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Abstract. Password-Authenticated Key Exchange (PAKE) has received deep attention in the last few years, with
a recent improvement by Katz and Vaikuntanathan, and their one-round protocols: the two players just have to
send simultaneous �ows to each other, that depend on their own passwords only, to agree on a shared high entropy
secret key. To this aim, they followed the Gennaro and Lindell's approach, with a new kind of Smooth-Projective
Hash Functions (SPHFs). They came up with the �rst concrete one-round PAKE, secure in the Bellare, Pointcheval,
and Rogaway's model, but at the cost of a simulation-sound NIZK, which makes the overall construction not really
e�cient.
This paper follows their path with a new e�cient instantiation of SPHF on Cramer-Shoup ciphertexts. It then leads
to the design of the most e�cient PAKE known so far: a one-round PAKE with two simultaneous �ows consisting
of 6 group elements each only, in any DDH-group without any pairing. We thereafter show a generic construction
for SPHFs, in order to check the validity of complex relations on encrypted values. This allows to extend this
work on PAKE to the more general family of protocols, termed Langage-Authenticated Key Exchange (LAKE) by
Ben Hamouda, Blazy, Chevalier, Pointcheval, and Vergnaud, but also to blind signatures. We indeed provide the
most e�cient blind Waters' signature known so far.
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1 Introduction

Authenticated Key Exchange protocols are quite important primitives for practical applications, since
they enable two parties to generate a shared high entropy secret key, to be later used with symmetric primi-
tives in order to protect communications, while interacting over an insecure network under the control of an
adversary. Various authentication means have been proposed, and the most practical one is de�nitely a shared
low entropy secret, or a password they can agree on over the phone, hence PAKE, for Password-Authenticated
Key Exchange. The most famous instantiation has been proposed by Bellovin and Merritt [BM92], EKE for
Encrypted Key Exchange, which simply consists of a Di�e-Hellman key exchange [DH76], where the �ows
are symmetrically encrypted under the shared password. Overall, the equivalent of 2 group elements have to
be sent.

A �rst formal security model was proposed by Bellare, Pointcheval and Rogaway [BPR00] (the BPR
model), to deal with o�-line dictionary attacks. It essentially says that the best attack should be the on-line
exhaustive search, consisting in trying all the passwords by successive executions of the protocol with the
server. Several variants of EKE with BPR-security proofs have been proposed in the ideal-cipher model or the
random-oracle model [Poi12]. Katz, Ostrovsky and Yung [KOY01] proposed the �rst practical scheme (KOY),
provably secure in the standard model under the DDH assumption. This is a 3-�ow protocol, with the client
sending 5 group elements plus a veri�cation key and a signature, for a one-time signature scheme, and the
server sending 5 group elements. It has been generalized by Gennaro and Lindell [GL03] (GL), making use of
smooth projective hash functions.

Smooth Projective Hash Functions (SPHFs) were introduced by Cramer and Shoup [CS02] in order
to achieve IND-CCA security from IND-CPA encryption schemes, which led to the �rst e�cient IND-CCA
encryption scheme provably secure in the standard model under the DDH assumption [CS98]. They can be
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seen as a kind of implicit designated-veri�er proofs of membership [ACP09, BPV12]. Basically, SPHFs are
families of pairs of functions (Hash,ProjHash) de�ned on a language L. These functions are indexed by a pair
of associated keys (hk, hp), where hk, the hashing key, can be seen as the private key and hp, the projection
key, as the public key. On a word W ∈ L, both functions should lead to the same result: Hash(hk,L,W ) with
the hashing key and ProjHash(hp,L,W,w) with the projection key only but also a witness w that W ∈ L. Of
course, if W 6∈ L, such a witness does not exist, and the smoothness property states that Hash(hk,L,W ) is
independent of hp. As a consequence, even knowing hp, one cannot guess Hash(hk,L,W ).

One-Round PAKE in the BPR Model. Gennaro and Lindell [GL03] (GL) extended the initial de�nition
of smooth projective hash functions for an application to PAKE. Their approach has thereafter been adapted
to the Universal Composability (UC) framework by Canetti et al. [CHK+05], but for static corruptions only.
It has been improved by Abdalla, Chevalier and Pointcheval [ACP09] to resist to adaptive adversaries. But
the 3-�ow KOY protocol remains the most e�cient protocol BPR-secure under the DDH assumption.

More recently, the ultimate step for PAKE has been achieved by Katz and Vaikuntanathan [KV11] (KV),
who proposed a practical one-round PAKE, where the two players just have to send simultaneous �ows to
each other, that depend on their own passwords only. More precisely, each �ow just consists of an IND-CCA
ciphertext of the password and an SPHF projection key for the correctness of the partner's ciphertext (the
word is the ciphertext and the witness consists of the random coins of the encryption). The shared secret
key is eventually the product of the two hash values, as in the KOY and GL protocols. Because of the
simultaneous �ows, one �ow cannot explicitly depend on the partner's �ow, which makes impossible the use
of the Gennaro and Lindell SPHF (later named GL-SPHF), in which the projection key depends on the word
(the ciphertext here). On the other hand, the adversary can wait for the player to send his �ow �rst, and then
adapt its message, which requires stronger security notions than the initial Cramer and Shoup SPHF (later
named CS-SPHF), in which the smoothness does not hold anymore if the word is generated after having seen
the projection key. This led Katz and Vaikuntanathan to provide a new de�nition for SPHF (later named
KV-SPHF), where the projection key depends on the hashing key only, and the smoothness holds even if the
word is chosen after having seen the projection key. Variations between CS-SPHF, GL-SPHF and KV-SPHF
are in the way one computes the projection key hp from the hashing key hk and the word W , but also in the
smoothness property, according to the freedom the adversary has to choose W , when trying to distinguish
the hash value from a random value. As a side note, while CS-SPHF is close to the initial de�nition, useful for
converting an IND-CPA encryption scheme to IND-CCA, GL-SPHFs and KV-SPHFs did prove quite useful too:
we will use KV-SPHFs for our one-round PAKE protocols and a GL-SPHF for the blind signature scheme.

As just explained, the strongest de�nition of SPHF, which gives a lot of freedom to the adversary, is
the recent KV-SPHF. However, previous SPHFs known on Cramer-Shoup ciphertexts were GL-SPHFs only.
For their one-round PAKE, Katz and Vaikuntanathan did not manage to construct such a KV-SPHF for
an e�cient IND-CCA encryption scheme. They then suggested to use the Naor and Yung approach [NY90],
with an ElGamal-like encryption scheme and a simulation-sound non-interactive zero-knowledge (SS-NIZK)
proof [Sah99]. Such an SS-NIZK proof is quite costly in general. They suggested to use Groth-Sahai [GS08]
proofs in bilinear groups and the linear encryption [BBS04] which leads to a PAKE secure under the DLin
assumption with a ciphertext consisting of 66 group elements and a projection key consisting of 4 group
elements. As a consequence, the two players have to send 70 group elements each, which is far more costly
than the KOY protocol, but it is one-round only.

More recent results on SS-NIZK proofs or IND-CCA encryption schemes, in the discrete logarithm setting,
improved on that: Libert and Yung [LY12] proposed a more e�cient SS-NIZK proof of plaintext equality in the
Naor-Yung-type cryptosystem with ElGamal-like encryption. The proof can be reduced from 60 to 22 group
elements and the communication complexity of the resulting PAKE is decreased to 32 group elements per user.
Jutla and Roy [JR12] proposed relatively-sound NIZK proofs as an e�cient alternative to SS-NIZK proofs to
build new publicly-veri�able IND-CCA encryption schemes. They can then decrease the PAKE communication
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complexity to 20 group elements per user. In any case, one can remark that all one-round PAKE schemes
require pairing computations.

Language-Authenticated Key Exchange. A generalization of AKE protocols has been recently proposed,
so-called Language-Authenticated Key Exchange (LAKE) [BBC+13]: it allows two users, Alice and Bob, each
owning a word in a speci�c language, to agree on a shared high entropy secret if each user knows a word in
the language the other thinks about. More precisely, they �rst both agree on public parameters pub, Bob will
think about priv for his expected Alice's value of priv, Alice will do the same with priv ′ for Bob's private value
priv′; eventually, if priv = priv and priv ′ = priv′, and if they both know words in the appropriate languages,
then the key agreement will succeed. In case of failure, no information should leak to the players about the
reason of failure, except that the inputs did not satisfy the relations, or the languages were not consistent.
Eavesdroppers do not even learn the outcome.

This formalism encompasses PAKE, and their �rst construction follows the GL approach for PAKE: each
player commits to the private values (his own value priv, and his expected partner's value priv ′) as well as
his own word, and projection keys are sent to compute random values that will be the same if and only if
everything is consistent. To achieve one-round LAKE, one also needs KV-SPHF on ciphertexts for plaintext-
equality tests (equality of the private values and expected private values) and for language-membership.

Achievements. Our main contribution is the description of an instantiation of KV-SPHF on Cramer-Shoup
ciphertexts, and thus the �rst KV-SPHF on an e�cient IND-CCA encryption scheme. We thereafter use it
within the above KV framework for one-round PAKE [KV11], in the BPR security model. Our scheme just
consists of 6 group elements in each direction under the DDH assumption (4 for the ciphertext, and 2 for
the projection key). This has to be compared with the 20 group elements, or more, in the best constructions
discussed above, which all need pairing-friendly groups and pairing computations, or with the KOY protocol
that has a similar complexity but with three sequential �ows.

We also present the �rst GL-SPHFs/KV-SPHFs able to handle multi-exponentiation equations without
requiring pairings. Those SPHFs are thus quite e�cient. They lead to two applications. First, our new
KV-SPHFs enable several e�cient instantiations of one-round Language-Authenticated Key-Exchange (LAKE)
protocols [BBC+13]. Our above one-round PAKE scheme is actually a particular case of a more general
one-round LAKE scheme, for which we provide a BPR-like security model and a security proof. Our gen-
eral constructions also cover Credential-Authenticated Key Exchange [CCGS10]. Second, thanks to a new
GL-SPHF, we improve on the blind signature scheme presented in [BPV12], from 5`+ 6 group elements in G1

and 1 group element in G2 to 3` + 7 group elements in G1 and 1 group element in G2, for an `-bit message
to be blindly signed with a Waters signature [Wat05]. Our protocol is round-optimal, since it consists of two
�ows, and leads to a classical short Waters signature.

As a side contribution, we introduce a new generic framework to construct SPHFs aiming at making
easier the construction and the proof of SPHFs on complex languages. Using this framework, we were able to
construct SPHFs for any language handled by the Groth-Sahai NIZK proofs, and so for any NP-language.
Outline of the Paper. In Section 2, we �rst revisit the di�erent de�nitions for SPHFs proposed in [CS02,
GL03, KV11], denoted respectively CS-SPHFs, GL-SPHFs and KV-SPHFs. While CS-SPHF was the initial
de�nition useful for converting an IND-CPA encryption scheme to IND-CCA, GL-SPHFs and KV-SPHFs did
prove quite useful too: we will use a KV-SPHF for our PAKE/LAKE application and a GL-SPHF for the blind
signature. In Section 2.4, we introduce our main contribution, the construction of a KV-SPHF on Cramer-
Shoup ciphertexts. This KV-SPHF leads to the construction of our e�cient one-round PAKE in Section 2.5.
In Section 3, we present a simpli�ed version of our generic framework (fully described in Appendix D). We
then show our e�cient SPHFs on multi-exponentiation equations and on bit encryption, without pairings, in
Section 4. Finally, in Section 5, we introduce our two other constructions based on these SPHFs: our one-round
LAKE and our blind signature scheme.
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2 New SPHF on Cramer-Shoup Ciphertexts and PAKE

In this section, we �rst recall the de�nitions of SPHFs and present our classi�cation based on the dependence
between words and keys. According to this classi�cation, there are three types of SPHFs: the (almost) ini-
tial Cramer and Shoup [CS02] type (CS-SPHF) introduced for enhancing an IND-CPA encryption scheme to
IND-CCA, the Gennaro and Lindell [GL03] type (GL-SPHF) introduced for PAKE, and the Katz and Vaikun-
tanathan [KV11] type (KV-SPHF) introduced for one-round PAKE.

Then, after a quick review on the Cramer-Shoup encryption scheme, we introduce our new KV-SPHF
on Cramer-Shoup ciphertexts which immediately leads to a quite e�cient instantiation of the Katz and
Vaikuntanathan one-round PAKE [KV11], secure in the BPR model.

2.1 General De�nition of SPHFs

Let us consider a language L ⊆ Set, and some global parameters for the SPHF, assumed to be in the common
random string (CRS). The SPHF system for the language L is de�ned by four algorithms:

� HashKG(L) generates a hashing key hk for the language L;
� ProjKG(hk,L, C) derives the projection key hp, possibly depending on the word C;
� Hash(hk,L, C) outputs the hash value of the word C from the hashing key;
� ProjHash(hp,L, C, w) outputs the hash value of the word C from the projection key hp, and the witness
w that C ∈ L.

The correctness of the SPHF assures that if C ∈ L with w a witness of this membership, then the two ways
to compute the hash values give the same result: Hash(hk,L, C) = ProjHash(hp,L, C, w). On the other hand,
the security is de�ned through the smoothness, which guarantees that, if C 6∈ L, the hash value is statistically
indistinguishable from a random element, even knowing hp. For that, we use the classical notion of statistical
distance recalled in Appendix A.2.

2.2 Smoothness Adaptivity and Key Word-Dependence

This paper will exploit the very strong notion KV-SPHF. Informally, while the GL-SPHF de�nition allows the
projection key hp to depend on the word C, the KV-SPHF de�nition prevents the projection key hp from
depending on C, as in the original CS-SPHF de�nition. In addition, the smoothness should hold even if C is
chosen as an arbitrary function of hp. This models the fact the adversary can see hp before deciding which
word C it is interested in. More formal de�nitions follow, where we denote Π the range of the hash function.

CS-SPHF. This is almost1 the initial de�nition of SPHF, where the projection key hp does not depend on
the word C (word-independent key), but the word C cannot be chosen after having seen hp for breaking the
smoothness (non-adaptive smoothness). More formally, a CS-SPHF is ε-smooth if ProjKG does not use its
input C and if, for any C ∈ Set\L, the two following distributions are ε-close:

{(hp, H) | hk $← HashKG(L); hp← ProjKG(hk,L,⊥); H ← Hash(hk,L, C)}

{(hp, H) | hk $← HashKG(L); hp← ProjKG(hk,L,⊥); H
$← Π}.

GL-SPHF. This is a relaxation, where the projection key hp can depend on the word C (word-dependent
key). More formally, a GL-SPHF is ε-smooth if, for any C ∈ Set\L, the two following distributions are ε-close:

{(hp, H) | hk $← HashKG(L); hp← ProjKG(hk,L, C); H ← Hash(hk,L, C)}

{(hp, H) | hk $← HashKG(L); hp← ProjKG(hk,L, C); H
$← Π}.

1 In the initial de�nition, the smoothness was de�ned for a word C randomly chosen from Set\L, and not necessarily for any
such word.
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KV-SPHF. This is the strongest SPHF, in which the projection key hp does not depend on the word C
(word-independent key) and the smoothness holds even if C depends on hp (adaptive smoothness). More
formally, a KV-SPHF is ε-smooth if ProjKG does not use its input C and, for any function f onto Set\L, the
two following distributions are ε-close:

{(hp, H) | hk $← HashKG(L); hp← ProjKG(hk,L,⊥); H ← Hash(hk,L, f(hp))}

{(hp, H) | hk $← HashKG(L); hp← ProjKG(hk,L,⊥); H
$← Π}.

Remark 1. One can see that a perfectly smooth (i.e., 0-smooth) CS-SPHF is also a perfectly smooth KV-SPHF,
since each value H has exactly the same probability to appear, and so adaptively choosing C does not increase
the above statistical distance. However, as soon as a weak word C can bias the distribution, f can exploit it.

2.3 SPHFs on Languages of Ciphertexts

We could cover languages as general as those proposed in [BBC+13], but for the sake of clarity, and since
the main applications need some particular cases only, we focus on SPHFs for languages of ciphertexts, whose
corresponding plaintexts verify some relations. We denote these languages LofCfull-aux.

The parameter full-aux will parse in two parts (crs, aux): the public part crs, known in advance, and the
private part aux, possibly chosen later. More concretely, crs represents the public values: it will de�ne the
encryption scheme (and will thus contain the global parameters and the public key of the encryption scheme)
with the global format of both the tuple to be encrypted and the relations it should satisfy, and possibly
additional public coe�cients; while aux represents the private values: it will specify the relations, with more
coe�cients or constants that will remain private, and thus implicitly known by the sender and the receiver
(as the expected password, for example, in PAKE protocols).

To keep aux secret, hp should not leak any information about it. We will thus restrict HashKG and ProjKG
not to use the parameter aux, but just crs. This is a stronger restriction than required for our purpose, since
one can use aux without leaking any information about it. But we already have quite e�cient instantiations,
and it makes everything much simpler to present.

2.4 SPHFs on Cramer-Shoup Ciphertexts

Labeled Cramer-Shoup Encryption Scheme (CS). The CS labeled encryption scheme is recalled in Ap-
pendix A.3. We brie�y review it here. We combine all the public information in the encryption key. We thus
have a group G of prime order p, with two independent generators (g1, g2)

$← G2, a hash function HK
$← H

from a collision-resistant hash function family onto Z∗p, and a reversible mapping G from {0, 1}n to G. From
5 scalars (x1, x2, y1, y2, z)

$← Zp5, one also sets c = gx11 g
x2
2 , d = gy11 g

y2
2 , and h = gz1 . The encryption key is

ek = (G, g1, g2, c, d, h,HK), while the decryption key is dk = (x1, x2, y1, y2, z). For a message m ∈ {0, 1}n,
with M = G(m) ∈ G, the labeled Cramer-Shoup ciphertext is:

C def= CS(`, ek,M ; r) def= (u = (gr1, g
r
2), e = M · hr, v = (cdξ)r),

with ξ = HK(`,u, e) ∈ Z∗p. If one wants to encrypt a vector of group elements (M1, . . . ,Mn), all at once
in a non-malleable way, one computes all the individual ciphertexts with a common ξ = HK(`,u1, . . . ,un,
e1, . . . , en) for v1, . . . , vn. Hence, everything done on tuples of ciphertexts will work on ciphertexts of vectors.
In addition, the Cramer-Shoup labeled encryption scheme on vectors is IND-CCA under the DDH assumption.

The (known) GL-SPHF for CS. Gennaro and Lindell [GL03] proposed an SPHF on labeled Cramer-Shoup

ciphertexts: the hashing key just consists of a random tuple hk = (η, θ, µ, ν)
$← Z4

p. The associated projection

key, on a ciphertext C = (u = (u1, u2) = (gr1, g
r
2), e = G(m) · hr, v = (cdξ)r), is hp = gη1g

θ
2h

µ(cdξ)ν ∈ G. Then,
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� Players U and U ′ both use ek = (G, g1, g2, c, d, h,HK);

� U , with password pw, chooses hk = (η1, η2, θ, µ, ν)
$← Z5

p,
computes hp = (hp1 = gη11 gθ2h

µcν , hp2 = gη21 dν), sets ` = (U,U ′, hp),
and generates C = (u = (gr1 , g

r
2), e = G(pw) · hr, v = (cdξ)r) with r a random scalar in Zp and ξ = HK(`,u, e).

U sends hp ∈ G2 and C ∈ G4 to U ′;
� Upon receiving hp′ = (hp′1, hp

′
2) ∈ G2 and C′ = (u′ = (u′1, u

′
2), e

′, v′) ∈ G4 from U ′, U sets `′ = (U ′, U, hp′) and
ξ′ = HK(`′,u′, e′) and computes

skU = u′1
(η1+ξ

′η2)u′2
θ
(e′/G(pw))µv′ν · (hp′1hp

′
2
ξ
)r.

Fig. 1. One-Round PAKE based on DDH

one can compute the hash value in two di�erent ways, for the language LofCek,m of the valid ciphertexts of
M = G(m), where crs = ek is public but aux = m is kept secret:

H def= Hash(hk, (ek,m), C) def= uη1u
θ
2(e/G(m))µvν

= hpr def= ProjHash(hp, (ek,m), C, r) def= H ′.

A (new) KV-SPHF for CS. We give here the description of the �rst known KV-SPHF on labeled Cramer-

Shoup ciphertexts: the hashing key just consists of a random tuple hk = (η1, η2, θ, µ, ν)
$← Z5

p; the associated

projection key is the pair hp = (hp1 = gη11 g
θ
2h

µcν , hp2 = gη21 d
ν) ∈ G2. Then one can compute the hash value

in two di�erent ways, for the language LofCek,m of the valid ciphertexts of M = G(m) under ek:

H = Hash(hk, (ek,m), C) def= u
(η1+ξη2)
1 uθ2(e/G(m))µvν

= (hp1hp
ξ
2)
r def= ProjHash(hp, (ek,m), C, r) = H ′.

Theorem 2. The above SPHF is a perfectly smooth ( i.e., 0-smooth) KV-SPHF.

The proof can be found in Section D.3 as an illustration of our new framework.

2.5 An E�cient One-Round PAKE

Review of the Katz and Vaikuntanathan's PAKE. As explained earlier, Katz and Vaikuntanathan
recently proposed a one-round PAKE in [KV11]. Their general framework follows Gennaro and Lindell [GL03]
approach: each player sends an encryption of the password, and then uses an SPHF on the partner's ciphertext
to check whether it actually contains the same password. The two hash values are multiplied to produce the
session key. If the encrypted passwords are the same, the di�erent ways to compute the hash values (Hash and
ProjHash) give the same results. If the passwords di�er, the smoothness makes the values computed by each
player independent. To this aim, the authors need an SPHF on a labeled IND-CCA encryption scheme. To allow
a SPHF-based PAKE scheme to be one-round, the ciphertext and the SPHF projection key for verifying the
correctness of the partner's ciphertext should be sent together, before having seen the partner's ciphertext: the
projection key should be independent of the ciphertext. In addition, the adversary can wait until it receives
the partner's projection key before generating the ciphertext, and thus a stronger smoothness is required.
This is exactly why we need a KV-SPHF in this one-round PAKE framework.

Our Construction. Our KV-SPHF on Cramer-Shoup ciphertexts can be used in the Katz and Vaikun-
tanathan framework for PAKE [KV11]. It leads to the most e�cient PAKE known so far, and it is one-round.
Each user indeed only sends 6 elements of G (see Figure 1), instead of 70 elements of G for the Katz and
Vaikuntanathan's instantiation using a Groth-Sahai SS-NIZK [GS08], or 20 group elements for the Jutla and
Roy's [JR12] improvement using a relatively-sound NIZK.
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The formal security result follows from the Theorem 4 in Section 5.1. We want to insist that our con-
struction does not need pairing-friendly groups, and the plain DDH assumption is enough, whereas the recent
constructions made heavy use of pairing-based proofs à la Groth-Sahai. Under the DLin assumption (which
is a weaker assumption in any group), still without requiring pairing-friendly groups, our construction would
make each user to send 9 group elements only.

3 Generic Framework for SPHFs

3.1 Introduction

In Appendix D, we propose a formal framework for SPHFs using a new notion of graded rings, derived
from [GGH12]. It enables to deal with cyclic groups, bilinear groups (with symmetric or asymmetric pairings),
or even groups with multi-linear maps. In particular, it helps to construct concrete SPHFs for quadratic pairing
equations over ciphertexts, which enable to construct e�cient LAKE [BBC+13] for any language handled by
the Groth-Sahai NIZK proofs, and so for any NP-language (see Section 5.1).

However, we focus here on cyclic groups, with the basic intuition only, and provide some illustrations.
While we keep the usual multiplicative notation for the cyclic group G, we use an extended notation: r� u =
u�r = ur, for r ∈ Zp and u ∈ G, and u⊕v = u ·v, for u, v ∈ G. Basically, ⊕ and � correspond to the addition
and the multiplication in the exponents, that are thus both commutative. We then extend this notation in a
natural way when working on vectors and matrices.

Our goal is to deal with languages of ciphertexts LofCfull-aux: we assume that crs is �xed and we write
Laux = LofCfull-aux ⊆ Set where full-aux = (crs, aux).

3.2 Language Representation

For a language Laux, we assume there exist two positive integers k and n, a function Γ : S et 7→ Gk×n,
and a family of functions Θaux : S et 7→ G1×n, such that for any word C ∈ S et, (C ∈ Laux) ⇐⇒ (∃λ ∈
Z1×k
p such that Θaux(C) = λ� Γ (C)). In other words, we assume that C ∈ Laux, if and only if, Θaux(C) is a

linear combination of (the exponents in) the rows of some matrix Γ (C). For a KV-SPHF, Γ is supposed to be
a constant function (independent of the word C). Otherwise, one gets a GL-SPHF.

We furthermore require that a user, who knows a witness w of the membership C ∈ Laux, can e�ciently
compute the above linear combination λ. This may seem a quite strong requirement but this is actually
veri�ed by very expressive languages over ciphertexts such as ElGamal, Cramer-Shoup and variants.

We brie�y illustrate it on our KV-SPHF on CS: C = (u1 = gr1, u2 = gr2, e = M ·hr, v = (cdξ)r), with k = 2,
aux = M and n = 5:

Γ =

(
g1 1 g2 h c
1 g1 1 1 d

)
λ = (r, rξ)

λ� Γ = (gr1, g
rξ
1 , g

r
2, h

r, (cdξ)r)

ΘM (C) = (u1, u
ξ
1, u2, e/M, v).

Essentially, one tries to make the �rst columns of Γ (C) and the �rst components of Θaux(C) to completely

determine λ. In our illustration, the �rst two columns with u1 = gr1 and u
ξ
1 = grξ1 really imply λ = (r, rξ), and

the three last columns help to check the language membership: we want u2 = gr2, e/M = hr, and v = (cdξ)r,
with the same r as for u1.

3.3 Smooth Projective Hash Function

With the above notations, the hashing key is a vector hk = α = (α1, . . . , αn)ᵀ
$← Znp , while the projection key

is, for a word C, hp = γ(C) = Γ (C) � α ∈ Gk (if Γ depends on C, this leads to a GL-SPHF, otherwise, one
gets a KV-SPHF). Then, the hash value is:

Hash(hk, full-aux, C) def= Θaux(C)�α = λ� γ(C) def= ProjHash(hp, full-aux, C, w).
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Our above Γ , λ, and ΘM immediately lead to our KV-SPHF on CS from the Section 2.4: with hk =
(η1, η2, θ, µ, ν)

$← Z5
p, the product with Γ leads to: hp = (hp1 = gη11 g

θ
2h

µcν , hp2 = gη21 d
ν) ∈ G2, and

H = Hash(hk, (ek,m), C) def= u
(η1+ξη2)
1 uθ2(e/G(m))µvν

= (hp1hp
ξ
2)
r def= ProjHash(hp, (ek,m), C, r) = H ′.

The generic framework detailed in Appendix D also contains a security analysis that proves the above generic
SPHF is perfectly smooth: Intuitively, for a word C 6∈ Laux and a projection key hp = γ(C) = Γ (C) � α,
the vector Θaux(C) is not in the linear span of Γ (C), and thus H = Θaux(C) � α is independent from
Γ (C)�α = hp.

4 Concrete Constructions of SPHFs

In this section, we illustrate more our generic framework, by constructing more evolved SPHFs without pair-
ings. More complex constructions of SPHFs, namely for any language handled by the Groth-Sahai NIZK proofs,
are detailed in Appendix D.

4.1 KV-SPHF for Linear Multi-Exponentiation Equations

We present several instantiations of KV-SPHFs, in order to illustrate our framework, but also to show that our
one-round PAKE protocol from Section 2.5 can be extended to one-round LAKE [BBC+13]. In PAKE/LAKE, we
use SPHFs to prove that the plaintexts associated with some ElGamal-like ciphertexts verify some relations.
The communication complexity of these protocols depends on the ciphertexts size and of the projection keys
size. We �rst focus on ElGamal ciphertexts, and then explain how to handle Cramer-Shoup ciphertexts.

Notations. We work in a group G of prime order p, generated by g, in which we assume the DDH assumption
to hold. We de�ne ElGamal encryption scheme with encryption key ek = (g, h = gx). We are interested in
languages on the ciphertexts C1,i = (u1,i = gr1,i , e1,i = hr1,i · Xi), for X1, . . . , Xn1 ∈ G, and C2,j = (u2,j =
gr2,j , e2,j = hr2,j · gyj ), for y1, . . . , yn2 ∈ Zp, such that:

n1∏
i=1

Xai
i ·

n2∏
j=1

A
yj
j = B, with crs = (p,G, ek, A1, . . . , An2)

aux = (a1, . . . , an1 , B) ∈ Zn1
p ×G.

(1)

We insist that, here, the elements (A1, . . . , An2) ∈ Gn2 are known in advance, contrarily to equation (2)
in Appendix D.4, where they are in aux and make the SPHF to use pairings.

In the following, i and j will always range from 1 to n1 and from 1 to n2 respectively in all the products∏
i,
∏
j and tuples (·)i, (·)j . We can de�ne the following elements, and namely the (2n2 + 1, 2n2 + 2)-matrix

Γ that uses the knowledge of the elements (Aj)j :

Γ =



g 1 . . . 1 1 . . . 1 h

1
...
1

g

1
. . .
1
g

h

1
. . .
1
h

1
...
1

1
...
1

1
g

1
. . .
1
g

A−11
...

A−1n2



Θaux(C) =
(∏

i u
ai
1,i, (u2,j)j , (e2,j)j ,

∏
i e
ai
1,i/B

)
λ = (

∑
i air1,i, (r2,j)j , (yj)j)

λ� Γ =
(
g
∑
i air1,i , (gr2,j )j , (h

r2,j · gyj )j , h
∑
i air1,i/

∏
j A

yj
j

)

We recall that in the matrix, 1 is the neutral element in G and can thus be ignored. When one considers
the discrete logarithms, they become 0, and thus the matrix is triangular. The three diagonal blocks impose
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the value of λ, and the last column de�nes the relation: the last component of Θaux(C) is
∏
i e
ai
1,i/B =

h
∑
i air1,i ·

∏
iX

ai
i /B, which is equal to the last component of λ � Γ = h

∑
i air1,i/

∏
j A

yj
j , if and only if the

relation (1) is satis�ed. It thus leads to the following KV-SPHF, with hp1 = gηhν , (hp2,j = gθjhµj )j , and

(hp3,j = gµjA−νj )j , for hk = (η, (θj)j , (µj)j , ν):

H =
∏

i
(uη1,ie

ν
1,i)

ai ·
∏

j
(u
θj
2,je

µj
2,j)/B

ν = hp
∑
i air1,i

1 ·
∏

j
(hp

r2,j
2,j · hp

yj
3,j) = H ′.

As a consequence, the ciphertexts and the projection keys (which have to be exchanged in a protocol) globally
consist of 2n1 + 4n2 + 1 elements from G.

Ciphertexts with Randomness Reuse. A �rst improvement consists in using multiple independent en-
cryption keys for encrypting the yj 's: ek2,j = (g, h2,j = gx2,j ), for j = 1, . . . , n2. This allows to reuse the same
random coins [BBS03]. We are interested in languages on the ciphertexts (C1,i = (u1,i = gr1,i , e1,i = hr1,i ·Xi))i,
for (Xi)i ∈ Gn1 , with (r1,i)i ∈ Zn1

p , and C2 = (u2 = gr2 , (e2,j = hr22,j · gyj )j), for (yj)j ∈ Zn2
p , still satisfying

the same relation (1). This improves on the length of the ciphertexts, from 2n1 + 2n2 group elements in G to
2n1 + n2 + 1. The matrix Γ can then be compressed into:

Γ =


g 1 1 . . . 1 h

1 g h2,1 . . . h2,n2 1

1
...
1

1
...
1

g

1
. . .
1
g

A−11
...

A−1n2


Θaux(C) =

(∏
i u

ai
1,i, u2, (e2,j)j ,

∏
i e
ai
1,i/B

)
λ = (

∑
i air1,i, r2, (yj)j)

λ� Γ = (g
∑
i air1,i , gr2 , (hr22,jg

yj )j , h
∑
i air1,i/

∏
j A

yj
j )

where again, because of the diagonal blocks in Γ , λ is implied by all but last components of Θaux(C). The last
component of Θaux(C) is then

∏
i e
ai
1,i/B =

∏
i h

air1,iXai
i /B and thus equal to the last component of λ � Γ ,

multiplied by
∏
iX

ai
i ·
∏
j A

yj
j /B that is equal to 1 if and only if the relation (1) is satis�ed. It thus leads to

the following KV-SPHF, with (hp1 = gηhν , hp2 = gθ ·
∏
j h

µj
2,j , and (hp3,j = gµjA−νj )j , for hk = (η, θ, (µj)j , ν):

H =
∏

i
(uη1,ie

ν
1,i)

ai ·
∏

j
e
µj
2,j · u

η
2/B

ν = hp
∑
i air1,i

1 · hpr22 ·
∏

j
hp

yj
3,j = H ′.

Globally, the ciphertexts and the projection keys consist of 2n1 + 2n2 + 3 elements from G. This has to be
compared with 2n1 + 4n2 + 1 elements from G in the previous construction.

Moving all the constant values from aux to crs. In some cases, all the constant values, Aj and ai can be
known in advance and public. The matrix Γ can then exploit their knowledge. We apply the randomness-reuse
technique for the whole ciphertext, for both (Xi)i and (yj)j , with independent encryption keys (h1,i)i and
(h2,j)j in G. A unique random r produces u = gr, and (e1,i)i and (e2,j)j . This reduces the length of the
ciphertext to n1 + n2 + 1 group elements in G, but also the size of the matrix Γ :

Γ =


g h2,1 . . . h2,n2

∏
i h

ai
1,i

1
...
1

g

1
. . .
1
g

A−11
...

A−1n2

 Θaux(C) =
(
u, (e2,j)j ,

∏
i e
ai
1,i/B

)
λ = (r, (yj)j)

λ� Γ = (gr, (hr2,jg
yj )j ,

∏
i h

air
1,i /

∏
j A

yj
j )

Projection keys become more compact, with only n2 + 1 group elements in G: hp1 = gη1 ·
∏
j h

µj
2,j · (

∏
i h

ai
1,i)

ν ,

and (hp2,j = gµjA−νj )j , for hk = (η, (µj)j , ν): H = uη ·
∏
ie
νai
1,i ·

∏
je
µj
2,j/B

ν = hpr1 ·
∏
jhp

yj
2,j = H ′. Globally, the

ciphertexts and the projection keys consist of n1 + 2n2 + 2 elements from G.
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4.2 From ElGamal to Cramer-Shoup Encryption

In order to move from ElGamal ciphertexts to Cramer-Shoup ciphertexts, if one already has Γ , Θaux and Λ,
to guarantee that the ElGamal plaintexts satisfy a relation, one simply has to make a bigger matrix, diagonal
per blocks, with blocks Γ and smallers (Γk)k for every ciphertext (uk, u

′
k, ek, vk)k, where

Γk =

(
g 1 g′ c
1 g 1 d

)
λk = (rk, rkξk)

ΘM (Ck) = (uk, u
ξk
k , u

′
k, vk)

λk � Γk = (grk , grkξk , g′rk , (cdξk)rk)

The initial matrix Γ guarantees the relations on the ElGamal pairs (uk, ek), and the matrices Γk add the
internal relations on the Cramer-Shoup ciphertexts. In the worst case, hk is increased by 4n scalars and hp by
2n group elements, for n ciphertexts. But some more compact matrices can be obtained in many cases, with
much shorter hashing and projection keys, by merging some lines or columns in the global matrix. But this is
a case by case optimization.

4.3 Generalizations

The SPHF constructions from this section are all done without requiring any pairing, but are still KV-SPHF,
allowing us to handle non-quadratic multi-exponentiation equations without pairings. To further extend our
formalism, we describe in the next section a concrete application to blind signatures (while with a GL-SPHF),
and we present more languages in Appendix D.4.

However, as above for Cramer-Shoup ciphertexts, if one wants to satisfy several equations at a time, one
just has to �rst consider them independently and to make a global matrix with each sub-language-matrix in a
block on the diagonal. The hashing keys and the projection keys are then concatenated, and the hash values
are simply multiplied. Optimizations can be possible, as shown in Appendix C for the SPHF involved in the
blind signature.

4.4 GL-SPHF on Bit Encryption

As shown in Appendix D, our general framework allows to construct KV-SPHFs for any language handled by
the Groth-Sahai NIZK proofs. But, while these KV-SPHFs encompass the language of ciphertexts encrypting
a bit, they require pairing evaluations. We show here a more e�cient GL-SPHF for bit encryption, which does
not need pairings.

Let us consider an ElGamal ciphertext C = (u = gr, e = hrgy), in which one wants to prove that y ∈ {0, 1}.
We can de�ne the following matrix that depends on C, hence a GL-SPHF:

Γ (C) =

g h 1 1
1 g u e/g
1 1 g h

 Θaux(C) = (u, e, 1, 1) λ = (r, y,−ry)
λ� Γ (C) = (gr, hrgy, (u/gr)y, (e/ghr)y)

Because of the triangular block in Γ (C), one sees that Θaux(C) = λ � Γ (C) if and only if gy(y−1) = 1,
and thus that y ∈ {0, 1}. With hp1 = gνhθ, hp2 = gθuη(e/g)λ, and hp3 = gηhλ, for hk = (ν, θ, η, λ):
H = uνeθ = hpr1 · hp

y
2/hp

ry
3 = H ′.

5 More Applications of SPHFs

5.1 One-Round LAKE

Since we have shown that our framework allows to design KV-SPHFs for complex languages, we extend our
PAKE protocol to LAKE [BBC+13]. To this aim, we provide a new security model, inspired from BPR [BPR00]
and a complete security proof, which implies the security of our PAKE protocol from Section 2.5.
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Review of Language-Authenticated Key Exchange. LAKE is a general framework [BBC+13] that
generalizes AKE primitives: each player U owns a word W in a certain language L and expects the other
player to own a word W ′ in a language L′. If everything is compatible (i.e., the languages are the expected
languages and the words are indeed in the appropriate languages), the players compute a common high-entropy
secret key, otherwise they learn nothing about the partner's values. In any case, external eavesdroppers do
not learn anything, even not the outcome of the protocol: did it succeed or not?

More precisely, we assume the two players have initially agreed on a common public part pub for the
languages, but then they secretly parametrize the languages with the private parts priv: Lpub,priv is the language
they want to use, and Lpub,priv ′ is the language they assume the other player will use. In addition, each player
owns a word W in his language. We will thus have to use SPHFs on ciphertexts on W , priv and priv ′, with a
common crs = (ek, pub) and aux with the private parameters. For simple languages, this encompasses PAKE
and Veri�er-based PAKE. We refer to [BBC+13] for more applications of LAKE.

A New Security Model for LAKE. The �rst security model for LAKE [BBC+13] has been given in the
UC framework [Can01], as an extension of the UC security for PAKE [CHK+05]. In this paper, we propose
an extension of the PAKE security model presented by Bellare, Pointcheval, and Rogaway [BPR00] model for
LAKE: the adversary A plays a �nd-then-guess game against n players (Pi)i=1,...,n. It has access to several
instances Πs

U for each player U ∈ {Pi} and can activate them (in order to model concurrent executions)
via several queries: Execute-queries model passive eavesdroppings; Send-queries model active attacks; Reveal-
queries model a possible bad later use of the session key; the Test-query models the secrecy of the session
key. The latter query has to be asked to a fresh instance (which basically means that the session key is not
trivially known to the adversary) and models the fact that the session key should look random for an outsider
adversary.

Our extension actually di�ers from the original PAKE security model [BPR00] when de�ning the quality
of an adversary. The goal of an adversary is to distinguish the answer of the Test-query on a fresh instance:
a trivial attack is the so-called on-line dictionary attack which consists in trying all the possibilities when
interacting with a target player. For PAKE schemes, the advantage of such an attack is qs/N , where qs is the
number of Send-queries and N the number of possible passwords. A secure PAKE scheme should guarantee
this is the best attack, or equivalently that the advantage of any adversary is bounded by qs × 2−m, where
m is the min-entropy of the password distribution. In our extension, for LAKE, the trivial attack consists in
trying all the possibilities for priv, priv ′ with a word W in Lpub,priv.

De�nition 3 (Security for LAKE). A LAKE protocol is claimed (t, ε)-secure if the advantage of any ad-

versary running in time t is bounded by qs × 2−m × SuccL(t) + ε, where m is the min-entropy of the pair

(priv, priv′), and SuccL(t) is the maximal success an adversary can get in �nding a word in any Lpub,priv within
time t.

Note that the min-entropy of the pair (priv, priv′) might be conditioned to the public information from the
context.

Our Instantiation. Using the same approach as Katz and Vaikuntanathan for their one-round PAKE [KV11],
one can design the scheme proposed on Figure 2, in which both users U and U ′ use the encryption key ek and
the public part pub. This de�nes crs = (ek, pub). When running the protocol, U owns a word W for a private
part priv, and thinks about a private part priv ′ for U ′, while U ′ owns a word W ′ for a private part priv′, and
thinks about a private priv for U .

This gives a concrete instantiation of one-round LAKE as soon as one can design a KV-SPHF on the
language LofC(ek,pub),(priv,priv ′) = {(`, C) | ∃r, ∃W, C = Encrypt(`, ek, (priv, priv ′,W ); r) and W ∈ Lpub,priv}.
More precisely, each player encrypts (priv, priv ′,W ) as a vector, which thus leads to C = (C1, C2, C3). We
then use the combination of three SPHFs: two on equality-test for the plaintexts priv (for C1) and priv ′ (for
C2), and one on LofC(ek,pub),priv for the ciphertext C3 of W ∈ Lpub,priv.
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� Players U and U ′ both use ek and agreed on pub.
� U , with (priv, priv ′,W ), generates hk = HashKG(ek, pub)

and hp = ProjKG(hk, (ek, pub),⊥).
U computes ` = (U,U ′, hp) and C = Encrypt(`, ek, (priv, priv ′,W ); r), with r a random scalar in Zp, and sends hp, C
to U ′.

� Upon receiving hp′, C′ from U ′, it sets `′ = (U ′, U, hp′),
U computes H = Hash(hk, ((ek, pub), (priv ′, priv)), (`′, C′)),

H ′ = ProjHash(hp′, ((ek, pub), (priv, priv ′)), (`, C), r), and sk = H ·H ′.

For crs = (ek, pub) and aux = (priv, priv ′),

LofCcrs,aux =

{
(`, C)

∣∣∣∣ ∃r,∃W, C = Encrypt(`, ek, (priv, priv ′,W ); r)
and W ∈ Lpub,priv

}
.

Fig. 2. One-Round LAKE

We stress that hk and hp can depend on crs but not on aux, hence the notations used in the Figure 2.
Using a similar proof as in [KV11], one can state the following theorem (more details on the security model
and the full proof can be found in Appendix B):

Theorem 4. If the encryption scheme is IND-CCA, and LofC(ek,pub),(priv,priv ′) languages admit KV-SPHFs,
then our LAKE protocol is secure.

From LAKE to PAKE. One can remark that this theorem immediately proves the security of our PAKE
from Figure 1: one uses priv = priv′ = pw and pub = ∅, for the language of the ciphertexts of pw.

5.2 Two-Flow Waters Blind Signature

Blind signature schemes, introduced by Chaum in 1982 [Cha83], allow a person to get a signature by another
party without revealing any information about the message being signed. A blind signature can then be
publicly veri�ed using the unblinded message.

In [BPV12], the authors presented a technique to do e�cient blind signatures using an SPHF: it is still the
most e�cient Waters blind signature known so far. In addition, the resulting signature is a classical Waters
signature (see Appendix C.1 for the de�nition of Waters signatures).

The construction basically consists in encrypting the message bit-by-bit under distinct bases, that will
allow the generation of a masked Waters hash of the message. Thereafter, the signer will easily derive a
masked signature the user will eventually unmask. However, in order to generate the masked signature, the
signer wants some guarantees on the ciphertexts, namely that some ciphertexts contain a bit (in order to
allow extractability) and that another ciphertext contains a Di�e-Hellman value. Using our new techniques,
we essentially improve on the proof of bit encryption by using the above randomness-reuse technique.

De�nition. Before showing our new construction, let us �rst recall the de�nition of blind signatures.
A blind signature scheme BS is de�ned by three algorithms (BSSetup,BSKeyGen,BSVerif) and one inter-

active protocol BSProtocol〈S,U〉:

� BSSetup(1K), generates the global parameters param of the system;
� BSKeyGen(param) is a probabilistic polynomial-time algorithm that generates a pair of keys (vk, sk) where

vk is the public (verifying) key and sk is the secret (signing) key;
� BSProtocol〈S(sk),U(vk,M)〉: this is a probabilistic polynomial-time interactive protocol between the al-
gorithms S(sk) and U(vk,M), for a message M ∈ {0, 1}n. It generates a signature σ on M under vk
related to sk for the user.

� BSVerif(vk,M, σ) is a deterministic polynomial-time algorithm which outputs 1 if the signature σ is valid
with respect to m and vk, 0 otherwise.
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Expbl−bBS,S∗(K)

1. param← BSSetup(1K)
2. (vk,M0,M1)← A(FIND : param)
3. σb ← BSProtocol〈A,U(vk,Mb)〉
4. σ1−b ← BSProtocol〈A,U(vk,M1−b)〉
5. b∗ ← S∗(GUESS : σ0, σ1);
6. RETURN b∗ = b

Blindness property

ExpufBS,U∗(K)

1. (param)← BSSetup(1K)
2. (vk, sk)← BSKeyGen(param)
3. For i = 1, . . . , qs, BSProtocol〈S(sk),A(INIT : vk)〉
4.

(
(m1, σ1), . . . , (mqs+1, σqs+1)

)
← A(GUESS : vk);

5. IF ∃i 6= j,mi = mj OR ∃i,Verif(pk,mi, σi) = 0 RETURN 0
6. ELSE RETURN 1

Unforgeability

Fig. 3. Security Games for BS

A blind signature scheme BS should satisfy the two following security notions: the blindness condition that
is a guarantee for the signer, and the unforgeability that is a guarantee for the signer. The blindness states
that a malicious signer should not be able to link the �nal signatures output by the user to the individual valid
interactions with the user. We insist on valid executions which end with a valid signature σ of the message
used by U under the key vk. The signer could of course send a wrong answer which would lead to an invalid
signature in one execution of BSProtocol〈S(sk),U(vk,M)〉. Then, it could easily distinguish a valid signature
from an invalid one, and thus valid execution of the protocol and the invalid one. However this malicious
behaviour is a kind of denial of service and is out of scope of this work. Therefore, in this paper blindness
formalizes that one valid execution is indistinguishable for the signer from other valid executions. This notion
was formalized in [HKKL07] and termed a posteriori blindness. The unforgeability property insures that an
adversary, interacting freely with an honest signer, should not be able to produce q + 1 valid signatures after
at most q complete interactions with the honest signer (for any q polynomial in the security parameter).

These security notions are precised by the security games presented on Figure 3, where the adversary
keeps some internal state between the various calls INIT, FIND and GUESS.

Construction. Here, we give a sketch of the protocol (in which i always ranges from 1 to `, except if stated
otherwise) and its communication cost:

� Setup(1K), where K is the security parameter, generates a pairing-friendly system (p,G1,G2,GT , e; g1, g2),
with g1 and g2 generators of G1 and G2 respectively, a random generator hs ∈ G1 as well as independent
generators u = (ui)i∈{0,...,`} ∈ G`+1

1 for the Waters hash function F(M) = u0
∏
i u

Mi
i , for M = (Mi)i ∈

{0, 1}`, and �nally random scalars (xi)i ∈ Z`p. It also sets ek = (hi)i = (gxi1 )i and gs =
∏
i hi. It outputs

the global parameters param = (p,G1,G2,GT , e, g1, g2, ek, gs, hs,u). Essentially, g1 and ek compose the
encryption key for an ElGamal ciphertext on a vector, applying the randomness-reuse technique, while
gs, g2 and hs are the bases used for the Waters signature;

� KeyGen(param) picks at random x ∈ Zp, sets the signing key sk = hxs and the veri�cation key vk = (gxs , g
x
2 );

� BSProtocol〈S(sk),U(vk,M)〉 runs as follows, where U wants to get a signature on M = (Mi)i ∈ {0, 1}`:
• Message Encryption: U chooses a random r ∈ Zp and encrypts uMi

i for all the i's with the same

random r: c0 = gr1 and (ci = hriu
Mi
i )i. U also encrypts vkr1, into d0 = gs1, d1 = hs1vk

r
1, with a di�erent

random s: It eventually sends (c0, (ci)i, (d0, d1)) ∈ G`+3
1 ;

• Signature Generation: S �rst computes the masked Waters hash of the message c = u0
∏
i ci =

(
∏
i hi)

rF(M) = grsF(M), and generates the masked signature (σ′1 = hxsc
t = hxsg

rt
s F(M)t, σ2 =

(gts, g
t
2)) for a random t

$← Zp;
• SPHF: S needs the guarantee that each ElGamal ciphertext (c0, ci) encrypts either 1 or ui under
the key (g1, hi), and (d0, d1) encrypts the Di�e-Hellman value of (g1, c0, vk1) under the key (g1, h1).
The signer chooses a random hk = (η, (θi)i, (νi)i, γ, (µi)i, λ) and sets hp1 = gη1 ·

∏
ih
θi
i · vk

λ
1 , (hp2,i =

uθii c
νi
0 (ci/ui)

µi)i, (hp3,i = gθi1 h
µi
i )i, and hp4 = gγ1h

λ
1 , then H = cη0 ·

∏
ic
θi
i · d

γ
0 · dλ1 = hpr1 ·

∏
ihp

Mi
2,i ·

hp−rMi
3,i · hps4 = H ′ ∈ G1. This SPHF is easily obtained from the above GL-SPHF on bit encryption, as

shown in Appendix C;
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• Masked Signature: S sends (hp, Σ = σ′1 ·H,σ2) ∈ G2`+3
1 ×G2;

• Signature Recovery: Upon receiving (hp, Σ, σ2), using his witnesses and hp, U computes H ′ and
unmasks σ′1. Thanks to the knowledge of r, it can compute σ1 = σ′1 · (σ2,1)−r. Note that if H ′ = H,
then σ1 = hxsF(M)t, which together with σ2 = (gts, g

t
2) is a valid Waters signature on M ;

� Verif(vk,M, (σ1, (σ2,1, σ2,2)), checks whether both e(σ2,1, g2) = e(gs, σ2,2) and e(σ1, g2) = e(h, vk2) ·
e(F(M), σ2,2) are satis�ed or not.

Security Proof. The security proof is similar to the one in [BPV12] and is given in Appendix C.2.

Complexity. The whole process requires only 3` + 7 elements in G1 (` + 3 for the ciphertexts, 2` + 4 for
the projection key, Σ and σ2,1) and 1 in G2 (σ2,2). This is more e�cient than the instantiation from [BPV12]
(5` + 6 elements in G1 and 1 in G2) already using an SPHF, and much more e�cient than the instantiation
from [BFPV11] (6`+ 7 elements in G1 and 6`+ 5 in G2) using a Groth-Sahai [GS08] NIZK proof.
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A Preliminaries

A.1 Formal De�nitions of the Basic Primitives

We �rst recall the de�nitions of some of the basic tools, with the corresponding security notions and their
respective success/advantage.

Hash Function Family. A hash function family H is a family of functions HK from {0, 1}∗ to a �xed-length
output, either {0, 1}K or Zp. Such a family is said collision-resistant if for any adversary A on a random

function HK
$← H, it is hard to �nd a collision. More precisely, we denote

SucccollH (A) = Pr[HK
$← H, (m0,m1)← A(HK) : HK(m0) = HK(m1)], SucccollH (t) = max

A≤t
{SucccollH (A)},

where the latter notation means the maximum over the adversaries running within time t.

http://eprint.iacr.org/
http://eprint.iacr.org/2003/032.ps.gz
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Labeled Encryption Scheme. A labeled public-key encryption scheme E is de�ned by four algorithms:

� Setup(1K), where K is the security parameter, generates the global parameters param of the scheme;
� KeyGen(param) generates a pair of keys, the encryption key ek and the decryption key dk;
� Encrypt(`, ek,m; r) produces a ciphertext c on the input message m ∈M under the label ` and encryption
key ek, using the random coins r;

� Decrypt(`, dk, c) outputs the plaintext m encrypted in c under the label `, or ⊥ for an invalid ciphertext.

An encryption scheme E should satisfy the following properties

� Correctness: for all key pair (ek, dk), any label `, all random coins r and all messages m,

Decrypt(`, dk,Encrypt(`, ek,m; r)) = m.

� Indistinguishability under chosen-ciphertext attacks:
this security notion can be formalized by the following
security game, where the adversary A keeps some in-
ternal state between the various calls FIND and GUESS,
and makes use of the oracle ODecrypt:

• ODecrypt(`, c): This oracle outputs the decryption
of c under the label ` and the challenge decryption
key dk. The input queries (`, c) are added to the
list CT .

Expind-cca−bE,A (K)

1. param← Setup(1K)
2. (ek, dk)← KeyGen(param)
3. (`∗,m0,m1)← A(FIND : ek,ODecrypt(·, ·))
4. c∗ ← Encrypt(`∗, ek,mb)
5. b′ ← A(GUESS : c∗,ODecrypt(·, ·))
6. IF (`∗, c∗) ∈ CT RETURN 0
7. ELSE RETURN b′

The advantages are

Advind-ccaE (A) = Pr[Expind-cca−1E,A (K) = 1]− Pr[Expind-cca−0E,A (K) = 1] Advind-ccaE (t) = max
A≤t
{Advind-ccaE (A)}.

A.2 Statistical and Computational Distances

Let D1 and D2 be two probability distributions over a �nite set S and let X and Y be two random variables
with these two respective distributions.

Statistical Distance. The statistical distance between D1 and D2 is also the statistical distance between X
and Y :

Dist(D1,D2) = Dist(X,Y ) =
∑
x∈S
|Pr [X = x ]− Pr [Y = x ]| .

If the statistical distance between D1 and D2 is less than or equal to ε, we say that D1 and D2 are ε-close
or are ε-statistically indistinguishable. If the D1 and D2 are 0-close, we say that D1 and D2 are perfectly
indistinguishable.

Computational Distance. We say that D1 and D2 are (t, ε)-computationally indistinguishable, if, for every
probabilistic algorithm A running in time at most t:

|Pr [A(X) = 1 ]− Pr [A(Y ) = 1 ]| ≤ ε.

We can note that for any t and ε, D1 and D2 are (t, ε)-computationally indistinguishable, if they are ε-close.
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A.3 Concrete Instantiations

All the analyses in this paper could be instantiated with ElGamal-like schemes, based on either the Decisional
Di�e-Hellman (DDH) assumption, or the Decisional Linear (DLin) assumption. But we focus on the former
only:

De�nition 5 (Decisional Di�e-Hellman (DDH)). The Decisional Di�e-Hellman assumption says that,

in a group (p,G, g), when we are given (ga, gb, gc) for unknown random a, b
$← Zp, it is hard to decide whether

c = ab mod p (a DH tuple) or c
$← Zp (a random tuple). We de�ne by Advddhp,G,g(t) the best advantage an

adversary can have in distinguishing a DH tuple from a random tuple within time t.

Cramer-Shoup (CS) Encryption Scheme [CS98]: it can be turned into a labeled public-key encryption
scheme:

� Setup(1K) generates a group G of order p, with a generator g

� KeyGen(param) generates (g1, g2)
$← G2, dk = (x1, x2, y1, y2, z)

$← Z5
p, and sets, c = gx11 g

x2
2 , d = gy11 g

y2
2 ,

and h = gz1 . It also chooses a Collision-Resistant hash function HK in a hash family H (or simply a
Universal One-Way Hash Function). The encryption key is ek = (g1, g2, c, d, h,HK).

� Encrypt(`, ek,M ; r), for a message M ∈ G and a random scalar r ∈ Zp, the ciphertext is C = (`,u =
(gr1, g

r
2), e = M · hr, v = (cdξ)r), where v is computed afterwards with ξ = HK(`,u, e).

� Decrypt(`, dk, C): one �rst computes ξ = HK(`,u, e) and checks whether ux1+ξy11 · ux2+ξy22
?= v. If the

equality holds, one computes M = e/uz1 and outputs M . Otherwise, one outputs ⊥.

This scheme is indistinguishable against chosen-ciphertext attacks, under the DDH assumption and the
collision-resistance / universal one-wayness of the hash function H.

B Security Proof for LAKE

B.1 Security Model

In this paper, we focus on e�ciency and propose (in Section 5.1) an extension of the PAKE security model
presented by Bellare-Pointcheval-Rogaway [BPR00] model for PAKE, between n players in the presence of an
adversary. The adversary A plays a �nd-then-guess game against n players (Pi)i=1,...,n. It has access to several
instances Πs

U for each player U ∈ {Pi} and can activate them (in order to model concurrent executions) via
several queries, described below:

� Execute(U, s, U ′, t): one outputs the transcript of an execution of the protocol between the instance Πs
U

of U and the instance Πt
U ′ of U

′. It models passive eavesdropping attacks;
� Send(U, s, U ′, t,m): one sends the message m to the instance Πt

U ′ of U
′ in the name of the instance Πs

U

of U . It models active attacks;
� Reveal(U, s): if the instance Πs

U of U has �accepted�, one outputs the session key, otherwise one outputs
⊥. It models a possible bad later use of the session key;

� Test(U, s): one �rst �ips a coin b
$← {0, 1}, if b = 1 one outputs Reveal(U, s), otherwise one outputs a truly

random key. It models the secrecy of the session key.

We say that Πs
U and Πt

U ′ have matching conversations if inputs-outputs of the former correspond to the
outputs-inputs of the latter and vice-versa. They are then called partners. We say that an instance is fresh if
the key exists and is not trivially known by the adversary: more precisely, Πs

U is fresh if

� Πs
U has accepted the session, which is required to compute a session key;
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� Πs
U has not been asked a Reveal-query;

� no Πt
U ′ with matching conversations with Πs

U has been asked a Reveal-query.

A key exchange protocol is then said secure if keys are indistinguishable from random keys for adversaries.
Formally, the adversary is allowed to ask as many Execute, Send and Reveal-queries as it likes, and then only
one Test-query to a fresh instance Πs

U of a player. The adversary wins if it has guessed correctly the bit b in
this query.

B.2 Proof of Theorem 4

This proof follows the one from [KV11]. It starts from the real attack game, in a Game 0: Adv0(A) = ε. We
incrementally modify the simulation to make possible the trivial attacks only. In the �rst games, all the honest
players have their own values, and the simulator knows and can use them. Following [KV11], we can assume
that there are two kinds of Send-queries: Send0(U, s, U

′)-queries where the adversary asks the instance Πs
U to

initiate an execution with an instance of U ′. It is answered by the �ow U ′ should send to communicate with
U ; Send1(U, s,m)-queries where the adversary sends the message m to the instance Πs

U . It gives no answer
back, but de�nes the session key, for possible later Reveal or Test-queries.

Game G1: We �rst modify the way Execute-queries are answered: we replace C and C ′ by encryptions of a
�xed message M0, that parses as two private parts P and P ′ and a word W , such that W is not in the
language induced by (pub, P ). Since the hashing keys are known, the common session key is computed as

sk = Hash(hk, ((ek, pub), priv ′), C ′)× Hash(hk′, ((ek, pub), priv), C).

Since we could have �rst modi�ed the way to compute sk, that has no impact at all from the soundness
of the SPHF, the unique di�erence comes from the di�erent ciphertexts. This is anyway indistinguishable
under the IND-CPA property of the encryption scheme, for each Execute-query. Using a classical hybrid
technique, one thus gets |Adv1(A)− Adv0(A)| ≤ negl().

Game G2: We modify again the way Execute-queries are answered: we replace the common session key by a
truly random value. Since the languages are not satis�ed, the smoothness guarantees indistinguishability:
|Adv2(A)− Adv1(A)| ≤ negl().

Game G3: We now modify the way one answers the Send1-queries, by using a decryption oracle, or al-
ternatively knowing the decryption key. More precisely, when a message (hp, C) is sent, three cases can
appear:
� it has been generated (altered) by the adversary, then one �rst decrypts the ciphertext to get

(priv′, priv ,W ′) used by the adversary. Then
• If they are correct (W ′ ∈ Lpub,priv′) and consistent with the receiver's values (priv′ = priv ′, priv =

priv) �event Ev� one declares that A succeeds (saying that b′ = b) and terminates the game;
• if they are not both correct and consistent with the receiver's values, one chooses sk at random.

� it is a replay of a previous �ow sent by the simulator, then, in particular, one knows the hashing keys,
and one can compute the session keys using all the hashing keys.

The �rst case can only increase the advantage of the adversary in case Ev happens (which probability is
computed in G6). The second change is indistinguishable under the adaptive-smoothness and thus only
increases the advantage of the adversary by a negligible term. The third change does not a�ect the way
the key is computed, so �nally: Adv2(A) ≤ Adv3(A) + negl().

Game G4: We modify again the way one answers the Send1-queries. More precisely, when a message (hp, C)
is sent, two cases can appear:
� if there is an instance Πt

U ′ partnered with Πs
U that receives this �ow, then set the key identical to

the key for Πt
U ′ ;

� otherwise, one chooses sk at random.
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The former case remains identical since the message is a replay of a previous �ow, and the latter is
indistinguishable, as in [KV11], thanks to the adaptive-smoothness and their technical lemma that proves
that all the hash values are random looking even when hashing keys and ciphertexts are re-used: |Adv4(A)−
Adv3(A)| ≤ negl().

Game G5: We now modify the way one answers the Send0-queries: instead of encrypting the correct values,
one does as inG1 for Execute-queries, and encryptsM0. Since for simulating the Send1-queries decryptions
are required, indistinguishability relies on the IND-CCA security of the encryption scheme: |Adv5(A) −
Adv4(A)| ≤ negl().

Game G6: For all the hashing and projection keys, we now use the dummy private inputs. Since we restricted
hk and hp not to depend on aux, the distributions of these keys are independent of the auxiliary private
inputs: |Adv6(A)− Adv5(A)| ≤ negl().
If one combines all the relations, one gets Adv6(A) ≥ Adv0(A)− negl() = ε− negl().

One can note that in this �nal game, the values of the honest players are not used anymore during the
simulation, but just for declaring whether the adversary has won or not (event Ev). Otherwise, non-partnered
players have random and independent keys, and thus unless the simulator stops the simulation, the advantage
in the last game is exactly 0: Adv6(A) = Pr[Ev]. And thus, we have ε ≤ Pr[Ev] + negl().

Let us recall that Ev means that the adversary has encrypted (priv′, priv ,W ′) that are correct (W ′ ∈
Lpub,priv′) and consistent with the receiver's values (priv′ = priv ′, priv = priv). Since the values for the honest
players are never used during the simulation, we can assume we choose them at the very end only to check
whether event Ev happened:

Pr[Ev] = Pr[∃k : priv′(k) = priv ′ik , priv(k) = privik ,W
′(k) ∈ Lpub,priv′ik

]

where k lists all the Send1-queries with adversary-generated messages in which the ciphertexts decrypt to
(priv′(k), priv(k),W ′(k)), and ik is the index of the recipient of k-th Send1-query: it has �rst to guess the
private values, and then once it has guessed them it has to �nd a word in the language:

Pr[Ev] ≤ qs
2m
× SuccL(t),

where m is the minimal min-entropy on the joint distributions of the (priv, priv ′) for any two players U,U ′ who
want to communicate, and SuccL(t) is the best success an adversary can get in �nding a word in a language
Lpub,priv. Then, by combining all the inequalities, one gets

ε ≤ qs
2m
× SuccL(t) + negl().

C Blind Signature

In this appendix, we give details on our two-�ow Waters blind signature scheme outlined in Section 5.2. We
�rst present the asymmetric variant of Waters signatures proposed in [BFPV11] and then recall the formal
security de�nitions of blind signatures and of their security properties. Using the formalism from Appendix D,
we describe in details the SPHF used in the scheme and �nally prove the security of our scheme.

C.1 Waters Signature (Asymmetric Setting)

In 2011, Blazy, Fuchsbauer, Pointcheval and Vergnaud [BFPV11] proposed the following variant of Waters
signatures in an asymmetric pairing-friendly environment:
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� Setup(1K): in a pairing-friendly environment (p,G1, g1,G2, g2,GT , e), one chooses a random vector u =

(u0, . . . , u`)
$← G`+1

1 , and for convenience, we denote F(M) = u0
∏`
i=1 u

Mi
i for M = (Mi)i ∈ {0, 1}`. We

also need two extra generators (gs, hs)
$← G2

1. The global parameters param consist of all these elements
(p,G1, g1,G2, g2,GT , e, gs, hs,u).

� KeyGen(param) chooses a random scalar x
$← Zp, which de�nes the public key as vk = (gxs , g

x
2 ) = (vk1, vk2),

and the secret key is set as sk = hxs .

� Sign(sk,M ; s) outputs, for some random t
$← Zp, σ =

(
σ1 = sk · F(M)t, σ2 = (σ2,1 = gts, σ2,2 = gt2)).

� Verif(vk,M, σ) checks whether e(σ1, g2) = e(hs, vk2) · e(F(M), σ2,2), and e(σ2,1, g2) = e(gs, σ2,2).

This scheme is unforgeable against (adaptive) chosen-message attacks under the following variant of the
CDH assumption, which states that CDH is hard in G1 when one of the random scalars is also given as an
exponentiation in G2:

De�nition 6 (The Advanced Computational Di�e-Hellman problem (CDH+)). In a pairing-friendly

environment (p,G1, g1,G2, g2,GT , e). The CDH+ assumption states that given (g1, g2, g
a
1 , g

a
2 , g

b
1), for random

a, b ∈ Zp, it is hard to compute gab1 .

C.2 Underlying SPHF in the Blind Signature Scheme

Following [BPV12], our scheme makes use of an SPHF in the interactive signing protocol to insure (in an
e�cient way) that the user actually knows the signed message. As outlined in Section 5.2, during the interactive
process of the blind signature protocol, we have:

� General setting: a pairing-friendly system (p,G1,G2,GT , e), with g1 and g2 generators of G1 and G2

respectively;
� Encryption parameters: random scalars (xi)i ∈ Z`p with (hi = gxi1 )i, where i ranges from 1 to `, as
everywhere in the following. Then, ek = (hi)i;

� Signature parameters: independent generators u = (ui)i∈{0,...,`} ∈ G`+1
1 for the Waters function, gs =∏

i hi, and a random generator hs ∈ G1, then sk = hxs and vk = (gxs , g
x
2 ), for a random scalar x.

The user has generated c0 = gr1 and ci = hriu
Mi
i for i = 1, . . . , `, as well as d0 = gs1, d1 = hs1vk

r
1. In the following

simulation, we will extract (Mi)i from C = (c0, (ci)i), and we thus need to be sure that this message can be
extracted. In addition, the simulator will also need to know vkr1 to generate the blinded signature, hence its
encryption in (d0, d1). But this has to be checked, with the following language membership, where we use
notations from Appendix D:

1. each (c0, ci) encrypts a bit;

Γ (C) =



g1 h1 . . . h` 1 . . . 1 1 . . . 1

1
...
1

u1

1
. . .
1
u`

c0

1
. . .
1
c0

c1/u1

1
. . .
1
c`/u`

1
...
1

1
g1

1
. . .
1
g1

h1

1
. . .
1
h`


Θaux(C) = (c0, (ci)i, (1)i, (1)i)

λ = (r, (Mi)i, (−rMi)i)

λ · Γ (C) = (gr1, (h
r
iu
Mi
i )i, (c

Mi
0 g−rMi

1 )i, ((ci/uih
r
i )
Mi)i).

2. the ciphertext (d0, d1) encrypts the Di�e-Hellman value of (g1, c0, vk1);

Γ =

(
g1 1 vk1
1 g1 h1

)
Θaux(C) = (c0, d0, d1) λ = (r, s)
λ · Γ = (gr1, g

s
1, vk

r
1h
s
1)
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The two matrices can be compressed with a common row/column: the same witness r is indeed used in both
matrices, the two corresponding rows can be merged; the �rst column is the same in both matrices, it can
thus be a common one:

Γ (C) =



g1 h1 . . . h` 1 . . . 1 1 1 . . . 1 vk1
1
...
1

u1

1
. . .
1
u`

c0

1
. . .
1
c0

1
...
1

c1/u1

1
. . .
1
c`/u`

1
...
1

1
...
1

1
g1

1
. . .
1
g1

1
...
1

h1

1
. . .
1
h`

1
...
1

1 1 . . . 1 1 . . . 1 g1 1 . . . 1 h1


Θaux(C) = (c0, (ci)i, (1)i, d0, (1)i, d1)

λ = (r, (Mi)i, (−rMi)i, s)

λ · Γ (C) = (gr1, (h
r
iu
Mi
i )i, (c

Mi
0 g−rMi

1 )i, g
s
1, ((ci/uih

r
i )
Mi)i, vk

r
1h
s
1).

This leads to, with hk = (η, {θi}i, {νi}i, γ, {µi}i, λ),

hp1 = gη1 ·
∏

i
hθii · vk

λ
1 (hp2,i = uθii c

νi
0 (ci/ui)

µi)i (hp3,i = gνi1 h
µi
i )i hp4 = gγ1h

λ
1

H = cη0 ·
∏

i
cθii · d

γ
0 · d

λ
1 = hpr1 ·

∏
i
hpMi

2,i · hp
−rMi
3,i · hps4 = H ′.

The signers thus uses H to mask his blinded signature (σ′1, σ2). But since σ2 is just a random pair, only σ′1
needs to be masked. Without it, one cannot forge a signature, but it can be unmasked by the user with H ′,
if the values (c0, (ci)i, (d0, d1)) are in the correct language, and thus are correct ciphertexts.

One can note that the projection key consists of 2`+ 2 group elements in G1, and the hash value is in G1.
No pairings are needed for this SPHF. Since Γ depends on C, this is a GL-SPHF, but this is enough for our
interactive protocol.

C.3 Security proofs

Proposition 7. Our blind signature scheme is blind under the DDH assumption in G1
2:

AdvblBS,A(K) ≤ 2× (`+ 1)× AdvDDH
p,G1,g1(K).

Proof. Let us consider an adversary A against the blindness of our scheme. We build an adversary B against
the DDH assumption in G1.

Game G0: In a �rst game G0, we run the standard protocol:
� BSSetup(1k), B generates (p,G1,G2,GT , e) with g1 and g2 generators of G1 and G2 respectively. It
also generates independent generators u = (ui)i∈{0,...,`} ∈ G`+1

1 for the Waters function and sets
ek = (hi)i and gs =

∏
i hi. It generates hs = gαs ∈ G1 and de�nes the global parameters as param =

(p,G1,G2,GT , e, g1, g2, ek, gs, hs,u);
� The adversaryA generates a veri�cation key vk = (vk1, vk2) ∈ G1×G2 such that e(vk1, g2) = e(gs, vk2)
and two `-bit messages M0,M1.

� A and B run twice the interactive issuing protocol, �rst on the message M b, and then on the message
M1−b:
• B chooses a random r ∈ Zp and encrypts uMi

i for all the i's with the same random r: c0 = gr1 and

(ci = hriu
Mb
i

i )i. B also encrypts vkr1, into d0 = gs1, d1 = hs1vk
r
1 and sends (c0, (ci)i, (d0, d1)) to A.

2 This assumption is sometimes referred to as the XDH assumption.
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• A then outputs (hp, Σ = σ′1 ×H,σ2)
• B, using its witnesses and hp, computes H ′ and unmasks σ′1 = Σ/H which together with σ2
should be a valid Waters Signature on M b. It then randomizes the signature with s′ to get Σb.

The same is done a second time with M1−b to get Σ1−b.
� B publishes (Σ0, Σ1).
� Eventually, A outputs b′.

We denote by ε the advantage of A in this game. By de�nition, we have:

ε = AdvblBS,A(k) = Pr
G0

[b′ = 1|b = 1]− Pr
G0

[b′ = 1|b = 0] = 2× Pr
G0

[b′ = b]− 1.

Game G1: In a second game G1, we modify the way B extracts the signatures Σb and Σ1−b. Since B knows
the scalar α such that hs = gαs it can compute the secret key sk = vkα1 associated to vk = (vk1, vk2).
One can note that, since we focus on valid executions with the signer, and due to the re-randomization
of Waters signatures which leads to random signatures, B can generates itself random signatures on M b

and M1−b using sk. This game is perfectly indistinguishable from the previous one:

Pr
G1

[b′ = b] = Pr
G0

[b′ = b].

Game G2: In this �nal game, we replace all the ciphertexts sent by B by encryption of random group
elements in G1. For proving indistinguishability with the previous game, we use the hybrid technique for
ElGamal ciphertexts with randomness re-use [BBS03]:

ε ≤ 2× (`+ 1)× AdvDDH
p,G1,g1(K) + 2× Pr

G2

[b′ = b]− 1.

In this last game, the two executions are thus perfectly indistinguishable, and thus PrG2 [b′ = b] = 1/2 and
we get the bound claimed in the proposition. ut

Proposition 8. Our blind signature scheme is unforgeable under the CDH+ assumption.

AdvufBS,A(K) ≤ Θ

SuccCDH+

p,G1,g1,G2,g2(K)

qs
√
`

 .

Proof. Let A be an adversary against the Unforgeability of the scheme. We assume that this adversary is able
after qs signing queries to output at least qs+1 valid signatures on di�erent messages (for some qs polynomial
in the security parameter). We now build an adversary B against the CDH+ assumption.

� B is �rst given a CDH+ challenge (gs, g2, g
x
s , g

x
2 , hs) in a pairing-friendly environment (p,G1, g1,G2, g2,

GT , e)

� B emulates BSSetup: it picks a random position j
$← {0, . . . , `}, random indices y0, . . . , y`

$← {0, . . . , 2qs−
1} and random scalars z0, . . . , z`

$← Zp and publishes u = (ui)i∈{0,...,`} ∈ G`+1 for the Waters func-

tion, where u0 = hy0−2jqss gz0s and ui = hyis gzis for i ∈ {1, . . . , `}. It sets g1 = gγs and ek = (hi)i with
hi = gai1 ∈ G1 for i ∈ {1, . . . , `} for some known random scalars a1, . . . , a` and γ = 1/

∑
i ai mod p.

It keeps secret the associated decryption key dk = (a1, . . . , a`) ∈ Z`p and outputs the global param =
(p,G1,G2,GT , e, g1, g2, ek, gs, hs,u).

� B then emulates BSKeyGen: it publishes vk = (gxs , g
x
2 ) from the challenge as its veri�cation key (one can

note that recovering the signing key hxs is the goal of our adversary B);
� A can now interact qs times with the signer, playing the interactive protocol BSProtocol〈S,A〉:
• A sends the bit-per-bit encryptions ci for i ∈ {1, . . . , `}, and the extra ciphertext (d0, d1) hiding Y
the veri�cation key vk1 raised to the randomness;
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• Thanks to dk, B is able to extract M from the bit-per-bit ciphertexts (either the decryption leads to
ui and so Mi = 1, or to g1 and so Mi = 0), and Y = vkr1 from the additional ciphertext (d0, d1). One

can also compute c
1/γ
0 = grs .

• If one of the extracted terms is not of the right form (either not a bit in the ci, or (gs, g
r
s , vk1, Y ) is not

a Di�e-Hellman tuple, which occurs if e(grs , vk2) 6= e(Y, g2) and can thus be checked with a pairing
computation), thenA has submitted a �word� not in the appropriate language for the SPHF. Therefore
through the smoothness property of the SPHF, it is impossible from a theoretic point of view that
the adversary extracts anything from B's answer, therefore B simply sends a random element Σ in
G1 together with a valid random pair (gt1, g

t
2).

• If (gs, g
r
s , vk1, Y ) is a Di�e-Hellman tuple, one knows that Y = vkr1.

B computes H = −2jqs + y0 +
∑
yiMi and J = z0 +

∑
ziMi, F(M) = hHs g

J
s . If H ≡ 0 mod p, it

aborts, else it sets

σ = (vk
−J/H
1 Y −1/H(F(M)c

1/γ
0 )s, (vk

−1/H
1 gs1, vk

−1/H
2 gs2)),

for some random scalar s. Setting t = s− x/H, we can see this is indeed a valid signature (as output
as the end of the signing interactive protocol), since we have:

σ1 = vk
−J/H
1 Y −1/H(F(M)c

1/γ
0 )s = vk

−J/H
1 g−xr/Hs (hHs g

J
s g

r
s)
s

= g−xJ/Hs g−xr/Hs (hHs g
J
s g

r
s)
t(hHs g

J
s g

r
s)
x/H = hx(hHgJs g

r
s)
t

= sk · δt where δ = F(M)× grs
σ2,1 = vk

−1/H
1 gs1 = g

−x/H
1 gs1 = gt1

σ2,2 = vk
−1/H
2 gs2 = g

−x/H
2 gs2 = gt2

• B then acts honestly to send the signature through the SPHF.
After a qs queries, A outputs a valid signature σ∗ on a new message M∗ with non negligible probability.

� As before B computes H∗ = −2jqs + y0 +
∑
yiM

∗
i and J∗ = z0 +

∑
ziM

∗
i , F(M) = hH

∗
gJ
∗

1 .
� If H∗ 6≡ 0 mod p, B aborts. Otherwise σ∗ = (sk · F(M∗)t, gts, g

t
2) = (sk · gtJ∗s , gts, g

t
2) and so σ∗1/σ

∗
2
J∗ =

sk = hxs . Therefore if A's signature is valid and if H∗ 6≡ 0 mod p, B solves its CDH+ challenge.

The probability that all the H 6≡ 0 mod p for all the simulations, but H∗ ≡ 0 mod p in the forgery is
the (1, qs)-programmability of the Waters function. A full proof showing that it happens with probability in
Θ(SuccCDH

p,G1,g1,G2,g2(K)/qs
√
`) can be found in [HK08]. ut

D Generic Framework for SPHFs and New Constructions

In this appendix, we introduce our full generic framework for SPHFs using a new notion of graded rings, derived
from [GGH12]. It enables to deal with cyclic groups, bilinear groups (with symmetric or asymmetric pairings),
or even groups with multi-linear maps. Namely, it handles all the previous constructions from [BBC+13].

Before introducing graded rings and our generic framework, we brie�y recall the de�nition of bilinear
groups. The last three subsections are dedicated to instantiations. The last instantiation can deal with any
quadratic pairing product equation over ciphertexts, which encompasse all languages handled by Groth-Sahai
NIZKs, and so can deal with any NP language. We can see that our generic scheme greatly simplify the
construction and the presentation of all the SPHFs presented in these last subsections.

This appendix is very formal and technical. We strongly recommend the reader to �rst read Sections D.3
and 4 where we give the intuition.
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D.1 Bilinear Groups

Let us consider three multiplicative cyclic groups G1,G2,GT of prime order p. Let g1 and g2 be two generators
of G1 and G2 respectively. (p,G1,G2,GT , e, g1, g2) or (p,G1,G2,GT , e) is called a bilinear setting if e : G1 ×
G2 −→ GT is a bilinear map (called a pairing) with the following properties:

� Bilinearity. For all (a, b) ∈ Z2
p, we have e(g

a
1 , g

b
2) = e(g1, g2)

ab;
� Non-degeneracy. The element e(g1, g2) generates GT ;
� E�cient computability. The function e is e�ciently computable.

It is called a symmetric bilinear setting if G1 = G2 = G. In this case, we denote it (p,G,GT , e) and we suppose
g = g1 = g2. Otherwise, if G1 6= G2, it is called an asymmetric bilinear setting one otherwise.

D.2 Graded Rings

Our graded rings are a practical way to manipulate elements of various groups involved with pairings, and
more generally, with multi-linear maps. This is a slight variant of the notion of graded encoding proposed
in [GGH12], where each element has only one representation, instead of a set of representations, and where
we can add two elements even with di�erent indexes.

Indexes Set. As in [GGH12], let us consider a �nite set of indexes Λ = {0, . . . , κ}τ ⊂ Nτ . In addition to
considering the addition law + over Λ, we also consider Λ as a bounded lattice, with the two following laws:

sup(v,v′) = (max(v1,v
′
1), . . . ,max(vτ ,v

′
τ )) inf(v,v′) = (min(v1,v

′
1), . . . ,min(vτ ,v

′
τ )).

We also write v < v′ (resp. v ≤ v′) if and only if for all i ∈ {1, . . . , τ}, vi < v′i (resp. vi ≤ v′i). Let
0̄ = (0, . . . , 0) and > = (κ, . . . , κ), be the minimal and maximal elements.

Graded Ring. The (κ, τ)-graded ring for a commutative ring R is the set G = Λ×R = {[v, x] |v ∈ Λ, x ∈ R},
where Λ = {0, . . . , κ}τ , with two binary operations (+, ·) de�ned as follows:

� for every u1 = [v1, x1], u2 = [v2, x2] ∈ G: u1 + u2
def= [sup(v1,v2), x1 + x2];

� for every u1 = [v1, x1], u2 = [v2, x2] ∈ G: u1 · u2 def= [v1 + v2, x1 · x2] if v1 + v2 ∈ Λ, or ⊥ otherwise, where
⊥ means the operation is unde�ned and cannot be done.

We remark that · is only a partial binary operation and we use the following convention: ⊥ + u = u + ⊥ =
u · ⊥ = ⊥ · u = ⊥, for any u ∈ G∪ {⊥}. We then denote Gv the additive group {u = [v′, x] ∈ G |v′ = v}. We
will make natural use of vector and matrix operations over graded ring elements.

Cyclic Groups and Pairing-Friendly Settings. In the sequel, we consider graded rings over R = Zp
only, because we will use the vectorial space structure over Zp in the proof of the smoothness of our generic
construction of SPHF (see Section D.3). This means we cannot directly deal with constructions in [GGH12]
yet. Nevertheless, graded rings enable to easily deal with cyclic groups G of prime order p, and bilinear groups.

Cyclic Group In this case, κ = τ = 1: elements [0, x] of index 0 correspond to scalars x ∈ Zp and elements
[1, x] of index 1 correspond to group elements gx ∈ G.

Symmetric Bilinear Group. Let (p,G,GT , e) be a symmetric bilinear group, and g be a generator of G.
We can represent this bilinear group by a graded ring G with κ = 2 and τ = 1. More precisely, we can
consider the following map: [0, x] corresponds to x ∈ Zp, [1, x] corresponds to gx ∈ G and [2, x] corresponds
to e(g, g)x ∈ GT .
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Asymmetric Bilinear Group. Let (p,G1,G2,GT , e) be an asymmetric bilinear group, and g1 and g2 be genera-
tors of G1 and G2 respectively. We can represent this bilinear group by a graded ring G with κ = 1 and τ = 2.
More precisely, we can consider the following map: [(0, 0), x] corresponds to x ∈ Zp, [(1, 0), x] corresponds to
gx1 ∈ G1, [(0, 1), x] corresponds to gx2 ∈ G2 and [(1, 1), x] corresponds to e(g1, g2)

x ∈ GT .

Notations. We have chosen an additive notation for the group law in Gv. On the one hand, this a lot easier
to write generic things done, but, on the other hand, it is a bit cumbersome for bilinear groups to use
additive notations. Therefore, when we provide an example with a bilinear group (p,G1,G2,GT , e), we use
multiplicative notation · for the law in G1, G2 and GT , and additive notation + for the law in Zp, as soon as
it is not too complicated. But when needed, we will also use the notation ⊕ and � which correspond to the
addition law and the multiplicative law of the corresponding graded rings. In other words, for any x, y ∈ Zp,
u1, v1 ∈ G1, u2, v2 ∈ G2 and uT , vT ∈ GT , we have:

x⊕ y = x+ y x� y = x · y = xy

u1 ⊕ v1 = u1 · v1 = u1v1 x� u1 = ux1

u2 ⊕ v2 = u2 · v2 = u2v2 x� u1 = ux1

uT ⊕ vT = uT · vT u1 � u2 = e(u1, u2) x� uT = uxT .

The element 1 will always denote the neutral element in either G1, G2 or GT (depending on the context)
and not 1 ∈ Zp, which is not used in our constructions.

D.3 Generic Framework for GL-SPHF/KV-SPHF

In this section, we exhibit a generic framework for SPHF for languages of ciphertexts. This is an extension
of the framework described in Section 3 to graded rings. We assume that crs is �xed and we write Laux =
LofCfull-aux ⊆ Set where full-aux = (crs, aux).

Language Representation. For a language Laux, we assume there exist two positive integers k and n, a
function Γ : Set 7→ Gk×n, and a family of functions Θaux : Set 7→ G1×n, such that for any word C ∈ Set,
(C ∈ Laux) ⇐⇒ (∃λ ∈ G1×k such that Θaux(C) = λ · Γ (C)). If Γ is a constant function (independent of the
word C), this de�nes a KV-SPHF, otherwise this is a GL-SPHF. However, in any case, we need the indexes of
the components of Γ (C) to be independent of C.

We furthermore require that a user, who knows a witness w of the membership C ∈ Laux, can e�ciently
compute λ.

Smooth Projective Hash Function. With the above notations, the hashing key is a vector hk = α =
(α1, . . . , αn)ᵀ

$← Znp , while the projection key is, for a word C, hp = γ(C) = Γ (C) · α ∈ Gk (if Γ does not
depend on C, hp does not depend on C either). Then, the hash value is:

H = Hash(hk, full-aux, C) def= Θaux(C) ·α =λ · γ(C) def= ProjHash(hp, full-aux, C, w) = H ′.

The set Π of hash values is exactly GvH , the set of graded elements of index vH , the maximal index of the
elements of Θaux(C).

In addition, the following security analysis proves that the above generic SPHF is perfectly smooth, and
thus proves the Theorem 2 as a particular case. We insist that if Γ really depends on C this construction
yields a GL-SPHF, whereas when Γ is a constant matrix, we obtain a KV-SPHF, but perfectly smooth in both
cases.
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Security Analysis. In order to prove the smoothness of the above SPHF, we consider a word C 6∈ Laux and a
projection key hp = γ(C) = Γ (C) ·α: ∀λ ∈ G1×k, Θaux(C) 6= λ · Γ (C). Using the projection L : G→ Zp;u =
[v, x] 7→ x, which can be seen as the discrete logarithm, and which can be applied component-wise on vectors
and matrices, this means that L(Θaux(C)) is linearly independent from the rows of L(Γ (C)). As a consequence,
since α is uniformly random, L(Θaux(C)) ·α is a random variable independent from L(γ(C)) = L(Γ (C)) ·α,
and so from hp = γ(C), since the index of γ(C) is a constant and thus L(γ(C)) completely de�nes γ(C).
Therefore, H is a uniform element of GvH given hp, aux and C.

D.4 Instantiations

A First Example with Pairings.

Notations. We consider the same kind of equation as in the body of the paper (Section 4.1), but on possibly
two di�erent groups G1 and G2, of the same prime order p, generated by g1 and g2, respectively, with a
possible bilinear map into GT . We assume the DDH assumption hold in both G1 and G2. We de�ne ElGamal
encryption schemes with encryption keys ek1 = (g1, h1 = gx11 ) and ek2 = (g2, h2 = gx22 ) on each group. We
are interested in languages on the ciphertexts C1,i = (u1,i = g

r1,i
1 , e1,i = h

r1,i
1 ·Xi), for X1, . . . , Xn1 ∈ G1, and

C2,j = (u2,j = g
r2,j
2 , e2,j = h

r2,j
2 · gyj2 ), for y1, . . . , yn2 ∈ Zp, such that:

n1∏
i=1

Xai
i ·

n2∏
j=1

A
yj
j = B, with crs = (p,G1,G2,GT , e, ek1, ek2)

aux = (a1, . . . , an1 , A1, . . . , An2 , B) ∈ Zn2
p ×Gn2+1

1 .

(2)

We insist that here, contrarily to equation (1) in Section 4.1, the group elements (A1, . . . , An2) are part of
aux, and thus not known in advance. The matrix Γ cannot depend on them anymore:

Γ =


g1 1 . . . 1 h1
1
...
1

g2

1
. . .
1
g2

h2
...
h2


Θaux(C) =

(∏
i u

ai
1,i, (e(Aj , u2,j))j ,

∏
i e(e

ai
1,i, g2) ·

∏
j e(Aj , e2,j)/e(B, g2)

)
λ = (

∑
i air1,i, (A

r2,j
j )j)

λ · Γ =
(
g
∑
i air1,i

1 , (e(Aj , g
r2,j
2 ))j , e(h

∑
i air1,i

1 , g2) ·
∏
j e(A

r2,j
j , h2)

)
We recall that in the matrix, 0 means [v, 0] for the appropriate index v, and thus 1G1 = g01 ∈ G1 in the �rst
line and column, but 1G2 = g02 ∈ G2 in the diagonal block. In addition, in the product λ · Γ , when adding
two elements, they are �rst lifted in the minimal common higher ring, and when multiplying two elements,
we either make a simple exponentiation (scalar with a group element) or a pairing (two group elements from
di�erent groups).

Because of the diagonal blocks in Γ , λ is implied by all but last components of Θaux(C), then the last
column de�nes the relation: the last component of Θaux(C) is

∏
i e(h

r1,iai
1 Xai , g2) ·

∏
j e(Aj , h

r2,j
2 g

yj
2 )/e(B, g2),

which is equal to the last component of λ · Γ , multiplied by the expression below, that is equal to 1 if and
only if the relation (2) is satis�ed:∏

i
e(Xai , g2) ·

∏
j
e(Aj , g

yj
2 )/e(B, g2) = e

(∏
i
Xai ·

∏
j
A
yj
j /B, g2

)
.

It thus leads to the following KV-SPHF, with hp1 = gν1h
λ
1 and (hp2,j = g

θj
2 h

λ
2)j , for hk = (ν, (θj)j , λ):

H =
∏

i
e((uν1,ie

λ
1,i)

ai , g2) ·
∏

j
e(Aj , u

θj
2,je

λ
2,j) · e(B−λ, g2) = e(hp

∑
i air1,i

1 , g2) ·
∏

j
e(A

r2,j
j , hp2,j) = H ′.

As a consequence, the ciphertexts and the projection keys (which have to be exchanged in a protocol) globally
consist of 2n1 + 1 elements from G1 and 3n2 elements from G2, and pairings are required for the hash value.
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Ciphertexts with Randomness Reuse. We can apply the same improvement as in Section 4.1 by using multiple
independent encryption keys in G2, ek2,j = (g2, h2,j = g

x2,j
2 ), for j = 1, . . . , n2. This allows to reuse the same

random coins [BBS03]. We are interested in languages on the ciphertexts (C1,i = (u1,i = g
r1,i
1 , e1,i = h

r1,i
1 ·Xi))i,

for (Xi)i ∈ Gn1
1 , with (r1,i)i ∈ Zn1

p , and C2 = (u2 = gr22 , (e2,j = hr22,j · g
yj
2 )j), for (yj)j ∈ Zn2

p , with r2 ∈ Zp, still
satisfying the same relation (2). This improves on the length of the ciphertexts of the gyi 's, from 2n2 group
elements in G2 to n2 + 1 in G2. A similar KV-SPHF as before can be derived, just modifying the last column
vector (h2)j by (h2,j)j :

Γ =


g1 1 . . . 1 h1
1
...
1

g2

1
. . .
1
g2

h2,1
...

h2,n2


Θaux(C) =

(∏
i u

ai
1,i, (e(Aj , u2,j))j ,

∏
i e(e

ai
1,i, g2) ·

∏
j e(Aj , e2,j)/e(B, g2)

)
λ = (

∑
i air1,i, (A

r2
j )j)

λ · Γ =
(
g
∑
i air1,i

1 , (e(Aj , g
r2
2 ))j , e(h

∑
i air1,i

1 , g2) ·
∏
j e(A

r2
j , h2,j)

)
It leads to the following KV-SPHF, with hp1 = gν1h

λ
1 and (hp2,j = g

θj
2 h

λ
2,j)j , for hk = (ν, (θj)j , λ):

H =
∏

i
e((uν1,ie

λ
1,i)

ai , g2) ·
∏

j
e(Aj , u

θj
2,je

λ
2,j) · e(B−λ, g2) = e(hp

∑
i air1,i

1 , g2) ·
∏

j
e(Ar2j , hp2,j) = H ′.

Globally, the ciphertexts and the projection keys consist of 2n1 + 1 elements from G1 and 2n2 + 1 elements
from G2, but pairings are still required for the hash value. The prior knowledge of the Aj 's allows to avoid
pairings, as shown in Section 4.1.

SPHF for Linear Pairing Equations over Ciphertexts. Let us now construct an KV-SPHF for a linear
pairing equation in an asymmetric bilinear group (p,G1,G2,GT , g1, g2) over ElGamal commitments. This will
actually be a particular case of the construction of the next section for quadratic pairing equation. It is thus
a warm-up for this more technical instantiation. The construction can obviously be extended to systems of
linear pairing equations, and to other commitments schemes using the same methods as in Section 4. It can
also be slightly simpli�ed in the case of symmetric bilinear groups.

Notations. Let (p,G1,G2,GT , e) be a (asymmetric) bilinear group. Let g1, g2 be generators of G1,G2 respec-
tively, and let gT = e(g1, g2). Let ek1 = (g1, h1 = gx11 ), ek2 = (g2, h2 = gx22 ) and ekT = (gT , hT = gxTT ) be
ElGamal key for encryption scheme in, respectively, G1, G2 and GT .

We are interested in languages of commitments (C1,i)i of (X1,i)i ∈ Gn1
1 , (C2,j)j of (X2,j)j ∈ Gn2

2 , and
(CT,k)i of (XT,k)k ∈ GnT

T such that:∏
i
e(X1,i, A2,i) ·

∏
j
e(A1,j , X2,j) ·

∏
k
X
aT,k
T,k = B, (3)

with aux = ((A1,j)j , (A2,i)i, (aT,k)k) ∈ Gn2
1 ×Gn1

2 × ZnTp . This can also be written:(
n1⊕
i=1

A2,i �X1,i

)
⊕

 n2⊕
j=1

A1,j �X2,j

⊕( nT⊕
k=1

aT,k �XT,k

)
= B.

Let us also write, for any ω ∈ {1, 2, T} and ι ∈ {1, . . . , nω}: Cω,ι = (uω,ι = g
rω,ι
ω , eω,ι = h

rω,ι
ω Xω,ι). Words of

Set are tuple C = (Cω,ι)ω∈{1,2,T}, ι∈{1,...,nω}.

Basic Scheme in GT . Let us consider

Γ =

g1 1 1 h1
1 g2 1 h2
1 1 gT hT

 Θ(C) =

(⊕
iA2,i � u1,i,

⊕
j A1,j � u2,j ,

⊕
k aT,k � uT,k,

(
⊕

iA2,i � e1,i)⊕
(⊕

j A1,j � e2,j
)
⊕ (
⊕

k aT,k � eT,k)	B

)
.
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Because of the diagonal block in Γ , one can note that the unique possibility is

λ = (
⊕
i

A2,i � r1,i,
⊕
j

A1,j � r2,j ,
⊕
k

rT,k) = (
∏
i

A
r1,i
2,i ,

∏
j

A
r2,j
1,j ,

∑
k

rT,k).

We then have λ� Γ = Θ(C) if and only if∏
i
e(h

r1,i
1 , A2,i) ·

∏
j
e(A1,j , h

r2,j
2 ) ·

∏
k
h
rT,k
T =

∏
i
e(e1,i, A2,i) ·

∏
j
e(A1,j , e2,j) ·

∏
k
e
aT,k
T,k /B

and thus if and only if Equation (3) is true, i.e., the word is in the language. Furthermore, if we set γ1 = gα1
1 hα

4

1 ,

γ2 = gα2
2 hα

4

2 , and γ3 = gα3
T hα

4

T , we have

H =

(
n1∏
i=1

e(u1,i, A2,i)

)α1

·

 n2∏
j=1

e(A1,j , u2,j)

α2

·

(
nT∏
k=1

u
aT,k
T,k

)α3

×

 n1∏
i=1

e(e1,i, A2,i) ·
n2∏
j=1

e(A1,j , e2,j) ·
nT∏
k=1

e
aT,k
T,k /B

α4

= e(γ1,
∏

i
A
r1,i
2,i ) · e(

∏
j
A
r2,j
1,j , γ2) · γ

∑
k rT,k

3 = H ′.

Variant. The above scheme is not e�cient enough for practical use because elements in GT are often big and
operations in GT are often slow. If hT = e(h1, g2), then the last row of Γ can be (0, 0, g1, h1) which enables
faster hashing and shorter projection key. We remark this modi�ed encryption scheme in GT is IND-CPA
as soon as DDH is hard in G1, which we need to suppose for the ElGamal encryption scheme in G1 to be
IND-CPA. So this variant is always more e�cient when using ElGamal encryption.

However, if DDH is easy, as in symmetric bilinear group, this variant may not be interesting, since it
requires to use the linear encryption scheme in GT instead of the ElGamal one.

SPHF for Quadratic Pairing Equations over Ciphertexts. In this section, we present a KV-SPHF for
language of ElGamal commitments verifying a quadratic pairing equation. As usual, it can be extended to
systems of quadratic pairing equations, and to other commitments schemes. We use the same notations as in
the previous construction.

Example. Before showing the generic construction, we describe it on a simple example: we are interested in
languages of the ciphertexts C1 = (u1 = gr11 , e1 = hr11 X1) and C2 = (u2 = gr22 , e2 = hr22 X2), that encrypt two
values X1 and X2 such that e(X1, X2) = B where B is some constant in GT and aux = B. We remark the
equation e(X1, X2) = B can also be written X1 �X2 = B. Let us consider

Γ =

g1 � g2 1 1 h1 � h2
1 g1 1 h1
1 1 g2 h2

 Θ(C) = (−u1 � u2, u1 � e2, e1 � u2, e1 � e2 	B)
= (e(u1, u2)

−1, e(u1, e2), e(e1, u2), e(e1, e2)/B).

Because of the diagonal block in Γ , one can note that the unique possibility is

λ = (−r1r2, r1 � e2, r2 � e1) = (−r1r2, er12 , e
r2
1 ).

We have λ� Γ = Θ(C) if and only if e(h1, h2)
−r1r2 · e(h1, er12 ) · e(er21 , h2) = e(e1, e2)/B, and thus,

B = e(e1, e2)/(e(h
r1
1 , X2) · e(e1, hr22 ))

= e(e1, X2)/e(h
r1
1 , X2) = e(X1, X2)
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For the sake of completeness, if γ1 = e(g1, g2)
α1e(h1, h2)

α4 , γ2 = gα2
1 hα4

1 , and γ3 = gα3
2 hα4

2 , the corresponding
hash value is:

H = e(u1, u2)
−α1 · e(u1, e2)α2 · e(e1, u2)α3 · (e(e1, e2)/B)α4 = γ−r1r21 · e(γ2, er12 ) · e(er21 , γ3).

Notations. Let us now introduce notation to handle any quadratic equation. In addition to previous notations,
as in Section D.4, we also write ekT = (gT , hT = gxTT ) a public key for ElGamal encryption scheme in GT . We
are interested in languages of commitments (C1,i)i of (X1,i)i ∈ Gn1

1 , (C2,j)j of (X2,j)j ∈ Gn2
2 , and (CT,k)i of

(XT,k)k ∈ GnT
T such that:∏

i
e(X1,i, A2,i) ·

∏
j
e(A1,j , X2,j) ·

∏
i

∏
j
e(X1,i, X2,j)

ai,j ·
∏

k
X
aT,k
T,k = B, (4)

with aux = ((A2,i)i, (A1,j)j , (ai,j)i,j , (aT,k)k) ∈ Gn1
1 ×Gn2

2 × Zn1n2+nT
p . This can also be written:(

n1⊕
i=1

A2,i �X1,i

)
⊕

 n2⊕
j=1

A1,j �X2,j

⊕
 n1⊕
i=1

n2⊕
j=1

ai,j �X1,i �X2,j

⊕( nT⊕
k=1

aT,k �XT,k

)
= B.

Let us also write, for any ω ∈ {1, 2, T} and ι ∈ {1, . . . , nω}: Cω,ι = (uω,ι = g
rω,ι
ω , eω,ι = h

rω,ι
ω Xω,ι).

Basic Scheme in GT . Let us consider the following matrix, with a diagonal block

Γ =


g1 � g2 1 1 1 h1 � h2

1 g1 1 1 h1
1 1 g2 1 h2
1 1 1 gT hT


With

Θ(C) =


⊕

i

⊕
j −ai,j � u1,i � u2,j ,

(⊕
i

⊕
j ai,j � u1,i � e2,j

)
⊕ (
⊕

iA2,i � u1,i) ,(⊕
i

⊕
j ai,j � e1,i � u2,j

)
⊕
(⊕

j A1,j � u2,j
)
,
⊕

i aT,i � uT,i,(⊕
i

⊕
j ai,j � e2,i � e2,j

)
⊕ (
⊕

iA2,i � e1,i)⊕
(⊕

j A1,j � e2,j
)
⊕ (
⊕

k aT,k � eT,k)	B


the requirement λ� Γ = Θ(C) implies

λ =

⊕i

⊕
j −ai,j � r1,i � r2,j ,

(⊕
i

⊕
j r1,i � ai,j � e2,j

)
⊕ (
⊕

iA2,i � r1,i) ,(⊕
i

⊕
j r2,i � ai,j � e1,j

)
⊕
(⊕

j A1,j � r2,j
)
,
⊕

k rT,k


=
(∑

i

∑
j ai,jr1,ir2,j ,

∏
i

∏
j e

r1,iai,j
2,j ·

∏
iA

r1,i
2,i ,

∏
i

∏
j e

r2,iai,j
1,j ·

∏
j A

r2,j
1,j ,

∑
k rT,k

)
,

and it is satis�ed, if and only if Equation (4) is true, i.e., the word is in the language.

Variant. The same trick as the one used in the variant of the SPHF for linear pairing equation can be used
to avoid having too many elements of the projection key in GT .
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