
Batch Fully Homomorphic Encryption over the Integers?

Jean-Sébastien Coron1, Tancrède Lepoint2,3, and Mehdi Tibouchi4

1 Tranef, France
jscoron@tranef.com

2 CryptoExperts, France
3 École Normale Supérieure, France

tancrede.lepoint@cryptoexperts.com
4 NTT Secure Platform Laboratories, Japan

tibouchi.mehdi@lab.ntt.co.jp

Abstract. We extend the fully homomorphic encryption scheme over the integers of van Dijk et
al. (DGHV) to batch fully homomorphic encryption, i.e. to a scheme that supports encrypting and
homomorphically processing a vector of plaintext bits as a single ciphertext. Our variant remains
semantically secure under the (error-free) approximate-GCD problem. We also show how to perform
arbitrary permutations on the underlying plaintext vector given the ciphertext and the public key.
Our scheme offers competitive performance: we describe an implementation of the fully homomorphic
evaluation of AES encryption, with an amortized cost of about 12 minutes per AES ciphertext on a
standard desktop computer; this is comparable to the timings presented by Gentry et al. at Crypto
2012 for their implementation of a Ring-LWE based fully homomorphic encryption scheme.

Keywords: Fully Homomorphic Encryption, Batch Encryption, Homomorphic AES.

1 Introduction

Fully Homomorphic Encryption. Fully homomorphic encryption (FHE) allows a worker to
perform implicit additions and multiplications on plaintext values while exclusively manipulating
encrypted data. The first construction of a fully homomorphic scheme (based on ideal lattices) was
described by Gentry in [Gen09], and proceeds in several steps. First, one constructs a somewhat
homomorphic encryption scheme, which only supports a limited number of multiplications: cipher-
texts contain some noise that becomes larger with successive homomorphic multiplications, and
only ciphertexts whose noise size remains below a certain threshold can be decrypted correctly. The
second step is to squash the decryption procedure associated with an arbitrary ciphertext so that it
can be expressed as a low degree polynomial in the secret key bits. Then, Gentry’s key idea, called
bootstrapping, consists in homomorphically evaluating this decryption polynomial on encryptions of
the secret key bits, resulting in a different ciphertext associated with the same plaintext, but with
possibly reduced noise. This refreshed ciphertext can then be used in subsequent homomorphic
operations. By repeatedly refreshing ciphertexts, the number of homomorphic operations becomes
unlimited, resulting in a fully homomorphic encryption scheme.

Since Gentry’s breakthrough result, many improvements have been made, introducing new
variants, improving efficiency, and providing new features. Recently, Brakerski, Gentry and Vaikun-
tanathan described a different framework where the ciphertext noise grows only linearly with the
multiplicative level instead of exponentially [BGV12], so that bootstrapping is no longer necessary
to obtain a scheme supporting the homomorphic evaluation of any given polynomial size circuit.
Currently three main families of fully homomorphic encryption schemes are known:

1. Gentry’s original scheme [Gen09] based on ideal lattices. An implementation of Gentry’s scheme
was proposed by Gentry and Halevi in [GH11] with a public key of 2.3 GB and a ciphertext
refresh procedure of 30 minutes; the implementation is based on many interesting algorithmic
optimizations, including some borrowed from Smart and Vercauteren [SV10].

? An extended abstract [CCK+] will appear at Eurocrypt 2013, merged with some independent but overlapping
work from Cheon et al.

2. van Dijk, Gentry, Halevi and Vaikuntanathan’s (DGHV) scheme over the integers [DGHV10].
It was recently shown how to significantly reduce the public key size in DGHV, yielding a 10.3
MB public key and an 11-minute refresh procedure [CNT12].

3. Brakerski and Vaikuntanathan’s scheme based on the Learning with Errors (LWE) and Ring
Learning with Errors (RLWE) problems [BV11a,BV11b], and follow-up works (e.g. the scale-free
variant of Brakerski [Bra12] and the NTRU-variant [LATV12]). An implementation is described
in [GHS12b] with an efficient (given the current state of knowledge) homomorphic evaluation
of the full AES encryption circuit. The authors use the batch RLWE-based scheme proposed
in [BGV12,GHS12a], that allows one to encrypt vectors of plaintexts in a single ciphertext and
to perform any permutation on the underlying plaintext vector while manipulating only the
ciphertext [SV11].

Our Contributions. In this paper we focus on the DGHV scheme. Our goal is to extend DGHV
to support the same batching capability [SV11] as in RLWE-based schemes [BV11a,BV11b], and to
homomorphically evaluate a full AES circuit with roughly the same level of efficiency as [GHS12b],
in order to obtain an implementation of a FHE scheme with similar features but based on different
techniques and assumptions.

In the original DGHV scheme, a ciphertext has the form

c = q · p+ 2r +m

where p is the secret key, q is a large random integer, and r is a small random integer (noise); the bit
message m ∈ {0, 1} is recovered by computing m = [c mod p]2. The scheme is clearly homomorphic
for both addition and multiplication, since addition and multiplication of ciphertexts correspond to
addition and multiplication of plaintexts modulo 2.

To encrypt multiple bits mi into a single ciphertext c, we use the Chinese Remainder Theorem
with respect to a tuple of ` coprime integers p0, . . . , p`−1. The batch ciphertext has the form

c = q ·
`−1∏
i=0

pi + CRTp0,...,p`−1
(2r0 +m0, . . . , 2r`−1 +m`−1),

and correctly decrypts to the bit vector (mi) given by mi = [c mod pi]2 for all 0 6 i < `.5 Modulo
each of the pi’s the ciphertext c behaves as in the original DGHV scheme. Accordingly, the addition
or multiplication of two ciphertexts yields a new ciphertext that decrypts to the componentwise
sum or product mod 2 of the original plaintexts.

The main challenge, however, is to amend this construction so as to prove semantic security. In
the original DGHV scheme, public-key encryption is performed by masking the message m with a
random subset sum of the public key elements xj = qj · p+ rj as

c =

[
m+ 2r + 2

∑
j∈S

xj

]
x0

. (1)

The semantic security is proved by applying the Leftover Hash Lemma on the subset sum, and
using the random 2r in (1) to further randomize the ciphertext modulo p.

Extending DGHV public-key encryption to the batch setting may at first seem straightforward:
one can use a similar random subset sum technique in the batch variant by generating public key
elements xj with a small residue modulo each of the pi’s instead of only modulo p. However, for the
proof of semantic security to go through, the ciphertext c should then be independently randomized
modulo each of the pi’s, which isn’t easy to achieve without knowing the pi’s. Indeed, if we only use

5 We denote by CRTp0,...,p`−1(a0, . . . , a`−1) the unique integer u smaller than
∏`−1
i=0 pi such that u mod pi = ai for

all 0 6 i < `.

2

a single additive term 2r as in (1), then the same random term 2r = 2r mod pi is added modulo
each of the pi, which breaks the security proof.

Our main contribution in this paper is to provide a “correct”, provably semantically secure
generalization of DGHV to the batch setting. This is done by replacing the term 2r in Equation (1)
by another subset sum of public key elements which, taken modulo each of the pi’s, generate a
lattice with special properties. Our security proof then applies the Leftover Hash Lemma modulo
this lattice instead of only modulo q0. We describe the new batch DGHV scheme in Section 3 and
its security proof in Section 3.3. We show that our batch DGHV scheme can encrypt ` = Õ(λ2)
bits in a single ciphertext; therefore the ciphertext expansion ratio becomes Õ(λ3) instead of Õ(λ5)
in the original scheme.

In addition to componentwise addition and multiplication, we also show how to perform any
permutation on plaintext bits publicly. As opposed to [BGV12,GHS12a], we cannot use an underlying
algebraic structure to perform rotations over plaintext bits (clearly, the automorphisms of Z do not
provide any useful action on ciphertexts). Instead we show how to perform arbitrary permutations
on the plaintext vector during the ciphertext refresh operation at no additional cost (but with a
slight increase of the public key size). Our Recrypt operation is done in parallel over the ` slots,
with the same complexity as a single Recrypt operation in the original scheme.

Finally, we describe an implementation of our batch DGHV scheme, with concrete parameters.
We use our batch DGHV scheme to homomorphically evaluate the full AES encryption circuit. For
the “Large” parameters with > 72 bits of security, our implementation homomorphically encrypts
up to 531 AES ciphertexts in parallel in an amortized 12 minutes per AES ciphertext on a desktop
computer. This is comparable to the timings presented by Gentry et al. at Crypto 2012 for their
implementation of an RLWE-based scheme [GHS12b].6

While our batch variant of DGHV does not provide additional features nor significantly improved
efficiency over the RLWE-based scheme of [GHS12a], we believe it is interesting to obtain FHE
schemes with similar properties but based on different techniques and assumptions.

2 The Somewhat Homomorphic DGHV Scheme

In this section, we recall the somewhat homomorphic encryption scheme over the integers of van
Dijk, Gentry, Halevi and Vaikuntanathan (DGHV) in [DGHV10]. Let λ be the security parameter,
τ be the number of elements in the public key, γ their bit-length, η the bit-length of the secret key
p and ρ (resp. ρ′) the bit-length of the noise in the public key (resp. in a fresh ciphertext).

For a real number x, we denote by dxe, bxc and dxc the upper, lower or nearest integer part of x.
For integers z, p we denote the reduction of z modulo p by (z mod p) or [z]p with −p/2 < [z]p 6 p/2.
For a specific η-bit odd integer p, we use the following distribution over γ-bit integers:

Dγ,ρ(p) = {Choose q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ) : Output x = q · p+ r} .

DGHV.KeyGen(1λ). Generate an η-bit random prime integer p. For 0 6 i 6 τ , sample xi ← Dγ,ρ(p).
Relabel the xi’s so that x0 is the largest. Restart unless x0 is odd and [x0]p is even. Let
pk = (x0, x1, . . . xτ) and sk = p.

DGHV.Encrypt(pk,m ∈ {0, 1}). Choose a random subset S ⊆ {1, 2, . . . , τ} and a random integer r
in (−2ρ

′
, 2ρ

′
), and output the ciphertext:

c =

[
m+ 2r + 2

∑
i∈S

xi

]
x0

. (2)

6 Note that our implementation uses bootstrapping whereas the implementation of [GHS12b] uses leveled homomor-
phic encryption without bootstrapping.

3

DGHV.Evaluate(pk, C, c1, . . . , ct). Given the circuit C with t input bits and t ciphertexts ci, apply
the addition and multiplication gates of C to the ciphertexts, performing all the additions and
multiplications over the integers, and return the resulting integer.

DGHV.Decrypt(sk, c). Output m← [c mod p]2.

As shown in [DGHV10] the scheme is somewhat homomorphic, i.e. a limited number of ho-
momorphic operations can be performed on ciphertexts. More precisely given two ciphertexts
c = q · p+ 2r+m and c′ = q′ · p+ 2r′+m′ where r and r′ are ρ′-bit integers, the ciphertext c+ c′ is
an encryption of m+m′ mod 2 under a (ρ′ + 1)-bit noise and the ciphertext c · c′ is an encryption
of m ·m′ with noise bit-length ' 2ρ′. Since the ciphertext noise must remain smaller than p to
maintain correctness, the scheme roughly allows η/ρ′ successive multiplications on ciphertexts.

The scheme is semantically secure under the Approximate-GCD assumption (see [DGHV10]):

Definition 1 (Approximate GCD). The (ρ, η, γ)-Approximate-GCD problem consists, given a
random η-bit odd integer p and given polynomially many samples from Dγ,ρ(p), in outputting p.

3 Our Batch DGHV Scheme

We now describe our extension of the DGHV scheme to the batch setting. The goal is to pack `
plaintext bits m0, . . . ,m`−1 into a single ciphertext. Homomorphic addition and multiplication will
then apply in parallel and component-wise on the mi’s.

As explained in the introduction we use Chinese Remaindering with respect to ` coprime integers
p0, . . . , p`−1 to encrypt (m0, . . . ,m`−1) as

c = q ·
`−1∏
i=0

pi + CRTp0,...,p`−1
(2r0 +m0, . . . , 2r`−1 +m`−1) .

By extending the original DGHV public-key encryption equation (2), a plaintext vector m =
(m0, . . . ,m`−1) could then be encrypted into a single ciphertext:

c =

[
`−1∑
i=0

mi · x′i + 2r + 2
∑
i∈S

xi

]
x0

(3)

where the plaintext elements xi satisfy xi mod pj = ri,j and the additional public key elements x′i
are such that x′i mod pj = δi,j + 2r′i,j ; this yields [c mod pj]2 = mj as required.7

The main challenge, however, is to obtain a batch DGHV scheme which is still semantically
secure. The proof of semantic security for the original DGHV scheme is based on applying the
Leftover Hash Lemma on the subset sum, and using the random 2r in (1) to further randomize
the ciphertext modulo p. However we see that such randomization with 2r in (3) does not work
in the batch setting, because the same random term 2r = 2r mod pi is added modulo each of
the pi, whereas for the security proof to go through these random terms should be independently
distributed modulo each of the pi’s. Therefore a new technique is required to extend DGHV to
semantically secure batch encryption.

In the following, we start by describing a variant of DGHV still for a single bit message m only,
but which does extend naturally to the batch setting. We first consider the DGHV scheme without
the additional random 2r, since this term is of no use in the batch setting. A single message bit m
is then encrypted as

c =

[
m+ 2

∑
i∈S

xi

]
x0

7 We denote by δi,j the Kronecker delta, δi,j = 1 if i = j and 0 otherwise.

4

where xi = qi ·p+ ri. In order to prove semantic security as in [DGHV10], one should prove that the
values q and r′ given by c = q · p+ 2r′ +m are essentially random and independently distributed.
The randomness of q = 2

∑
i∈S qi mod q0 follows from the Leftover Hash Lemma (LHL) modulo

q0. However we cannot apply the LHL to r′ =
∑

i∈S ri because it is distributed over Z instead of
modulo an integer. Note that in the original scheme the randomness of r′ followed from adding a
random 2r in (1), much larger than the ri’s.

Let us assume that we could somehow reduce the integer variable r′ =
∑

i∈S ri modulo some
integer $. Then we could apply the LHL simultaneously modulo q0 and modulo $, and the
distributions of q mod q0 and r′ mod $ would be independently random as required. However,
during public-key encryption we certainly do not have access to the variable r′ =

∑
i∈S ri, so we

cannot a priori reduce it modulo an integer $ in the encryption phase.
Our technique is the following: instead of reducing the variable r′ modulo $, we add a large

random multiple of $ to r′. This can be done by extending the public key with a new element Π
such that Π mod p = $. Encryption would then be performed as

c =

[
m+ 2b ·Π + 2

∑
i∈S

xi

]
x0

(4)

for some large random integer b. Modulo p this gives a new integer r′′ = r′ + b ·$; we argue that
this enables to proceed as if r′ was actually reduced modulo $. Namely, if we generate the ri’s
such that the sum r′ =

∑
i∈S ri is not much larger than $, then reducing r′ modulo $ would just

subtract a small multiple of $, which is negligible compared to the large random multiple b ·$.
Formally the distribution of r′ + b ·$ is statistically close to (r′ mod $) + b ·$, which enables us
to apply the LHL to r′ mod $ and eventually obtain a security proof.

Now the advantage of (4) is that it can be easily extended to the batch setting. Instead of using
a single random multiple of Π, we use a subset sum of ` such multiples Πi, where Πi mod pj = $i,j .
The Leftover Hash Lemma is then applied modulo the lattice generated by the $i,j . This shows
that the random noise values modulo the pi’s follow essentially independent distributions, and
eventually leads to a security proof.

3.1 Description

BDGHV.KeyGen(1λ). Generate a collection of ` random η-bit primes p0, . . . , p`−1, and denote π
their product. Let us define the error-free public key element x0 = q0 ·π, where q0 ← Z∩ [0, 2γ/π)
is a 2λ

2
-rough integer8.

Generate the following integers xi, x
′
i and Πi with a quotient by π uniformly and independently

distributed in Z ∩ [0, q0), and with the following distribution modulo pj for 0 6 j < `:

1 6 i 6 τ, xi mod pj = 2ri,j , ri,j ← Z ∩ (−2ρ
′−1, 2ρ

′−1)

0 6 i 6 `− 1, x′i mod pj = 2r′i,j + δi,j , r′i,j ← Z ∩ (−2ρ, 2ρ)

0 6 i 6 `− 1, Πi mod pj = 2$i,j + δi,j · 2ρ
′+1, $i,j ← Z ∩ (−2ρ, 2ρ)

Finally, let pk =
〈
x0, (xi)16i6τ , (x

′
i)06i6`−1 , (Πi)06i6`−1

〉
and sk = (pj)06j6`−1.

BDGHV.Encrypt(pk,m ∈ {0, 1}`). Choose random integer vectors b = (bi)16i6τ ∈ (−2α, 2α)τ and
b′ = (b′i)06i6`−1 ∈ (−2α

′
, 2α

′
)` and output the ciphertext:

c =

[
`−1∑
i=0

mi · x′i +
`−1∑
i=0

b′i ·Πi +

τ∑
i=1

bi · xi

]
x0

. (5)

8 An integer a is b-rough when it does not contain prime factors smaller than b. As in [CMNT11] one can generate

q0 as a product of 2λ
2

-bit primes.

5

BDGHV.Decrypt(sk, c). Output m = (m0, . . . ,m`−1) where mj ← [c]pj mod 2.

BDGHV.Add(pk, c1, c2). Output c1 + c2 mod x0

BDGHV.Mult(pk, c1, c2). Output c1 · c2 mod x0.

3.2 Parameters and Correctness

The parameters must be set under the following constraints:

• ρ > 2λ to avoid brute force attack on the noise [CN12],

• η > α′ + ρ′ + 1 + log2(`) for correct decryption,

• η > ρ ·Θ(λ log2 λ) for homomorphically evaluating the “squashed decryption” circuit

• γ = ω(η2 · log λ) in order to thwart lattice-based attacks (see [DGHV10,CMNT11]);

• ρ′ > ρ+ λ and α′ > α+ λ for the proof of semantic security (see below),

• α · τ > γ + λ and τ > ` · (ρ′ + 2) + λ in order to apply the leftover hash lemma (see below).

To satisfy the above constraints one can take ρ = 2λ, η = Õ(λ2), γ = Õ(λ5), α = Õ(λ2),
τ = Õ(λ3) as in [CNT12], and ρ′ = 3λ, α′ = Õ(λ2) and ` = Õ(λ2). The main difference with the
original DGHV scheme is that the ciphertext expansion ratio becomes γ/` = Õ(λ3) instead of
γ = Õ(λ5). However the public key size (using the compressed public key technique from [CNT12])
becomes Õ(λ7) instead of Õ(λ5). We refer to Section 4.4 for concrete parameters and timings.

We prove the following lemma in Appendix A. We refer to Appendix A for the definition of
correctness for batch homomorphic encryption schemes, with respect to a set CE of permitted
circuits.

Lemma 1. The above scheme is correct for CE .

3.3 Semantic Security

Ideally we would like to base the security of the new batch DGHV scheme on the same assumption as
the original scheme, i.e. the Approximate-GCD assumption from Definition 1. However we can only
show its security under the (stronger) error-free Approximate-GCD assumption already considered
in [CMNT11,CNT12]. For two specific integers p and q0, we use the following distribution over
γ-bit integers:

Dρ(p, q0) = {Choose q ← [0, q0), r ← Z ∩ (−2ρ, 2ρ) : Output y = q · p+ r} .

Definition 2 (Error-free approximate GCD). The (ρ, η, γ)-error-free Approximate-GCD pro-
blem is: For a random η-bit prime p, given y0 = q0 · p where q0 is a random integer in [0, 2γ/p),
and polynomially many samples from Dρ(p, q0), output p.

Theorem 1. The batch DGHV scheme is semantically secure under the error-free-approximate-
GCD assumption.

3.4 Proof of Theorem 1

We proceed in two steps. First we prove that our batch DGHV scheme is semantically secure under
a new assumption, which we call the error-free `-decisional-approximate-GCD assumption. We then
show that this new assumption is implied by the (computational) error-free Approximate-GCD
assumption from the previous section.

Given integers q0 and p0, . . . , p`−1, we define the following oracle Oq0,(pi)(v) which, given as

input a vector v ∈ Z`, outputs x with

x = CRTq0,(pi)(q, v0 + 2r0, . . . , v`−1 + 2r`−1)

6

where q ← [0, q0) and ri ← (−2ρ, 2ρ). We denote by CRTq0,(pi)(q, a0, . . . , a`−1) the unique integer

u smaller than x0 = q0 ·
∏`−1
i=0 pi such that u ≡ q [q0] and u ≡ ai [pi] for all 0 6 i < `. Therefore

Oq0,(pi)(v) outputs a ciphertext for the plaintext v. Note that the components vi can be any integer,
not only 0, 1.

Definition 3 (EF-`-dAGCDλ,γ,η). The error-free `-decisional-approximate-GCD problem is as

follows. Pick random η-bit integers p0, . . . , p`−1 of product π, a random 2λ
2
-rough q0 ← Z∩ [0, 2γ/π),

a random bit b, set v0 = (0, . . . , 0) and v1 ← {0, 1}`. Given x0 = q0p0 · · · p`−1, z = Oq0,(pi)(vb) and
oracle access to Oq0,(pi), guess b.

The decisional problem is therefore to distinguish between an encryption of 0 and an encryption of
a random message. To prove semantic security we must show that this still holds when using the
public-key encryption procedure instead of the oracle Oq0,(pi); this essentially amounts to applying
a variant of the Leftover Hash Lemma.

Lemma 2. The batch DGHV scheme is semantically secure under the error-free `-decisional-
approximate-GCD assumption.

Proof. Under the attack scenario the attacker first receives the public key, and outputs two `-bit
messages m0 and m1. The challenger returns an encryption of mb for a random bit b. The attacker
finally outputs a guess b′ and succeeds if b′ = b. We use a sequence of games and denote by Si the
event that the attacker succeeds in Gamei.

Game0: this is the attack scenario. We simulate the challenger by running KeyGen to obtain pk
and sk.

Game1: we introduce a vector representation of ciphertexts. To any ciphertext c mod x0 we associate
the vector:

c = f(c) = (c mod q0, c mod p0, . . . , c mod p`−1) ∈ Zq0 × Z`.

We observe that if a ciphertext c is an encryption of 0 then it is equivalently rewritten as c =
(qc, 2c0, . . . , 2c`−1) = I2 · (qc, c0, . . . , c`−1) where I2 is the diagonal matrix with (1, 2, . . . , 2) on the
diagonal.

Given two integers x, y, we have that if |x mod pi| < pi/4 and |y mod pi| < pi/4 for all i, then
f(x+ y) = f(x) + f(y). Since we only consider ciphertexts which have sufficiently small residues
modulo the pi’s, when adding ciphertexts we can therefore work indifferently with integer or our
vector representation. In vector representation the encryption equation (5) can then be rewritten
as9

c = (0,m)T + I2 ·
(
X′ ·m+X · b+Π · b′

)
mod x0. (6)

where the columns of matrices X′, X and Π contain the vector representations (with the previous
I2 factor) of the ciphertexts x′i (without the δi,j terms), xi and Πi from the public key:

X′ =

qx′0 · · · qx′`−1

r′0,0 · · · r′`−1,0
...

...
r′0,`−1 · · · r′`−1,`−1

 , X =

qx1 · · · qxτ
r1,0 · · · rτ,0

...
...

r1,`−1 · · · rτ,`−1

 , Π =

qΠ0 · · · qΠ`−1

$0,0 + 2ρ
′ · · · $`−1,0

...
. . .

...

$0,`−1 · · · $`−1,`−1 + 2ρ
′

 .

We now modify the encryption Equation (6) as follows. We pre-reduce the term X′ ·m+X · b
modulo the lattice Π ′ formed by the column vectors of x0 and Π:

Π ′ =

q0 qΠ0 · · · qΠ`−1

0 $0,0 + 2ρ
′ · · · $`−1,0

...
...

. . .
...

0 $0,`−1 · · · $`−1,`−1 + 2ρ
′

 ,

9 Given a ciphertext c, we denote by c mod x0 the vector obtained by reducing the first component modulo q0.

7

which gives the new encryption equation:

c = (0,m)T + I2 ·
(
(X′ ·m+X · b) mod Π ′ +Π · b′

)
mod x0 . (7)

We prove in Appendix B.3 that two distributions are statistically close, which gives:

Claim 1. |Pr[S1]− Pr[S0]| 6 ` · τ · 2α−α′+2.

Game2: we show in Appendix B.4 that using the LHL, the term X ·b in Equation (7) is statistically
close to uniform modulo Π ′. Therefore we can replace the term X′ ·m+X · b by a random vector
u modulo Π ′ to get

c = (0,m)T + I2 · (u+Π · b′) mod x0. (8)

Claim 2. |Pr[S2]− P [S1]| 6 `2 · τ · 2ρ−ρ′+2 +

√
2γ−α·τ + ` · ρ′ · 2`·(ρ′+2)−τ .

Game3: we keep the same encryption equation

c = (0,m)T + I2 · (u+Π · b′) mod x0,

but we slightly modify the distribution of u. Instead of generating a random u modulo Π ′, we
generate a vector u whose first component is uniform in [0, q0) and the other components are
uniform in [0, 2ρ

′
). We show in Appendix B.7:

Claim 3. |Pr[S3]− Pr[S2]| 6 `2 · 2ρ−ρ′+2 + 2−α
′+3.

Game4: instead of generating the public key with KeyGen, we simulate the public key using
the oracle Oq0,(pi) from the error-free `-decisional Approximate-GCD problem. Moreover the
encryption equation from Game3 can be computed directly in integer representation instead
of vector representation using Oq0,(pi). Therefore we can simulate the public key and ciphertext
encryption without knowing the pi’s, and we still have:

Pr[S4] = Pr[S3].

Game5: to prepare for the `-decisional problem, we slightly modify the encryption equation with

c = (0,m)T + I2 · (z + u+Π · b′) mod x0. (9)

where z is a vector whose first component is uniform in [0, q0) and the other components are uniform
in (−2ρ, 2ρ). From the distribution of z and u, we obtain:

|Pr[S5]− Pr[S4]| 6 ` · 2ρ−ρ′ . (10)

Game6: we modify again the encryption equation by adding a vector z1 = (0,v1)T where v1 ←
{0, 1}`, as follows

c = (0,m)T + z1 + I2 · (z + u+Π · b′) mod x0. (11)

It is easy to see that the gap between Game 5 and Game 6 is at most the distinguishing
advantage of an efficient adversary against the error-free `-decisional-approximate-GCD problem.
Namely the vector I2 · z in Equation (9) can be obtained through z = Oq0,(pi)(v0) where v0 = 0`,

whereas the vector z1 + I2 · z can be obtained from z = Oq0,(pi)(v1) where v1 ← {0, 1}`. Therefore

|Pr[S6]− Pr[S5]| 6 εEF-`-dAGCD.

Game7: we remove the term (0,m)T in (11). Then the adversary’s view in Game 7 is independent
from m and we get

Pr[S7] =
1

2
.

8

The statistical distance between the random variables (0,m)T + z1 + I2 · z and z1 + I2 · z is at
most ` · 2−ρ. Therefore:

|Pr[S7]− Pr[S6]| 6 ` · 2−ρ.

Finally all the previous probability gaps can be made negligible by satisfying the constraints on
the parameters from Section 3.2; this concludes the proof of Lemma 2. ut

We then prove the following Lemma in Appendix C. Combined with Lemma 2 this proves
Theorem 1.

Lemma 3. The `-decisional-Approximate-GCD problem is hard if the error-free-approximate-GCD
problem is hard.

4 Making the Scheme Fully Homomorphic

In this section, we follow Gentry’s blueprint [Gen09] to transform a somewhat homomorphic
encryption scheme into a fully homomorphic encryption scheme.

4.1 The Squashed Scheme

As mentioned in the introduction, to follow Gentry’s blueprint and make our somewhat homomorphic
scheme amenable to bootstrapping, we first need to squash the decryption circuit, i.e. change the
decryption procedure so as to express it as a low degree polynomial in the bits of the secret key.

We use the same technique as in the original DGHV scheme [DGHV10] but generalize it to the
batch setting. We add to the public key a set y = {y0, . . . , yΘ−1} of rational numbers in [0, 2) with
κ bits of precision after the binary point, such that for all 0 6 j 6 `− 1 there exists a sparse subset
Sj ⊂ [0, Θ − 1] of size θ with

∑
i∈Sj yi ' 1/pj mod 2. The secret-key is replaced by the indicator

vector of the subsets Sj . Formally the scheme is modified as follows:

BDGHV.KeyGen(1λ). Generate sk∗ = (p0, . . . , p`−1) and pk∗ as before. Set xpj ← b2κ/pje for
j = 0, . . . , `− 1. Choose at random Θ-bit vectors sj = (sj,0, . . . , sj,Θ−1), each of Hamming
weight θ, for 0 6 j < `. Choose at random Θ integers ui ∈ [0, 2κ+1) for 0 6 i < Θ, fulfilling the
condition that xpj =

∑Θ−1
i=0 sj,i · ui mod 2κ+1 for all j. Set yi = ui/2

κ and y = (y0, . . . , yΘ−1).
Hence, each yi is a positive number smaller than two, with κ bits of precision after the binary
point, and verifies

1

pj
=

Θ−1∑
i=0

sj,i · yi + εj mod 2 (12)

for some |εj | < 2−κ.

Output the secret key sk = (s0, . . . , s`−1) and public key pk = (pk∗, y0, . . . , yΘ−1).

BDGHV.Expand(pk, c). The ciphertext expansion procedure takes as input a ciphertext c and
computes an expanded ciphertext: for every 0 6 i 6 Θ−1, compute zi given by zi = bc·yie mod 2
with n = dlog2(θ+1)e bits of precision after the binary point. Define the vector z = (zi)i=0,...,Θ−1
and output the expanded ciphertext (c, z).

BDGHV.Decrypt(sk, c,z). Output m = (m0, . . . ,m`−1) with

mj ←

[⌊
Θ−1∑
i=0

sj,i · zi

⌉]
2

⊕ (c mod 2). (13)

This completes the description of the scheme. We use n = dlog2(θ + 1)e as in [CMNT11]; the proof
of the following Lemma is the same as in [CMNT11, Appendix E].

9

Lemma 4. The BDGHV encryption scheme is correct for the set C(PE) of circuits that compute
permitted polynomials.

Remark 1. To reduce the size of the public key we can generate all the yi’s pseudo-randomly as
in [CMNT11], except ` of them in order to satisfy Equation (12) for all 0 6 j < `.

4.2 Bootstrapping

As in [DGHV10], we get that the BDGHV scheme is bootstrappable. Moreover, the Recrypt
procedures works naturally in parallel over the plaintext bits.

In the original DGHV scheme, the decryption equation was:

m←

[⌊
Θ−1∑
i=0

si · zi

⌉]
2

⊕ (c mod 2) (14)

and could be homomorphically evaluated by providing an encryption σi of every secret-key bit
si; one would obtain a new ciphertext which would encrypt the same plaintext bit m but with a
possibly reduced noise.

Similarly, the decryption Equation (13) for the batch scheme can be evaluated homomorphically
by providing for all 0 6 i < Θ an encryption σi of the ` secret-key bits sj,i, with:

σi = BDGHV.Encrypt(s0,i, . . . , s`−1,i).

This gives a new ciphertext that encrypts the same `-bit plaintext vector, but with a (possibly)
reduced noise. In other words, instead of having an homomorphic evaluation of a single Equation (14),
we have that the ` equations in (13) are homomorphically evaluated in parallel, one in each of the `
plaintext slots of the ciphertext. Therefore the Recrypt operation is done in parallel over the ` slots,
with the same complexity as a single Recrypt operation in the original scheme.

From Gentry’s theorem, we obtain a homomorphic encryption scheme for circuits of any depth.
The proof of the following theorem is identical to the proof of Theorem 5.1 in [CMNT11].

Theorem 2. Let E be the above scheme, and let DE be the set of augmented (squashed) decryption
circuits. Then DE ⊂ C(PE).

4.3 Complete Set of Operations for Plaintext Vectors

From what precedes, we can implement homomorphic SIMD-type operations on our packed cipher-
texts, where the Add and Mult operations are applied to ` different input bits at once. However, a
desired feature when dealing with packed ciphertexts is the ability to move values between plaintext
slots with a public Permute operation. As opposed to [GHS12a] we cannot rely on an underlying
algebraic structure. Instead we show how to perform such Permute at ciphertext refresh time. This
feature is therefore supported at no extra cost assuming a ciphertext refresh operation has to be
carried out anyway (i.e. after each Mult gate). Notice that a similar technique was described inde-
pendently in [BGH12] for the RLWE-based fully homomorphic schemes [BV11a,BV11b,GHS12a].

For any permutation ζ over {0, . . . , `− 1}, we want to homomorphically evaluate the function

`-Permute (ζ, (u0, . . . , u`−1)) =
(
uζ(0), . . . , uζ(`−1)

)
.

Let ζ be a permutation to be applied homomorphically on the plaintext bits. During the KeyGen
operation, one can define for each i ∈ [0, Θ − 1]

σζi = BDGHV.Encrypt(sζ(0),i, . . . , sζ(`−1),i).

Now, performing the ciphertext refresh operation (“recryption”) with the σζi ’s instead of the σi’s
gives a ciphertext of the plaintext vector (mζ(0), . . . ,mζ(`−1)) which is exactly the desired result.

10

Therefore any permutation ζ can be implemented by putting the corresponding σζi ’s in the public
key.

To be able to perform arbitrary permutations on the plaintext vector, one can augment the
public key by a minimal set of permutations ζ’s that generates the whole permutation group S`,
such as the transposition (1, 2) and the cycle (1, 2, . . . , `). In that case the impact on the public key
is small (as only 2 ·Θ · γ bits are added), but the performance overhead is significant, since as many
as O(`) ciphertext refresh operations may be needed to carry out a desired permutation.

A more practical solution is to use a Beneš network [Ben64] of permutations as in [GHS12a].
In that case it suffices to add 2 log2(`) permuting elements to the public key to enable circular
rotations by ±2i bit position. Then any permutation can be obtained in (2 log(`)− 1) steps. At each
step, at most two rotations and two Select operations are performed, where the Select operation
on c1 and c2 constructs a ciphertext where each of the ` plaintext slot is chosen either from c1
or c2; such Select operation is easily obtained with two Mult (and two recryptions) and one Add,
see [GHS12a]. This approach has a limited impact on the public key (2 log2(`) ·Θ · γ more bits),
and any permutation can then be performed with at most 6 · (2 log2 `− 1) recryptions.

In practice, however, the circuit to be homomorphically evaluated is likely to be known in advance,
so it is possible to put a set of distinguished permutations in the public key that provides an optimal
time-memory tradeoff. In the next section, we describe two variants of homomorphic evaluations of
the full AES circuit that require respectively only four permutations and no permutation at all.

4.4 Implementation Results

We provide in Table 1 concrete key sizes and timings for our batch DGHV scheme, based on a C++
implementation using the GMP library. We use essentially the same parameters as in [CNT12,CT12];
in particular, the parameters take into account the attack from [CN12]. We use the same compressed
public-key variant as in [CNT12]. We provide a complete description of the scheme in Appendix D.
As in [CMNT11,CNT12], we take n = 4 and θ = 15 for all security levels.

We obtain essentially the same running times as in [CNT12]. The main difference is that the
Recrypt operation is now performed in parallel over ` = 531 bits (for the “Large” setting) instead of
a single bit.

Instance λ ` ρ η γ × 10−6 τ Θ pk size

Toy 42 10 26 988 0.29 188 150 647kB
Small 52 37 41 1558 1.6 661 555 13.3MB
Medium 62 138 56 2128 8.5 2410 2070 304MB
Large 72 531 71 2698 39 8713 7965 5.6GB

KeyGen Encrypt Decrypt Mult Expand Recrypt

0.06s 0.02s 0s 0.003s 0.007s 0.11s
1.74s 0.23s 0.02s 0.025s 0.08s 1.10s
73s 3.67s 0.45s 0.16s 1.60s 11.9s

3493s 61s 9.8s 0.72s 28s 172s

Table 1. Benchmarking for our Batch DGHV with a compressed public key on a desktop computer (Intel Core i7 at
3.4Ghz, 32GB RAM).

5 Homomorphic Evaluation of the AES Circuit

In this section, we show how to homomorphically evaluate the AES-128 encryption circuit using our
batch encryption scheme, and provide concrete timings. A similar implementation with the RLWE-
based fully-homomorphic encryption scheme [BV11a,BV11b,GHS12a] is described in [GHS12b].
As mentioned in [SV11,NLV11,GHS12b], such an implementation can be used to optimize the
communication cost in cloud-based applications. Indeed, since the ciphertext expansion ratio in
most fully-homomorphic encryption schemes is huge, data can rather be send encrypted under AES
with a ciphertext expansion equal to 1, along with the public key pkFHE of the FHE scheme scheme
as well as the AES secret-key encrypted under pkFHE. Then, before the cloud performs homomorphic

11

operations on the data, it can first run the AES decryption algorithm homomorphically to obtain
the plaintext data encrypted under pkFHE.10

We consider our BDGHV scheme with ` slots. We describe two variants of our implementation
which we call byte-wise bitslicing and state-wise bitslicing .

Byte-Wise Bitslicing. In this representation, the 16-byte AES state is viewed as a matrix of 16
rows of 8 bits each (one row for every byte). Each of the 8 columns is then stored on a different
ciphertext. Therefore an AES state requires 16 slots of 8 ciphertexts, and one can perform k = `/16
AES encryptions in parallel using these 8 ciphertexts. Formally the AES state is composed of 8
ciphertexts c0, . . . , c7, where the underlying plaintexts m0, . . . ,m7 are such that mi[k · 16 + j] is
the i-th bit of the j-th element of the AES state of the k-th AES.11 We briefly describe how to
implement the AES stages; more details are provided in Appendix E.

The AddRoundKey stage performs a XOR between the AES state and the current round key.
This operation only consists of 8 BDGHV.Add operations. The SubBytes stage is implemented using
the 115 gates circuit of Boyar and Peralta [BP10] to compute the Sbox. To minimize the number
of Recrypt, we perform the Recrypt operation only on 9 of the temporary variables and on the 8
outputs. In total, this stage costs 83 Add, 32 Mult and 17 Recrypt.

The ShiftRows stage consists in performing a permutation of the state. For this we add the σζi ’s
of the associated permutation ζ in the public key, and the rotation is performed at no additional
cost during the final Recrypt of the SubBytes stages. Finally the MixColumns stage requires 3
permutations of the AES state; it requires a total of 3 × 8 = 24 Recrypt and 38 Add, and the
addition of the σζi ’s of three permutations ζ to the public key.

In total, our byte-wise implementation of AES requires 1260 BDGHV.Add, 320 BDGHV.Mult,
and 377 BDGHV.Recrypt.

State-Wise Bitslicing. In this representation, each of the 128 bits of the AES state is stored in a
different ciphertext. One can then perform k = ` AES encryptions in parallel. This corresponds to
a full bitslice implementation of AES. More precisely the AES state is composed of 128 ciphertexts
c0, . . . , c127, where the underlying plaintexts m0, . . . ,m127 are such that mi+j·8[k] is the i-th bit of
the j-th byte of the state of the k-th AES.

The AddRoundKey stage requires 128 Add operations. The SubBytes stage is implemented using
the same circuit as above. Since the circuit needs to be evaluated on each of the 16 bytes of the
AES state, the stage costs 16× 83 = 1328 Add, 16× 32 = 512 Mult, and 16× 17 = 272 Recrypt. The
ShiftRows stage consists in performing a permutation of the state, and this is done by permuting
the indices of bits in the homomorphic AES state at no additional cost. The MixColumns stage
requires 608 Add. The total cost the AES evaluation is then 14688 BDGHV.Add, 5120 BDGHV.Mult
and 2448 BDGHV.Recrypt. More details are provided in Appendix E.

Implementation Results. We implemented both variants using the concrete parameters from Table 1;
our results are summarized in Table 2. The relative time is the total time of AES evaluation divided
by the number of encryptions processed in parallel. Notice that the state-wise bitslicing variant
yields better relative times.

Our timings are comparable to [GHS12b] for the RLWE-based scheme, where a relative time
of 5 minutes per block is reported; the authors used a 24-core server with 256GB of RAM, while
our program runs on a more modest desktop computer with 4 cores and 32GB of RAM (the whole
public key fits in RAM). We claim a slightly lower security level, however: 72 bits versus 80 bits for
the implementation from [GHS12b].

10 Note that we focus here on AES encryption rather than AES decryption to be consistent with [GHS12b].
11 Thus, m0 represents the LSBs of the AES states of the k AES-plaintexts, and m7 the MSBs. This construction is

similar to general-purpose bitslicing [Bih97,KS09].

12

(a) Timings for byte-wise representation

Instance λ ` # of enc. AddRoundKey ShiftRows MixColumns Total AES Relative
in parallel and SubBytes (in hours) time

Toy 42 16 1 0.006s 2.2s 3s 0.013 48s

Small 52 48 3 0.04s 21s 29s 0.125 2min 30s

Medium 62 144 9 0.3s 210s 290s 1.25 8min 20s

Large 72 528 33 1.6s 2970s 4165s 18.3 33min

(b) Timings for state-wise representation

Instance λ ` # of enc. AddRoundKey SubBytes ShiftRows MixColumns Total AES Relative
in parallel (in hours) time

Toy 42 10 10 0.06s 33s 0s 0.02s 0.08 29s

Small 52 37 37 0.06s 309s 0s 0.09s 0.74 1min 12s

Medium 62 138 138 4.5s 3299s 0s 0.44s 7.86 3min 25s

Large 72 531 531 27s 47656s 0.04s 2.8s 113 12min 46s

Table 2. Timings of byte-wise and state-wise homomorphic AES developed in C++ with GMP, running on a desktop
computer (Intel Core i7 at 3.4Ghz, 32GB RAM).

References

[Ben64] Václad E. Beneš. Optimal rearrangeable multistage connecting networks. Bell Systems Technical Journal,
43(7):1641–1656, 1964.

[BGH12] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in LWE-based homomorphic encryption.
Cryptology ePrint Archive, Report 2012/565, 2012. http://eprint.iacr.org/. To appear in PKC 2013.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. In Shafi Goldwasser, editor, Innovations in Theoretical Computer Science 2012,
pages 309–325. ACM, 2012.

[Bih97] Eli Biham. A fast new DES implementation in software. In Fast Software Encryption, 4th International
Workshop, FSE ’97, Haifa, Israel, January 20-22, 1997, Proceedings, volume 1267 of Lecture Notes in
Computer Science, pages 260–272. Springer, 1997.

[BP10] Joan Boyar and René Peralta. A new combinational logic minimization technique with applications to
cryptology. In Paola Festa, editor, Experimental Algorithms, volume 6049 of Lecture Notes in Computer
Science, pages 178–189. Springer, 2010.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP. In
Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume 7417
of Lecture Notes in Computer Science, pages 868–886. Springer, 2012.

[BV11a] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS’11, pages 97–106. IEEE Computer Society, 2011.

[BV11b] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic encryption from Ring-LWE and security
for key dependent messages. In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume
6841 of Lecture Notes in Computer Science, pages 505–524. Springer, 2011.

[CCK+] Jung Hee Cheon, Jean-Sébastien Coron, Jinsu Kim, Moon Sung Lee, Tancrède Lepoint, Mehdi Tibouchi,
and Aaram Yun. Batch fully homomorphic encryption over the integers. In To Appear at Eurocrypt 2013.

[CMNT11] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully homomorphic
encryption over the integers with shorter public keys. In Phillip Rogaway, editor, Advances in Cryptology –
CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 487–504. Springer, 2011.

[CN12] Yuanmi Chen and Phong Nguyen. Faster algorithms for approximate common divisors: Breaking fully-
homomorphic-encryption challenges over the integers. In David Pointcheval and Thomas Johansson,
editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science,
pages 502–519. Springer, 2012.

[CNT12] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public key compression and modulus
switching for fully homomorphic encryption over the integers. In David Pointcheval and Thomas Johansson,
editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science,
pages 446–464. Springer, 2012.

[CT12] Jean-Sébastien Coron and Mehdi Tibouchi. Implementation of the fully homomorphic encryption scheme
over the integers with compressed public keys in sage, 2012. https://github.com/coron/fhe.

[DGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomorphic encryption
over the integers. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of
Lecture Notes in Computer Science, pages 24–43. Springer, 2010.

13

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009. crypto.

stanford.edu/craig.
[GH11] Craig Gentry and Shai Halevi. Implementing Gentry’s fully-homomorphic encryption scheme. In Kenneth

Paterson, editor, Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer
Science, pages 129–148. Springer, 2011.

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog overhead. In
David Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume
7237 of Lecture Notes in Computer Science, pages 465–482. Springer, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit. In Reihaneh
Safavi-Naini and Ran Canetti, editors, Advances in Cryptology - CRYPTO 2012, volume 7417 of Lecture
Notes in Computer Science, pages 850–867. Springer, 2012.

[KS09] Emilia Käsper and Peter Schwabe. Faster and timing-attack resistant AES-GCM. In Christophe Clavier
and Kris Gaj, editors, Cryptographic Hardware and Embedded Systems - CHES 2009, volume 5747 of
Lecture Notes in Computer Science, pages 1–17. Springer, 2009.

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty computation on the
cloud via multikey fully homomorphic encryption. In Proceedings of the 44th Symposium on Theory of
Computing Conference, STOC 2012, pages 1219–1234. ACM, 2012.

[NLV11] Michal Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic encryption be practical?
In Proceedings of the 3rd ACM workshop on Cloud computing security workshop, CCSW ’11, pages 113–124.
ACM, 2011.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of AES. In Stefan Mangard
and François Xavier Standaert, editors, Cryptographic Hardware and Embedded Systems, CHES 2010,
volume 6225 of Lecture Notes in Computer Science, pages 413–427. Springer, 2010.

[SV10] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic encryption with relatively small key and
ciphertext sizes. In Phong Nguyen and David Pointcheval, editors, Public Key Cryptography – PKC 2010,
volume 6056 of Lecture Notes in Computer Science, pages 420–443. Springer, 2010.

[SV11] Nigel P. Smart and Frederik Vercauteren. Fully homomorphic SIMD operations, 2011. To appear in
Designs, Codes and Cryptography.

A Correctness of the Scheme

We recall and adapt to the batch settings the definition of correctness from [Gen09,DGHV10]. We
consider an homomorphic public-key encryption scheme E with an additional algorithm Evaluate
taking as input the public key pk, a mod-2 arithmetic circuit C with t inputs and t ciphertexts ci,
and outputting another ciphertext c.

Definition 4 (Correct batch homomorphic decryption). The scheme

E = (KeyGen,Encrypt,Decrypt,Evaluate)

is correct for a given t-input circuit C if, for any key-pair (sk, pk) output by KeyGen(λ), any t
plaintext `-bit vectors m1, . . . ,mt, and any ciphertexts C = (c1, . . . , ct) with ci ← Encrypt(pk,mi),
it holds that

Decrypt(sk,Evaluate(pk, C,C)) =
(
C(m1[0], . . . ,mt[0]), . . . , C(m1[`− 1], . . . ,mt[`− 1])

)
.

As in [Gen09,DGHV10], we define a permitted circuit as one where for any i > 1 and any set of
integers inputs less that `i2i(α

′+ρ′+2) in absolute value, the generalized circuit’s output has absolute
value at most 2i(η−3−n) with n = dlog2(λ+ 1)e; we let CE be the set of permitted circuits.

We show that the batch scheme presented in Section 3 is correct.

Proof (of Lemma 1). Given a ciphertext c outputted by BDGHV.Encrypt(pk,m), there exist integer
vectors b = (bi)16i6τ ∈ (−2α, 2α)τ and b′ = (b′i)16i6`−1 ∈ (−2α

′
, 2α

′
) such that

c =

`−1∑
i=0

mi · x′i +

τ∑
i=1

bi · xi +

`−1∑
i=0

b′i ·Πi mod x0

For each j = 0, . . . , `− 1, this gives

|c mod pj | 6 ` · 2ρ+1 + τ2α+ρ
′+1 + ` · 2α′+ρ′+1 6 ` · 2α′+ρ′+2. (15)

14

Let C be a permitted circuit with t inputs and let C† be the corresponding circuit operations
over the integers rather than modulo 2. Let ci ← BDGHV.Encrypt(pk,mi). We have, for each
j = 0, . . . , `− 1,

c mod pj = C†(c1, . . . , ct) mod pj = C†(c1 mod pj , . . . , ct mod pj) mod pj . (16)

From (15) and the definition of permitted circuits, we obtain∣∣∣C†(c1 mod pj , . . . , ct mod pj)
∣∣∣ 6 2η−4 6 pj/8.

Therefore
C†(c1 mod pj , . . . , ct mod pj) mod pj = C†(c1 mod pj , . . . , ct mod pj),

which implies from (16) that c mod pj = C†(c1 mod pj , . . . , ct mod pj), and eventually

[c mod pj]2 =
[
C†([c1 mod pj]2, . . . , [ct mod pj]2)

]
2

= C(m1[j], . . . ,mt[j]),

which concludes the proof. ut

B Proof of Lemma 2

In Sections B.1 and B.2, we establish some preliminary results.

B.1 Cardinality of the Kernel of a Linear Map

Lemma 5. Let G be a finite abelian group of order |G|. Let t > 1 be an integer. For any a =
(a1, . . . , at) ∈ Zt, define the linear map φa : Gt → G by φa(g1, . . . , gt) =

∑t
i=1 ai · gi. The cardinality

of the kernel of φa is given by |kerφa| = |G|t−1 ·
∏r
j=1 gcd(dj , a1, . . . , at), where the dj’s are the

invariant factors of G, i.e. satisfy dj | dj+1 and G '
∏r
j=1 Z/djZ.

Proof. We prove this result componentwise. Let a ∈ Zt. For any index j ∈ [1, r], consider the map

φj,a : (Z/djZ)t → Z/djZ

(g1, . . . , gt) 7→
t∑
i=1

ai · gi.

Its image is the subgroup of Z/djZ generated by gcd(a1, . . . , at), hence

|im(φj,a)| = dj/ gcd(dj , a1, . . . , at),

which implies
|kerφj,a| = dtj/|im(φj,a)| = dt−1j · gcd(dj , a1, . . . , at).

The result follows directly. ut

B.2 Diagonally Dominant Matrices

Given a matrix B = (bij) ∈ Zn×n, we let Λi(B) =
∑

k 6=i |bik|.

Definition 5 (Diagonally dominant matrix). A matrix B = (bij) ∈ Zn×n is said to be diago-
nally dominant if |bii| > Λi(B) for all i.

We first show that a diagonally dominant matrix is invertible and give a bound on the operator
norm of its inverse.

15

Lemma 6. Let B = (bij) ∈ Zn×n be a diagonally dominant matrix. Then B is invertible and

‖B−1‖∞ 6 max
i=1,...,n

(|bii| − Λi(B))−1 .

where ‖ · ‖∞ is the operator norm on n× n matrices with respect to the `∞ norm on Rn.

Proof. For any vector t ∈ Rn, we have

‖B · t‖∞ = max
i=1,...,n

∣∣∣∣∣∣
n∑
j=1

bij · tj

∣∣∣∣∣∣
There exists k such that ‖t‖∞ = |tk|. Consequently

‖B · t‖∞ >

∣∣∣∣∣∣
n∑
j=1

bkj · tj

∣∣∣∣∣∣ > |tk| · (|bkk| − Λk(B)) > ‖t‖∞ · min
i=1,...,n

(|bii| − Λi(B)) > ‖t‖∞ · ε. (17)

for ε := mini=1,...,n (|bii| − Λi(B)), where ε > 0 since B is a diagonally dominant matrix.

This implies that the matrix B is invertible, since Bt = 0⇒ ‖Bt‖∞ = 0⇒ ‖t‖∞ = 0⇒ t = 0.
Given u ∈ Rn, let t = B−1u. Then from Equation (17) with Bt = u

‖u‖∞ > ‖B−1u‖∞ · ε

Thus

‖B−1‖∞ 6 max
i=1,...,n

(|bii| − Λi(B))−1 .

ut

Lemma 7. Let B = (bij) ∈ Zn×n be a diagonally dominant matrix, with bii > 0 for all i. Let U be
the set of vectors (ui) ∈ Zn such that |ui| < ∆i/2 where ∆i = bii − Λi(B) for all i. The vectors in
U are all distinct modulo B.

Proof. Let u,u′ be two distinct vectors in U . We have |ui − u′i| < bii − Λi(B) for all i. Let v be a
non-zero vector in the lattice generated by the column vectors of B; we show that |vi| > bii −Λi(B)
for some i. Therefore we must have u 6= u′ mod B.

We write v = B · y for some non-zero vector y ∈ Zn. Let M = max{|yk|; 1 6 k 6 n} and let i
such that |yi| = M . We write:

vi =

n∑
j=1

bijyj = biiyi +
∑
j 6=i

bijyj

which gives:

|biiyi| = |vi −
∑
j 6=i

bijyj | 6 |vi|+
∑
j 6=i
|bij | ·M 6 |vi|+M · Λi(B)

which gives using M > 1:

|vi| > |biiyi| −M · Λi(B) >M · (bii − Λi(B)) > bii − Λi(B).

ut

16

B.3 Proof of Claim 1

Given an invertible matrix A ∈ Zn×n and a vector y ∈ Zn, we denote by x = y mod A the vector
x = y −A · bA−1 · yc.

Since the first component of c is always reduced modulo q0, we can restrict ourselves to the `
last components of the vectors, and to the sub-matrix

Π ′′ =

$0,0 + 2ρ
′ · · · $`−1,0

...
. . .

...

$0,`−1 · · · $`−1,`−1 + 2ρ
′

 .

More precisely, letting u := X′ ·m+X · b, we have

(u mod Π ′) mod x0 = u−Π ′ · bΠ ′−1 · uc mod x0

= u−Π · bΠ ′′−1 · u′c mod x0 .

where u′ ∈ Z` is the vector u with its first component removed. This gives

c = (0,m)T + I2 ·
(
u+Π ·

(
b′ − bΠ ′′−1 · u′c

))
mod x0 .

We have
‖u′‖∞ 6 ` · 2ρ + τ · 2ρ′+α 6 τ · 2ρ′+α+1 .

Moreover since Π ′′ is a diagonally-dominant matrix, we have from Lemma 6 in Appendix B.2

‖Π ′′−1‖∞ 6 max
i=0,...,`−1

∣∣∣$i,i + 2ρ
′
∣∣∣−∑

k 6=i
|$k,i|

−1 6 2−ρ
′+1 .

Therefore

‖bΠ ′′−1 · u′c‖∞ 6 ‖Π ′′−1 · u′‖∞ + 1 6 ‖Π ′′−1‖∞ · ‖u′‖∞ + 1 6 τ · 2α+3 .

Since the vector b′ has its ` components uniformly distributed in (−2α
′
, 2α

′
), for any fixed vector

bΠ ′′−1 · u′c the statistical distance between b′ and b′ − bΠ ′′−1 · u′c is at most ` · τ · 2α+2−α′ ; this
gives the same upper-bound for the statistical distance between the ciphertext c in Game0 and
Game1, which proves the claim.

B.4 Proof of Claim 2

Our goal is to show that the distribution of the term X · b mod Π ′ is statistically close to the
uniform distribution modulo Π ′. First, we show that the distribution of X mod Π ′ is statistically
close to the uniform distribution of matrices with τ columns in Y = Z`+1/(Π ′).

Lemma 8. The distribution of X is ε-statistically close to uniform over Y τ , where

ε = `2 · τ · 2ρ−ρ′+2 .

Therefore instead of considering the distribution ofX ·b mod Π ′ we can consider the distribution
ofG·b mod Π ′ whereG is uniformly distributed over the matrices with τ columns in Y = Z`+1/(Π ′).
For this we consider the family H of hash functions hG : X → Y where X = (−2α, 2α)τ and
Y = Z`+1/(Π ′) defined as

hG(b) = G · b mod Π ′,

where G is a matrix of τ columns vectors over Y = Z`+1/(Π ′). Using the Leftover Hash Lemma,
we show:

Lemma 9. The distribution of (G,G · b mod Π ′) is ε2-statistically close to uniform modulo Π ′,
with

ε2 =

√
2γ−α·τ + ` · ρ′ · 2`·(ρ′+2)−τ

Combining Lemma 8 and Lemma 9 this proves Claim 2.

17

B.5 Proof of Lemma 8

We must show that the distribution of the vectors xi’s is statistically close to uniform modulo
Π ′. For this it suffices to show that the distribution of the vectors ri = (ri,0, . . . , ri,`−1) ∈ Z` is
statistically close to uniform modulo Π ′′, where

Π ′′ =

$0,0 + 2ρ
′ · · · $`−1,0

...
. . .

...

$0,`−1 · · · $`−1,`−1 + 2ρ
′

 .

Namely the first coefficient of the xi’s is uniform modulo q0 and independent of the other coefficients,
therefore it is distributed as the first coefficient of a random vector modulo Π ′.

The vectors ri = (ri,0, . . . , ri,`−1) ∈ Z` are uniformly and independently distributed in the set

U0 = {(uj)j=0,...,`−1 ∈ Z` : −2ρ
′−1 < uj < 2ρ

′−1} .

We must show that when r ← U0 the distribution of r mod Π ′′ is statistically close to uniform in
Z`/(Π ′′). We consider the following subset of U0:

U ′0 = {(uj)j=0,...,`−1 ∈ Z` : |uj | < ∆j/2}

where ∆j := 2ρ
′ − 2ρ − Λj(Π ′′). From Lemma 7 we have that the vectors of U ′0 are all distinct

modulo Π ′′. Therefore when r ← U ′0 (instead of U0) then r mod Π ′′ is uniformly distributed in
the set:

U1 = {u mod Π ′′ : u ∈ U ′0} ⊂ Z`/(Π ′′)

To prove Lemma 8 it suffices to show that the sets U0 and U ′0 have very close size, and
that the sets U1 and Z`/(Π ′′) have very close size. We know that |U ′0| 6 |U0| 6 2ρ

′·` and that
|U ′0| = |U1| 6 |Z`/(Π ′′)| = |detΠ ′′|; therefore it suffices to obtain a lower-bound for |U ′0| and an
upper-bound for |detΠ ′′|.

To obtain a lower-bound for |U ′0| we write:

|U0| > |U ′0| >
`−1∏
j=0

∆j > (2ρ
′ − ` · 2ρ)` > 2ρ

′·` ·
(

1− `2 · 2ρ−ρ′
)
. (18)

To upper bound |detΠ ′′| we use Hadamard’s inequality

∣∣detΠ ′′∣∣ 6 `−1∏
j=0

‖π′j‖,

where π′j is the j-th row of Π ′′. We have for all j:

‖π′j‖ 6
√

(2ρ′ + 2ρ)2 + (`− 1) · (2ρ)2 6
√

22ρ′ + 2ρ′+ρ+1 + ` · 22ρ

6
√

22ρ′(1 + 2ρ+2−ρ′) 6 2ρ
′ ·
(

1 + 2ρ+1−ρ′
)
.

Thus ∣∣det(Π ′′)
∣∣ 6 2ρ

′·` ·
(

1 + ` · 2ρ+1−ρ′
)

Combining the previous inequality with (18), we obtain:

2ρ
′·` ·
(

1− `2 · 2ρ−ρ′
)
6 |U ′0| = |U1| 6 |Z`/(Π ′′)| 6 2ρ

′·` ·
(

1 + ` · 2ρ+1−ρ′
)
. (19)

Combining inequalities (18) and (19) we obtain that the statistical distance between r mod Π ′′

with r ← U0 and the uniform distribution in Z`/(Π ′′) is at most `2 ·2ρ−ρ′+2, which proves Lemma 8.

18

B.6 Proof of Lemma 9

We consider the family H of hash functions hG : X → Y where X = (−2α, 2α)τ and Y = Z`+1/(Π ′)
defined as

hG(b) = G · b mod Π ′,

where G is a matrix of τ columns vectors over Y = Z`+1/(Π ′). We must show that (hG, hG(b)) is
uniformly distributed in H× Y when h← H and b← X.

We first recall the notion of ε-pairwise independence introduced in [CMNT11].

Definition 6. A family H of hash functions h : X → Y is ε-pairwise independent if

∑
x 6=x′

(
Pr
h←H

[h(x) = h(x′)]− 1

|Y |

)
6 |X|2 · ε

|Y |
.

The following generalization of the usual leftover hash lemma is proved in [CMNT11].

Lemma 10 (Leftover hash lemma). Let H be a family of ε-pairwise independent hash functions.
Suppose that h ← H and x ← X are chosen uniformly and independently. Then (h, h(x)) is
(12
√
|Y |/|X|+ ε)-uniform over H× Y .

Therefore to apply Lemma 10 we show that the hash function family hG(b) = G · b mod Π ′ is
ε-pairwise independent. We must bound the value δ defined by:

δ =
|Y |
|X|2

∑
b6=b′

(
Pr
h

[h(b) = h(b′)]− 1

|Y |

)
.

Let b, b′ ∈ X, b 6= b′ and define a = b− b′. We denote by (qi, ri) ∈ Z`+1 the column vectors of
G, for 1 6 i 6 τ . We have that

h(a) = 0 ∈ Z`+1/(Π ′) ⇐⇒

φa,q0

(
(qi)i=1,...,τ

)
:=

τ∑
i=1

ai · qi = 0 mod q0

φa,Π′′
(
(ri)i=1,...,τ

)
:=

τ∑
i=1

ai · ri = 0 mod Π ′′
,

where

Π ′′ =

$0,0 + 2ρ
′ · · · $`−1,0

...
. . .

...

$0,`−1 · · · $`−1,`−1 + 2ρ
′

 .

Therefore for any fixed b 6= b′

Pr
h

[h(b) = h(b′)] =
|kerφa,q0 |

qτ0
·
∣∣kerφa,Π′′

∣∣
|det(Π ′′)|τ

.

We have that gcd(a1, . . . , aτ , q0) = 1. Indeed, all the factors of q0 are such that 2λ
2
> 2α+1 > aj

for all j, and thus any nonzero aj is coprime with q0. Consequently, applying Lemma 5 to G = Zq0 ,
we get

|kerφa,q0 |
qτ0

=
1

q0
.

We now consider the group G = Z`/(Π ′′) and define the set

U = {a 6= 0 : gcd(a1, . . . , aτ , dr) 6= 1},

19

where dr is the larger invariant factor of G, i.e. is such that G ' Z/d1Z × · · · × Z/drZ with
di | di+1, and di 6= di+1. We denote by U{ the complement of U . From Lemma 5 we have that∣∣kerφa,Π′′

∣∣ = |det(Π ′′)|τ−1 when a ∈ U{. Therefore,∣∣∣∣Pr
h

[h(b) = h(b′)]− 1

q0 |det(Π ′′)|

∣∣∣∣ 6
{

0 if b− b′ ∈ U{,

1
q0

if b− b′ ∈ U .

Therefore it suffices to bound the number of (b, b′) such that b− b′ ∈ U . For any b ∈ X, define

Ub = {b′ ∈ X \ {b} : b− b′ ∈ U}.

We write dr = β1 · · ·βm with βj prime for j ∈ {1, . . . ,m}, where the βj ’s are not supposed distinct.
Thus b′ ∈ Ub if and only if there exists j ∈ {1, . . . ,m} such that bi − b′i ∈ βjZ for all i = 1, . . . , τ .
Now, since we have |(βjZ ∩ (−2α, 2α))| 6 2α+1/βj and βj > 2, as well as dr 6 |det(Π ′′)| < 2`·(ρ

′+1)

which implies m 6 ` · (ρ′ + 1), we obtain:

|Ub| 6
m∑
j=1

(
2α+1

βj

)τ
6

`·(ρ′+1)∑
j=1

(
2α+1

2

)τ
= ` · (ρ′ + 1) · 2ατ .

This gives

δ 6
|Y |
|X|2

∑
b−b′∈U

1

q0
=
|det(Π ′)|
|X|2

∑
b∈X

∑
b′∈Ub

1

q0

6
q0 |det(Π ′′)|
q0 · |X|2

∑
b∈X
|Ub| 6

|det(Π ′′)|
|X|

· ` · (ρ′ + 1) · 2ατ

6
2`·(ρ

′+1)

2(α+1)·τ · ` · (ρ
′ + 1) · 2ατ 6 ` · ρ′ · 2`·(ρ′+2)−τ

This shows that the hash function family H is ε-pairwise independent, with ε := ` · ρ′ · 2`·(ρ′+2)−τ .
Finally, applying Lemma 10 we obtain that the distribution of (h, h(b)) for h ← H, b ←

(−2α, 2α)τ is ε2-uniform over H× Y , where:

ε2 :=
1

2

√
|Y |
|X|

+ ε 6
√

2γ−α·τ + ` · ρ′ · 2`·(ρ′+2)−τ

which proves Lemma 9.

B.7 Proof of Claim 3

We must show that that the distribution

D1 =
{
u+Π · b′ mod x0 : u← Z`+1/(Π ′), b′ ← (Z ∩ (−2α

′
, 2α

′
))`
}

is statistically close to the distribution:

D2 =
{
v +Π · b′ mod x0 : v ← Zq0 × (Z ∩ [0, 2ρ

′
))`, b′ ← (Z ∩ (−2α

′
, 2α

′
))`
}
.

We consider the intermediate distribution:

D′2 =
{

(v mod Π ′) +Π · b′ mod x0 : v ← Zq0 × (Z ∩ [0, 2ρ
′
))`, b′ ← (Z ∩ (−2α

′
, 2α

′
))`
}
.

Applying the same technique as in the proof of Claim 1, the statistical distance between D2 and D′2
is at most ` · 23−α′ . Moreover applying the same technique as in the proof of Lemma 8 the statistical
distance between D1 and D′2 is at most `2 · 2ρ−ρ′+2. Summing the two statistical distances proves
Claim 3.

20

C Proof of Lemma 3

We first prove the following lemma.

Lemma 11. The `-decisional-Approximate-GCD problem is hard if the 1-decisional-Approximate-
GCD problem is hard.

Proof. Given an algorithm A` for solving the `-decisional-Approximate-GCD problem, we construct
an algorithm A1 for solving the 1-decisional-Approximate-GCD problem. Our proof is based on
generating `− 1 of the primes pi’s ourselves and putting the prime p from the 1-decisional instance
at a random position among the pi’s; we then show how to simulate the oracle for the `-decisional
instance using the oracle from the 1-decisional instance; eventually the challenge for the `-decisional
instance is simulated from the 1-decisional challenge using an hybrid argument.

We receive as input an integer y0 = p · q0 where p is a random η-bit integer and q0 ← [0, 2γ/p)
is 2λ

2
-rough. We select a random integer i0 ∈ [0, `− 1] and we generate `− 1 random η-bit primes

pi for i ∈ [0, `− 1] \ {i0}. We implicitly let pi0 = p, where p is unknown. We let:

x0 := y0 ·
`−1∏
i=0
i 6=i0

pi = q0 ·
`−1∏
i=0

pi

and we send x0 to A`.
Our simulation of the `-oracle from the 1-oracle works as follows: given an integer y such

that y = 2r + v mod p we can obtain by CRT an integer z such that z = 2r + v mod p and
z = 2ri + vi mod pi for all i 6= i0, without knowing p but using y0 = q0 · p. Formally we have the
following equality:

CRTq0,(pi)(q, u0, . . . , u`−1) = CRTq0·pi0 ,(pi)i 6=i0

(
CRTq0,pi0 (q, ui0), u0, . . . , ui0−1, ui0+1, . . . u`−1

)
(20)

Therefore given as input a query v = (vi) to the `-oracle Oq0,(pi) we first query the 1-oracle
Oq0,p with vi0 to obtain:

y = CRTq0,p(q, 2r + vi0)

Then we generate random ri ∈ Z ∩ (−2ρ, 2ρ) for all i 6= i0 and return the following value:

z := CRTy0,(pi)i 6=i0 (y, 2r0 + v0, . . . , 2ri0−1 + vi0−1, 2ri0+1 + vi0+1, . . . , 2r`−1 + v`−1)

From equality (20), we have:

z = CRTq0,(pi) (q, 2r0 + v0, . . . , 2r`−1 + v`−1)

which shows that our simulation of the oracle Oq0,(pi) is perfect.
It remains to show how we generate the challenge z for the `-instance. We receive as input a

challenge y = CRTq0,p(q, 2r + vb) from the 1-instance, where b ← {0, 1}, v0 = 0 and v1 ← {0, 1},
and we must output a guess b′ of b. From y we construct a hybrid challenge z as previously

z = CRTy0,(pi)i 6=i0 (y, 2r0 + v0, . . . , 2ri0−1 + vi0−1, 2ri0+1 + vi0+1, . . . , 2r`−1 + v`−1)

where vi = 0 for all 0 6 i < i0 and vi ← {0, 1} for all i0 < i 6 ` − 1. Therefore z is an hybrid
challenge containing the following bits wi:

z = CRTq0,(pi)(q, 2r0 + w0, . . . , 2r`−1 + w`−1)

where:

w0 ← 0, . . . , wi0−1 ← 0, wi0 ←
{

0 if b = 0
{0, 1} if b = 1

, wi0+1 ← {0, 1}, . . . , w`−1 ← {0, 1}

21

We send z to the A` algorithm; eventually we output the bit b′ returned by A`.
To analyze the success probability of our algorithm A1 we use the following hybrid argument.

We note that the distribution of z for i0 = j and b = 0 is the same as the distribution of z for
i0 = j + 1 and b = 1, for all 0 6 j < `− 1. Moreover i0 = 0 and b = 1 corresponds to the `-oracle
being called with v ← {0, 1}`, while i0 = `− 1 and b = 0 corresponds to v = 0. Since i0 is generated
at random in [0, `− 1] the distinguishing probability of our algorithm A1 is given by:

Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1] =
1

`
·
`−1∑
j=0

Pr[b′ = 0|i0 = j ∧ b = 0]− Pr[b′ = 0|i0 = j ∧ b = 1]

=
1

`
·
(

Pr[b′ = 0|v ← {0, 1}`]− Pr[b′ = 0|v = 0]
)

=
ε

`

where ε is the distinguishing probability of A` on the `-instance. Therefore the advantage of our
algorithm A1 is non-neglible if the advantage of A` is non-neligible. This terminates the proof of
Lemma 11. ut

It remains to show the following lemma.

Lemma 12. The 1-decisional-Approximate-GCD problem is hard if the error-free Approximate-
GCD problem is hard.

Proof (sketch). The proof is essentially the same as the proof of semantic security of the original
DGHV scheme in [DGHV10]. Namely from an algorithm A1 solving the 1-decisional-Approximate-
GCD problem one can build a similar “high-accuracy LSB predictor” for given z computing
[z mod p]2. Then such “high-accuracy LSB predictor” is used to obtain a Binary GCD algorithm
for integers of the form z = q · p+ r for small r, which eventually enables to recover p. ut

D Complete Description of the Batch DGHV Scheme with Compressed
Public Keys

In this section, we provide a complete description of our batch FHE scheme with the ciphertext
compression technique of [CNT12]. Note that as in [CNT12], the ciphertext compression technique
is applied to both the public key elements xi’s, x

′
i’s and Πi’s of the somewhat homomorphic scheme,

and to the encryption σi’s of the secret key bits. The ciphertext compression technique enables to
compress a ciphertext from γ = Õ(λ5) bits down to ` · η + λ = ` · Õ(λ2) bits.

D.1 Description

BDGHV.KeyGen(1λ). Generate a collection of ` primes p0, . . . , p`−1 of size η bits, and denote π
their product. Define the error-free public key element x0 = q0 · π, where q0 ← Z∩ [0, 2γ/π) is a
2λ

2
-rough integer.

Initialize a pseudo-random generator f1 with a random seed se1. Use f1(se1) to generate a set of
integers χi ∈ [0, x0) for i ∈ [1, τ], χ′i ∈ [0, x0) for i ∈ [0, `− 1] and χΠi ∈ [0, x0) for i ∈ [0, `− 1].
Define γ-bit integers as follows:

1. the integers xi’s (1 6 i 6 τ) such that xi = χi −∆i with

∆i = [χi]π + ξi · π − CRTp0,...,p`−1
(2ri,0, . . . , 2ri,`−1)

where ri,j ← Z ∩ (−2ρ
′−1, 2ρ

′−1) and ξi ← Z ∩ [0, 2λ+log2(`)+`·η/π);

22

2. the integers x′i’s (0 6 i 6 `− 1) such that x′i = χ′i −∆′i with

∆′i = [χ′i]π + ξ′i · π − CRTp0,...,p`−1
(2r′i,0 + δi,0, . . . , 2r

′
i,`−1 + δi,`−1)

where r′i,j ← Z ∩ (−2ρ, 2ρ) and ξ′i ← Z ∩ [0, 2λ+log2(`)+`·η/π);

3. the integers Πi’s (0 6 i 6 `− 1) such that Πi = χΠi −∆Π
i with

∆Π
i = [χΠi]π + ξΠi · π − CRTp0,...,p`−1

(2$i,0 + δi,02
ρ′+1, . . . , 2$i,`−1 + δi,`−12

ρ′+1)

where $i,j ← Z ∩ (−2ρ, 2ρ) and ξΠi ← Z ∩ [0, 2λ+log2(`)+`·η/π).
Additionally, generate at random Θ-bit vectors sj = (sj,0, . . . , sj,Θ−1) for 0 6 j < `, each split in
θ boxes of size B = Θ/θ each, with exactly one non-zero bit in each box, and such that sj,j = 1
for each j = 0, . . . , `− 1. Initialize a pseudo-random generator f2 with a random seed se2, and
use f2(se2) to generate integers ui ∈ [0, 2κ+1) for i ∈ Z ∩ [0, Θ − 1]. Then set u0, . . . , u`−1 such
that

xpj =
Θ−1∑
i=0

sj,i · ui mod 2κ+1,

where xpj = b2κ/pje for each j = 0, . . . , `− 1.
Initialize a pseudo-random generator f3 with a random seed se3. Use f3(se3) to generate a set
of integers χσi ∈ [0, x0) for i ∈ [0, Θ − 1].
For i ∈ [0, Θ − 1], define the γ-bit integers σi = χσi −∆σ

i with

∆σ
i = [χσi]π + ξσi · π − CRTp0,...,p`−1

(2r′′i,0 + s0,i, . . . , 2r
′′
i,`−1 + s`−1,i),

where r′′i,j ← Z ∩ (−2ρ, 2ρ) and ξσi ← Z ∩ [0, 2λ+log2(`)+`·η/π).
Output the secret key sk = (s0, . . . , s`−1) and the public key

pk =
〈
x0, se1, (∆i)16i6τ ,

(
∆′i
)
06i6`−1 ,

(
∆Π
i

)
06i6`−1 , se2, u0, . . . , u`−1, se3, (∆

σ
i)06i<Θ

〉
.

BDGHV.Encrypt(pk,m ∈ {0, 1}`). Use f1(se1) to recover the integers χi’s, χ
′
i’s, and χΠi ’s. Let

xi = χi −∆i for 1 6 i 6 τ and x′i = χ′i −∆′i, Πi = χΠi −∆Π
i for 0 6 i 6 `− 1. Choose random

integer vectors b = (bi)16i6τ ∈ (−2α, 2α)τ and b′ = (b′i)06i6`−1 ∈ (−2α
′
, 2α

′
)` and output the

ciphertext:

c =

[
`−1∑
i=0

mi · x′i +
τ∑
i=1

bi · xi +
`−1∑
i=0

b′i ·Πi

]
x0

.

BDGHV.Add(pk, c1, c2). Output c1 + c2 mod x0

BDGHV.Mult(pk, c1, c2). Output c1 · c2 mod x0.

BDGHV.Expand(pk, c). The ciphertext expand procedure takes a ciphertext c and compute the
associated expanded ciphertext. To do so, use f2(s2) to recover u`, . . . , uΘ−1, then let yi = ui/2

κ

and compute zi given by
zi = bc · yie mod 2

with n bits of precision after the binary point. Define the vector z = (zi)i=0,...,Θ−1 and output
the expanded ciphertext (c, z).

BDGHV.Decrypt(sk, c,z). Output m = (m0, . . . ,m`−1) with

mj ←

[⌊
Θ−1∑
i=0

sj,i · zi

⌉]
2

⊕ (c mod 2).

BDGHV.Recrypt(pk, c,z). Apply the decryption circuit to the expanded ciphertext z, and the
encrypted secret key bits σi. Output the result as a refreshed ciphertext cnew.

23

D.2 Semantic Security

We prove the semantic security of the previous scheme. Note that the random oracle model is only
necessary when using compressed public keys as in [CNT12]; the semantic security of our batch
FHE scheme from Section 3 does not require random oracles.

Theorem 3. The previous encryption scheme is semantically secure under the EF-`-dec-AGCD
assumption, in the random oracle model.

Proof (sketch). The proof is almost the same as in Section 3.3. Following the same strategy as
in [CNT12], the random oracle can be programmed so that the distribution of the public key is
statistically close to that of the batch scheme without compressed public keys. ut

E Description of our Homomorphic AES Implementations

In this section we describe two implementations of homomorphic evaluation of an AES circuit
(HAES), using our BDGHV scheme with ` plaintext bits embedded in each ciphertext.

E.1 Byte-Wise Bitslicing

Throughout this subsection, we denote k = b`/16c the number of AES-128 encryptions one will
be able to perform in parallel. We define a representation called byte-wise bitslicing in which the
HAES state will be composed of 8 ciphertexts, each ciphertext containing one and exactly one bit of
each byte of the AES state. This construction is similar to general-purpose bitslicing [Bih97,KS09].

State. We recall that the AES state is a matrix of 4× 4 bytes. It can be viewed as a 16-byte vector
when reading the bytes by column.

The state in our representation is composed of 8 ciphertexts c0, . . . , c7, where the underlying
plaintexts m0, . . . ,m7 are such that mi[k · 16 + j] is the i-th bit of the j-th element of the state of
the k-th AES (see Figure 1). Thus m0 represents the LSBs of the bytes of the AES states for the k
AES-plaintexts, and m7 the MSBs.

A
E
S

1
A
E
S

2
A
E
S

3

. . .

A
E
S
k

A
E
S

1
A
E
S

2
A
E
S

3

. . .

A
E
S
k

A
E
S

1
A
E
S

2
A
E
S

3

. . .

A
E
S
k

A
E
S

1
A
E
S

2
A
E
S

3

. . .

A
E
S
k

. . .

A
E
S

1
A
E
S

2
A
E
S

3

. . .

A
E
S
k

. . .

A
E
S

1
A
E
S

2
A
E
S

3

. . .

A
E
S
k

Row 0 Row 1 Row 2 Row 3 . . . Row 0 . . . Row 3

Column 0 . . . Column 3

Fig. 1. Bit ordering in mi in the byte-wise bitslicing representation

AddRoundKey. From the 128-bit AES key, an expanded key is created with (10 + 1) rounds subkeys
(namely, one subkey at the beginning of the encryption, and one per round). Each round subkey
is XORed at one point with the AES state. Thus, each bit of the subkey is XORed with the
corresponding bit of the state.

In this variant, we construct the round subkeys with the same structure as the HAES state
(i.e. 8 ciphertexts); notice that we repeat each bit of the round subkey k times. Therefore, the
AddRoundKey stage only consists in adding the corresponding ciphertexts with BDGHV.Add as the
underlying operation is a XOR on the plaintext bits. This operation consists of 8 BDGHV.Add
operations.

24

SubBytes. The SubBytes stage consists for each byte b to apply the transformation b 7→Mb254 + c,
where the power function is performed over GF(28),

M =

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

and c = 0x63 .

Notice that the multiplication by M is viewed over GF(2)8 ' GF(28), viewing b as its bit-
representation vector.

A possible way to implement this stage could be to implement the multiplication of two FHE
ciphertexts so that each byte of the underlying state is multiplied over GF(28) by the corresponding
bit. Each multiplication would consumes one level of noise, i.e. after each multiplication 8 recryptions
would be needed to recover a state with a “small” noise (i.e. small enough so that the eight ciphertexts
can be multiplied once without prior recryption). The minimal solution to compute b254 from b
costs 4 multiplications and several squarings [RP10] (but here the squarings can be obtained easily
with several BDGHV.Add only), giving a final cost of 32 BDGHV.Recrypt. However, as seen in
Section 4.4, the cost of a recryption is really huge compared to the other operations.

To limit the number of recryptions, we used the 115 gates circuit of Boyar and Peralta [BP10]
to compute the Sbox. In this circuit, we also have 32 multiplications, thus one could think that 32
recryptions are necessary. However, we can reduce the number of recryptions to 17 by a careful
management of the noise. Recryptions are then performed on temporary variables t21, t22, t23, t24,
t26, t29, t33, t36, t40 and on the eight outputs; this enables to transform an homomorphic AES
state with “small” noise into an homomorphic AES state with “small” noise after the SubBytes
operation. If one does not care about the output noises, only 9 recryptions are performed. Therefore,
this stage costs 32 BDGHV.Mult, 17 BDGHV.Recrypt and 83 BDGHV.Add. Note that under our
representation the SBOX circuit is evaluated in parallel over the 16 bytes of an AES state, and also
on the k AES blocks.

ShiftRows. The ShiftRows stage consists in performing the permutation ζSR on the bytes of the
AES state, where the Cauchy’s two-line notation of the permutation is

ζSR =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 13 10 7 4 1 14 11 8 5 2 15 12 9 6 3

)
.

Since we “sliced” the bytes of the AES state in our representation, we will need to apply a similar
permutation on each ciphertext of the state. Since we are performing k AES blocks in parallel, we
need to consider the permutation ζ defined by

ζ(I × k +K) = ζSR(I)× k +K, 0 6 K 6 k − 1, 0 6 I 6 15.

Next, we need to permute each of the ci’s of the HAES state by ζ to perform the ShiftRows stage.
As mentioned in Section 4.3, rotating the slots is “for free” when performed during a recryption.
Now, we perform a recryption on each element of the HAES state at the end of the SubBytes stage.
Thus, instead of using the regular σi’s, we use the σζi ’s and the ShiftRows stage will be obtained at
the end of the SubBytes stage at no additional cost.

25

MixColumns. The MixColumns stage consists in in multiplying each column of the AES state (thus
a vector of four bytes) by the matrix M ′ over GF(28), where

M ′ =

0x02 0x03 0x01 0x01
0x01 0x02 0x03 0x01
0x01 0x01 0x02 0x03
0x03 0x01 0x01 0x02

 .

We can view this operation over the whole state ass
′
0 s
′
4 s′8 s′12

s′1 s
′
5 s′9 s′13

s′2 s
′
6 s
′
10 s

′
14

s′3 s
′
7 s
′
11 s

′
15

 = 0x02×

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

⊕ 0x03×

s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15
s0 s4 s8 s12

⊕
s2 s6 s10 s14s3 s7 s11 s15
s0 s4 s8 s12
s1 s5 s9 s13

⊕
s3 s7 s11 s15s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14

 .

Thus in our implementation, we define three copies of the HAES state (i.e. 24 additional
ciphertexts) and we rotate them according to the permutations ζ1, ζ2 or ζ3, with

ζi(I × k +K) = ζMCi(I)× k +K, 0 6 K 6 k − 1, 0 6 I 6 15,

the permutation ζMCi being defined as

ζMCi(I) = bI/4c · 4 + (I + i mod 4), 0 6 I 6 15 .

This costs 3× 8 = 24 BDGHV.Recrypt. Next, we need to multiply by 0x02 the current HAES state
and by 0x03 the first copy.

Algorithm 1 Multiplication by 0x02 in GF(28)

Input: A element b =
∑7
i=0 bix

i of GF(2)[x]
Output: The product b · 0x02 over GF(2)[x]/(x8 + x4 + x3 + x+ 1)
1: Compute b′0 = b7
2: Compute b′1 = b0 ⊕ b7
3: Compute b′2 = b1
4: Compute b′3 = b2 ⊕ b7
5: Compute b′4 = b3 ⊕ b7
6: Compute b′5 = b4
7: Compute b′6 = b5
8: Compute b′7 = b6
9: return

∑7
i=0 b

′
ix
i

Algorithm 2 Multiplication by 0x03 in GF(28)

Input: A element b =
∑7
i=0 bix

i of GF(2)[x]
Output: The product b · 0x03 over GF(2)[x]/(x8 + x4 + x3 + x+ 1)
1: return b · 0x02 + b

Multiplications by such values over GF(28) are easy to obtain (see Algorithms 1 and 2). When
applying these algorithms on the HAES state (c0, . . . , c7) instead of (b0, . . . , b7), the multiplication
by 0x02 is performed in parallel over all the bytes of an underlying AES state, but also on the k
AES states. Therefore, 3 + 11 = 14 BDGHV.Add operations are performed during this step.

Finally, we need to add the four copies (possibly rotated or multiplied) of the state to get the
final HAES state, and this is performed in 3× 8 = 24 BDGHV.Add.

26

Final Cost. The AES encryption process consists of 11 AddRoundKey stages, 10 SubBytes and
ShiftRows stages and 9 MixColumns stages. Therefore, the final cost is 1260 BDGHV.Add, 386
BDGHV.Recrypt and 320 BDGHV.Mult. However, a fine management of the noise allows us to
reduce the number of BDGHV.Recrypt to 377.

E.2 State-Wise Bitslicing

Throughout this subsection, we will be able to perform ` AES-128 encryptions in parallel. We
define a representation called state-wise bitslicing in which the HAES state will be composed of
128 ciphertexts, each ciphertext containing one and exactly one bit of the AES state.

State. The state in our representation is composed of 128 ciphertexts c0, . . . , c127, where the
underlying plaintexts m0, . . . ,m127 are such that mi+j·8[k] is the i-th bit of the j-th element of
the state of the k-th AES. In other words, the 128 bits of the State are represented in 128 different
ciphertexts, and since ` slots are available, one can put ` different AES states in the 128 ciphertexts.

AddRoundKey. The AddRoundKey stage simply consists of BDGHV.Add operations, one per cipher-
text in the state. Therefore, this stage costs 128 BDGHV.Add.

SubBytes. As above, we use the Boyar and Peralda circuit [BP10] to perform this operation.
However, our representation is less adapted to this stage than previously, since even though we
process the k AES blocks in parallel, we need to apply this SubBytes stage on each group of 8
ciphertexts corresponding to one of the 16 bytes of the AES state. Therefore, we need to apply the
same circuit 16 times with different inputs. Therefore, this stage costs 16× 83 = 1328 BDGHV.Add,
16× 17 = 272 BDGHV.Recrypt and 16× 32 = 512 BDGHV.Mult.

ShiftRows. The permutation of the ShiftRows stage is no longer applied on the plaintext bits in
each ciphertext of the State, but on the indices of the ciphertext of the HAES state. This stage is a
relabelling of the indices of the ciphertexts of the HAES state. Therefore, this operation does not
cost any homomorphic operation.

MixColumns. As above, the new HAES state can be written as a sum of four (possibly rotated or
multiplied) states. But as in the ShiftRows stage, the permutations are no longer applied on the
ciphertexts to rotate the plaintext bits, but on the indices of the ciphertexts of the HAES state.
Therefore, copying and permuting the states is essentially free. However, we still need to multiply by
0x02 and 0x03 the current HAES state and its first permuted copy respectively. Algorithms 1 and 2
are still valid, and allows us to perform such multiplications in (3 + 11)× 16 = 224 BDGHV.Add.
Finally, we need to add the 4× 128 ciphertexts, and this costs 3× 128 = 384 BDGHV.Add.

Final Cost. The AES encryption process consists of 11 AddRoundKey stages and 10 SubBytes.
Therefore, the final cost is 14688 BDGHV.Add, 2720 BDGHV.Recrypt and 5120 BDGHV.Mult.
However, a fine management of the noise allows us to reduce the number of BDGHV.Recrypt to
2448 (namely, we do not need to bootstrap at all in SubBytes during the first round).

Even though this representation seems far more costly in number of homomorphic operations,
notice that in the state-wise bitslicing representation, we can process 16 times more AES plaintexts
in parallel than in the byte-wise bitslicing representation. Therefore, for the same number of AES
plaintexts, we save 60% of BDGHV.Recrypt, which gives better relatives times.

27

