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Abstract. SAT solvers are being used more and more in Cryptanalysis.
Their e�ciency varies depending on the structure of the algorithm they
are applied to. However, when it comes to integer factorization, or more
specially the RSA problem, SAT solvers prove to be at least ine�cient.
The running times are too long to be compared with any well known
integer factorization algorithm, even when it comes to small RSA moduli
numbers.

The recent work on cold boot attacks has sparkled again the interest
on partial key exposure attacks and RSA key reconstruction. In this
work, contrary to the search tree or lattice-based approaches that most
of these works use, SAT solvers are used. The focus is on the study of
two scenarios, one where there is disclosure of random bits of p and q
and one for the case where the public exponent e is equal to three. In
both cases, we provide a more e�cient modeling of RSA as an instance
of a satis�ability problem, and manage to reconstruct the private key,
given a part of the key, even for public keys of 1024 bits in few seconds.

Keywords: SAT solvers, RSA, partial key exposure, factoring, public-key cryp-
tography

1 Introduction

1.1 Background

The past decades, cryptanalysis has followed the path of Cryptography, evolving
from art to science. Its scope is to analyze cryptographic primitives, allowing the
cryptanalyst to:

� �nd weaknesses that expose the key or part of it,

� expose part of the encrypted content,

� �nd relations to other content,

� forge authenticated content.



Obviously, its history starts more over the same period with cryptography, how-
ever, its methods di�er, as the attacker has to try several ways to �nd a �good�
entry point, that will allow him to �break� the cipher. Therefore, we have an
endless loop, with the introduction of advanced encryption algorithms, for which
more sophisticated attacks are designed and so on.

The satis�ability problem is in the core of Computer Science, as there are
links with very basic problems in Algorithms and Complexity Theory. It is quite
easy to set the problem: �For a given logic formula C, decide whether C is
satis�able�. This translates into �nding values (True/False) the logical variables
for which C evaluates to True, or prove that there is no such combination. The
problem, contrary to its statement, is one of the hardest to solve, as it was the
�rst one to be proved as NP-complete [4, 24].

SAT solvers are programs that try to solve SAT problems, usually given in
their conjunctive normal form (CNF). One of the �rst steps towards their e�cient
implementations was the introduction of the DPLL algorithm [7]. Afterwards,
the introduction of SAT planning [38], WalkSAT algorithm [38], phase transition
[15], as well the Discrete Lagrangian Method (DLM) [43] gave the necessary
theoretical background to develop the modern SAT solvers, which have very
good performance.

Therefore, SAT solvers started having many applications in a wide range
of areas like model checking, automated theorem proving, software veri�cation,
planning in AI, drug design and testing, test pattern generation, scheduling
and protocol design. Recently, there is a trend towards using SAT solvers in
cryptanalysis, mainly in block ciphers and hash functions with mixed results,
however, the attempt seems quite promising as it gives a new tool to study
the underlying structures of cryptographic primitives, possibly revealing several
unknown vulnerabilities.

1.2 Attack scenario

Most of the cryptographic primitives that are used in modern applications, have
been proved immune to many theoretical attacks. However, the attacker in many
attack scenarios, not only knows which cryptographic primitives are being used,
but has access to the implementation as well, whether this is a device or the
code used, giving him extra weapons to its arsenal.

Let's assume that Alice is encrypting her partition, in order to further protect
her data in an event of a physical security breach. However, for as long as her
PC is working, the partition is mounted and the key is loaded in RAM. The
motivation behind the cold boot attacks in [17] was to recover this key from
RAM. When the computer is shutting down, RAM is not deleted, it is corrupted.
Gradually, depending on the manufacturer and the medium, either 0s are turning
to 1s or 1s are turning to 0s. If the attacker freezes the RAM, he is able to delay
this corruption. Therefore, after rebooting the machine, the memory dump will
contain a corrupted version of its previous state. The quicker and colder RAM
is, the less corrupted this version will be. Thus, the attacker can �nd many bits
of the used key.



In other attack scenarios, the attacker can guess parts of the bits of the
decryption key judging from the power consumption of the processor (power
analysis) [26], from the time it takes to perform encryption/decryption (time
analysis) [3]. Of course, there are even more powerful attacks, like the direct
memory access from FireWire devices that are plugged to exploit the features
of this port.

Under these assumptions, it is realistic to assume that an attacker may have
access to part of the decryption key. Therefore, it is very important that the
following questions must be addressed to:

Question 1. How much information about the decryption key is leaked by a
speci�c implementation?

Question 2. How much information about the decryption key the attacker has
to know for a speci�c algorithm, in order to break it in reasonable time?

Question 3. Can we construct algorithms that are immune to such attacks? The
idea here is that the attacker even if he as access to part of the decryption key,
has to resolve to brute force attack for the rest of the bits.

This work focuses on the second question. More precisely, we address to the
following:

Question 4. Given random bits of the private key d and p, q of RSA can we
e�ciently recover the private key?

1.3 Contributions of this paper

The main contributions of this work can be summarized as follows:

� A new, more e�cient CNF model for RSA.
Currently, only two CNF converters exist for integer factorization. Both of
them do not manage to provide any applicable results/solid solution to inte-
ger factorization. The provided modeling might focus on a speci�c instance
of RSA, however, it outperforms current implementations, using simple re-
placements, which decrease drastically the complexity of the problem.

� A logical cryptanalysis of RSA with partial key exposure.
The �rst illustrated attack in this area.

� A novel powerful use of SAT solvers in cryptanalysis.
So far, there are no signi�cant results in the use of SAT solvers in public key
cryptanalysis.

1.4 Plan of the paper

In this context, the next section provides the necessary background for the ap-
plications of SAT solvers in cryptanalysis, RSA partial key exposure attacks,
cold boot attacks and RSA key reconstruction. In the third section we provide



a more e�cient modeling of RSA for SAT solvers, which adds several new equa-
tions, that can help solving the problem more e�ciently, when part of the private
key is known. The next section focuses on experimental results. It is illustrated
that SAT solvers are a powerful tool for public key cryptanalysis, not yet ade-
quately explored. Even if the problem is very hard, containing several thousands
of binary variables and equations, partial exposure of the private key can lead
to full key exposure with the use of SAT solvers, in reasonable time. Finally, we
conclude discussing the results, the contributions and the drawbacks of this new
attack, as well as some remarks and ideas for future work.

2 Related work

2.1 SAT solvers in cryptanalysis

Massacci was the �rst one to talk about logical cryptanalysis in [27]. His next
step was to provide the logical model of DES and attack it with a SAT solver
[28]. In his point of view, we can describe all the encryption algorithms as logical
problems, which can be converted to the according system of CNFs. The created
system will then be passed to a SAT solver, which will try to solve it. However,
the generated SAT problem in the case of DES was very hard to be solved,
therefore, SAT solvers could not break it. Nonetheless, several interesting results
on simpli�ed versions of DES are given.

In the following years, there was an increasing interest in SAT problems, as
it managed to solve many industrial problems. This resulted to the development
of several very good SAT solvers like: Cha�, Glucose, Minisat, Picosat , SAT4J,
SATzilla to name a few implementations.

This development, showed the potential use of SAT solvers as a tool for crypt-
analysis, as at that moment, not only the tools where more e�cient, but several
attempts were made to make SAT solvers more cryptanalytic-friendly [41]. Soon,
several tools were developed using SAT solvers to cryptanalyze cryptographic
primitives like, CryptoMiniSat [39], a SAT solver for cryptographic problems, or
Grain of SALT [40], a toolkit to analyze stream ciphers both developed by M.
Soos.

Having these tools, soon several cryptanalytic attacks using SAT solvers
emerged having di�erent impact on each algorithm they were applied, like [10,
16, 29, 31, 11, 20, 8, 6, 30, 21].

SAT solvers in cryptanalysis, in once sense, start where Gröbner bases stop.
When a non-linear system of equations is too di�cult to be solved algebraically,
SAT solvers come to the rescue. Hence, if SAT solvers o�er a very quick attack,
there must be an underlying problem in the algebraic system that the cipher
creates, which Gröbner bases cannot trace. After all, SAT solvers, are a �smart�
brute force attack, they evaluate all the possible combinations of values of the
variables, subject to several constraints, trying at each step to eliminate variables
and possible combinations of variable values.

The only references to our knowledge on results regarding applications of SAT
solvers to asymmetric ciphers are [14, 9] and [13]. In the �rst case, the focus is on



forging RSA signature, by proper encoding of the modular root �nding as a SAT
problem. In the second case the researchers try to approximate the number of
CNFs that are generated by the conversion of an integer factorization problem to
its analogous SAT problem. In the last case, the authors reformulate the CNF,
reducing the SAT problem to a minimization problem. The resulting problem
can have a more elegant representation, with fewer variables and disjunctions.
Moreover, for the case of 512 bit integer factorization, the authors can determine
bits in speci�c positions with very high probability.

2.2 Partial key exposure and cold boot attacks

Quite ironically, one of the �rst partial key exposures attacks in RSA was made
two of its creators, namely Rivest and Shamir, showing that a RSA moduli
number n can be factored in polynomial time, given 2/3 of the LSBs of one of
its primes [35].

In 1996 Coppersmith presented one of the most signi�cant theorems in alge-
braic cryptanalysis, which is named after him, proving that with proper use of
the LLL algorithm, one can recover in polynomial time, the roots of a polyno-
mial modulo n, even when the factorization of n is not known [5]. One of the
corollaries of this theorem is that if n is a RSA moduli, then it can be factored
in polynomial time, given 1/2 of the MSBs of one of its primes.

Two years later, using Coppersmith's theorem, it was proved that if n is a
RSA moduli, then it can be factored in polynomial time, given 1/2 of the LSBs
of one of its primes, or logn

4 bits of d [2]. In the same work, the researchers
provided many results on how many bits of d need to be known to factor the
RSA modulus n, when e <

√
n. These results were later improved in 2003, by

Blömer and May for e < N0.725 in [1].
In [12], the authors showed that if d has N bits and e has αN bits, if 0 <

δ < 1
2 < α < 1, then given (1− δ)N MSBs of d, n can be factored in polynomial

time if:

−δ ≤ 1

3
+

1

3
α− 1

3

√
4α2 + 2α− 2− ε

In 2008, the researchers focused on cold boot attacks, showing that several
disk encryption systems as BitLocker, FileVault, dm-crypt, and TrueCrypt, store
information in RAM that can be restored with no special hardware, even after
shutdown. The stored keys in the RAM, even if they are partially corrupted, can
be used in order to recover the original key [17].

2.3 RSA key reconstruction

Following the work of Halderman et al. in [17], Heninger and Shacham tried to
use the cold boot attack scenario for RSA, therefore they tried to reconstruct
the private RSA key, based on the partial knowledge of the key they had from
the attack. Their algorithm creates a search tree, based on binary equations of
the key bits in [19], the authors showed that it is possible to recover the RSA
private key given a random fraction of its bits. More precisely, to construct the



search tree, we regard that we have a candidate solution (p′, q′, d′, d′p, d
′
q). We

de�ne as slice(i) of the solution the bit values of these variables at position i.
Then we check if the following four constraints are met:

p[i] + q[i] ≡ (N − p′q′)[i] mod 2

d[i+ τ(k)] + p[i] + q[i] ≡ (k(N + 1) + 1− k(p′ + q′)− ed′)[i+ τ(k)] mod 2

dp[i+ τ(kp)] + p[i] ≡ (kp(p′ − 1) + 1− ed′p)[i+ τ(kp)] mod 2

dq[i+ τ(kq)] + q[i] ≡ (kq(q′ − 1) + 1− ed′q)[i+ τ(kq)] mod 2

where τ(x) is the exponent of the largest power of 2 that divides x. It is obvious
that at each step we have at most 2 possible solutions. However, given the known
bit values, many candidate solutions are discarded. In their work the researchers
prove that this algorithm can recover e�ciently the private key in time O(n2)
with success rate 1− 1/n2 when a random fraction of:

� 27% of the bits of p, q, d, dp, and dq,
� 42% of the bits of p, q, and d,
� 57% of the bits of p and q,

is known.
In another approach of the same scenario, [18] studied the reconstruction of

the private key when all the bits are known, with some probability of error. The
authors propose going the �big bite� approach and not small bites at each step.
This means that they set a parameter t, so that they create 2t nodes at each
�bite�, introducing 5t new bits at each variable, from slice[i] to slice[i + t − 1].
In order to pick prune equations, they introduce a parameter C, so that the
solutions that pass have Hamming distance at most C with the noisy version of
the key.

Improving the results of [19] in [25], the researchers use lattices, given only
knowledge of random bits in the LSB halves of the primes, or blocks of bits in
the MSB halves of the primes.

Sarkar tried to reconstruct the RSA private key when there is a pattern in
the unknown corrupted version of d, so most of d is considered known and some
contiguous blocks are unknown [37]. The complexity of the proposed algorithm
is polynomial in the length of the key, but exponential in the number of unknown
blocks of the key.

In [36], the researchers reconstruct the private key using partial information
with error that they have for the MSBs of the secret parameters and going down
to the �rst bits.

Recently, two independent works [32] and [22] use a code theoretic approach
to recover the private key of RSA, given a �noisy� version of the key. This means
that the attacker has access to the private key, but not all of the bits are correct,
some of them contain errors. However, in Patterson et al, the authors not only
deal with �noisy� keys, but with with erasures as well, covering a wide range
of attack scenarios. More interestingly, they answer a very important questio:



�What is the least amount of information needed to recover the private key?�.
For example, in the case of (p, q, d, dp, dq), it is proved that the lowest bound is
20% of the bits. The core idea of their algorithm is to use the maximum log-
likelihood criterion instead of the Hamming distance that is used in Henecka et
al. algorithm. Following the Henecka et al. algorithm, the authors lift a solution
up to a tree ofM2t. The quantity that is maximized at each stage is log Pr(r|si),
where si is the candidate solution and the L higher values are kept.

For the problem that is going to be studied in this work, the researchers
in [32], manage to recover the key, whenever they are given access to 33% of
random bits of p, q and d, or 50% of random bits of p and q, with success rate
34% and 69% respectively. It should be highlighted tha this attack addresses to
the �full cold boot attack� scenarios, as apart from erasures, bit �ips may occur,
as reported in [17] with rate ranging from 0.05% to 0.1%. Obviously these bit
�ips can cripple most of the aforementioned attacks.

3 Modeling RSA for SAT solvers

In many partial key exposure attacks of RSA, the main tools that are being used
are lattice based. They mainly focus on trying to formulate modular equations
that have relatively small solutions, so that Coppersmith univariate or bivariate
theorem can be applied. The motivation for this work was that this way some
information that is provided could be �lost�, in the sense of not being used.
However, the bits of n are related to the bits of p and q, as n is their product.
Translating this fact to mathematical formulas will give us a very hard system of
equations, that cannot be solved algebraicaly for RSA numbers of the length of
1024 bits that are used in applications. But what happens if we know the values
of some of the variables? How much is this system simpli�ed?

The questions above are the core of this work. So, to launch the attack �rstly,
we will provide the system of equations linking the bits of the private with the
bits of the public key of RSA. Then we shall replace the parts that are known
to us and try to solve the problem. Since we are working with bits, so the values
are 0 and 1, we may formulate the problem as a satis�ability problem and use
SAT solvers to recover the bit keys.

Even though integer factorization is a subject widely studied, there are few
studies linking it with SAT solvers, the general impression is because it is tested
and has poor performance, just like Genetic Algorithms. In both cases, a brute
force approach is adopted, trying to cover the key space with �random walks�.
Therefore, they are expected to �nd solutions in around

√
n steps.

Currently, there are two implementations which convert the problem of in-
teger factorization to its SAT instance, one by Purdom and Sabry, written in
Haskel [34] and one by Yuen and Bebel, written in Python [45]. For our experi-
ments, we based our attacks on the output of the latter. In both implementations,
the approach is quite straight forward, take two numbers, p and q in their bi-
nary representation and calculate their product according to a multiplier, which
is based on full adders and half adders. The result is a representation of each



bit of the product with binary operations, that can be easily transformed to its
respective system of CNFs.

For general integer factorization problems this approach is very correct, how-
ever, when addressing to RSA there are several facts that can simplify our system
of CNFs. In the aforementioned implementations the approach was that if n is
N bits, then p can have at most N−1 bits (n is even) and q can have dN/2e bits.
Since in the RSA case p and q are of the same length, the upper N − 1− dN/2e
bits are set to zero, decreasing signi�cantly the number of unknown variables.
Moreover, since both p and q are odd, their last bits are 1, decreasing the number
of variables by 2.

In ToughSAT implementation [45] that was used in our tests the conversion
of the multiplication to CNF is very straight forward. If we denote p1, p2, ..., pk
and q1, q2, ..., qk the bits of the two numbers p and q that we want to multiply,
as they have the same bit length, then we calculate the products pi ∗ qj and
form the temporary products piq1, piq2, ..., piqk and sum them accordingly. For
the summary of two integers we use half and full adders, keeping the carries of
each stage separately at new variables. This multiplication is converted to a bit
manipulation problem. Since the bits of the p and q, the carries and the partial
products are kept in separate variables, on which bit manipulation operations
are performed, CNF conversion can be achieved e�ciently.

Since in most implementations of RSA, the value of e is standardized taking
the values of 3, 17 and 216 + 1, we focused on the most easy case, of e = 3.
The reason for this selection is that in this approach we can achieve further
simpli�cation. From ed ≡ 1 mod φ(n) we have that:

3d ≡ 1 mod φ(n)

3d = 1 + kφ(n)

but we have that 0 < k < e = 3. It can be easily proved that in this case k is
always equal to 2. Even if this simpli�cation seems rather restrictive, k in most
of the cases, when e is small, should be considered known, as it can be easily
found [19]. Therefore, in our case, we have that:

3d = 1 + 2 (n− (p+ q) + 1)

Moreover, we can approximate d with d̄, where:

d̄ =

⌊
2n+ 1

3

⌋
The approximation is quite good as:

|d̄− d| ≤ kp+ q

e
≤ 2

2
√
n

3
≤ 4

3

√
n

which means that almost half of the upper bits of d are known, by calculating d̄.
Taking into consideration the above, we take the equation:

3d = 2n− 2(p+ q) + 3



convert it to the respective system of CNFs and replace the values of the upper
half bit of d with the correct ones. This means that we add N equations on
the system, no new variables as d solely depends on p and q, and some extra
information from the approximation of d̄. Therefore, the resulting system after
these additions is much easier to be solved by a common SAT solver, compared
to the original one, as it is more aware of the algebraic structure and of the
constraints that exist.

The selection of e to be equal to 3, might seem rather restrictive and beyond
current standards, nevertheless, there are public keys still in use that contain
it [23]. Moreover, we have to note that even if in the decryption we need only
d, going according to PKCS #1, using p and q, we signi�cantly improve the
speed of the decryption process. Thus, in implementations, p and q are stored
and used, so the assumption that the attacker may have access to part of them
is valid.

4 Experimental results

4.1 Setting up the environment

The implementation is based on ToughSAT code [45] to make the �rst equations
and then with the proper Python script added the proposed CNFs. This script
is freely available in [33]. For solving the SAT problem, the miniSAT solver

was used on a machine with Intel R© Core
TM

i7-2600 CPU at 3.40GHz processor
with 16GB of RAM, running on 64 bit Ubuntu GNU/Linux kernel 3.2.0-29.
Several prior experiments showed that miniSAT was more e�cient in solving
this problem, compared to other solvers, like clasp and CryptoMiniSAT. The
parameters that were used for miniSAT were �asymm� and �rnd-init� to enable
asymmetric branching, for shrinking clauses and randomize the initial activity
value respectively.

In each experiment, a key of the appropriate size is created using the Python's
default random library. The generated RSA modulo number is then parsed to
ToughSAT to generate the appropriate CNFs and output the relative DIMACS
�le. In this �le we append the aforementioned equations for the upper and lower
bits, as well as the estimation of the MSB half of d. The generated key is then
censored, exposing exactly the requested fraction of the bits of the private key
components (p, q) or (p, q, d), creating the appropriate CNFs to be appended to
the DIMACS �le.

4.2 The results

Table 1 summarizes the space and time requirements for generating the systems
of CNFs. As it is illustrated there, generating the systems of CNFs, was quite
time consuming, most of the times, it takes longer than to solve the actual
problem. Therefore, in order to reduce the time needed for the tests, we reused
keys with di�erent known bits each time. Hence, for each bit size we created



100 keys and for each key we repeated the same experiment 10 times, selecting
a random set of bits known each time for the components and for each of the
percentages of known bits. In order to stop possible bottlenecks, we created a
panic limit of 500 secs, so that if the SAT solver takes more time to solve the
system, then the process gets killed. Totally, 10*100*8*6=48,000 tests were made
for the measurements of this work.

The experiments were made for key sizes from 128 bits up to 1024 bits. 1536
bit keys could be generated, however, the system of CNFs is so big (1.5 GB) that
could not be solved by miniSAT. For the case of 2048 bits, the system of CNFs
could not be created by the PC.

In [19] the percentages of random known bits for the case of primes is 57%,
and if we add d in the game, the percentage is 42. Therefore, our experiments
were targeted in same region and below. So for the case of primes we started
from 59% and reached 53%. For the case of the triplet p, q and d the experiments
involve percentages from 44% down to 38%. Further decrease in the amount of
known bits, in most of the tests that were made, resulted to raising the panic alert
too many times, hence these results are not included in the illustrated results.
The percentage of disclosed information are a bit higher than the lower bounds
found by [32] for the case of erasure channels. The huge growth on the amount
of time needed to recover the keys, when the leaked information is decreased,
recon�rms the bounds of their work.

RSA key size Space needed Time to create

128 bits 8.5 MB 1.3 secs

256 bits 36 MB 5.5 secs

384 bits 84 MB 13.9 secs

512 bits 150 MB 23.5 secs

768 bits 355 MB 80 secs

1024 bits 650 MB 2 mins 52 secs

1536 bits 1.5 GB 10 mins 14 secs

Table 1: Time and space requirements for creating systems of CNFs.

The results of these tests are illustrated in Figures 1 and 2 and Tables 2
and 3. The times that are shown refer only to the time it takes the SAT solver
to solve the problem. In Tables 2 and 3, the second column (Average) refers to
the average time of all the experiments, the sixth column (panic limit) refers to
what percentage of the tests reached the panic limit of 500secs and were canceled.
The next column, upper outliers, refers to the percentage of the experiments that
needed more than 3 times the average time to �nish. Finally, the last column
illustrates the new average, if upper outliers and the experiments which reached
the panic limit are discarded.

The TaughSAT implementation, as mentioned above, is made in Python,
which in terms of performance, as any other scripting language is not very ef-



% known Average Max Min StDev Panic limit Upper Outliers≈ New average

128

53 0.24 0.32 0.21 0.02 0% 0% 0.24
55 0.24 0.37 0.20 0.03 0% 0% 0.24
57 0.24 0.36 0.19 0.02 0% 0% 0.24
59 0.24 0.40 0.20 0.03 0% 0% 0.24

256

53 1.33 4.49 0.94 0.48 0% 1% 1.29
55 1.32 3.90 0.93 0.55 0% 0% 1.32
57 1.27 5.45 0.94 0.52 0% 1% 1.22
59 1.23 4.36 0.96 0.38 0% 1% 1.20

384

53 8.38 65.69 2.55 17.78 0% 1% 3.18
55 4.55 13.31 2.28 3.7 0% 0% 4.55
57 2.78 4.35 2.24 0.65 0% 0% 2.78
59 2.53 2.96 2.26 0.22 0% 0% 2.53

512

53 8.68 180.97 4.42 17.79 0% 2% 6.68
55 6.16 13.14 4.37 1.76 0% 0% 6.16
57 6.87 38.94 4.31 4.64 0% 2% 6.87
59 8.72 214.98 4.34 20.96 0% 1% 6.64

768

53 29.21 450.81 11.58 57.55 1% 6% 17.12
55 29.16 490.42 10.97 59.56 1% 5% 18.35
57 18.10 53.84 11.17 7.71 1% 0% 18.10
59 22.99 257.36 11.05 30.66 1% 5% 17.08

1024

53 43.38 267.21 20.96 36.91 3% 2% 38.75
55 50.72 379.28 21.28 59.05 5% 4% 39.85
57 41.35 362.92 19.51 39.01 0% 2% 36.26
59 46.42 463.72 22.61 54.81 5% 3% 38.19

Table 2: Partial information for p and q.

Upper outliers are the values above 3 times the average value. Panic limit is set to
500 secs.



% known Average Max Min StDev Panic limit Upper Outliers New average

128

38 0.25 0.50 0.21 0.04 0% 0% 0.25
40 0.24 0.42 0.20 0.03 0% 0% 0.24
42 0.25 0.95 0.20 0.07 0% 1% 0.24
44 0.24 0.54 0.20 0.04 0% 0% 0.24

256

38 1.42 12.55 0.95 1.22 0% 2% 1.28
40 1.29 3.76 0.93 0.41 0% 0% 1.29
42 1.40 19.72 0.97 1.86 0% 1% 1.22
44 1.27 3.31 0.95 0.38 0% 0% 1.27

384

38 4.67 12.38 2.75 2.64 0% 1% 4.12
40 3.79 5.49 2.7 0.9 0% 0% 3.79
42 2.81 3.59 2.31 0.39 0% 0% 2.81
44 2.74 3.7 2.41 0.39 0% 0% 2.74

512

38 6.88 29.28 4.37 3.79 0% 2% 6.49
40 8.68 99.30 4.32 10.93 0% 4% 6.89
42 6.51 33.28 4.18 4.06 0% 2% 5.97
44 7.84 138.24 4.34 13.68 0% 3% 6.10

768

38 26.71 432.53 11.62 48.46 5% 3% 19.34
40 24.54 298.20 10.96 36.30 0% 4% 18.48
42 24.13 376.65 10.94 42.87 2% 3% 17.62
44 21.56 145.45 11.14 20.09 1% 5% 17.51

1024

38 60.41 370.17 19.93 70.22 2% 9% 40.37
40 57.91 442.33 20.48 79.77 2% 7% 37.51
42 46.52 318.06 21.44 47.97 0% 6% 35.46
44 42.60 432.64 21.05 44.84 1% 3% 36.20

Table 3: Partial information for p, q and d.

Upper outliers are the values above 3 times the average value. Panic limit is set to
500 secs.
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(c) RSA key size 384 bits
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(d) RSA key size 512 bits
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(e) RSA key size 768 bits
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(f) RSA key size 1024 bits

Fig. 1: Recovering private key of RSA having partial information about the pri-
vate key.
The illustrated time, is the average time without the outliers and the experiments

that reached the panic limit.
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Fig. 2: Summary of the results for all bit sizes.
The illustrated time, is the average time for every bitsize without the outliers and the
experiments that reached the panic limit, combining all the experiments of partial

information about p, q and d.



�cient. Moreover, the continuous recursive calls of several functions stall the
process of creating the system of CNFs. Nevertheless, it provides a nice, clean
and easy to use modeling of the factorization problem to be wrapped by other
scripts. Since this implementation cannot be cached to save processing time, the
time for creating the system of CNFs is not considered in the experiments.

The numeric results of these experiments clearly show that SAT solvers can
provide the necessary framework for partial key exposure attacks on RSA. For
the case of 1024 bits, with only 38% of the bits of p, q and d known, 40secs to
�nd the key is a very good timing for practical applications. As expected, for
RSA keys of 1024 bits, we meet the most measurements which either reach the
panic limit, or belong to the upper outliers.

4.3 Discussion

Surprisingly, after discarding the outliers, most of the means values are very
close independently of the key size, showing in one sense that these problems
are moreover of the same di�culty. As expected, in most cases, the more the
information is disclosed, the less time is needed to �nd the key. However, the
di�erence is not so big in many cases.

From Figure 2, it is quite clear that 50% percent increase in the size of the
integers to be factored, results to doubling the expected time. Therefore, we
can infer that the attack behaves exponentially to the key length, however, for
key-sizes up to 1024 bits, the average elapsed time is acceptable for practical
attacks.

The time needed to generate the systems of equations as well as the space
needed to store them, is multiplied by a factor round 3 and 4 with every 50%
increase of the key size, showing again an exponential nature.

It is worth to note here, that for several cases of the experiments which
reached the panic limit, we stored the DIMACS �le to process it later without
the time limit. Many of these systems were solved in less than 30mins, while
there where others, needing more than 1 hour to be solved. This fact shows that
even if the problem is very demanding in many cases it can be solved.

Compared to experimental results of [19] and [32] the attack is signi�cantly
slower, nevertheless, the amount of needed time is at least reasonable, as an
attack can be launched in less than a minute. An important characteristic of the
attack that has to be highlighted, is the success rate. The proposed methodology
manages to recover the private key with very high probabilities, even in the lowest
amount of disclosed information.

5 Conclusions

The main aim of this research was to show that SAT solvers can be a useful tool in
cryptanalyst's arsenal for the case of RSA, by providing a set of proof of concept
attacks, therefore, the implementations were not fully optimized. Nonetheless,



the experimental results not only show that such attacks are possible, something
that wasn't studied so far, but they are very powerful as well.

Obviously, the attack can be extended for other e as well, since as discussed
before, the value of k can be considered most of the times as known, or to be
selected from a small set, as in most practical applications the public exponent
is very low. The latter could result to an unsatis�able problem if the value of k
correctly selected, however, this has not yet been tested.

As discussed, comparing the results of the proposed methodology with [19]
and [32], the proposed reconstruction is not so e�cient. Nevertheless, this is the
�rst such approach for SAT solvers in this �eld and the time is at least within
the reasonable bounds of several seconds. Additionally, since the transformation
of the problem to a SAT instance that can be then e�ciently solved, several
extensions can be made. A typical cases involve known bit relations in the primes,
something that can happen in SETUPs [44], or speci�c implementations of RSA
like LSBS-RSA [42].

As previously discussed, the main delay is not the actual attack, but the
conversion of the problem to its SAT instance. The current implementation does
not support caching. This means that every time that we want to launch the
attack, we have to generate the problem from scratch and not change the values
in speci�c positions, drastically increasing the performance of the procedure.
Moreover, the creation of the DIMACS �le was made using Python, which is a
scripting language, hence, the use of C or another language could further speedup
the process and decrease the memory needs enabling longer key testing.

Finally, we have to notice that due to the nature of SAT solvers, they cannot
stop when for example they have successfully recovered a part of the LSBs or
MSBs of the key in order to use Coppersmith's theorem and recover the whole
key, something that will of course boost their e�ciency, but they have to �nd
the values of all the rest variables. On this light, their timings are rather fast
and show that further improvements can be achieved.
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