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Abstract. In this paper we investigate the linear hull effect in the light-weight block cipher
EPCBC. We give an efficient method of computing linear hulls with high capacity. We then apply
found hulls to derive attacks on the full 32 rounds of EPCBC–96 and 20 rounds of EPCBC–48.
Using the developed methods we revise the work of J.Y. Cho from 2010 and obtain an attack
based on multidimensional linear approximations on 26 rounds of PRESENT–128. The results
show that designers of block ciphers should take seriously the threat coming from the linear hull
attacks and not just limit themselves to proving bounds based solely on linear characteristics.
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1 Introduction

Light-weight cryptography has been an extensive field of study recently. The need for crypto-
graphic solutions for small devices, such as RFID tags, smart cards, and sensors, is eminent.
In particular, the need for light-weight block ciphers has been covered by a range of new
proposals. The block cipher PRESENT [6] is the most remarkable representative.1 There is
a series of ciphers that are inspired by the design of PRESENT, e.g. [5,8,13,21]. For example
PRINTcipher [13] is designed specifically for applications in integrated circuit printing. Then,
EPCBC [21] is designed for encrypting Electronic Product Code (EPC) information.

Naturally, once cipher proposals appear, there is a need for their security evaluation. The
field of cryptanalysis deals with this. Differential [4] and linear [16] cryptanalysis are the
classical tools for analyzing block ciphers. In linear cryptanalysis an attacker tries to find
biased linear approximations for non-linear components of a cipher (e.g. an S-Box) and then
use them to find biased linear approximation for the entire cipher. One is then able to use
these biased approximations to recover certain subkey bits. Afterwards, the remaining key
bits are recovered by brute force. Linear cryptanalysis is in fact one of the oldest method
of cryptanalysis that caught mass attention since the appearance of the papers of Matsui
[16,17] where he proposed a theoretical break of the DES cipher. Since the appearance of
these classical papers, the method of linear cryptanalysis has been applied to a wide range
of other ciphers and the method itself has been extended and improved, e.g. [3,7,10]. In
the context of light-weight cryptanalysis, quite a few results are known for PRESENT. In
particular, the so-called linear hull effect is observed to a large extend for this cipher. Several

1 PRESENT is a part of ISO/IEC 29192-2:2011 standard.



papers study the effect [1,15,18,19]. The bottom line here is that security estimates for linear
cryptanalysis are usually given in terms of linear characteristics, whereas a linear hull is
a sort of combination of all linear characteristics with a certain input and output masks.
It has been shown previously that using linear hulls, at least for the case of PRESENT,
gives much more power to an attacker than is predicted by a simple linear characteristic
analysis usually undertaken by designers. Using this effect and also advanced methods, such
as multidimensional linear cryptanalysis it is possible to break up to 25 rounds or PRESENT–
80 [9].

In this paper we investigate the linear hull effect for a PRESENT-like cipher EPCBC [21].
We provide an efficient method of computing capacities of linear hulls of EPCBC. We then
apply these to attack the full 32 rounds of EPCBC–96. For the smaller cipher EPCBC–48
by using similar methods we can break 16 out of 32 rounds. By making some additional
assumptions we can break 20 rounds, however. In the analysis we use recent remarks on
estimating complexity of a linear attack made in [15]. We also observe certain inaccuracies
that are usually made when analyzing the time complexity of the attack. Afterwards, we move
to analyzing PRESENT cipher itself. We revise the results of Cho [9] and show that his attack
on 26 rounds of PRESENT–80 does not really work. By employing our methods and the ones
of [9] we present an attack on 26 rounds of PRESENT–128. An attack on 26 rounds was also
presented in [18], but it has a rather low success probability. Therefore, to our knowledge this
is the first attack on 26 rounds of PRESENT–128 with high success rate.

The outline of the paper is as follows. In Section 2 we briefly recall the specifications
of the ciphers PRESENT and EPCBC. Section 3 provides a short summary of the linear
cryptanalysis. Then in Section 4 we address the problem of efficient finding of certain classes
of linear hulls and give the results for PRESENT and EPCBC. In Section 5 we discuss the
methods of estimating data and time complexity of the attack. The applications of the method
are in Section 6 and 7, where we attack EPCBC and PRESENT resp. We conclude in Section
8. Appendix A contains the correlation table for the PRESENT S-Box.

2 PRESENT and EPCBC block ciphers

2.1 PRESENT

The block cipher PRESENT [6] was proposed at CHES 2007 and is a light-weight block
cipher, which has been now internationally standardized [12]. It is a substitution-permutation
network encrypting 64-bit blocks with either 80- or 128-bit keys. Both versions of PRESENT
have 31 rounds. Schematically, the process of PRESENT encryption and the key schedule can
be described as in Figure 1. The S-Box layer consists of consecutive application of 16 identical
4-bit S-Boxes S defined by Table 1.

Table 1. PRESENT S-Box.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] c 5 6 b 9 0 a d 3 e f 8 4 7 1 2
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Fig. 1. Schematic description of PRESENT.

The linear diffusion layer pLayer is implemented by a bit permutation defined by the map
P sending a bit at position i to the bit at position P (i):

P (i) =

{
16i mod n− 1, for 0 ≤ i ≤ b− 2,
b− 1, for i = b− 1,

(1)

where b = 64 is the block length of PRESENT.
The key schedule of PRESENT–80 is organized as follows. The master keyK = k79k78 . . . k1k0

is loaded into an 80-bit register. At round i the register is updated as follows:

1. [k79k78 . . . k1k0]← [k18k17 . . . k1k0k79 . . . k20k19]
2. [k79k78k77k76]← S([k79k78k77k76])
3. [k19k18k17k16k15]← [k19k18k17k16k15]⊕ round counter

The leftmost 64 bits of the result of this update are loaded to the i-th round key Ki =
[k79k78 . . . k17k16]. The key schedule for the version with 128 bit keys is organized in a similar
fashion.

2.2 EPCBC

EPCBC [21] was proposed at CANS 2011 and is designed specifically for encrypting Electronic
Product Codes (EPCs). EPCBC has key length k = 96 and has two versions that differ in the
block length, either 48 or 98 bits. We denote them by EPCBC-b with b = 48, 96. Both versions
have 32 rounds. The structure of EPCBC is largely inspired by PRESENT and follows the
same structure, see Figure 1. Namely, EPCBC is also an SP-network, employs the same S-
Box defined in Table 1 and uses the same bit permutation P defined in (1), of course used
with the corresponding b. However, the key schedule of EPCBC is different from the one
of PRESENT and uses more non-linearity. The key schedule for b = 96 exactly mimics the
encryption function. For b = 48 the key schedule is using a sort of Feistel-like structure, see
Algorithm 1.
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Algorithm 1 EPCBC–48 key schedule
(LKeystate,RKeystate) = 96-bit key
Subkey[0]← LKeystate
for i = 0→ 7 do

temp← LKeystate⊕ RKeystate
for j = 0→ 3 do

RKeystate← sBoxLayer(RKeystate)
RKeystate← pLayer(RKeystate)
RKeystate← RKeystate⊕ (4i+ j)
Subkey[4i+ j + 1]← RKeystate

end for
LKeystate← RKeystate
RKeystate← temp

end for

3 Linear cryptanalysis

In this section we briefly outline the main notions and ideas of (multi-dimensional) linear
cryptanalysis. For a more thorough description, see e.g. [14]. The main idea of linear crypt-
analysis is to find biased linear relations between inputs/outputs of a cipher. These, in turn,
make it possible to recover certain key bits of a cipher.

Definition 1. Let F : Fn2 → Fn2 be a Boolean function. For non-zero vectors �, � ∈ Fn2
consider a linear form

l�,�,F (x) = ⟨�, x⟩+ ⟨�, F (x)⟩,

defined for x ∈ Fn2 . A bias of this linear form is a number −1/2 ≤ �(�→ �) ≤ 1/2, such that

Pr(l�,�,F (x) = 0;x← Fn2 ) = 1/2 + �(�→ �).

Correlation of l�,�,F (x) = 0 is simply c(�→ �) := 2�(�→ �).
The vectors � and � are called input and output masks of F resp.

In our setting F will be a round function of a cipher. More specifically, we will deduce a biased
relation for F from those of S-Boxes that constitute the substitution layer of F . A table of
correlations of the PRESENT S-Box that is also used in EPCBC is given in Appendix A. If
we have an iterative block cipher, the next notion comes in hand.

Definition 2. Let F := Fr−1∘⋅ ⋅ ⋅∘F0, Fi : Fn2 → Fn2 , 0 ≤ i ≤ r−1. And let {(�i, �i+1)}i=0,...,r−1
be a sequence of masks to Fi, i = 0, . . . , r − 1. This sequence is called a linear trail of F with
the input mask �0 =: � and output mask �r =: �.
All linear trails with the same input mask � and output mask � constitute a linear hull with
these masks.

Correlation of a linear trail is usually computed from correlations of individual approximations
for each Fi by applying the so-called Matsui’s Piling-Up lemma. Under the assumption that
individual approximations are independent, one has

c(�→ �1 → ⋅ ⋅ ⋅ → �r−1 → �) =

r−1∏
i=0

c(�i → �i+1).

Capacity of the trail is simply C(� → �1 → ⋅ ⋅ ⋅ → �r−1 → �) := (c(� → �1 → ⋅ ⋅ ⋅ →
�r−1 → �))2. One has to be a bit more careful, though, in computing correlations of linear
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hulls. Under the assumption that round keys of an alternating block cipher are independent,
it is known (cf. e.g. [9]) that capacity of a linear full (averaged over all keys) is the sum of
capacities of its composing trails.
Now a basic idea of a linear attack is to 1.) find a linear trail/hull with large capacity; 2.)
collect a certain number of plaintext/ciphertext pairs; 3.) by guessing at some subkey bits
partially decrypt the ciphertexts and observe if pairs plaintext/decrypted ciphertexts satisfy
a linear relation predicted by the trail/hull; 4.) keep counters for the “hits” in 3. and identify
correct guesses for the subkey bits; 5.) brute force the remaining (sub-)key bits. We will
address computing data/time/memory complexity of this attack in Section 5. Depending on
how many rounds are taking part in partial encryptions/decryptions, one may talk about 1R-,
2R-, etc. attacks.

Remark 1. Throughout this paper we will use the fact that (average) capacity of a hull is a
sum of capacities of its constituents. This fact holds if certain assumptions on independence
hold: independence of round keys, trails, see also Assumption 1 in [15]. Strictly speaking,
computations based on this assumption need practical validation for reduced-round versions
of a cipher. Still, these assumptions are known to hold for PRESENT and other similar ciphers,
e.g. PUFFIN [15]. Therefore, it is plausible to assume its validity also for the EPCBC block
cipher.

In a series of works [9,10,11] the notion of a linear hull has been generalized to using several
input/output masks combined to obtain more powerful hulls. In essence, one considers masks
that come from a linear subspace of Fn2 of dimension m. In [10] the advantage of a multi-
dimensional attack is obtained. The advantage being the number of subkey bits targeted by
the attack. In Section 7 we will use the following formula of the advantage using �2-statistics:

adv =
NC − 4�−1(2Ps − 1)2

4M
, (2)

where N is the amount of data available, C the capacity of the approximation, Ps is the
success probability, M = 2m− 1 is the number of participating masks, and finally �(x) is the
probability density function of the standard normal distribution.

4 Finding good linear hulls efficiently

At the heart of every linear attack is the question of finding linear trails with high correlation.
Moreover, we are interested in finding such trails with the same input/output masks. Such
trails then constitute a linear hull. Under certain assumptions, correlation of a linear hull
is composed of correlations of individual trails, see Section 3. As is quite known [9,15,18,19]
and will be shown again in this paper, it is sometimes the case that it is possible to find
linear hulls with much larger correlation than any of its individual trails. Since providing
bounds on correlations of individual trails is usually quite manageable, designers tend to rely
on estimating this figure when arguing about security against linear attacks. The question of
bounding correlation of linear hulls is much more involved, since it has to do with finding a
number of linear trails that constitute a hull. This number seems to be in general hard to
compute or even bound.

Usually for finding good linear trails and hulls variations of Matsui’s branch-and-bound
algorithm are used. It is even possible to formulate and solve the problem of finding good
trails as a Mixed Integer Linear Program (MILP). So the problem of finding trails/hulls can be
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solved either by a dedicated solver that is based on the branch-and-bound algorithm specific
to the cipher in question, or it can be solved via using MILP and an available general purpose
solver, e.g. IBM ILOG CPLEX. The main difficulty with this approach is the fact that both
optimization methods in general have exponential complexity. Thus applying them to a large
number of rounds may be challenging.

It is known that the S-Box used in PRESENT and also in EPCBC allows many 1-to-
1 masks for linear trails passing through the S-Box; a 1-mask being a mask which binary
representation has Hamming weight 1. Namely, from the correlation table, cf. Table 4, it
follows that ∣c(2i → 2j)∣ = 2−2 for 1 ≤ i, j ≤ 3 except for the case i = 3, j = 2.

So we see that 10 out of possible 16 1-to-1 masks hold for the PRESENT S-Box. In this
case it is quite reasonable to look for linear trails among those that have only one active
S-Box per round. This question has been studied extensively in [9,15,18,19]. Also a question
of computing correlations of linear hulls is addressed in [5]. In [9] a formula for computing
correlation of specific trails is given. We propose a general algorithm for PRESENT-like
ciphers that solves this problem of finding all linear trails with one active S-Box per round.
In particular PRESENT and EPCBC fall into this category, as well as the block cipher
PUFFIN, albeit the latter being broken [15]. In some sense we generalize the work of [9]
applied to PRESENT

In order to construct a trail that has only one active S-Box per round we start with
an S-Box in the first round and some input mask maskin. We then look for 1-masks that
can be obtained from maskin with non-zero correlation. Each such 1-mask maskout goes to
a 1-mask mask′in of some S-Box at round two after an application of the permutation P .
Now if mask′in is of the form 2i, 1 ≤ i ≤ 3, then we obtain several possibilities to continue
the trail by using one of the output 1-masks. The process goes on like this until we hit the
penultimate round. There we go with an output 1-mask in the round R − 1 to an input 1-
mask at round R. This mask in turn can end in an output mask maskout. By applying a quite
simple counting argument we may compute all trails that start and end at certain S-Boxes
and have certain masks. The algorithm is presented in Algorithm 2. The algorithm is run as
#Trails(In,Out, cin, cout). In and Out give positions of active S-Boxes in the first and the
last rounds resp. Now, cin and cout are absolute values of correlations c(maskin → 2i) and
c(2j → maskout) for some 0 ≤ i ≤ 3 and 0 ≤ j ≤ 3 that start and end the trail, resp. These
masks start and end a trail. The cin, cout may attain two values: 2−1 and 2−2. Note that all
other parts of a trail are coming from a 1-to-1 masks which all have absolute correlation 2−2.
Therefore, due to Matsui’s Piling-up lemma, we have that absolute correlation of a trail is
cin ⋅ cout ⋅ 2−2(R−2). The trail count[i] is a counter of the number of paths one can get from
the root nodes from S, defined before the big for-loop, to a position i after a certain (current)
number of rounds. At the end of the current round a counter trail count next is formed
from trail count by using propagation rules for 1-to-1 masks through an S-Box (lines 18–23)
and summing up the corresponding values in trail count (lines 25–27). This latter process is
illustrated in Figure 2.

Based on the assumptions from Remark 1 we can compute capacity of the linear hull with
inputs/outputs given by In and Out. It is

C(In,Out) =
∑

cin,cout∈{2−1,2−2}

2−4(R−2)c2incout
2#Trails(In,Out, cin, cout).

Accordigly, the correlation is c(In,Out) =
√
C(In,Out).

In Table 2 we list the best linear hulls we found for b = 48, 64, 96, i.e. PRESENT and EPCBC.
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Algorithm 2 #Trails :Finding all trails that have given correlation and one S-Box per round
Require:
1: - Position of the input active S-Box and its mask: In = (sboxin,maskin)
2: - Position of the output active S-Box and its mask: Out = (sboxout,maskout)
3: - Input correlation starter cin
4: - Output correlation starter cout
5: - Number of rounds R
Ensure: Number of trails with absolute correlation cin ⋅ cout ⋅ 2−2R+4

6: Begin
7: Icin := {0 ≤ i ≤ 3∣ ∣c(maskin → 2i)∣ = cin}
8: Ocout := {0 ≤ i ≤ 3∣ ∣c(2i → maskout)∣ = cout}
9: trail count[i] = 0, 0 ≤ i ≤ b− 1

10: S := {i∣ i = 4 ⋅ sboxin + j, j ∈ Icin}
11: trail count[i] = 1, i ∈ S
12: for round = 1, . . . , R− 1 do
13: D := {P (i)∣ i ∈ S}
14: trail count next[i] = 0, 0 ≤ i ≤ b− 1
15: T := {}
16: for all i ∈ D do
17: s = ⌊i/4⌋
18: if i mod 4 = 3 then
19: s out := {4s+ 1, 4s+ 3}
20: end if
21: if 1 ≤ (i mod 4) ≤ 2 then
22: s out := {4s+ 1, 4s+ 2, 4s+ 3}
23: end if
24: T := T ∪ s out
25: for all j ∈ s out do
26: trail count next[j] + = trail count[P−1(i)]
27: end for
28: end for
29: S := T
30: trail count := trail count next
31: end for
32: E := {P−1(i)∣i ∈ Ocout}
33: Result :=

∑
j∈E trail count[j]

34: return Result
35: End
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These are the best linear hulls that are composed of linear trails with exactly one active S-Box.
Note that the numbers in the penultimate column is only an estimate for correlation, since it
may happen that there are some linear trails in a hull that have more than one active S-Box
and thus are not counted here. We expect contribution of such trails to be negligible, so we
expect the estimate to be very close to the actual value. The table lists the overall number of
optimal hulls obtained and then positions of active S-Boxes in the first and the last rounds,
as well as the input/output masks for one particular hull, as an example. We also list the
number of trails with the given positions/masks provided by the starter in the example hull.
For example (+,+) means that the values of cin = cout = 2−1 are used in Algorithm 2 and
(−,−) means that cin = cout = 2−2 are used. Note that all optimal hulls follow the same
pattern for the numbers in the column “# trails”. The last column provides the largest values
(or a bound) of the correlation known before. For b = 48, 96 we use the original EPCBC
paper [21] and for b = 64 we use numbers on one-S-Box-hulls from [18,19]. The numbers are
provided for the last two rounds, where we could obtain hulls with correlations > 2−b. In fact
we could easily obtain hulls with smaller correlations for larger number of rounds, but this
does not seem to be relevant for the attack.

5 Computing complexity

In this section we estimate complexity of our linear hull attack. The two main questions here
are computing data and time complexity. For the former it has been shown, see [15], that
some care has to be taken in computing data complexity. For the latter we point out in this
paper that computations that are usually done are not quite accurate and need adjustment.

Data complexity. First we deal with the problem of computing data complexity of the
attack. It has been shown in [15] that in fact if one tries to compute average complexity,
one fails, since it is strictly speaking equals to infinity. Therefore, one should instead talk
about median complexity, or more generally complexity Cp as defined below. We quote here
Definition 1 of [15]:

Definition 3. The median of the complexities C̃ is the value such that, for half of the keys
the complexity of the attack is less than or equal to C̃. More generally, one defines complexity
Cp to be the complexity such that the probability that for a given key the attack complexity is
lower than Cp, is p. In particular, C̃ = C1/2.
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Table 2. The best linear hulls for b = 48, 64, 96

b R overall no. Input S-Box Output S-Box Input mask Output mask # trails starter log2(corr) known log2(corr)

48 14 4 5 4 [1,0,1,1] [1,1,0,1] 498 (+,+) -20.81 -24
439 (−,+)
249 (+,−)
219 (−,−)

48 15 4 5 4 [1,0,1,1] [1,1,0,1] 887 (+,+) -22.39 -26
781 (−,+)
443 (+,−)
389 (−,−)

48 16 4 5 4 [1,0,1,1] [1,1,0,1] 1579 (+,+) -23.98 -28
1389 (−,+)
788 (+,−)
692 (−,−)

64 23 16 5 5 [1,1,1,0] [1,0,1,1] 0 (+,+) -30.57 -31.77
33,116,290 (−,+)

0 (+,−)
53,583,010 (−,−)

64 24 16 5 5 [1,1,1,0] [1,0,1,1] 0 (+,+) -31.88 -33.08
86,699,300 (−,+)

0 (+,−)
140,281,700 (−,−)

96 29 8 5 8 [1,0,1,1] [1,1,1,1] 2,955,558 (+,+) -44.23 -50
2 (−,+)

1,232,503 (+,−)
0 (−,−)

96 30 8 5 8 [1,0,1,1] [1,1,1,1] 5,420,564 (+,+) -45.80 -52
2 (−,+)

2,260,439 (+,−)
0 (−,−)
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In the following theorem we combine ideas of [15] and e.g. [14,19] to compute the data
complexity of the linear attack.

Theorem 1. Let ℒ be a linear hull (approximation) used in the attack and C be its capacity.
Let m = m(ℒ) be the advantage of the attack (i.e. the number of subkey bits guessed at) and
let p be the success probability of the attack. Then the data complexity of the attack (i.e. the
number of known plaintext/ciphertext pairs) for the portion of p∗ of the keys is

Np∗ =
�−1(p1/2

m
)2

2C ⋅ (erf −1(1− p∗))2
=

1

C
⋅
(erf −1(2p1/2

m − 1)

erf −1(1− p∗)

)2
, (3)

where �(⋅) is the cumulative distribution function of the standard normal distribution and
erf (x) = 2�(x

√
2)− 1 is the Gauss error function.

Proof. Let X be a random variable corresponding to the correlation of the linear hull ℒ.
Further, we assume that X is distributed normally with the mean 0 and variance �2 : X ∼
N (0, �2), where �2 =

∑

2i with 
i being correlations of linear trails that compose the hull ℒ

(cf. Remark 1). As we see, the mean value of X is 0 and since the number of plaintexts needed
for the attack (data complexity) is proportional to 1/X2, We conclude, as in [15], that this
number is∞. Therefore, we compute for the given 0 < p∗ < 1 the number of plaintexts needed
for the attack for the portion of p∗ of all keys. This means that our complexity estimate will
be valid for 2k ⋅ p∗ keys, where k is the key length. This corresponds to the Cp-notion from
Definition 3.

So we are interested in computing Prob(c/X2 ≤ Np∗) for some small constant c ≥ 1 and
appropriately chosen Np∗ . Note that this probability is exactly equal to p∗. We have

Prob
( c

X2
≤ Np∗

)
= 1− Prob

(
X2 ≤ c

Np∗

)
= 1−G

( c

Np∗

)
,

where G is the cumulative distribution function of X2. Now,

G(x) = Prob(X2 ≤ x) = Prob(−
√
x ≤ X ≤

√
x) = F (

√
x)− (1− F (

√
x)) = 2F (

√
x)− 1,

where F is the cumulative distribution function of X. The relation between F and � is as
follows:

F (x) = �
(x
�

)
=

1

2

(
1 + erf

( x

�
√

2

))
.

Combining the above equalities we obtain

p∗ = 1−G
( c

Np∗

)
= erf

( 1

�

√
c

2Np∗

)
.

Therewith we have

Np∗ =
c

2�2 ⋅ (erf −1(1− p∗))2
=

c

2C ⋅ (erf −1(1− p∗))2
.

Now we have to compute c. We have Prob(x ≥
√
c/Np∗ or x ≤ −

√
c/Np∗) = p∗. The

probability of the linear approximation given by ℒ for a portion p∗ is 1/2 ± 
/2 with 
 =√
c/Np∗ for a correct key and 1/2 for an incorrect key. The probability for one subkey bit

guess is known to be given by [19]:

pS = 1− �(−

√
Np∗) = �(


√
Np∗) = �(

√
c).
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The success probability to recover all m subkey bits is (2m − 1 incorrect key guesses are to
be identified):

p = p2
m−1
S = �(

√
c)2

m−1 ≈ �(
√
c)2

m

for large enough m. Therefore c = (�−1(p1/2
m

))2 and finally we obtain (3).

Time and memory complexity. For estimating time complexity we take the time of
one trial encryption as a measuring unit, so that the brute force approach takes 2k and on
average 2k−1 units. Since we aim at recovering m subkey bits, a naive approach would yield
time complexity N ⋅ 2m ⋅ !, where N is the number of plaintexts and 0 < ! < 1 is the factor
to adjust this number to the number of trial encryptions. For example if we do a 2R−attack
on a 32-round cipher, we would set ! = 2/32 = 1/16. There is a nice time/memory trade-
off approach described in [9] . The idea for a 2R-attack (the first and the last round) is as
follows. Let p and c be parts of plaintext/ciphertext that are targeted by the subkey guesses.
We denote by k0 and kR the parts of the first and the last subkeys that are targeted in
guessing. Therefore (p∣∣c) ∈ Fm2 and k = (k0∣∣kR) ∈ Fm2 . Now one is interested in studying the
distribution of zk = (P (S(p+ k0))∣∣S−1(P−1(c+ kR))) for all N pairs of plaintext/ciphertext.
So one first precomputes the frequencies of (p∣∣c) for all N pairs and stores them in the table
Q. Constructing such a table costs N ⋅ !′ encryptions and around 2m ⋅ log(logN −m) bits of
memory. Here !′ is another adjusting parameter; it is clear that !′ < 1, but it is a matter
of estimation to decide the more or less exact value. Once we have Q and given the “key”
k ∈ Fm2 we can compute zk in the time 2m!′′ (!′′ is yet another adjusting parameter). Thus,
for all keys that yields the time complexity 22m!′′. Then computing the correlation of an
approximation given by zk takes some constant time tb, thus 2mtb in total. So the overall
complexity of recovering m subkey bits using a linear approximation is around

T ≈ N!′ + 22m!′′ + tb2
m ≈ max{N!′, 22m!′′}. (4)

Now comes an interesting issue. After we have recovered the m subkey bits (either from
some first or last rounds or both), one has to recover the k-bit master key, i.e. the key
that is actually used for the encryption and which is used to obtain the round keys. The
usual estimation of time complexity undertaken at this point (in papers on both linear and
differential cryptanalysis) is that one has to recover the “remaining” k−m key bits and thus
the time complexity is 2k−m. For most ciphers this estimation is an underestimation, however,
if we talk about �R−attacks, where � > 1.
In order to see this, let us consider a 2R−attack on PRESENT where a bits are recovered in
the subkey K1 and a bits in the subkey K32, so that m = 2a. Knowledge of these m bits is
not equivalent to knowledge of m master key bits. What is true, is that we know a master
key bits that come from K1, see Section 2. Can we efficiently compute more master key bits
from the a subkey bits of K32? In general, no. This is due to the fact that PRESENT, as well
as many other ciphers, has non-linearity built into the key schedule. For example, subkey bits
K2[76 . . . 79] depend non-linearly on K1[15 . . . 18]. So knowledge of just one value of any bit
there does not, in general, yield value of any other bit. In principle, one could express bits from
K1 via non-linear polynomials (of high degree) in the bits of K32. However, one should expect
such polynomials to be close to random and therefore, deducing values of K1 by knowing some
a values of K32 is virtually impossible. We will see another specific example later. One could,
of course, try to run the following scenario. Obtain a master key bits from K1, set a system
of algebraic equations representing the key schedule, set some a variables that represent bits
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of K32 to known values. Now try to solve this system of non-linear equations targeting to
recover the remaining 80 − a master key bits. This is a form of an algebraic attack. Since
we know that algebraic attacks on block ciphers perform quite poorly when the number of
rounds is large, we should not expect such an attack to be faster than 280−a. So, the time
complexity of the last search step is 280−a and not 280−2a as would normally be stated.
Assume we run a 2R−attack targeting the first and the last round, and m = m1 +mR, where
mi is the number of subkey bits recovered in the round i = 1, R in the previous phase. Now
assume w.l.o.g. that m1 ≥ mR we have that the overall time complexity of the linear attack
is

Tattack ≈ max{N!′, 22m!′′, 2k−m1}. (5)

We have that Tattack < 2k if N ≲ 2k and 2m ≲ k.

Remark 2. 1. Interestingly enough, the above “280−m-statement” is true for the case of DES
[17]. The reason lies again in the structure of the key schedule of DES: it is not only linear,
but actually subkey bits of the round keys are always some master key bits. In his paper
[17] Matsui showed that m subkey bits he recovered from rounds 15 and 16 are actually
different m master key bits. Therefore, indeed, the final search phase takes here 256−m

encryptions.

2. The overlook often made, fortunately, usually has little impact on the actual complexity
of the attack, since the attack is usually dominated by the first two terms in (5). One
important exception will be discussed in Section 7.1 where we look at the attack of [9] on
26 rounds on PRESENT–80.

3. It may seem that the discussion above implies that it does not make sense to run a
2R−attack on the first and the last round, since some subkey bits recovered at this stage
are “useless” for the final search stage. This is not true, however. If instead we would run
a 2R-attack on the first two or the last two rounds, the advantage of such an attack would
usually be higher, which leads to higher data complexity. This is something we cannot
afford when the attack approaches its limits on the data available.

6 Linear cryptanalysis of EPCBC

6.1 A cryptanalysis of the full-round EPCBC–96

We describe a linear hull attack on the full 32 rounds of EPCBC–96. For the attack we use
one of the hulls from Table 2 that attain maximum capacity. Namely, we take a linear hull,
which input is active in the S-Box no. 5 and output is active in S-Box no. 8. The input mask
is [1, 0, 1, 1] and the output mask is [1, 1, 1, 1]. As we see from Table 2 this linear hull over
30 rounds has capacity 2−45.80⋅2 = 2−91.60. We now run a 2R-attack, where we target the
first and the last rounds. It turns out that this hull is one of those that attain minimal data
complexity for p∗ = 1/8 among all linear hulls with one active S-Box per round. Indeed, using
formula (3) with m = (3 + 4) ⋅ 4 = 28 we have that Np∗ = 295.65 < 296, where the latter is the
size of the codebook. In Table 3 we list some other hulls that attain minimal data complexity.

As to the time complexity, we turn to formula (5). From there we see that Tattack ≈ Np∗!
′,

since the term Np∗!
′ dominates the other two. We conservatively estimate an operation to fill

an appropriate element in the matrix Q to be equal to two rounds of EPCBC–96 encryption.
Therewith !′ ≈ 2/32 = 2−4. So we estimate the overall time complexity of the attack to be
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Table 3. Linear hulls attaining minimum data complexity for 2R-attack on 32 rounds with p∗ = 1/8, p = 0.95

Input S-Box Input mask Output S-Box Output mask

5 [1, 1, 0, 1] 8 [1, 1, 1, 1]

5 [1, 1, 0, 1] 11 [1, 1, 1, 1]

5 [1, 1, 0, 1] 20 [1, 1, 1, 1]

5 [1, 1, 0, 1] 23 [1, 1, 1, 1]

6 [1, 1, 0, 1] 8 [1, 1, 1, 1]

6 [1, 1, 0, 1] 11 [1, 1, 1, 1]

6 [1, 1, 0, 1] 20 [1, 1, 1, 1]

6 [1, 1, 0, 1] 23 [1, 1, 1, 1]

Tattack ≈ 292 EPCBC–96 encryptions. In any case, since !′ < 1, the overall time complexity
is always < 296.

Now, note that we have chosen p∗ = 2−3 to get our attack to work; for larger p∗ the attack
on 32 rounds does not work anymore. Still, for a fraction of 1/8 of all 296 keys we expect
our attack to have data complexity < 296 plaintext/ciphertext pairs. In [19] the term “weak
keys” is used in this context. We argue that the statement is actually stronger. Since there
is no way to efficiently describe the class of 296−3 = 293 keys that enable the attack, we have
nothing better as to assume that one out of eight possible encryption keys is susceptible to the
attack. Of course, this probability is rather high, which renders EPCBC–96 insecure against
the linear hull attack.

We can break 31 rounds with p∗ = 1/2 by using the same hull, but over 29 rounds. Using
(3) we obtain Np∗ = 294.90. So we have an attack for half of all possible keys.

6.2 A cryptanalysis of 20 rounds of EPCBC–48

Now we describe an attack on reduced-round EPCBC–48. Since the codebook of this cipher
is only 248 we cannot hope to break the full 32 rounds with our approach. Still, we are able
to run attacks on a considerable number of rounds.

First, let us describe an attack on 16 rounds. The idea is the same as for EPCBC–96
above. We use a linear hull over 14 rounds from Table 2. It has input active S-Box no. 5 with
the input mask [1, 0, 1, 1] and the active output S-Box no. 4 with the output mask [1, 1, 0, 1].
It has capacity 2−20.81⋅2 = 2−41.62. The 2R-attack on 16 rounds with p∗ = 1/2 yields data
complexity Np∗ = 247.83. The time complexity can be estimated, similarly to the 96-bit case,
to be Tattack ≈ 246. So this is the result we should have expected by observing linear hulls of
EPCBC–48.

Under some additional assumptions we can do better, however. We can obtain an attack on
20 rounds, using the following observation on the key schedule of EPCBC–48. The keys for the
rounds 17–20 are obtained in a predetermined manner from the value temp = LKeystate ⊕
RKeystate that is derived from the earlier key schedule operations, see Algorithm 1. Now,
assume that we know this 48-bit vector temp. The cipher must still provide 48-bit security.
Now, since we know temp, we know round keys for the rounds 17–20, and, therefore, we are
able to decrypt a ciphertext after 20 rounds to obtain an output of round 16. After this we
run our 2R−attack as described above. As has been shown, we can beat the 48-bit security
with this attack. This attack may be considered as a strong form of a related key scenario,
where we assume known the difference between certain round keys.
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7 Linear cryptanalysis of the reduced-round PRESENT

7.1 Revising the work of [9]

In his paper [9] J.Y. Cho used multidimensional linear approximations and �2-statistics to
attack 25 rounds of PRESENT–80. In particular he used a multidimensional linear approxi-
mation composed of linear trails with only one active S-Box per round, but as opposed to the
linear hull approach there are several possible S-Boxes that can be active in the input and in
the output. For his attack he used a configuration with input active S-Boxes I = {5, 9, 13} and
output active S-Boxes O = {5, 6, 7}. So his multidimensional linear approximation contains
all trails

aij : �i → �j , i ∈ I, j ∈ O,

where �i, �j ∈ F4
2∖{0} are non-zero input/output masks for the S-Boxes i and j resp. Capacity

of this approximation is then computed as in [9]:

C =

√ ∑
i∈I,j∈O

c(aij)2.

Note that we can use our method from Section 4 to compute capacities of such linear approxi-
mations. Capacities of Cho’s approximations for different number of rounds are given in Table
1 of [9]. Using our method from Algorithm 2 adjusted appropriately, we can confirm the num-
bers there. For his 2R-attack on 25 rounds, he used a 23-round approximation with capacity
2−52.77. Interestingly enough, Cho’s approximation is not the one attaining maximal capacity.
The maximal capacity for 23 rounds is 2−52.38 and is attained e.g. by the approximation A
with I = {6, 9, 10} and O = {7, 13, 15}. What makes Cho’s approximation special is almost
optimal capacity together with low number of active S-Boxes in the “built-upon” rounds: the
one before the approximation and the one after to mount an attack on 1+23+1 = 25 rounds.
Indeed, three active S-Boxes in the input/output give rise to only four S-Boxes per built-upon
round, whereas the approximation A yields eight S-Boxes and 16 overall. The 4 ⋅ 2 = 8 active
S-Boxes in the attack yield an advantage adv = 8 ⋅ 4 = 32. Now the data complexity of the
attack is computed by formula (2) with ps = 0.95, adv = 32,M = 9 ⋅ (28−1). So the attack on
25 rounds has data complexity N = 261.87. This is the lowest one can get with approximations
involving three input/output S-Boxes as has been verified by our experiments.

After presenting an attack on 25 rounds, Cho went on with extending the attack to 26
rounds. He argued that using the entire codebook of 264 plaintexts/ciphertexts, from formula
(2) it follows that for the attack on 26 rounds using his approximation over 24 rounds with
capacity 2−55.38 the advantage is equal to 162. This means that the correct “subkey” is ranked
within the position of 232−16 = 216 out of 232 candidates with probability ps = 0.95. So by
running the attack on 26 rounds with 264 plaintexts, one obtains 216 candidates for the correct
subkey with high probability. Now, in [9] it is argued that 80− adv = 80− 32 = 48 key bits
are left to be recovered. That led to time complexity figure of 264 + 248 ⋅ 216 = 265. Here is the
place where our discussion of Section 5 comes into play. Note that Cho’s attack targets 16
bits of K1 and 16 bits of K26. As we have seen, this means that actually 80− 16 = 64 bits of
the master key are to be recovered, not 48. This leads then to the time complexity estimate
264 + 264 ⋅ 216 > 280. So the attack fails. Similarly the attack fails for PRESENT–128.

2 He computed it to be equal to 8, but this is due to a mistake in (2), which was also pointed out in [10].
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7.2 A cryptanalysis of 26 rounds of PRESENT–128

We are able to run a valid attack on 26 rounds, however it works only for PRESENT–128.
What we do is we consider linear approximations that have four active S-Boxes in the input
and the output. Clearly, therewith we obtain larger capacity, simply because we add up more
trails. The problem to be addressed here is growing advantage due to a large number of
active S-Boxes. We take a multidimensional approximation over 24 rounds with input active
S-Boxes I = {5, 6, 9, 10} and output active S-Boxes O = {5, 7, 13, 15}. This approximation
has advantage adv = 64 with 32 bits active in rounds 1 and 26. This approximation has
capacity 2−54.16. Still for 26 rounds one would need 264.17 data to mount an attack (note that
now M = 16 ⋅ (28 − 1)). So we do the same trick Cho tried to use. For PRESENT–128 from
(2) we see that by using the entire codebook we can have an advantage of 50 in the attack
on 26 rounds. So we run the attack on 26 rounds and obtain a correct subkey bits among
possible 2adv−50 = 214 candidates with probability ps = 0.95. Now combined with remaining
128− 32 = 96 bits of the master key to be searched this yields time complexity

Tattack ≈ max{264!′, 2128!′′, 296 ⋅ 214} = 2128!′′.

Recall that 0 < !′′ < 1 is the adjusting parameter to scale the complexity down to trial
encryptions. We estimate !′′ to be coming from 2-round encryptions, so that the overall time
complexity is about 2124.5 PRESENT–128 encryptions.

8 Conclusions and future work

In this paper we considered linear cryptanalysis of the PRESENT-like block cipher EPCBC
and PRESENT itself. We show that, although known for some time now, the linear hull effect
still plays an important role in cryptanalysis even of recent proposals. As a result we could
break the full EPCBC–96 for a fraction of 1/8 of all keys. Therefore, designers should be more
careful in studying linear properties of a cipher, not just limit themselves to studying linear
trails and bounding correlation of the best trail.
As a future work, we see investigating what other ciphers could be susceptible to these kinds
of attacks. For example, the block cipher LBlock [22] and recently proposed TWINE [20]
seem appropriate targets: both show certain structural similarities and both do not go be-
yond standard evaluations of security regarding linear cryptanalysis. Moreover, the S-Box of
TWINE seems to be only slightly stronger w.r.t linear attacks than the one of PRESENT.
Therefore, one should investigate the linear hull effect properly here.
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A Correlation table of the PRESENT S-Box

The numbers in Table 4 are computed according to Definition 1, where F is the PRESENT
S-Box with n = 4.

Table 4. Correlation table of the PRESENT S-Box.

�/� 1 2 3 4 5 6 7 8 9 a b c d e f

1 0 0 0 0 −2−1 0 −2−1 0 0 0 0 0 −2−1 0 2−1

2 0 2−2 2−2 −2−2 −2−2 0 0 2−2 −2−2 0 2−1 0 2−1 −2−2 2−2

3 0 2−2 2−2 2−2 −2−2 −2−1 0 −2−2 2−2 −2−1 0 0 0 −2−2 −2−2

4 0 −2−2 2−2 −2−2 −2−2 0 2−1 −2−2 −2−2 0 −2−1 0 0 −2−2 2−2

5 0 −2−2 2−2 −2−2 2−2 0 0 2−2 2−2 −2−1 0 2−1 0 2−2 2−2

6 0 0 −2−1 0 0 −2−1 0 0 −2−1 0 0 2−1 0 0 0

7 0 0 2−1 2−1 0 0 0 0 −2−1 0 0 0 0 2−1 0

8 0 2−2 −2−2 0 0 −2−2 2−2 −2−2 2−2 0 0 −2−2 2−2 2−1 2−1

9 2−1 −2−2 −2−2 0 0 2−2 −2−2 −2−2 −2−2 −2−1 0 −2−2 2−2 0 0

a 0 2−1 0 2−2 2−2 2−2 −2−2 0 0 0 −2−1 2−2 2−2 −2−2 2−2

b −2−1 0 0 −2−2 −2−2 2−2 −2−2 −2−1 0 0 0 2−2 2−2 2−2 −2−2

c 0 0 0 −2−2 −2−2 −2−2 −2−2 2−1 0 0 −2−1 −2−2 2−2 2−2 −2−2

d 2−1 2−1 0 −2−2 −2−2 2−2 2−2 0 0 0 0 2−2 −2−2 2−2 −2−2

e 0 2−2 2−2 −2−1 2−1 −2−2 −2−2 −2−2 −2−2 0 0 −2−2 −2−2 0 0

f 2−1 −2−2 2−2 0 0 −2−2 −2−2 −2−2 2−2 2−1 0 2−2 2−2 0 0
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