ≥ 3,

σ2
a is maximised by setting l = a. For the same reasons as before, we assume that l ≥ 3, and hence

for any a < 3 we set l = 3. Using Mathematica to plot graphs based on these assumptions, we find
that the value σ2

R/σ
2
a is minimised for M = 1, a = 3, and is always greater than 4.

(This particular fraction can take values much higher than 4 - in the case of the multidimensional
linear attack on 12-round Serpent by Nguyen et al. [60], with a = 172 and m = 56, σ2

R/σ
2
a ≈ 310.5.

For the multidimensional attacks on 11-round Serpent in the same paper with m = 56, we calculate
σ2
R/σ

2
a ≈ 133.87 for advantage 44 and σ2

R/σ
2
a ≈ 139.38 for advantage 48. So there are clearly situations

where we can reasonably assume σ2
a � σ2

R.)
Let T2n−r denote the rth-highest LLR value computed using any of the wrong-key candidates. Let

T (k0
1) be the LLR-based score computed using the correct value of k1. Hermelin et al. define the

following three probabilities:

• P1 denotes the probability that k0
2 resulted in the highest sum of LLRs when computing T (k0

1);
Pr(T (k0

1, k
0
2) > maxk2 6=k02 T (k0

1, k2)). (Equivalently, Pr(T (k0
1, k

0
2) = T (k0

1)).

• P2 denotes the probability of success for Algorithm 2 - that is, the probability that k0
1 is one of

the 2l−a highest-ranked keys, Pr(T (k0
1) > T2n−r).

• P12 is initially used to denote Pr(T (k0
1) > T2n−r|T (k0

1, k
0
2) = T (k0

1)).

However, it is later defined as Pr(T (k0
1, k

0
2) > T2n−r), which is a lower bound for P2. This is

used as a conservative estimate for the success probability, since the distribution for an LLR
value corresponding to an incorrect k2 value in conjunction with k0

1 is unknown and therefore
P2 cannot be calculated.

We will do the same here, for the same reason, but will refer to Pr(T (k0
1, k

0
2) > T2n−r) as P3 to

avoid ambiguity.

P3 = Φ

 µR − µa√
(σ2
R + σ2

a)

= Φ

(
NC/2−

√
NCb+NC/2√

(NC + σ2
a)

)

As noted, the ratio of σ2
a to σ2

R = NC can vary significantly depending on the cipher being
attacked and the nature of the linear approximation. For the cryptanalyst, the worst-case scenario is
that calculated above, in which σ2

a ≈ NC/4. In this case:

P3 ≈ Φ

(
NC/2−

√
NCb+NC/2√

(NC +NC/4)

)

= Φ

(
NC −

√
NCb√

5NC/4

)

= Φ

(√
NC − b√

1.25

)

This gives us a conservative (over)estimate for data complexity:

N =
(1.118Φ−1(P3) + b)2

C
(3.7)

In the best-case scenario, where σ2
a � NC, we have instead:

N =
(Φ−1(P3) + b)2

C
(3.8)

Clearly, the cryptanalyst should analyse the value of σ2
a in relation to NC before calculating N .

We know that Φ(b) = M+1
√

(1− 2−a). Hermelin et al. state that this is approximately equal to
(1−2−a−log2(M+1)). By plotting graphs in Mathematica, we see that the accuracy of this approximation
improves as a and M increase. When a and M are both particularly small, the approximation may
not be adequate. It appears, regardless of M , to be extremely close for a ≥ 3. Whether it is adequate
for a = 2 and small M is not clear, however as M increases the approximation becomes very close for
1 ≤ a ≤ 2.

The real question, however, is whether Φ−1(M+1
√

(1− 2−a)) is adequately approximated by Φ−1(1−
2−a−log2(M+1)). Plotting graphs of

Φ−1(M+1
√

(1− 2−a))

Φ−1(1− 2−a−log2(M+1))

we see that the accuracy of the approximation increases rapidly with a, but increases relatively
slowly as M increases. The approximation is always an overestimate for a ≥ 1, so can always be used
to calculate an upper bound for N even for a this low. The worst-case overestimate for a ≥ 1 (for
a = 1,M = 1) is ≈ 1.25-fold. If the effect of Φ−1(P3) on the value of N is assumed to be negligible
compared to the effect of b, then this leads to a worst-case overestimate of 1.5625× the correct value
of N . If the effect of Φ−1(P3) is not assumed to be negligible, the overestimate is less extreme. For
a ≥ 2, this leads to an overestimated value of at most 1.08× the correct N - which is extremely close.
We therefore accept this approximation as valid and sufficiently accurate for a ≥ 2, and useful for
calculating upper-bounds on N for a ≥ 1. We have not investigated lower values of a in much detail,
however, but do note that the approximation is not always an overestimate for these.

Accepting b ≈ Φ−1(1− 2−a−log2(M+1)), we obtain by the reasoning in subsection 3.3 that:

(log2(M + 1) + a) ≈ b2

2ln(2)
+ log2(b) + log2(2π)

≈ 0.72b2 + log2(b) + 1.325

∴ a ≈ 0.72b2 + log2(b) + 1.325− log2(M + 1) (3.9)

To compute a from N , C, M and Ps, the cryptanalyst rearranges Equation 3.8 (or, in some
circumstances, some more pessimistic equation such as Equation 3.7) to compute b, and then inputs it
into the above equation. Similarly, for some desired value of a and known M , C, Ps, the cryptanalyst
solves Equation 3.9 to obtain b, and uses Equation 3.8 to compute N .

We can rewrite Equation 3.9 as:

a ≈ 0.72(
√
NC − Φ−1(P3))2 + log2(

√
NC − Φ−1(P3)) + 1.325− log2(M + 1) (3.10)

Since this equation applies equally to both nonlinear and multidimensional linear cryptanalysis,
we compare it to Hermelin et al.’s Theorem 2 [17]:

a ≈ (
√
NC − Φ−1(P3))2/2− log2(M + 1) ≈ NC − log2(M + 1) (3.11)

Clearly the two equations are very different. We argue that ours is the more accurate for the
following reasons:

• (
√
NC−Φ−1(P3))2/2−log2(M+1) is clearly < (NC/2)−log2(M+1), and not ≈ NC−log2(M+

1). Moreover, if this approximated form were to be used, it would imply that the probability of
success did not affect the data complexity of the attack in any way.

• Equation 3.11 is derived using the incorrect approximation a ≈ (b2/2)− log2(M + 1).

3.5.1 Using the LLR without key ranking.

What, then, of the special case a = l? We shall derive a statistical framework for this based on the
maximum-advantage statistical framework for conventional linear cryptanalysis.

Matsui’s Table 3 [52], containing the success probabilities for various multiples of |p − 1/2|−2, is
calculated from the double integral in his Lemma 5 based on the assumption that the TPS length l
is equal to 6. Selçuk [66] states that there is a tendency to base complexity calculations for linear
cryptanalytic attacks on results from Matsui’s work that specifically applied to his attacks on DES.
He presents an alternative double integral for use in calculating the advantage when the cryptanalyst
aims for maximum advantage a = l.

Since the two double integrals are not identical, the question of how each was derived, and which
is the better choice, arises. Neither is limited to the case of l = 6, and different values may easily be
input.

Examining Matsui’s original integral, we observe first of all a typographical error. The limits
of the internal integral include the term (p − 1/2). This is clearly meant to be |p − 1/2|, since if
not, two attacks using approximations with identical magnitude but different sign of bias would have
significantly different complexity.

The intent behind the double integral would be as follows: for each possible value x for the empirical
absolute bias when the correct key is used, calculate the probability that the empirical bias y for all
other ki satisfies (−x < y < x). By integrating this over all x > 0, the probability of success of the
attack is obtained.

∫ ∞
0

 ∏
ki 6=k0

Pr(−x < y < x)

 fR(x)dx

=

∫ ∞
0

 ∏
ki 6=k0

∫ x

−x
fWki

(y)dy

 fR(x)dx

However, examining the integrals in more depth makes it clear that a Normal distribution is
assumed for x, whereas if x represents absolute bias, it would have a Folded Normal distribution. We
therefore restate the intent as follows: for each possible value x for the bias when the correct key is
used, calculate the probability that the empirical bias y for all other ki satisfies (min(−x, x) < y <
max(−x, x)). By integrating this over (∞ > x > −∞), the probability of success of the attack is
obtained.

∫ 0

−∞

 ∏
ki 6=k0

Pr(x < y < −x)

 fR(x)dx+

∫ ∞
0

 ∏
ki 6=k0

Pr(−x < y < x)

 fR(x)dx

=

∫ 0

−∞

 ∏
ki 6=k0

∫ −x
x

fWki
(y)dy

 fR(x)dx+

∫ ∞
0

 ∏
ki 6=k0

∫ x

−x
fWki

(y)dy

 fR(x)dx

=

∫ 0

−∞

 ∏
ki 6=k0

∫ −x
x

1

σW
φ

(
y − µW
σW

)
dy

 1

σR
φ

(
x− µR
σR

)
dx

+

∫ ∞
0

 ∏
ki 6=k0

∫ x

−x

1

σW
φ

(
y − µW
σW

)
dy

 1

σR
φ

(
x− µR
σR

)
dx

Selçuk simplifies the calculation by assuming that the Wrong-Key Randomization Hypothesis
(WKRH) applies. That is, for all incorrect candidate values ki 6= k0 for the TPS k1, he assumes that
the biases have identical underlying probability distributions with mean 0. We will also do so here:

∫ 0

−∞

(∫ −x
x

1

σW
φ

(
y − µW
σW

)
dy

)2l−1
1

σR
φ

(
x− µR
σR

)
dx

+

∫ ∞
0

(∫ x

−x

1

σW
φ

(
y − µW
σW

)
dy

)2l−1 1

σR
φ

(
x− µR
σR

)
dx

Let us integrate by substitution. Firstly, let u = ((x− µR)/σR):

∫ 0−µR
σR

−∞

(∫ −x
x

1

σW
φ

(
y − µW
σW

)
dy

)2l−1

φ(u)du

+

∫ ∞
0−µR
σR

(∫ x

−x

1

σW
φ

(
y − µW
σW

)
dy

)2l−1

φ(u)du

=

∫ 0−µR
σR

−∞

(∫ −uσR−µR
uσR+µR

1

σW
φ

(
y − µW
σW

)
dy

)2l−1

φ(u)du

+

∫ ∞
0−µR
σR

(∫ uσR+µR

−uσR−µR

1

σW
φ

(
y − µW
σW

)
dy

)2l−1

φ(u)du

Selçuk states that the bias of the correct key has a Normal distribution, with mean µR = (p−1/2)
and variance σ2

R = 1/4N . The figure for the variance appears to be derived from Junod [43]; we have
no reason to doubt it.

If p > 1/2, the mean (p− 1/2) is equal to |p− 1/2|. Let N = a×|p− 1/2|−2, and we have:

0− µR
σR

= 2
√
N(0− |p− 1/2|) = 2

√
a|p− 1/2|−1(0− |p− 1/2|) = −2

√
a

Assuming a > 2, (0 − µR)/(σR) < −2
√

2 ≈ −2.828. Φ(−2
√

2) ≈ 1/427, implying that the
contribution of the first integral will be negligible and that we can approximate the whole expression
with: ∫ ∞

0−µR
σR

(∫ uσR+µR

−uσR−µR

1

σW
φ

(
y − µW
σW

)
dy

)2l−1

φ(u)du

If p < 1/2, the mean (p− 1/2) is equal to −|p− 1/2|. Again, let N = a×|p− 1/2|−2, and we have:

0− µR
σR

= 2
√
N(0 + |p− 1/2|) = 2

√
a|p− 1/2|−1(0 + |p− 1/2|) = 2

√
a

Still assuming a > 2, (0 − µR)/(σR) > −2
√

2 ≈ 2.828. P (u > 2
√

2) = 1 − Φ(2
√

2) ≈ 1/427,
implying that the contribution from the second integral will be negligible and that we can approximate
the whole with: ∫ 0−µR

σR

−∞

(∫ −uσR−µR
uσR+µR

1

σW
φ

(
y − µW
σW

)
dy

)2l−1

φ(u)du

On the other hand, for p < 1/2, we could have defined x as −1× the bias at the start, and obtained
the same approximation as for the case p > 1/2. This means that the probability of success can in
both cases be approximated by:∫ ∞

0−µR
σR

(∫ uσR+µR

−uσR−µR

1

σW
φ

(
y − µW
σW

)
dy

)2l−1

φ(u)du

with µR = |p− 1/2| and σR = 1/2
√
N . (If this were not the case, we would have been faced with

a situation where the sign of the approximation’s bias affected the performance of the attack despite
the cryptanalyst discarding this information and taking the absolute bias in Algorithm 2.)

Let us now complete the substitution of |p− 1/2| for µR and 1/2
√
N for σR in the equation above:

∫ ∞
−2
√
N |p−1/2|

(∫ u/2
√
N+|p−1/2|

−u/2
√
N−|p−1/2|

1

σW
φ

(
y − µW
σW

)
dy

)2l−1

φ(u)du

Then, we integrate by substitution again. Let v = (y − µW)/σW , with µW = 0 and σW = 1/2
√
N

[43], and we have:

∫ ∞
−2
√
N |p−1/2|

∫ u/2
√
N+|p−1/2|−µW

σW

−u/2
√
N−|p−1/2|−µW

σW

φ(v)dv

2l−1

φ(u)du

=

∫ ∞
−2
√
N |p−1/2|

∫ u/2
√
N+|p−1/2|−0

1/2
√
N

−u/2
√
N−|p−1/2|−0

1/2
√
N

φ(v)dv

2l−1

φ(u)du

=

∫ ∞
−2
√
N |p−1/2|

(∫ u+2
√
N |p−1/2|

−u−2
√
N |p−1/2|

φ(v)dv

)2l−1

φ(u)du

- precisely Selçuk’s equation. We therefore accept this double integral as correct unless there is
reason to believe that the WKRH does not apply, and even then we would use a modified version of
Selçuk’s equation in preference to Matsui’s.

Let us compare the predicted values for the probability of success (denoted Ps) in Matsui’s attack
on 8-round DES with l = 6:

N 2|p− 1/2|−2 4|p− 1/2|−2 8|p− 1/2|−2 16|p− 1/2|−2

Ps (l = 6, Matsui) 0.486 0.785 0.967 0.999

Ps (l = 6, Selçuk) 0.589331 0.902745 0.997249 0.999999

Table 4: Comparison of success rates (calculated numerically using Wolfram Mathematica) for l = 6
according to Matsui [52] and Selçuk [66]

Clearly, unless Matsui had reason to believe that the wrong-key randomization hypothesis did
not hold, his original equation gave pessimistic estimates for the success probability of Algorithm 2
without key ranking.

So far, our reasoning has applied only to conventional linear cryptanalysis with a = l. We are now,
however, in a position to carry out the generalisation to the a = l situation when using nonlinear and
multidimensional linear cryptanalysis with the LLR statistic.

The intention behind the new double integral for these cases is as follows: For each possible
value x for the empirical LLR (or sum thereof - we use one LLR as the statistic in multidimensional
linear and a sum of LLRs in nonlinear) when the correct outer key value k0 is used, calculate the
probability that the empirical LLR/sum of LLRs y for all other ki is less than x. By integrating this
over (−∞ > x >∞), the probability of success is obtained. Assuming that the WKRH holds:

Ps =

∫ ∞
−∞

(∫ x

−∞
fW (y)dy

)2l−1

fR(x)dx

=

∫ ∞
−∞

(∫ x

−∞
(M + 1)

(
ΦµW ,σ2

W
(y)M

) 1

σW
φ

(
y − µW
σW

)
dy

)2l−1 1

σR
φ

(
x− µR
σR

)
dx

=

∫ ∞
−∞

(
ΦµW ,σ2

W
(x)M+1

)2l−1 1

σR
φ

(
x− µR
σR

)
dx

For large M and l, this is not easy to calculate numerically. For example, with M = 256 − 1
as per the attacks of Nguyen et al. [60], Wolfram Mathematica displays error messages relating to
“underflows” when calculating:

(
ΦµW ,σ2

W
(x)M+1

)
due to the high precision needed to handle numbers extremely close to 0. Until some means can be
found to overcome this, we are forced to continue relying on Equation 3.10 for our data complexity
estimates.

3.5.2 Time complexity.

The time complexity of the LLR scoring phase is dominated by the 2|k1|+|k2|+1×biased relateds calls
to the LLR() function to compute the log-likelihood ratio. This makes the complexity difficult to
calculate, since computing the log-likelihood ratio involves the calculation of logarithms (in our im-
plementation, two calls to a log() function are needed for each call to an LLR() function.). Various
different algorithms for this exist, using numerical algorithms to compute a logarithm accurate to some
implementer-defined precision, and it may not even be possible to convert complexity calculations in
terms of “speed of convergence” to expressions in Big-Oh notation. In any case, calculations based
on one compiler’s implementation of the function to compute logarithms to a particular base may not
apply to other compilers, or even other versions of the same compiler.

Approximations to the LLR do exist which do not require the computation of logarithms, and
which are thus considerably faster to compute and easier to analyse:

3.5.3 Taylor series approximation.

Where D(g||h) denotes the Kullback-Leibler distance between discrete probability distributions g and
h, each with M possible values, LLR(q̂, p, q) = N×D(q̂||q) − N×D(q̂||p) [30]. If g and h are close,
D(g||h) can be approximated by the first term of its Taylor series [17] [30]:

D(g||h) ≈
M∑
i=0

(gi − hi)2

2hi

We therefore compute the approximated D(q̂||q) and D(q̂||p) - optimising based on the fact that
q is the uniform distribution - and then subtract the second from the first and multiply by N .

3.5.4 Approximation using the convolution method.

Previous research in multidimensional linear cryptanalysis [38] argued that the data complexity of
an attack using the log-likelihood ratio was of the same order of magnitude as the complexity of an
attack using the convolution of distributions p and q̂, and presented experimental evidence that, for
an attack based on Matsui’s Algorithm 1, the data complexity was in practice near-identical. Since
this method has a much lower time complexity than the LLR method, it is currently the favoured
ranking statistic for multidimensional linear cryptanalysis.

We can use the convolution of p and q̂ to approximate the LLR in nonlinear cryptanalysis. The
approximation is not quite so close as that based on Taylor series, but the data complexities are still
almost identical and this method has the lowest time complexity. For any related approximation used
in the nonlinear attack, let ρ(a) denote the empirical correlation; that is, 2× the empirical bias. Let
c(a) denote the theoretical correlation as predicted by the Piling-Up Lemma - hence, −c(a) is the
theoretical correlation for the “flipped” distribution. −ρ(a) is what the empirical correlation would
be had we used the “flipped” nonlinear approximation, 1⊕ that which we actually used.

(c(a)− ρ(a))2 = (ρ(a)2 + c(a)2)− 2c(a)ρ(a)

Since c(a)2 is constant regardless of the current key candidate (and the value of a, which is in fact
always equal to 1 due to the fact that there is only one dimension and c(0) contains no information
in a multidimensional attack), we have:

2c(a)ρ(a) + const = (ρ(a)2)− (c(a)− ρ(a))2

≡ 2c(1)ρ(1) + const = (ρ(1)2)− (c(1)− ρ(1))2

Correlation = 2 × bias, and hence ρ(a)2 is 4× the Euclidean distance between the empirical
bias and that predicted by the uniform distribution. Similarly, (c(a) − ρ(a))2 is 4× the Euclidean
distance between the empirical bias and that predicted by the theoretical distribution. In other
words, 2·c(a)ρ(a)+ a fixed constant gives us the distance between the empirical and uniform distribu-
tions, minus the distance between empirical and theoretical, albeit using Euclidean distance instead
of Kullback-Leibler. Clearly 2·c(a)ρ(a) + c contains the same information as c(a)ρ(a), and the higher
it is, the more likely that the theoretical distribution (not the flipped) is correct and the correct key
candidate has been chosen.

Now, let k equal 1 if the flipped distribution is correct, 0 if the original “unflipped” theoretical
distribution is.

∑1
a=0(−1)a·kc(a)ρ(a) = c(0)ρ(0) + c(1)ρ(1) if k = 0, else c(0)ρ(0) − c(1)ρ(1). In a

multidimensional attack, c(0) and ρ(0) would be correlations for a linear sum of no approximations;
i.e. c(0)ρ(0) is a fixed constant containing no information relevant to the attack.

It is shown [38] that
∑1

a=0(−1)a·kc(a)ρ(a) is equal to the kth component of the convolution p∗ q̂ of
the probability distributions p and q̂. Hence, whichever value of k maximises

∑1
a=0(−1)a·kc(a)ρ(a) also

corresponds to the maximum component of the convolution. Since the convolution of two probability
distributions is itself a probability distribution, we need only check whether component 0 is greater
than 0.5 to know which is the maximum component. Since the Convolution Theorem shows that the
convolution of two probability distributions can be calculated in O(Mlog(M)) time using the FFT, this
leads to a significant reduction in time complexity for the high values of M used in multidimensional
linear cryptanalysis, and even for the lower M = 2 for each related approximation in nonlinear
cryptanalysis, allows us to carry out an efficient calculation using only arithmetic operators instead
of having to call an expensive and hard to analyse logarithm function.

Algorithm 3 Key-ranking using the convolution method

. θ denotes the uniform distribution.
l← the length of k1.
m← the length of k2.
biased relateds← the number of related approximations with nonzero theoretical bias.
for current key←0, 2l − 1 do

for current k2←0, 2m − 1 do
Cx[current key][current k2]←(Cx[current key][current k2] +N)/2N

end for
end for

. Allocate memory for a 2D array of floating-point values
convols← floating-point[2m][biased relateds]
for current k1←0, 2l − 1 do

best convolution sum←−∞
for current k2←0, 2m − 1 do

current biased←0
for current related←0, 2m − 1 do

if has nonzero bias[current related⊕ current k2] = TRUE then
convols[current k2][current biased]←convolution(Cx[current k1][current related],
theoretical distribution[current related⊕current k2])
current biased←current biased+ 1

end if
end for
convolution sum←

∑biased relateds
i=0 (convols[current k2][current biased])

if convolution sum > 0.5× biased relateds then
current k2 best sum = convolution sum

else
current k2 best sum = biased relateds− convolution sum

end if
if current k2 best sum > best convolution sum then

best convolution sum = current k2 best sum
end if

end for
score[current k1]←best convolution sum

end for

What is the theoretical complexity of Algorithm 3? Although considerably faster than the original
LLR algorithm, it is still much slower than the key-ranking algorithms for the maximum bias and
χ2 frameworks, and its contribution to the overall attack complexity is nontrivial. Moreover, even
slight optimisations or complexity improvements in the algorithm to compute the convolution may
significantly affect complexity in terms of memory accesses and arithmetic operations. We need only
seven arithmetic operations to compute each convolution due to the small size of the probability
distributions, but this can be reduced to six by computing (2×convolution) instead, and altering the
rest of Algorithm 3 accordingly. The extremely small complexity of the convolution calculations makes
it hard to dismiss any part of the complexity as negligible, and both |k2| and biased relateds may
take many different values in relation to |k1| and each other.

We have:

• 2|k1|+2×|k2| memory accesses to check has nonzero bias.

• (Assuming the aforementioned optimisation) 2|k1|+|k2|+biased relateds×6 AOs for the convolutions.

• Approximately 2|k1|+|k2|+biased relateds AOs and MAs in summing the modified convolutions.

• At most (8×2|k1|+|k2|) + (2×2|k1|) MAs after this.

This gives us

• 2|k1|+|k2|+biased relateds+2.8 AOs.

• 2|k1|+2×|k2| + 2|k1|+|k2|+biased relateds + 2|k1|+|k2|+3 + 2|k1|+1 MAs.

The below graphs were obtained by averaging the results of fifty trials, in which we used the same
nonlinear approximations from our cryptanalysis of Serpent (in the later section) to attack the Heys
toy cipher [40] with fifty different keys:

Figure 5: Average difference in advantage (where mean rank for each statistic is input to formula for
advantage) between cryptanalysis with LLR statistic and Taylor-approximated LLR statistic.

Figure 6: Average difference in advantage (based on difference in mean advantage) between crypt-
analysis with LLR and with Taylor approximation.

Figure 7: Average difference in advantage (where mean rank for each statistic is input to formula for
advantage) between cryptanalysis using LLR statistic and cryptanalysis using convolution.

Figure 8: Average difference in advantage (based on difference in mean advantage) for LLR and
convolution.

3.6 When the cipher is not a substitution-permutation network.

For a cipher such as DES, the procedure is not so straightforward to adapt as it is for the SPN
structure, and it may not be possible to do so in all cases. Let us consider a situation in which we
have incorporated nonlinear approximations into Matsui’s linear attack on the full DES [53]. Let us
start by adapting the part of the attack based on his Equation 4:

Figure 9: Diagram showing the first three rounds of DES in Matsui’s attack. The numbers in square
brackets indicate the active bits using Matsui’s indexing system [53], and the fraction on the right
shows the probability p of the first round’s linear approximation.

We cannot replace the third-round xor of bits [7, 18, 24] with a nonlinear term due to the xors which
are applied to it; a nonlinear term in variables z[i] is not equal to the xor of (the same nonlinear term
in variables x[i]) with (the same nonlinear term in variables y[i]). Therefore, we cannot incorporate
nonlinear components into the first round of the approximation.

The final round is another matter. We can replace the linear approximation to DES S5 with any
nonlinear approximation with output bitmask 15 and nonlinear input component. There are several of
these such that at least one of the set of relateds has bias ±24; at present our metaheuristic algorithm
has found sixty-two. Of these (numbering the S-box input bits from 1 to 6, with the MSB being 1):

• One approximation uses S-box input bits 1, 2, 5, 6. Although we number the S-box input bits
xi differently, this is the approximation found by Knudsen and Robshaw [46].

• Thirty-one approximations use input bits 1, 2, 4, 5, 6.

• Thirty approximations use input bits 1, 2, 3, 5, 6.

Figure 10: Diagram showing the last three rounds of DES in Matsui’s attack. As in Figure 9, the
numbers in square brackets indicate the active bits using Matsui’s indexing system [53], and the
fraction on the right shows the probability p of the penultimate round’s linear approximation.

Let us look at how we can adapt the new procedure to the first of these cases.
First of all, we will need to decrypt S-boxes in Round 16 to expose the data bits relevant to S5 in

Round 15:

Round 15 data bit Round 16 data bit

S5 input bit 1 S3 output bit 2

S5 input bit 2 S1 output bit 2

S5 input bit 3 S2 output bit 4

S5 input bit 4 S6 output bit 4

S5 input bit 5 S4 output bit 2

S5 input bit 6 S8 output bit 4

Table 5: S-box output bits in Round 16 corresponding to the S5 input bits in Round 15.

In addition, we will need to guess key bits for S5 in round 15. Some of these will already have
been guessed:

Round 15 key bit Round 16 key bit

S5 input bit 1 S6 input bit 2

S5 input bit 2 S6 input bit 3

S5 input bit 3 S6 input bit 1

S5 input bit 4 S8 input bit 4

S5 input bit 5 S8 input bit 1

S5 input bit 6 N/A (main key bit 53, numbering from 0 to 55)

Table 6: Key bits corresponding to S5 input bits in Round 15, and their Round 16 counterparts where
applicable.

Finally, we still have to guess key bits for S5 in round 1.

Round 1 key bit Round 16 key bit

S5 input bit 1 S8 input bit 2

S5 input bit 2 Main key bit 52 - S7 bit 6

S5 input bit 3 S8 input bit 6

S5 input bit 4 N/A (main key bit 37)

S5 input bit 5 S6 input bit 6

S5 input bit 6 Main key bit 55 - S7 bit 4

Table 7: Key bits corresponding to S5 input bits in Round 1, and their Round 16 counterparts where
applicable.

Let us consider the approximation on bits 1, 2, 5 and 6, since this provides the simplest example.
We need to guess key bits for four S-boxes (S1, S3, S4, S8) in Round 16; 24 key bits corresponding
to 22 text bits. To allow C to have the property that Cij = f(i ⊕ j), we will work with the 24 bits
resulting from applying the expansion to the text bits. We also need to guess four key bits in Round
1 - we will need to introduce two dummy key bits to correspond to the six input bits of S5 - despite
knowing that they should share the same values as key bits 2 and 6 of S8. So far, we have |k1| = 30.
We also have four active text bits in the left-hand ciphertext block, which we cannot now simply xor
together and treat as part of a larger xor of bits. These require us to introduce four more dummy key
bits with the value zero, in addition to the dummy key bit for the xored bits in the left block of the
plaintext and right block of the ciphertext. We have |k1| = 35. Since one of the four key bits at the
input to DES S5 in round 15 is active in round 16, we also have |k2| = 3.

The question of estimating the complexity of a partial encryption/decryption in terms of DES
encryptions also arises. Matsui encrypts one S-box, decrypts another, and xors various bits; as the full
DES involves (8x16) = 128 S-boxes, we will estimate the complexity of each partial encryption/de-
cryption in Matsui’s analysis phase to be 2/128 = 1/64 of a full DES encryption.

In our case, this is more complicated. We encrypt one S-box and decrypt four, after which we need
to compute the following algebraic expression on S5’s input bits 2|k2| = 8 times:

1⊕ x5 ⊕ x5x6 ⊕ x2x6 ⊕ x1x5 ⊕ x1x2 ⊕ x1x5x6 ⊕ x1x2x6

(Note that this was the expression used as an example before.)
We therefore estimate the time required for each partial encryption/decryption to be 5/128 +

8/128 = 13/128 of the time required for a full DES encryption.
This specific attack, although it breaks the DES and in spite of its improved bias, turns out to have

poorer data complexity than that of Matsui [53]. We will explain later on how Matsui’s attack - in
effect a combination of two separate attacks - is able despite its lower bias to perform more effectively.
For now, though, with the method defined, we have enough information to design cost functions and
run experiments, and it is therefore time to discuss the metaheuristic algorithm.

4 The use of simulated annealing to evolve nonlinear approxima-
tions.

(A description of the simulated annealing algorithm is provided in Appendix B, for those unfamiliar
with it.)

In the previous application of simulated annealing to this problem by Clark et al. [21, 19], each
nonlinear approximation was represented as follows:

• A global constant, k, determined the maximum number of S-box input bits that could be involved
in the nonlinear component of the approximation. The number n of input bits was 9, and values
of k between 2 and 8 were used in experiments.

• The nonlinear equation, on k of the n input bits, was represented by its truth table (an array of
1s and 0s). As stated, this framework did not take into account the related approximations.

• The linear equation on the output bits was represented by an m-bit bitmask (m being 32 in this
case), with 1s corresponding to the positions of the bits involved. Most C/C++ compilers could
easily accommodate this using an unsigned long integer.

• A “projection” containing the information on which of the input bits were involved in the
approximation was represented using an array of size k.

The cost function multiplied the absolute bias of the approximation by -1, and returned the
result. The initial acceptance rate was set at 0.6. The move function was somewhat unusual for a
simulated annealing algorithm, in that it chose one of four move types at random. Three user-supplied
parameters dictated the relative probabilities of changes to the nonlinear component’s truth table, the
linear component’s bitmask, and the projection as follows:

0 ≤ P NL TT ≤ P BITMASK ≤ P SWAP USED UNUSED ≤ 1.0
u← RAND(0, 1)
if u < P NL TT then

A randomly chosen bit in the nonlinear component’s truth table is flipped.
else if P NL TT ≤ u < P BITMASK then

The linear component’s bitmask is changed.
A new bitmask is chosen uniformly at random from the set of m-bit integers.
(This causes 2m−1 bits in the linear component’s truth table to change.)

else if P BITMASK ≤ u < P SWAP USED UNUSED then
The projection is altered.
An unused input bit replaces one of those involved in the nonlinear function.

else
The ordering of the bits in the projection is changed

end if

Clark et al. experimented with (0.25 ≤ P NL TT ≤ 0.45), (0.25 ≤ P BITMASK ≤ 0.45), and
P SWAP USED UNUSED ∈ {0.5, 1.0}.

For changes in the truth table of the nonlinear component, we have reason to believe a smooth
search landscape is defined for the move function as described.

Let there be k bits involved in the nonlinear approximation of a single S-box S. Then, if the
nonlinear component of the approximation acts on the input bits, there are (n − k) input bits not
involved in it (and (m− k) if the nonlinear component acts on the output bits).

The truth table of the nonlinear component of the approximation will contain 2k entries. Let us
consider a “padded” truth table for the approximation, containing the value of the nonlinear expression
for every possible value of the bits at the same “end” as the nonlinear component. This truth table
will contain 2n−k (or 2m−k) copies of the truth table entry for any choice of the k involved bits.
Changing one bit of the nonlinear approximation’s truth table will change the values of these copies
in the padded truth table, and no other bits.

Now, let us consider the full truth table of the nonlinear approximation, containing the value of the
nonlinear expression for every possible value of the S-box’s input bits. Clearly if the nonlinear expres-
sion is in terms of the input bits, this will be identical to the padded truth table. If not, we compute the
full truth table using the equation FULL TRUTH TABLE[i] = PADDED TRUTH TABLE[S(i)].
For a bijective S-box, changing one bit in the basic truth table of the nonlinear component will change
precisely 2m−k = 2n−k bits in this table. For a balanced S-box with more input than output bits (such
as a DES S-box), changing one bit in the basic truth table of the nonlinear component will change
2n−m · 2m−k = 2n−k bits in the full truth table.

Since we can upper bound the number of changes to the truth table of the approximation’s non-
linear component by 2n−k, which can be as low as 2 in the circumstances described if the nonlinear
approximation uses (n − 1) input bits, and since the truth table of the linear component does not
change, none of the 2k related approximations can change bias by more than 2n−k when a move of
this sort is made - and this acts in turn as an upper bound on changes in the absolute values of their
biases.

However, for the other possible moves, experiments have shown that a smooth search landscape is
not defined:

• A change to the bitmask changes the value of precisely half the bits in the linear component’s
truth table, meaning that for an S-box mapping GF (2)n to GF (2)m, the change in an approx-
imation’s bias from such a move is upper bounded by 2n−1 - an upper bound so high as to be
almost meaningless.

As an example, consider the following nonlinear approximation to DES S5. The nonlinear
component of the approximation involves input bits 0, 1, 3, 4, 5 and has full truth table

1111111111111111100011001000110011111111111111110000001000000010

This approximation holds with bias +22 when the linear component has bitmask 1111. However,
changing the bitmask to 1101 results in its holding with bias 0, and 0 is 12 less than the smallest
absolute bias of any of the original related approximations.

• Changing the order of the bits involved in the nonlinear approximation (for example, where
approximation input bit xa0 is x0 and xa1 is x1, exchanging their positions so that xa0 = x1

and xa1 = x0) will have no effect on the basic truth table of the approximation, but can affect
several bits in the full truth table (in this case, as many as 2n−1). In the case of our previous
example, this causes the bias to drop from 22 to 2. Moreover, the highest absolute bias of any
of the related approximations drops to 4, when the lowest had previously been 12.

• Finally, we consider swapping one of the bits involved in the nonlinear approximation with an
uninvolved bit. One of the approximations related to our previous example held with bias -20.
Replacing xa1 = x1 with xa1 = x2 changed its full truth table in 26 places and reduced this bias
to 0. The largest absolute bias among any of the related approximations was now 8, 4 lower
than the previous minimum.

There is evidence that this affected the behaviour of the search in Clark et al.’s experiments. In
their paper, it is stated that for “almost all the executions tried” the search began with an initial
period in which there was little improvement in the quality of the best approximation found, lasting
approximately 500,000 moves. After this, a period of rapid and almost uninterrupted improvement
began, lasting for approximately 500,000 to 700,000 moves, before the level of improvement tailed off.

We believe that the period of improvement began when the temperature of the annealing algorithm
had dropped to a point where non-improving moves were very unlikely to be accepted, and that early
on in this period, a sequence of moves, all acting on the truth table of the nonlinear component, were
accepted. These moves increased the absolute bias of the approximation to the extent that any other
sort of move was most unlikely to be accepted due to the unpredictable (but increasingly likely to be
negative) effects of such moves on said value. In other words, the algorithm spent this period hill-
climbing, with a move function that was limited to changing bits in the truth table of the nonlinear
component, before slowing down as it approached a local optimum.

To exploit this, we significantly increase the probability of truth table changes being chosen as the
move; we chose to increase probability to 0.9. Since we were attempting to find nonlinear approxi-
mations to replace the first and last round components of existing linear approximations to ciphers,
the bitmask was assigned a value at the start of the search and remained static thereafter. We still
allowed the search to make moves of the other two types (with probability 0.05 each) to see if it would

“home in on” particular choices of projection which would result in biases of higher magnitude than
others; this was indeed the case.

We focused primarily on S-boxes from ciphers which were

1. such that linear cryptanalysis or a variant/derivative thereof has been used in a significant attack
on the cipher or a reduced-round variant thereof.

2. significant, due to being or having been widely used, or being considered a viable alternative to
AES, or being a promising new lightweight cipher...

The three ciphers which best satisfied both of these criteria were DES [59], PRESENT [10] and
Serpent [1].

Our original experiments utilised various cost functions.

1. Let the number of related approximations be denoted R, and let εi denote the bias of the ith
related approximation (0 ≤ i < R).

We initially rewarded high values for the sums-of-squares of the biases; with the cost being

23n−3 −
R−1∑
i=0

ε2i

2. As it became apparent that the related approximations were not always statistically indepen-
dent of each other; and furthermore that the sample biases in the vector v at the end of the
cryptanalysis would not be either, we attempted to refine the first cost function to address this
issue. The next cost function was identical to the first, but did not count the biases of related
approximations with truth tables that were identical to, or bit-flips of, the truth tables of pre-
vious relateds. This was not sufficient to address the issue of statistical dependency among the
linear algorithms, and we began to focus our cost functions more on the maximum bias model.

3. We rewarded the highest absolute bias:

cost =

(
2n−1 − max

(0≤i<R)
εi

)
In situations where the maximum-bias model is used, and obtaining the k1 bits is prioritised
over obtaining k2 bits, this strategy makes the most sense. In the attacks on Serpent described
below, for instance, the number of k2 bits compared to the number of k1 bits was extremely
small. This was also the case with the attack on DES, and no cost function used identified a
nonlinear approximation such that we could be sure the correct value of k2 could be identified.

4. We attempted to obtain related approximations such that all biases were high in magnitude by
rewarding high values for the smallest biases:

cost =

(
2n−1 − min

(0≤i<R)
εi

)
This cost function, when tried, merely returned the highest bias linear approximation for the
specified bitmask in all cases, suggesting (though this is not a matter of certainty) that nonlinear
approximations with all relateds having bias in excess of the best linear approximation may not
exist.

5. In an attempt to find cost functions suited for obtaining both k1 and k2 bits, we then tried
cost = 22n−2 − (max. bias - 2nd highest bias). In the case of the 4 × 4 S-boxes, this did not
find any nonlinear approximations that cost function 3 above had not. In the case of DES S5,
which we were targeting due to its presence in the final round of Matsui’s linear attack, this

found approximations such that the maximum bias among the relateds had magnitude ranging
from 18 to 22; and such that the second-highest bias was 12 lower. The bias 24 approximations
found by cost function 3 were, however, considered more effective in recovering the k1 bits due
to the extent to which they reduced the data complexity. It should be noted that we considered
the recovery of the k1 bits to be a much higher priority than the recovery of the k2 bits; since
achieving the first objective was necessary to achieve the second.

5 Experiments on various ciphers, and application to their crypt-
analyses.

5.1 AES

We ran several experiments with the AES S-box and a cost function seeking to reward the maximum
absolute bias of all related approximations. Using 600,000 inner loops, 500 outer loops, cooling factor
0.97 and initial acceptance rate 0.95, these yielded several approximations with absolute biases ranging
from 64 to 72 (albeit with much lower-bias relateds). Some of these approximations were linear on the
S-box’s input bits, and some were linear on the output bits - in both cases, several approximations
with bias ±72 were obtained. For all of the input and output bitmasks involved, the bias of the best
linear approximation was ±16.

Since all AES S-box co-ordinate functions are affine-equivalent [35], the question arises as to
whether the absolute bias of the best nonlinear approximation to a Boolean function is affine invariant.
While more experimentation would be needed to gain evidence for this, if true it would mean that for
all input and output bitmasks, the AES S-box would have at least one nonlinear approximation with
bias ±72 (and for some bitmasks, we have already found more than one nonlinear approximation with
such a bias.)

While some of the approximations with bias ±72 were balanced, most were not. All balanced
approximations found so far with absolute bias 72 have been linear on the input bits and nonlinear
on the output bits, although further experimentation may yield balanced approximations with this
absolute bias that are linear on the output bits.

5.2 Serpent.

In the literature, various linear, differential-linear, multiple linear and multidimensional linear attacks
on reduced-round Serpent are described. These fall into two categories, those based on Collard et
al.’s approximations [23, 24, 25, 60] and those based on the approximation of Dunkelman, Keller et
al. [6, 8, 34]. In Appendix A, we point out a few errors in the descriptions of Dunkelman et al.’s
approximation as found in the literature.

Of the existing attacks on reduced-round Serpent to utilise linear approximations, those described
by Collard et al. included a 2R attack on 11 rounds of Serpent, utilising a 9-round approximation,
and later using the new analysis phase to improve time complexity.

The same 9-round approximation was later used by Nguyen et al. [60]. In their paper, a 56-
dimensional approximation to the preceding round using several input bitmasks was connected to the
first round of the original approximation; yielding a 10-round multidimensional approximation which
resulted in the best attacks so far against reduced-round Serpent (up to 12 rounds).

However, we believe that the data complexities of these attacks have been underestimated.
Let C denote capacity, and p the probability that the linear approximation holds (so that (p−1/2) is

the bias). In Nguyen et al.’s work [60], the data complexityN specified in each case is 4C−1. This figure
appears to have been chosen to match the values for N used by Collard et al., in which key ranking was
not used and values of N equal to 4C−1 were used in the multiple linear attacks. However, Collard et
al. also used N equal to 4 ·|p−1/2|−2 in the conventional linear attacks (apparently to obtain a success
probability of 0.785 as predicted by Matsui [52]), and 4C−1 is equal to 1/(sum of squares of biases).
To obtain internal consistency, N = 16C−1 would have been needed. Moreover, we have already

critiqued Table 3 of [52] in Section 3.5. For the reasons given in that section, we recalculate the
expected success rates using Selçuk’s double integral [66].

Tables 8, 9, and 10 give the expected success rates for other values of l, in particular l = 108, since
this is the value of l used in Collard et al.’s maximum advantage attack on 11-round Serpent [25].
We can clearly see from these that N = 4|p − 1/2|−2 = 2118 is not enough in Collard et al.’s attack
on 11-round Serpent to achieve Ps = 0.785. A reasonably close probability to 0.785 may be achieved
with N = 41.5|p− 1/2|−2 ≈ 2121.375, or an extremely high probability with N = 2122.

For the same reasons, in Biham et al.’s linear attack on 11-round Serpent [6], N = 53|p−1/2|−2 ≈
2121.728 is needed instead of N = 4|p− 1/2|−2 = 2118 to achieve success probability 0.785.

N 8|p− 1/2|−2 16|p− 1/2|−2 17.6|p− 1/2|−2 32|p− 1/2|−2

Ps (l = 44, Selçuk) 0.028194 0.657866 0.785718 0.999875

Table 8: Success rates (calculated numerically) for a = l = 44.

N 16|p− 1/2|−2 32|p− 1/2|−2 41.5|p− 1/2|−2 64|p− 1/2|−2

Ps (l = 108, Selçuk) 0.000027 0.229319 0.794093 0.999955

Table 9: Success rates (calculated numerically) for a = l = 108. We were unable to solve for a precise
success rate of 0.785.

N 32|p− 1/2|−2 53|p− 1/2|−2 64|p− 1/2|−2

Ps (l = 140, Selçuk) 0.007278 0.785316 0.986902

Table 10: Success rates (calculated numerically) for a = l = 140.

Nguyen et al.’s multidimensional “Method 2” attack on 12-round Serpent [60] aims for 172-bit
maximum advantage a = l with M = (256 − 1) and capacity C = 2−116. Based on the discussion
above, we assume that the intended probability of success Ps is 0.785. Using this information to solve
Equation 3.10 and to compute N from b, we obtain a data complexity of N ≈ 2124.39.

The “Method 1”-based attack from the same paper is not so easy to estimate data complexity
for, since it consists of 2128 separate 1R attacks with key guessing on 48 bits in the final round. We
can assume that the data complexity for one such 1R attack must lower-bound the value of N in this
case, but we believe that it must be an underestimate. Using the same methodology as before, for a
capacity of 2−114, we obtain N ≥≈ 2121.275.

If differences between the actual and theoretical distributions resulting from the linear hull effect
are not too significant, this is still the best attack on reduced-round Serpent to date. However, as the
effectiveness of LLR-based nonlinear and multidimensional linear attacks has not to our knowledge
been experimentally tested for as many as 12 rounds - or indeed as many as 11 - we are forced to
express some doubt as to whether the attack can succeed with the data complexity claimed. This
would be a matter for future research.

If we attempt to address this issue by carrying out the attack using the χ2 statistic instead, then
according to the formula given in subsection 3.3, if we use the entire codebook of 2128 known plaintexts,
we obtain an advantage of ≈ 0.279. Since the attack is against 256-bit Serpent, this gives the search
phase a time complexity of ≈ 2255.721. This dominates the complexity of the attack, giving us an
approximate overall time complexity of ≈ 2255.721. Since the success probability is 0.785, and since an
exhaustive search of 78.5% of the keyspace would have slightly lower time complexity ≈ 2255.651, we
are not sure that the χ2 attack could reasonably be viewed as an attack under these circumstances.

The same paper’s attacks on 11-round Serpent also underestimate the data complexity, and rely
on the LLR working as predicted. In the case of the attack with twelve active S-boxes in the final
round, 48-bit advantage is the implied aim since key ranking is not used. We solve Equation 3.10 for
M = (256 − 1), capacity 2−114 and Ps = 0.785, and obtain N ≈ 2121.275.

In the case of the attack with eleven active final-round S-boxes, we use the same methodology and
obtain N ≈ 2123.219.

(Both of these figures depend on the LLR-statistic remaining usable in spite of the linear hull effect
after 11 rounds. If this is not the case, since the same linear characteristic is used as in the case of the
12-round attacks, we still obtain advantage of only ≈ 0.279 and resultant time complexity ≈ 2255.721

when using the χ2 statistic instead - and for the same reasons as before, this probably cannot be
considered to constitute an attack.)

If the LLR statistic is used, we assume that the convolution method [38] is used to minimise
the complexity of converting the empirical distributions into scores for the various key candidates.
The time complexity is still non-negligible compared to the remainder of the attack, being equal to
2k((6m+ 13)·2m) MAs + 2k((6m+ 4)·2m) AOs.

As we see from tables 11, 12 and 13 below, the best existing attacks on eleven-round Serpent
in terms of data and memory complexity are those of Nguyen et al. Time complexity depends on
which of the Serpent key lengths is in use; for the 192 and 256-bit keys, Collard et al. have less
key bits remaining to search for and achieve the best time complexity of the existing methods; for
the 128-bit key length the faster analysis phase, and reduced time required to encrypt the known
plaintexts, of Nguyen et al.’s method dominates the time complexity and makes it the superior attack.
The complexity of the search phase gives the nonlinear attack in this paper the best overall time
complexity for the case of 11-round Serpent with 256-bit keys, and it may also be seen that nonlinear
cryptanalysis achieves better data complexity than any other known-plaintext - or indeed chosen
plaintext - attack on 11-round Serpent with 192 or 256-bit keys.

Rounds Type of attack Data Time (analysis)

11 Linear [6] 2121.728 KP 2188.1 E

11 Linear [6] 2121.728 KP 296 PE + 244 PD + 2149.73 AO + 2149.76 MA

11 Linear [25] 2121.375 KP 260 PE + 248 PD + 2117.36 AO + 2117.4 MA

11 Multidim. lin. [60] 2121.275 KP 248 PD + 2114.087 AO + 2114.134 MA

11 Multidim. lin. [60] 2123.219 KP 244 PD + 2110.055 AO + 2110.103 MA

11 Differential-linear [34] 2121.8 CP 2135.7 MA

11 Nonlinear (this paper) 2120.467 KP 280 PE + 248 PD + 2139.6 AO + 2139.63 MA

11 Nonlinear (this paper) 2117.401 KP 260 PE + 276 PD + 2149.69 AO + 2149.72 MA

11 Nonlinear (this paper) 2115.44 KP 260 PE + 280 PD + 2153.73 AO + 2153.76 MA

11 Differential-linear [34] 2113.7 CC 2137.7 MA

12 Differential-linear [34] 2123.5 CP 2249.4 E

12 Multidim. lin. [60] 2124.39 KP 2128 PE + 244 PD + 2238.744 AO + 2238.769 MA

12 Multidim. lin. [60] ≥ 2121.275 KP 2128 PE + 248 PD + 2242.087 AO + 2242.134 MA

Table 11: Attack complexities. In most cases Ps = 0.785 (or slightly higher.) The chosen plaintext
attacks of Biham et al. have Ps = 0.84, and the chosen-ciphertext attack has Ps = 0.93. The
time complexity for Biham et al.’s linear cryptanalysis varies depending on whether the new analysis
method of Collard et al. is used, or whether an earlier analysis method [6] is. Table entries in bold
signify that the method may not work as claimed depending on the linear hull effect and how it affects
the LLR statistic. E = full encryptions of the reduced round cipher. PE = partial encryptions. PD =
partial decryptions. AO = arithmetic operations. KP = known plaintexts. CP = chosen plaintexts.
CC = chosen ciphertexts.

Rounds Type of attack Time (analysis) summary Mem Bits recovered

11 Linear [6] 2188.1 E * 140

11 Linear [6] 2137.08 E + 2149.76 MA 2144.087 140

11 Linear [25] 2104.71 E + 2117.4 MA 2112.087 108

11 Multidim. linear [60] 2101.437 E + 2114.134 MA 2108 48

11 Multidim. linear [60] 297.405 E + 2110.103 MA 2104 44

11 Differential-linear [34] 2135.7 MA 276 48

11 Nonlinear (this paper) 2126.95 E + 2139.63 MA 2134.087 128 k1, 2 k2

11 Nonlinear (this paper) 2137.04 E + 2149.72 MA 2144.087 136 k1, 4 k2

11 Nonlinear (this paper) 2141.08 E + 2153.76 MA 2148.087 140 k1, 4 k2

11 Differential-linear [34] 2137.7 MA 299 60

12 Differential-linear [34] 2249.4 E 2128.5 160

12 Multidim. linear [60] 2225.964 E + 2238.769 MA 2232 172

12 Multidim. linear [60] 2229.437 E + 2242.134 MA 2108 176

Table 12: Attack complexities cont. All memory complexities are measured in bytes. The time
and memory complexities for Biham et al.’s linear cryptanalysis vary depending on whether the new
analysis method of Collard et al. is used, or whether an earlier analysis method [6] is. In the latter
case, the relevant sources [6, 25] disagree as to the memory complexity. Based on the bitsliced Serpent
implementation and Osvik’s new implementation of S6 [1, 64] we estimate 212.65 AOs are needed for
an 11-round Serpent encryption, ignoring the key schedule as this is only done once, and 212.78 AOs for
12-round Serpent. E = full encryptions of the reduced round cipher. PE = partial encryptions. PD
= partial decryptions. KP = known plaintexts. CP = chosen plaintexts. CC = chosen ciphertexts.

Bits remaining

Rounds Type of attack (128-bit key) (192-bit key) (256-bit key)

11 Linear [6] N/A 52 116

11 Linear [6] N/A 52 116

11 Linear [25] 20 84 148

11 Multidim. linear [60] 80 144 208

11 Multidim. linear [60] 84 148 212

11 Differential-linear [34] 80 144 208

11 Nonlinear (this paper) N/A 62 126

11 Nonlinear (this paper) N/A 52 116

11 Nonlinear (this paper) N/A 48 112

11 Differential-linear [34] 68 132 196

12 Differential-linear [34] N/A 32 66

12 Multidim. linear [60] (Method 2) N/A 20 84

12 Multidim. linear [60] (Method 1) N/A 16 80

Table 13: Complexities for attack when Ps = 0.785 (or slightly higher) cont.

5.2.1 Using nonlinear attacks to reduce the data complexity of attacking 11-round
Serpent-192 and Serpent-256.

It is not clear how, if it is possible at all, to combine nonlinear and multidimensional linear approx-
imations. We therefore focus on modifying Collard et al.’s “Approximation D2”, and focus on the
version with 12 active S-boxes in the final round.)

The simplest change possible is to replace the (input bitmask 12, output bitmask 10) bias 4
approximation in the first round (affecting bits 16, 17, 18, 19) with the following approximation:

x2 ⊕ x1 ⊕ x1x4 = y1 ⊕ y3

The primary approximation has bias 6, and after we eliminate related approximations which are
bit-flips of others, we obtain sum-of-squares-of-biases 40. Fortunately, the related approximations are
uncorrelated and we obtain the full corresponding increase in capacity should we choose to use the χ2

model.
20 instead of 15 S-boxes are now activated in the plaintext, increasing the number of k1 key

bits attacked to 128. The memory requirements are increased to 2(128+2)+4.087 = 2134.087 bytes, due
both to the extra k1 bits and the four related approximations. The time complexity of the analysis
phase also increases, and is dominated by the 4·(6×128 + 8)·2128 = 2139.6 arithmetic operations and
4·(6×128 + 26)·2128 = 2139.63 memory accesses (The multiplication by 4 results from there being four
“relateds”).

Despite the aforementioned difficulty in comparing memory access complexity to complexity in
terms of encryptions, we are able to calculate an estimate for the number of arithmetic operations per
reduced-round encryption, by counting the number of operations involved in the optimised “bitslice”
implementation of Serpent [1]. In particular, this implementation does not use lookup tables for the
S-boxes, but instead uses arithmetic operations to calculate the output values extremely quickly.

If we obtain an optimistic estimate for the number of arithmetic operations per reduced-round
Serpent encryption, dividing the attack’s AO complexity by this figure will give us a conservative
estimate for its time complexity. For this reason, we base our estimate on a version of Serpent in
which Osvik’s implementation of S6 [64] has replaced the original implementation, allowing one less
AO per calculation of S6, and assume that the performance gains of the bitslice implementation are
not compromised by this. If future research should provide evidence that this is not in fact possible,
we can easily base new estimates on the original version.

(Note that operations such as bitwise xor, which might more often be described as logical opera-
tions, are included under the banner of “arithmetic operations” in this case.)

This gives us 212.65 AOs per 11-round Serpent encryption, and 212.78 per 12-round encryption.
Dividing the appropriate figure by 212.65, we obtain time complexity of 2126.95 encryptions + 2139.63

MAs.
In the χ2 model, the capacity of the new approximation is equal to 2.5× what it was before,

however the increased number of degrees of freedom (4 instead of 1) means that we cannot reduce the
data requirements a full 2.5-fold. The number of degrees of freedom is too low for us to use Equation
3.3, which in any case heavily underestimates the advantage of the original attack; however if it can
be taken as a guide, it indicates that we achieve the same advantage with 2120.875 known plaintexts
instead of 2121.375.

If we use the maximum-bias approach instead, the capacity is multiplied by (6/4)2 = 2.25. How-
ever, we cannot decrease the known-plaintext requirements 2.25-fold, since the increased number of
k1 bits, and the need to deal with 22 relateds per outer key guess, effectively raises l to 130. To obtain
success probability close to the 0.794 of the original attack, a higher value of N |p− 1/2|−2 is needed.
49.75 instead of the previous 41.5 gives us success probability 0.8, and means that N is in fact reduced
by a factor of 1.877, to 2120.467. This is clearly a better option than using the χ2 statistic.

This approximation involves three k2 bits. Due to the bit-flipped relateds, we can only recover two
of these; the bits corresponding to x1 and x4.

There is another bias 4 linear approximation in the first round, and several approximations in
the final round with bias ±4, that can be replaced with nonlinear approximations possessing similar
properties to the one above. Let us consider a situation in which:

• the entire first round approximation remains linear,

• we replace the final-round S-box approximation x3 ⊕ x4 = y4 (bias 4; affecting state bits 76 to
79) with x3⊕x4 = y4⊕y3⊕y1y3. This approximation has bias 6, and a statistically independent
related with absolute bias 2. All other relateds either have zero bias or are bit-flips of these, so
we have sum of squares of biases 40.

This increases the number of active final-round S-boxes from 12 to 17.

• we also replace one of the final-round x1⊕x3⊕x4 = y2 approximations (bias 2; the one affecting
state bits 96 to 99) with x1⊕x3⊕x4 = y2⊕y1⊕y2y4. The number of active final-round S-boxes
increases again, from 17 to 19.

The total number of active S-boxes increases from 27 to 34.
We have replaced a bias 4 (bias2 = 16) approximation and a bias 2 (bias2 = 4) approximation

with two nonlinear approximations, each being such that the primary approximation has bias 6, and
such that the sum of squares of statistically independent biases is equal to 40.

Let us first consider the χ2 model. In this model, the capacity is multiplied by (2.5 × 10) = 25.
Evidence from experiments on an SPN-based cipher in which final-round linear approximations with
bias ±4 were replaced with nonlinear approximations with identical properties to the ones above
suggests that a 6.25-fold increase in capacity, mitigated by an increase in the number of degrees of
freedom from 1 to 16, results in a reduction in data complexity by a factor of approximately 21. This
would lead to an estimated 2120.375 known-plaintext requirement. Since we have a further 22-fold
increase in capacity on top of this, we estimate that 2118.375 known plaintexts are required, and that
the data requirements for the same advantage as Collard et al.’s original attack are very unlikely to
be ≥ 2119.375. However, these experiments used a smaller value of l, and due to the low number of
degrees of freedom, it is not clear how much confidence we can place in these figures.

Figure 11: Graph showing mean advantages for attack on four round SPN with 4× 4 S-boxes using:
linear approximation (red), nonlinear approximation (Two final-round S-boxes are approximated with
“6, 2, bit-flips” approximations of the type used in this section) in χ2 model (blue), same nonlinear
approximation in maximum-bias model (grey), multiple nonlinear in χ2 model with two sets of approx-
imations of this type (black), and multiple nonlinear with same two approximations in maximum-bias
model (brown).

Figure 12: Graph showing alternate calculation for average advantage in which the mean rank obtained
was input to the formula for advantage.

If, by contrast, we utilise the maximum-bias model, we replace one bias 4 approximation and

one bias 2 approximation with two bias 6 approximations, multiplying capacity by
(

6×6
4×2

)2
= 20.25.

Since the value of l is effectively increased to 140, this does not simply reduce the known-plaintext
requirements to 2117.035, since we have to increase N |p − 1/2|2 to compensate. N = 53.5|p − 1/2|−2

gives success probability 0.8, and N = 2117.401. The memory requirements are increased to 2144.087.
The time complexity of the analysis phase is dominated by 16·(6·136 + 26)·2136 = 2149.72 MAs and
16·(6·136 + 8)·2136 = 2149.69 AOs ≈ 2137.04 11-round encryptions.

To reduce the number of known plaintexts further, we could replace another of the x1⊕x3⊕x4 = y2

approximations with a nonlinear approximation instead of replacing x3 ⊕ x4 = y4. If we choose the
approximation affecting state bits 116-119, we can do this with a total of 35 S-boxes activated, and
we obtain time complexity 16·(6·140 + 26)·2140 = 2153.76 MAs and 16·(6·140 + 8)·2140 = 2153.73 AOs
≈ 2141.08 eleven-round encryptions with memory complexity 2148.087. Estimated data complexity in
the χ2 model is 2116.375, but for the reasons given above we view complexity calculations as more
reliable in the maximum-bias model. l is in effect increased to 144, resulting in N having to equal
55|p− 1/2|−2 to obtain success probability 0.8 with N = 2115.44.

(In all three of the above attacks, the improvements in data complexity that could potentially
arise from using the LLR were extremely slight, and due to our doubts regarding this statistic and
the linear hull effect, we did not consider it worth including results for it in this section’s tables.)

5.2.2 Improving the capacity of the highest-bias approximation of nine rounds of Ser-
pent.

The description of Collard et al.’s approximations [24] includes one of several nine-round linear approx-
imations discovered with bias 2−50 (capacity 2−98); the highest bias achieved for a linear approximation
of that many rounds. However, none of these approximations are used in attacks, since the high num-
ber of active S-boxes in each would result in attacks with far higher complexity than the then-current
state of the art.

Our algorithm found several higher-capacity replacements for linear S-box approximations in the
outer rounds (both of which used Serpent S3). These included various approximations in which the
various “relateds” were all either:

1. statistically independent, or

2. bit-flips of other relateds, which could safely be ignored

allowing us to calculate the new capacity precisely:

• The first round - nonlinear components in the input bits.

– We can replace the bias −4 (capacity 64) linear approximation x1 ⊕ x4 = y2 ⊕ y4 (input
bitmask 9, output bitmask 5) with one of the following nonlinear approximations:

1. x2⊕ x1x4⊕ x1x2 = y2⊕ y4 and relateds. (Primary approximation has bias +6, we can
choose a statistically-independent related with bias either 2 or -2, other relateds either
have bias 0 or are bit-flips of these.)

2. x4⊕ x1⊕ x2x4 = y2⊕ y4 and relateds. (Primary approximation has bias -6. Again, we
can choose a statistically-independent related with bias either 2 or -2, and the other
relateds either have bias 0 or are bit-flips of these.)

3. Other nonlinear approximations such that one related has bias ±6 exist, but the truth
tables of the related approximations are not statistically independent, so we are unable
to calculate their capacity when working in the χ2 model. In experiments on a toy
cipher, these appear to have approximately the same capacity, but since optimisations
to omit bit-flips and zero-bias relateds cannot be made, they are also much slower to
work with.

Table 14 summarises the above:

Nonlinear component Bias (2, 4) wrong (1) wrong (1, 2, 4) wrong

x2 ⊕ x1x4 ⊕ x1x2 +6 -6 -2 +2

x4 ⊕ x1 ⊕ x2x4 -6 +2 +6 -2

Table 14: Nonlinear approximations to S3 with output bitmask 0101.

– We can also replace the bias 4 (capacity 64) linear approximation x2 ⊕ x3 = y1 ⊕ y2 (input
bitmask 6, output bitmask 12) with one of various nonlinear approximations with very
similar properties to those found in the above case:

1. x2 ⊕ x3x4 = y1 ⊕ y2 and relateds. (Primary approximation has bias +6, we choose an
independent related with bias either 2 or -2, all other relateds have either bias 0 or are
bit-flips of the preceding.)

2. x3⊕x2x4 = y1⊕y2 and relateds. (Primary approximation has bias +6, again we choose
an independent related with bias either 2 or -2, and all others have zero bias or are
bit-flips of the preceding two.)

As before, other nonlinear approximations with bias ±6 primary approximations but sta-
tistically dependent relateds also exist.

Nonlinear component Bias (2) wrong (3) wrong (2, 3) wrong

x2 ⊕ x3x4 +6 -6 -2 +2

x3 ⊕ x2x4 +6 -2 -6 +2

Table 15: Nonlinear approximations to S3 with output bitmask 1100.

• The final round - nonlinear components in the output bits.

– We can replace the bias 4 linear approximation x3 ⊕ x4 = y4 with one of two nonlinear
approximations with similar properties to those presented above. These are: x3 ⊕ x4 =
y4 ⊕ y3 ⊕ y1y3 and x3 ⊕ x4 = y4 ⊕ y3 ⊕ y3y4 ⊕ y1y4 ⊕ y1y3.

Nonlinear component Bias (4) wrong (1, 3, 4) wrong (1, 3) wrong

y4 ⊕ y3 ⊕ y1y3 +6 -6 -2 +2

y4 ⊕ y3 ⊕ y3y4 ⊕ y1y4 ⊕ y1y3 +6 -2 -6 +2

Table 16: Nonlinear approximations to S3 with input bitmask 0011.

This pattern occurs fairly frequently.

– The bias 4 approximation x1 ⊕ x3 ⊕ x4 = y1 (which occurs three times) can be replaced
with one of the four approximations in Tables 17 and 18:

Nonlinear component Bias (1) wrong (1, 2) wrong (2) wrong

y2 ⊕ y1 ⊕ y2y4 +6 -6 -2 +2

y2 ⊕ y2y4 ⊕ y1y4 +6 -2 -6 +2

Table 17: First set of nonlinear approximations to S3 with input bitmask 1011.

Nonlinear component Bias (1) wrong (1, 3) wrong (3) wrong

y4 ⊕ y3 ⊕ y1 ⊕ y3y4 -6 +6 +2 -2

y3 ⊕ y3y4 ⊕ y1y4 +6 -2 -6 +2

Table 18: Second set of nonlinear approximations to S3 with input bitmask 1011.

– The bias −4 approximation x1 ⊕ x2 ⊕ x3 = y3 can be replaced with either of the two
approximations in Table 19 (both capacity 160):

Nonlinear component Bias (1, 3, 4) wrong (1, 3) wrong (4) wrong

y4 ⊕ y1 ⊕ y3y4 ⊕ y1y4 ⊕ y1y3 +6 -6 -2 +2

y4 ⊕ y1 ⊕ y3y4 ⊕ y1y4 +6 -2 -6 +2

Table 19: Nonlinear approximations to S3 with input bitmask 1110.

Although we are likely to encounter the same issues with increased TPS size and time complexity
of handling the relateds as before, in the maximum-bias model this gives us several nonlinear approxi-
mations to nine-round Serpent with bias ±2−45.9 instead of 2−50. In the χ2 model, we can replace the
highest-capacity approximation to 9-round Serpent known so far (capacity 4 ∗ (2−50)2 = 2−98) with
several different approximations with capacity ≈ 2−88.75.

This is unlikely to be of use in practice - the original nine-round linear approximation had too many
active S-boxes in the plaintext and ciphertext to be used in a feasible attack, and this approximation
only exacerbates the same problem. We include it here merely to demonstrate the potential nonlinear
approximations to cipher rounds have to increase bias and capacity.

5.3 DES

Bitmask for linear function of output bits.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 bits in NL component 4 8 8 8 6 8 10 6 8 8 8 6 10 12 18
3 bits in NL component 10 10 12 8 14 10 14 10 10 12 12 10 12 16 24
4 bits in NL component 14 14 14 14 14 14 20 16 14 14 18 14 18 18 24
5 bits in NL component 14 14 18 16 16 18 22 16 16 16 20 16 22 22 28

Best linear approx. 14 12 8 10 10 12 12 14 8 12 12 12 10 12 18

Table 20: DES S1. Maximum (absolute) bias found for cost function rewarding maximum bias among
relateds.

Bitmask for linear function of output bits.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 bits in NL component 4 6 8 4 8 8 10 4 6 8 16 8 12 10 14
3 bits in NL component 10 10 12 14 12 10 12 8 10 10 16 10 16 14 22
4 bits in NL component 14 12 14 16 14 12 20 10 12 14 18 16 20 18 22
5 bits in NL component 16 14 16 18 20 16 24 14 18 18 22 20 22 22 24

Best linear approx. 10 12 10 14 10 8 10 14 12 10 16 10 12 10 12

Table 21: DES S2. Maximum (absolute) bias found for cost function rewarding maximum bias among
relateds.

Bitmask for linear function of output bits.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 bits in NL component 4 8 8 4 10 8 8 4 8 8 12 8 14 10 16
3 bits in NL component 8 10 12 8 14 12 14 6 10 12 16 12 18 14 18
4 bits in NL component 12 12 16 12 16 16 16 10 14 16 18 14 18 20 20
5 bits in NL component 14 16 18 14 22 22 20 14 18 20 22 20 24 22 22

Best linear approx. 14 10 12 12 10 12 12 14 12 10 12 10 14 10 16

Table 22: DES S3. Maximum (absolute) bias found for cost function rewarding maximum bias among
relateds.

Bitmask for linear function of output bits.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 bits in NL component 4 4 8 4 8 8 12 4 8 8 10 8 10 12 16
3 bits in NL component 10 8 8 8 12 8 16 10 8 12 16 8 16 16 16
4 bits in NL component 12 12 16 12 12 16 18 12 16 12 18 16 18 18 24
5 bits in NL component 16 16 20 16 16 20 22 16 20 16 22 20 22 22 32

Best linear approx. 10 10 12 10 12 16 10 10 16 12 10 12 10 10 16

Table 23: DES S4. Maximum (absolute) bias found for cost function rewarding maximum bias among
relateds. Note in particular that, for bitmask 15, maximum bias of 32 was achieved - the xor of the
four output bits of DES S4 is independent of the sixth input bit.

Bitmask for linear function of output bits.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 bits in NL component 6 6 6 4 10 6 10 6 6 10 12 8 14 16 20
3 bits in NL component 6 12 8 6 12 10 16 8 10 10 14 10 14 16 20
4 bits in NL component 10 12 14 10 14 14 18 12 14 14 18 14 18 18 24
5 bits in NL component 16 18 16 12 16 16 20 14 16 18 20 18 22 22 24

Best linear approx. 10 12 10 14 10 8 10 12 10 12 12 10 14 16 20

Table 24: DES S5. Maximum (absolute) bias found for cost function rewarding maximum bias among
relateds. Note that for bitmask 4 the best linear approximation has higher magnitude of bias than
any of our nonlinears. The linear function on the input bits involves all six xi, whereas our nonlinear
approximations were limited to five to reflect the fact that if all six xi were exposed to the cryptanalyst,
there would be no need to use an approximation.

Bitmask for linear function of output bits.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 bits in NL component 4 6 6 4 6 8 14 6 8 8 14 8 12 12 12
3 bits in NL component 12 8 10 8 10 12 18 6 12 10 14 12 14 18 14
4 bits in NL component 12 10 12 10 14 14 20 12 16 16 16 16 18 18 18
5 bits in NL component 16 14 20 16 16 16 24 14 18 20 22 22 22 22 20

Best linear approx. 12 12 10 12 10 10 14 12 8 10 14 12 12 12 12

Table 25: DES S6. Maximum (absolute) bias found for cost function rewarding maximum bias among
relateds.

Bitmask for linear function of output bits.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 bits in NL component 4 8 10 8 10 6 10 6 8 10 14 10 14 16 14
3 bits in NL component 6 8 12 12 14 10 12 8 12 12 16 10 14 16 16
4 bits in NL component 12 12 16 14 16 14 18 12 16 14 20 14 18 20 20
5 bits in NL component 14 18 20 18 20 20 20 14 18 18 22 20 22 22 24

Best linear approx. 14 10 10 18 10 10 12 12 8 12 14 12 14 16 14

Table 26: DES S7. Maximum (absolute) bias found for cost function rewarding maximum bias among
relateds.

Bitmask for linear function of output bits.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 bits in NL component 4 6 8 4 8 6 8 6 12 8 12 6 12 16 16
3 bits in NL component 8 10 12 12 10 10 16 10 14 12 14 10 16 16 24
4 bits in NL component 14 12 14 12 12 14 18 10 14 16 18 16 18 22 28
5 bits in NL component 16 18 18 20 18 16 20 16 18 18 20 18 22 24 28

Best linear approx. 10 12 12 12 10 10 14 10 12 10 12 10 12 16 16

Table 27: DES S8. Maximum (absolute) bias found for cost function rewarding maximum bias among
relateds.

5.3.1 The approximation on bits 1, 2, 5, 6

As stated, since one of the four key bits at the input to DES S5 in round 15 is active in round 16,
we have |k2| = 3. The main approximation has bias 24, and the relateds corresponding to wrong key
guesses for the three undetermined bits have bias 16 (in three cases) and 12 (four cases).

• If the χ2-statistic is used, then the number M of degrees of freedom for the new attack is equal
to 2|k2|, which for this attack is 8. We cannot re-guess the key bit that was active in Round 16
to take advantage of the biases of the incorrect relateds, since each of these has a truth table
obtained by flipping all the bits in the truth table of one of the relateds for the correct value of
this key bit; and hence they provide us with no additional information.

• The complexity of the analysis stage would be dominated by:

– 26 PEs, each with complexity 1/128 that of a full encryption.

– 224 PDs, each with complexity 12/128 that of a full encryption. (The total complexity of
the PEs and PDs so far equates to 220.585 DES encryptions.)

– (6× 35 + 8)× 235 = 242.77 arithmetic operations.

– (6× 35 + 26)× 235 = 242.88 memory accesses.

Equating complexity in terms of arithmetic operations to an estimated complexity in terms of
DES encryptions is much more difficult than in the case of Serpent. If we treat the number of
gate operations as equivalent to the number of AOs, Kwan’s best figures for bitsliced DES [48]
give us a total of 6528 AOs for the S-boxes. Biham [5] claims that we need not treat the DES
expansion and permutation as requiring any operations in a bitsliced implementation, that the
key xor requires 48 operations per round, and the xor of the round function outputs with the
left block requires 32. (32 + 48) × 16 = 1280. Reference is also made to 160 CPU load/store
instructions per round; due to the small amount of data involved it may be possible to keep
these in cache memory, but they clearly complicate the issue. Kwan also notes [49] improved
bitslice S-boxes by the developers of the “John the Ripper” password cracking software, which
depending on the CPU architecture may be able to use as few as 4208 AOs instead of 6528.

• An additional 235 time would then be required to go through the set of results and eliminate all
values corresponding to incorrect values of the dummy key bits. If we count this as part of the
analysis phase, its complexity is expected to be negligible compared to the above.

• Since seven of the bits of k1 were dummies, there would be 28 key bits remaining to handle
during the search phase. There are also 28 non-dummy bits in k1. If we seek to obtain the same
advantage as Matsui’s linear attack (a = 13), then we would need to use key-ranking with the
X = 228−13 = 215 highest-scoring keys, and the search phase would have complexity O(28·228)
to sort the results, plus (215·228) ≈ 243 DES encryptions.

The complexity of the distillation phase is dependent on the change in data complexity. The various
related approximations involved are all statistically dependent, with pairwise correlation coefficients
of 0.5, and we do not currently have a statistical model or empirical evidence for the effect this would
have on the capacity when using the χ2-statistic. We therefore use the maximum-bias model, noting
that we may not have sufficient data to deduce bits of k2 due to the high bias of the relateds involved.
Although it is not clear precisely how the time complexity so far compares with Matsui’s original
attack, we will now see that despite the improved bias of the approximation, the data complexity has
worsened !

It seems as though the data complexity should be reduced by a factor of 242/202 = 1.44 =
20.526, giving overall data complexity, and time complexity for this phase, of 243−0.526 = 242.474.
Unfortunately, this is not the case. Matsui’s attack does in fact consist of two separate attacks
with a = 6.5, combined to produce one attack with a = 13. This low advantage allows Matsui
to use less data than would be the case for a direct advantage 13. We can obtain Ps = 0.85 for
a = 6.5, N = 242.5, but not with a = 13 [66]. The reduced advantage would massively increase the
attack’s time complexity; still breaking DES but much more slowly than Matsui.

5.3.2 The approximations on bits 1, 2, 4, 5, 6

To use these approximations, it is necessary to guess thirty key bits in the final round (for (S1, S3, S4,
S6, S8)). The six active key bits in Round 1 now include three guessed bits and three dummy bits, as
one of them is input to S6 in round 16. We need five instead of four dummy key bits for the left-hand
ciphertext block now, raising the value of |k1| to 41. The complexity of a partial encryption/decryption
increases to 6/128 that of a full DES encryption, plus the time required to compute the truth tables
of the nonlinear functions on bits 1, 2, 4, 5 and 6. |k2| is reduced to 1, as only one of the five active
key bits at the input to S5 in Round 15 is now not active in Round 16. However, we can increase it by
re-guessing Round 16 key bits. The minimum possible complexity of a partial encryption/decryption
is, therefore, equal to ((6 + 21)/128) = (1/16) of a full DES encryption

The complexity of the analysis phase is, as a result of this, now at least

• 230 PDs, each with complexity 7/128 that of a full encryption.

• 26 PEs, each with complexity 1/128 that of a full encryption. (The total complexity of the PEs
and PDs so far equates to 225.8 DES encryptions.)

• (6× 41 + 8)× 241 = 249 arithmetic operations.

• (6× 41 + 26)× 241 = 249.09 memory accesses.

In terms of time complexity, this attack is clearly inferior to its predecessor. As for data complexity,
the maximum-bias model only equals the attack described above, and the level of statistical dependence
among the related approximations means that we do not currently know what its data complexity in
the χ2 model would be.

5.4 PRESENT

Currently, the largest number of rounds of PRESENT attacked is 26 [13, 14]. This (slightly contro-
versial [39]) attack utilises a new form of multidimensional linear cryptanalysis that relies heavily on
the existence of multiple linear paths with the same bias.

We note that this paper’s formula for the data complexity is almost identical to Hermelin et al.’s
Theorem 1 [17], except that it incorporates the assumption that a ≈ b2, and replaces the value 4M
with 8M .

We have already criticised the original formula and the a ≈ b2 assumption; however the replacement
of 4M with 8M in the (denominator) of 3.1, resulting in

a ≈ (NC(p)− 4Φ−2(2PS − 1))2

8M
(5.1)

is a new development, which the author does not explain. Although this is referred to elsewhere
[39] as a typographical error; in emails the author has stated that he believes the 8M version to be
correct, and has introduced the change to bring the theoretical formula more closely into line with
empirical evidence for the behaviour of the attack.

Unfortunately, for the 1-bit input/output bitmasks of the S-boxes in the outer rounds of the
approximation, we have not been able to find any nonlinear approximations with sufficient capacity
and lack of dependence among the related approximations to improve on this attack, nor on its
(less controversial) predecessor [63]. Nonlinear approximations for the PRESENT S-box with higher
magnitude of bias than linear approximations do exist, but not for the bitmasks required to attach
them to the linear approximation involved in this attack.

Bitmask for linear function of input bits.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Max bias (NL approx.) 4 4 6 4 4 4 6 4 6 4 8 4 6 4 6

Best linear approx. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Table 28: PRESENT S-box. Maximum (absolute) bias found for cost function rewarding maximum
bias among relateds (3 bits in nonlinear component).

Bitmask for linear function of output bits.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Max bias (NL approx.) 4 4 6 4 6 4 4 4 6 4 6 4 6 6 6

Best linear approx. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Table 29: PRESENT S-box. Maximum (absolute) bias found for cost function rewarding maximum
bias among relateds (3 bits in nonlinear component).

5.5 Heys

Treating the four 4× 4 S-boxes per round of the Heys toy cipher as two 8× 8 S-boxes (each mapping
the concatenation of two 4-bit inputs to the concatenation of two 4-bit outputs), we tried to find out
if there existed nonlinear approximations to these conjoined boxes which could not be decomposed
into expressions of the form (nonlinear approximation for first box) ⊕ (nonlinear approximation for
second box), and which had nonzero bias despite the independence of the two 4× 4 S-boxes.

We did indeed find such approximations, some of which also had biases which could not have
resulted from applying the Piling-Up Lemma to two separate nonlinear approximations to the 4 × 4
boxes. For example, 1 + x1 + x3 + x5 + x1x2x3x4x5 = y2 + y3 + y4 + y5 + y8 had a bias of 68. If
this bias could occur from applying the Piling-Up Lemma to two separate approximations with biases

(a − 8)/16, (b − 8)/16, then 68/256 would be expressible as (ab + (16 − a)(16 − b) − 128)/256, and
there exists no pair of positive integers (a, b) such that this is possible.

6 Conclusions, and directions for future research

In this chapter, we have evolved nonlinear approximations for block cipher S-boxes with higher absolute
bias than the best-known linear approximations for said boxes. Prior to doing this, we have designed
new algorithms which would be able to use these new forms of approximation in attacks, and devised
the statistical frameworks allowing us to calculate the attack complexities, before designing the cost
functions with these facts in mind.

We have also built on existing work in evolving nonlinear approximations not merely by incorpo-
rating a more detailed knowledge of the problem domain, but by studying the various possible move
functions and by establishing the existence of a smooth search landscape for one type of move function
when evolving nonlinear approximations.

We have also incorporated the newly evolved approximations into attacks on DES and Serpent,
and although we have not improved on the performance of the best attack on DES, we have succeeded
in devising an attack on 11-round Serpent with better data complexity than any other known-plaintext
attack, and have also achieved the best time complexity of any attack so far on 11-round Serpent-256.

We now consider directions in which this research might proceed further.
Instead of trying to modify the approximations from existing linear attacks - with the resulting

increase in the number of active plaintext/ciphertext bits - we would like to develop new algorithms to
search for approximations which achieve a better bias/active-outer-round-S-box tradeoff. We would
also like to develop statistical frameworks for, and working prototypes of, differential-nonlinear attacks.

We mentioned earlier that we did not know how to combine multidimensional linear approxima-
tions and nonlinear approximations in the same attack. This may prove a promising research avenue,
as might attempts to move from what is basically a multiple-approximation attack using the multiple
“related” nonlinear approximations to a multidimensional nonlinear attack utilising all linear combina-
tions of the relateds, and indeed to explore further generalisations of multiple nonlinear cryptanalysis
to forms of multidimensional cryptanalysis.

Although it is not in general possible to link together nonlinear approximations to the inner
rounds of a cipher, for certain weak key classes it may be possible to do so in certain cases, leading to
increasingly powerful attacks for such keys. Search algorithms to find such approximations may also
prove useful in identifying weak key classes of this form.

We have already mentioned that use of the log-likelihood ratio statistic - or indeed approximations
thereof - to achieve attacks with even lower data complexity is impaired for approximations more than
a certain number of rounds in length by the linear hull effect. Collard et al.’s work [22] shows the
true distribution for the bias of a single linear approximation becoming increasingly key-dependent,
and diverging increasingly from the theoretical distribution calculated beforehand, as the number
of approximated rounds increases. Research into means by which the scale of the effect might be
estimated, and partial information about the theoretical distribution incorporated into a modified
LLR-like statistic could prove fruitful. Possibly, for individual attacks, nonlinear approximations to
inner rounds might be utilised to obtain information about the various key-dependent distributions.

There has also been research, as mentioned earlier [14, 63] into a variation of linear cryptanalysis
exploiting the linear hull effect [42, 31, 62]. Although we have not yet found a way to exploit nonlinear
approximations in the best-known use of this method, to whit the attack on PRESENT mentioned
previously, research into combining nonlinear approximations with linear hull cryptanalysis could prove
promising.

References

[1] R. Anderson, E. Biham, and L. Knudsen. Serpent: A Proposal for the Advanced Encryption
Standard. http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf.

[2] R. Anderson, E. Biham, L. Knudsen, and F. Stajano. Serpent optimised (bitslice) reference
implementation. 1998. C source code. Can be downloaded from http://www.cl.cam.ac.uk/

~rja14/Papers/serpent.tar.gz; is contained in the archive’s “floppy2” folder.

[3] R. Anderson, E. Biham, L. Knudsen, and F. Stajano. Serpent reference implementation. 1998.
C source code. Can be downloaded from http://www.cl.cam.ac.uk/~rja14/Papers/serpent.

tar.gz; is contained in the archive’s “floppy1” folder.

[4] T. Baignères, P. Junod, and S. Vaudenay. How far can we go beyond linear cryptanalysis? In
Pil Joong Lee, editor, Advances in Cryptology - Asiacrypt 2004, volume 3329 of Lecture Notes in
Computer Science, pages 432–450. IACR, Springer, December 2004.

[5] E. Biham. A fast new DES implementation in software. In E. Biham, editor, Proceedings of the
Fourth International Workshop on Fast Software Encryption (FSE 1997), volume 1267 of Lecture
Notes in Computer Science, pages 260–272. IACR, Springer, January 1997.

[6] E. Biham, O. Dunkelman, and N. Keller. Linear cryptanalysis of reduced round Serpent. In
M. Matsui, editor, Proceedings of the Eighth International Workshop on Fast Software Encryption
(FSE 2001), volume 2355 of Lecture Notes in Computer Science, pages 16–27. IACR, Springer,
April 2001.

[7] E. Biham, O. Dunkelman, and N. Keller. New results on boomerang and rectangle attacks.
In J. Daemen and V. Rijmen, editors, Proceedings of the Ninth International Workshop on Fast
Software Encryption (FSE 2002), volume 2365 of Lecture Notes in Computer Science, pages 1–16.
IACR, Springer, February 2002.

[8] E. Biham, O. Dunkelman, and N. Keller. Differential-linear cryptanalysis of Serpent. In T. Jo-
hansson, editor, Proceedings of the Tenth International Workshop on Fast Software Encryption
(FSE 2003), volume 2887 of Lecture Notes in Computer Science, pages 9–21. IACR, Springer,
February 2003.

[9] A. Biryukov, C. De Cannière, and M. Quisquater. On multiple linear approximations. In
M. Franklin, editor, Advances in Cryptology - Crypto 2004, volume 3152 of Lecture Notes in
Computer Science, pages 1–22. IACR, Springer, 2004.

[10] A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw, Y. Seurin,
and C. Vikkelsoe. PRESENT: An ultra-lightweight block cipher. In P. Paillier and I. Ver-
bauwhede, editors, Proceedings of the Ninth International Workshop on Cryptographic Hardware
and Embedded Systems (CHES 2007), volume 4727 of Lecture Notes in Computer Science, pages
450–466. IACR, Springer, September 2007.

[11] C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi, C. Jutla, S.M. Matyas Jr,
L. O’Connor, M. Peyravian, D. Safford, and N. Zunic. MARS - a candidate cipher for AES.
Technical report, IBM, September 1999. http://www.research.ibm.com/security/mars.pdf.

[12] C. Carlet. Boolean functions for cryptography and error-correcting codes. In Y. Crama and
P. Hammer, editors, Boolean Models and Methods in Mathematics, Computer Science, and
Engineering. Cambridge University Press, 2010. The chapter is downloadable from http:

//www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf.

[13] Joo Yeon Cho. Linear cryptanalysis of reduced-round PRESENT. Cryptology ePrint Archive,
Report 2009/397. 2009. http://eprint.iacr.org/2009/397.

http://www.cl.cam.ac.uk/~rja14/Papers/serpent.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/serpent.tar.gz
http://www.cl.cam.ac.uk/~rja14/Papers/serpent.tar.gz
http://www.cl.cam.ac.uk/~rja14/Papers/serpent.tar.gz
http://www.cl.cam.ac.uk/~rja14/Papers/serpent.tar.gz
http://www.research.ibm.com/security/mars.pdf
http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf
http://www.math.univ-paris13.fr/~carlet/chap-fcts-Bool-corr.pdf
http://eprint.iacr.org/2009/397

[14] Joo Yeon Cho. Linear cryptanalysis of reduced-round PRESENT. In J. Pieprzyk, editor, Proceed-
ings of the Cryptographers’ Track at the RSA Conference, 2010 (CT-RSA 2010), volume 5985 of
Lecture Notes in Computer Science, pages 302–317. Springer, March 2010.

[15] J.Y. Cho, M. Hermelin, and K. Nyberg. Multidimensional linear cryptanalysis of reduced round
Serpent. In Yi Mu, Willy Susilo, and Jennifer Seberry, editors, Proceedings of the Thirteenth
Australasian Conference on Information Security and Privacy (ACISP 2008), volume 5107 of
Lecture Notes in Computer Science, pages 203–215. Springer, July 2008.

[16] J.Y. Cho, M. Hermelin, and K. Nyberg. A new technique for multidimensional linear cryptanalysis
with applications on reduced round Serpent. In Pil Joong Lee and Jung Hee Cheon, editors,
Proceedings of the 11th International Conference on Information Security and Cryptology (ICISC
2008), volume 5461 of Lecture Notes in Computer Science, pages 383–398. Springer, December
2008.

[17] J.Y. Cho, M. Hermelin, and K. Nyberg. Multidimensional extension of Matsui’s algorithm 2.
In O. Dunkelman, editor, Proceedings of the Sixteenth International Workshop on Fast Software
Encryption (FSE 2009), volume 5665 of Lecture Notes in Computer Science, pages 209–227.
IACR, Springer, February 2009.

[18] J.Y. Cho, M. Hermelin, and K. Nyberg. Statistical tests for key recovery using multidimensional
extension of Matsui’s algorithm 1. In: Eurocrypt 2009 - poster session. April 2009. http:

//research.ics.tkk.fi/publications/mhermeli/dags-unif-alg1.pdf.

[19] J.A. Clark, J.C Hernández-Castro, and J.M.E. Tapiador. Private communication. C source code
used in “Non-linear Cryptanalysis Revisited: Heuristic Search for Approximations to S-Boxes”.

[20] J.A. Clark, J.C. Hernández-Castro, and J.M.E. Tapiador. Heuristic search for non-linear cryptan-
alytic approximations. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation
(CEC2007), pages 3561–3568. IEEE, September 2007. doi:10.1109/CEC.2007.4424934.

[21] J.A. Clark, J.C Hernández-Castro, and J.M.E. Tapiador. Non-linear cryptanalysis revisited:
Heuristic search for approximations to S-boxes. In S.D. Galbraith, editor, Proceedings of the 11th
IMA International Conference on Cryptography and Coding, volume 4887 of Lecture Notes in
Computer Science, pages 99–117. Springer, December 2007.

[22] B. Collard and F.-X. Standaert. Experimenting linear cryptanalysis. 2011. http://perso.

uclouvain.be/fstandae/PUBLIS/90.pdf.

[23] B. Collard, F.-X. Standaert, and J.-J. Quisquater. Improved and multiple linear cryptanalysis
of reduced round Serpent. In Dingyi Pei, Moti Yung, Dongdai Lin, and Chuankun Wu, editors,
Proceedings of the 3rd SKLOIS Conference on Information Security and Cryptology (Inscrypt
2007), volume 4990 of Lecture Notes in Computer Science, pages 383–398. Springer, August 31 -
September 5 2007.

[24] B. Collard, F.-X. Standaert, and J.-J. Quisquater. Improved and multiple linear cryptanalysis
of reduced round Serpent - description of the linear approximations. 2007. http://citeseerx.

ist.psu.edu/viewdoc/download?doi=10.1.1.95.522&rep=rep1&type=pdf.

[25] B. Collard, F.-X. Standaert, and J.-J. Quisquater. Improving the time complexity of Matsui’s
linear cryptanalysis. In Kil-Hyun Nam and Gwangsoo Rhee, editors, Proceedings of the 10th
International Conference on Information Security and Cryptology (ICISC 2007), volume 4817 of
Lecture Notes in Computer Science, pages 77–88. Springer, November 2007.

[26] N.T. Courtois. Feistel schemes and bi-linear cryptanalysis (extended abstract). In M. Franklin,
editor, Advances in Cryptology - Crypto 2004, volume 3152 of Lecture Notes in Computer Science,
pages 23–40. IACR, Springer, August 2004.

http://research.ics.tkk.fi/publications/mhermeli/dags-unif-alg1.pdf
http://research.ics.tkk.fi/publications/mhermeli/dags-unif-alg1.pdf
http://perso.uclouvain.be/fstandae/PUBLIS/90.pdf
http://perso.uclouvain.be/fstandae/PUBLIS/90.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.522&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.522&rep=rep1&type=pdf

[27] N.T. Courtois. Feistel schemes and bi-linear cryptanalysis. Cryptology ePrint Archive, Report
2005/251. August 2005. http://eprint.iacr.org/2005/251.

[28] N.T. Courtois. CTC2 and fast algebraic attacks on block ciphers revisited. Cryptology ePrint
Archive, Report 2007/152. May 2007. http://eprint.iacr.org/2007/152.

[29] N.T. Courtois, D. Hulme, and T. Mourouzis. Solving circuit optimisation problems in cryp-
tography and cryptanalysis. Cryptology ePrint Archive, Report 2011/475. September 2011.
http://eprint.iacr.org/2011/475.

[30] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley-Interscience, second
edition, 2006.

[31] Zhenli Dai, Meiqin Wang, and Yue Sun. Effect of the dependent paths in linear hull. Cryptology
ePrint Archive, Report 2010/325. 2010. http://eprint.iacr.org/2010/325.

[32] H.A. David. Order Statistics. Wiley, second edition, 1981.

[33] O. Dunkelman. Private communication.

[34] O. Dunkelman, S. Indesteege, and N. Keller. A differential-linear attack on 12-round Serpent.
In D.R. Chowdhury, V. Rijmen, and A. Das, editors, Progress in Cryptology - Indocrypt 2008,
volume 5365 of Lecture Notes in Computer Science, pages 308–321. Springer, December 2008.

[35] J. Fuller and W. Millan. On linear redundancy in the AES S-box. Cryptology ePrint Archive,
Report 2002/111. August 2002. http://eprint.iacr.org/2008/385. Full version published as
“Linear Redundancy in S-Boxes” in proceedings of FSE 2008 (LNCS 2887).

[36] C. Harpes, G.G. Kramer, and J.L. Massey. A generalization of linear cryptanalysis and the
applicability of Matsui’s piling-up lemma. In L.C. Guillou and J-J. Quisqater, editors, Advances
in Cryptology - Eurocrypt ’95, volume 921 of Lecture Notes in Computer Science, pages 24–38.
IACR, Springer, 1995.

[37] M. Hermelin. Multidimensional Linear Cryptanalysis. PhD thesis, Aalto University, June 2010.
https://aaltodoc.aalto.fi/handle/123456789/4802.

[38] M. Hermelin and K. Nyberg. Dependent linear approximations: The algorithm of Biryukov and
others revisited. In J. Pieprzyk, editor, Proceedings of the Cryptographers’ Track at the RSA
Conference, 2010 (CT-RSA 2010), volume 5985 of Lecture Notes in Computer Science, pages
318–333. Springer, March 2010.

[39] M. Hermelin and K. Nyberg. Linear cryptanalysis using multiple linear approximations. Cryp-
tology ePrint Archive, Report 2011/093. February 2011. http://eprint.iacr.org/2011/093.

[40] H.M. Heys. A tutorial on linear and differential cryptanalysis. Technical Report CORR 2001-17,
University of Waterloo, March 2001. Available online, with errata, at http://www.engr.mun.

ca/~howard/Research/Papers/index.html.

[41] B.S. Kaliski Jr. and M.J.B. Robshaw. Linear cryptanalysis using multiple approximations. In
Y.G. Desmedt, editor, Advances in Cryptology - Crypto ’94, volume 839 of Lecture Notes in
Computer Science, pages 26–39. IACR, Springer, 1994.

[42] J. Nakahara Jr., P. Sepehrdad, M. Wang, and B. Zhang. Linear (hull) and algebraic cryptanalysis
of the block cipher PRESENT. In J.A. Garay, A. Miyaji, and A. Otsuka, editors, Proceedings
of the 8th International Conference on Cryptology and Network Security (CANS 2009), volume
5888 of Lecture Notes in Computer Science, pages 58–75. Springer, December 2009.

http://eprint.iacr.org/2005/251
http://eprint.iacr.org/2007/152
http://eprint.iacr.org/2011/475
http://eprint.iacr.org/2010/325
http://eprint.iacr.org/2008/385
https://aaltodoc.aalto.fi/handle/123456789/4802
http://eprint.iacr.org/2011/093
http://www.engr.mun.ca/~howard/Research/Papers/index.html
http://www.engr.mun.ca/~howard/Research/Papers/index.html

[43] P. Junod. On the complexity of Matsui’s attack. In S. Vaudenay and A.M. Youssef, editors,
Proceedings of the 8th Annual International Workshop on Selected Areas in Cryptography (SAC
2001), volume 2259 of Lecture Notes in Computer Science, pages 199–211. Springer, August 2001.

[44] S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies. Journal of Statistical
Physics, 34(5-6):975–986, March 1984.

[45] L.R. Knudsen. October 2008. Private communication.

[46] L.R. Knudsen and M.J.B. Robshaw. Non-linear approximations in linear cryptanalysis. In
U. Maurer, editor, Advances in Cryptology - Eurocrypt ’96, volume 1070 of Lecture Notes in
Computer Science, pages 224–236. IACR, Springer, 1996.

[47] H.O. Kunz. On the equivalence between one-dimensional discrete Walsh-Hadamard and mul-
tidimensional discrete Fourier transforms. IEEE Transactions on Computers, C-28(3):267–268,
March 1979.

[48] M. Kwan. Reducing the gate count of bitslice DES. Cryptology ePrint Archive, Report 2000/051.
October 2000. http://eprint.iacr.org/2000/051.

[49] M. Kwan. Post-postscript. Kwan’s homepage, http://www.darkside.com.au/bitslice/. June
2011.

[50] G. Leander. Small scale variants of the block cipher PRESENT. Cryptology ePrint Archive,
Report 2010/143. March 2010. http://eprint.iacr.org/2010/143.

[51] G. Leander. On linear hulls, statistical saturation attacks, PRESENT and a cryptanalysis of
PUFFIN. In K.G. Paterson, editor, Advances in Cryptology - Eurocrypt 2011, volume 6632 of
Lecture Notes in Computer Science, pages 303–322. IACR, Springer, May 2011.

[52] M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth, editor, Advances in
Cryptology - Eurocrypt ’93, volume 765 of Lecture Notes in Computer Science, pages 386–397.
IACR, Springer, 1993.

[53] M. Matsui. The first experimental cryptanalysis of the Data Encryption Standard. In Y.G.
Desmedt, editor, Advances in Cryptology - Crypto ’94, volume 839 of Lecture Notes in Computer
Science, pages 1–11. IACR, Springer, 1994.

[54] J. Monnerat and S. Vaudenay. Generic homomorphic undeniable signatures - erratum. February
2005. http://infoscience.epfl.ch/record/99428/files/MV04d_note.pdf.

[55] S. Murphy. The independence of linear approximations in symmetric cryptanalysis. IEEE Trans-
actions on Information Theory, 52(12):5510–5518, December 2006. http://www.isg.rhul.ac.

uk/~sean/Mult_lin_chi_IEEE_FinalA.pdf.

[56] S. Murphy. The effectiveness of the linear hull effect. Technical Report RHUL-MA-2009-19, Royal
Holloway, University of London, October 2009. http://www.isg.rhul.ac.uk/~sean/Linear_

Hull_JMC-Rev2-llncs.pdf.

[57] S. Murphy. Overestimates for the gain of multiple linear approximations. Technical Report
RHUL-MA-2009-21, Royal Holloway, University of London, October 2009. http://www.isg.

rhul.ac.uk/~sean/MLA_Gain.pdf.

[58] S. Murphy. Overestimates for the gain of multiple linear approximations in symmetric cryptology.
IEEE Transactions on Information Theory, 57(7):4794–4797, July 2011.

[59] National Institute for Science and Technology (NIST). Data Encryption Standard (DES). October
1999. http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

http://eprint.iacr.org/2000/051
http://www.darkside.com.au/bitslice/
http://eprint.iacr.org/2010/143
http://infoscience.epfl.ch/record/99428/files/MV04d_note.pdf
http://www.isg.rhul.ac.uk/~sean/Mult_lin_chi_IEEE_FinalA.pdf
http://www.isg.rhul.ac.uk/~sean/Mult_lin_chi_IEEE_FinalA.pdf
http://www.isg.rhul.ac.uk/~sean/Linear_Hull_JMC-Rev2-llncs.pdf
http://www.isg.rhul.ac.uk/~sean/Linear_Hull_JMC-Rev2-llncs.pdf
http://www.isg.rhul.ac.uk/~sean/MLA_Gain.pdf
http://www.isg.rhul.ac.uk/~sean/MLA_Gain.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

[60] Phuong Ha Nguyen, Hongjun Wu, and Huaxiong Wang. Improving the algorithm 2 in multi-
dimensional linear cryptanalysis. In Udaya Parampalli and Philip Hawkes, editors, Proceedings
of the Sixteenth Australasian Conference on Information Security and Privacy (ACISP 2011),
volume 6812 of Lecture Notes in Computer Science, pages 61–74. Springer, July 2011.

[61] K. Nyberg. Multidimensional extension of Matsui’s algorithm 2 - a revision of subsection 5.1.
Private email communication, 2011.

[62] K. Nyberg and A. Röck. Exploiting linear hull in Matsui’s algorithm 1 (extended version).
Cryptology ePrint Archive, Report 2011/285. May 2011. http://eprint.iacr.org/2011/285.

[63] K. Ohkuma. Weak keys of reduced-round PRESENT for linear cryptanalysis. In M.J. Jacobson
Jr, V. Rijmen, and R. Safavi-Naini, editors, Proceedings of the 16th Annual International Work-
shop on Selected Areas in Cryptography (SAC 2009), volume 5867 of Lecture Notes in Computer
Science, pages 249–265. Springer, August 2009.

[64] D.A. Osvik. Speeding up Serpent. In Proceedings of the 3rd Advanced Encryption Standard
Candidate Conference (AES 2000), April 2000.

[65] B. Preneel, B. Van Rompay, S. B. Ors, A. Biryukov, L. Granboulan, E. Dottax, M. Dichtl,
M. Schafheutle, P. Serf, S. Pyka, E. Biham, E. Barkan, O. Dunkelman, J. Stolin, M. Ciet, J-J.
Quisquater, F. Sica, H. Raddum, and M. Parker. Performance of optimized implementations of
the NESSIE primitives (version 2.0). February 2003. http://www.cosic.esat.kuleuven.be/

nessie/deliverables/D21-v2.pdf.

[66] A.A. Selçuk. On probability of success in linear and differential cryptanalysis. Journal of Cryp-
tology, 21(1):131–147, January 2008.

Appendices

A Errors in the description of the Dunkelman/Keller approximation

In the original description of Biham et al.’s linear approximation [6], on page 20, after S6 is applied
the only active bit in the state is bit 30. In the descriptions given in later papers [8, 34], after the
application of S6, bit 28 is shown as active instead of bit 30. In private email correspondence, one of
the authors informed us that bit 28 was correct.

The linear diffusion layer is then applied, after which the active bits according to the diagram
are 80, 101 and 103. However, by examining the description of Serpent’s diffusion layer in its AES
proposal [1], and the C reference implementation [3], we see that the xor of diffusion layer output bits
{80, 101, 103} is the xor of input bits {4, 22, 35, 44, 46, 57, 62, 75, 86, 96, 97} - and is therefore
unaffected by either bit 28 or bit 30. In the same correspondence mentioned above, this was revealed
to be another typographical error - the active bits at this point should in fact have been 81, 83 and
100.

B The simulated annealing algorithm

Simulated annealing is a local-search based algorithm, akin in many ways to a more complex form of
hill-climbing. It is inspired by a technique used in metallurgy to eliminate defects in the crystalline
structures in samples of metal.

In simulated annealing, we are attempting to create an entity of some particular type - in this
paper, an object of the class nonlinear approximation. The “search space” is the set of all such

http://eprint.iacr.org/2011/285
http://www.cosic.esat.kuleuven.be/nessie/deliverables/D21-v2.pdf
http://www.cosic.esat.kuleuven.be/nessie/deliverables/D21-v2.pdf

entities, and any member of this set is referred to as a “candidate solution”. It must also be possible
to define:

• A “cost function”, which takes a candidate solution as input and outputs a scalar value. The
better the candidate solution is, according to the criteria which the user wishes to optimise, the
lower this value should be.

• A “move function”, which takes a candidate solution and makes some small change to it before
outputting the result. Each such “move” should have only a small effect on the cost, preferably
with a known upper bound. The set of all solution candidates which can be obtained by making
one move from the current candidate C is referred to as the “1-move neighbourhood” of C.

The smaller the effect of the move function on the cost, the “smoother” we refer to the search
space - or “search landscape” - as being.

At the start of the algorithm, some initial candidate solution, S0, usually chosen at random, is
input to the SA algorithm, along with the following parameters:

• The cost function C.

• The initial value T0 for the “temperature”. The higher the temperature in the current iteration,
the more likely the search algorithm is to accept a move which results in a candidate solution with
higher cost than the current candidate (that is, to store said candidate solution as the “current
candidate”). The temperature drops over time, causing the algorithm to accept fewer non-
improving moves and hence to shift away from exploration and towards optimisation. Towards
the end of the search, it is extremely rare for the algorithm to accept a non-improving move,
and its behaviour is very close to that of a hill-climbing algorithm.

• In choosing the value of T0, various sources state that it should be chosen so that a particular
proportion of moves are accepted at temperature T0. There is very little information or advice
available as to what this proportion should be. In one of the earliest papers on simulated
annealing [44] it is stated that any temperature leading to an initial acceptance rate of 80% or
more will do; however our initial experiments indicated that this was far too high for most of the
experiments in this thesis. We usually settled on an initial acceptance rate of 0.5 or 0.6 instead
of 0.8.

Having chosen the initial acceptance rate, the experimenter executes the annealing algorithm
with various T0 until a temperature is found that achieves a fraction close enough to this. We
started with the temperature at 0.1, and repeatedly ran the algorithm, doubled the temperature,
and re-ran the algorithm until an acceptance rate at least as high as that specified was obtained.
Where Ta was the temperature at which this had been achieved, and Tb = Ta/2, we then used
a binary-search-like algorithm to obtain a temperature between Ta and Tb that would result in
an acceptance rate ≈ 50%.

• A value α; the “cooling factor”, determining how far the temperature decreases at each iteration
of the algorithm.

• An integer value: MAX INNER LOOPS, determining the number of moves that the local
search algorithm can make at each temperature.

• The stopping criterion must also be specified. We used a MAX OUTER LOOPS value, indi-
cating how many times the algorithm was to be allowed to reduce the temperature and continue
searching before it stopped.

• We also specified a MAX FROZEN OUTER LOOPS parameter. If the algorithm had, at any
stage, executed this many outer loops without accepting a single move, it would be considered
extremely unlikely to do anything other than remain completely stationary from then on, and
would be instructed to terminate early.

Algorithm 4 Pseudocode for simulated annealing algorithm

S ← S0

bestsol← S0

T ← T0

ZERO ACCEPT LOOPS ← 0
for x← 0,MAX OUTER LOOPS − 1 do

ACCEPTS IN THIS LOOP ← false
for y ← 0,MAX INNER LOOPS − 1 do

Choose some Sn in the 1-move neighbourhood of S.
cost diff ← C(Sn)− C(S)
if cost diff < 0 then

S ← Sn
ACCEPTS IN THIS LOOP ← true
if C(Sn) < C(bestsol) then

bestsol← Sn
end if

else
u← Rnd(0, 1)
if u < exp(−cost diff/T) then

S ← Sn
ACCEPTS IN THIS LOOP ← true

end if
end if

end for
if ACCEPTS IN THIS LOOP = false then

ZERO ACCEPT LOOPS ← ZERO ACCEPT LOOPS + 1
if ZERO ACCEPT LOOPS = MAX FROZEN OUTER LOOPS then

. Algorithm terminates early.
return bestsol

end if
end if
T ← T × α

end for
return bestsol

	Introduction.
	Linear cryptanalysis - the three main phases of an Algorithm 2 attack.
	The improved method for the analysis phase, due to Collard, Standaert and Quisquater.
	Generalising the new method to the Feistel structure - an example.

	How nonlinear approximations affect the attack
	How unbalanced nonlinear components in the approximation affect the attack.
	How the related approximations affect the attack.

	New statistical frameworks and cryptanalytic techniques.
	Adapting the new analysis phase to nonlinear cryptanalysis of substitution-permutation networks.
	The theoretical complexity of the new attack.
	Theoretical complexity with the chi-squared statistic.
	Theoretical complexity with the maximum-bias model.
	Theoretical complexity with the log-likelihood ratio.
	Using the LLR without key ranking.
	Time complexity.
	Taylor series approximation.
	Approximation using the convolution method.

	When the cipher is not a substitution-permutation network.

	The use of simulated annealing to evolve nonlinear approximations.
	Experiments on various ciphers, and application to their cryptanalyses.
	AES
	Serpent.
	Using nonlinear attacks to reduce the data complexity of attacking 11-round Serpent-192 and Serpent-256.
	Improving the capacity of the highest-bias approximation of nine rounds of Serpent.

	DES
	The approximation on bits 1, 2, 5, 6
	The approximations on bits 1, 2, 4, 5, 6

	PRESENT
	Heys

	Conclusions, and directions for future research
	Errors in the description of the Dunkelman/Keller approximation
	The simulated annealing algorithm

