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Abstract. This article proposes a provably secure aggregate signcryption scheme in ran-
dom oracles. Security of the scheme is based on computational infesibility of solving Deci-
sional Bilinear Diffie-Hellman Problem and Discrete Logarithm Problems. Confidentiality
and authenticity are two fundamental security requirement of Public key Cryptography.
These are achieved by encryption scheme and digital signatures respectively. Signcryption
scheme is a cryptographic primitive that performs signature and encryption simultaneously
in a single logical steps. An aggregate signcryption scheme can be constructed of the aggre-
gation of individual signcryption. The aggreagtion is done taking n distinct signcryptions
on n messages signed by n distinct users.
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1 Introduction

Signcryption, first proposed by Zheng [4], is a cryptographic primitive that performs signature
and encryption simultaneously in a one logical steps at lower computational costs and com-
munication overheads than those required by the traditional sign-then-encrypt approach. Due
to its advantages, there have been many signcryption schemes proposed after Zheng’s publi-
cation. Zheng’s original schemes were only proven secure by Baek et al. [1] who described
a formal security model in a multiuser setting. Confidentiality, integrity, authentication, and
non-repudiation are the important security requirements for many cryptographic applications.
Applications must often contain at least two cryptographic primitives: signcryption, signature,
and encryption, which will definitely increase the corresponding computation and implementa-
tion complexity and even will be infeasible in some resources-constrained environments such as
embedded systems, sensor networks and ubiquitous computing. Motivated by this, in 2006, Han
et al. [8]proposed the concept of Generalized signcryption which can implement the separate or
joint encryption and signature functions in a single primitive.

Identity-based cryptography(IBC) was introduced by Shamir (1984). The unique property
of identity-based cryptography is that a user’s public key can be any binary string, such as
an email address, IP address, that can identify the user. This removes the need for senders
to look up the recipient’s public key before sending out an encrypted message. Identity-based
cryptography is supposed to provide a more convenient alternative to conventional public key
infrastructure(PKI). Several practical identity-based signature schemes have been devised since
1984, but a satisfying identity-based encryption (IBE) scheme only appeared in 2001 (Boneh
and Franklin, 2001). It was proposed by Boneh and Franklin uses bilinear maps ( Weil or Tate



pairing) over super singular elliptic curves. Subsequently, several ID-based signcryption schemes
have been proposed [5] [6] [7]. The most important practical benefit of IBC is in greatly reducing
the need for and trust on the public key certificates.

2 Previous Works

In 1997, Zheng [4] introduced the concept of signcryption where both these properties are achieved
in a single logical step, but in a more efficient way. The notion of identity based cryptography
was introduced by Shamir [9] in 1984. It is a form of public key cryptography in which the
users do not obtain certificates for their public keys. Instead, public keys are generated using
arbitrary identifiers such as email addresses, telephone numbers and social security numbers
that uniquely identifies a user in the system [3]. The private keys corresponding to the public
keys are generated by a trusted authority called Private Key Generator (PKG). The first fully
practical identity based encryption scheme was proposed by Boneh and Franklin [10] in 2001.
Malone-Lee [11] proposed the first identity based signcryption scheme.

Yu et al. [16] proposed the first ID based signcryption scheme in the standard model. But it
was proved that, are insecure [17] [15]. Also later on the schemes [16] [15] have shown these are
insecure.

In 2002, Malone-Lee [11] proposed an efficient IBSC scheme combining the concepts of
identity-based cryptography and signcryption. Libert and Quisquater [19] proved that Malone-
Lee’s scheme is not semantically secure because the signature of the message is visible in the
signcrypted message. subsequently, Libert and Quisquater also proposed three different types
of IBSC schemes which satisfy either public verifiability or forward security. It became the an
open challenge to design an efficient signcryption scheme providing both public verifiability and
forward security. Soon, this open problem was solved. Chow et al. [20] designed an IBSC scheme
that provides both public verifiability and forward security. Boyen [21] presented an IBSC scheme
that provides not only public verifiability and forward security but also ciphertext unlinkability
and anonymity. Chen and Malone-Lee [22] improved Boyen’s scheme in efficiency and Barreto et
al. [13] constructed the most efficient IBSC scheme to date.

3 Preliminaries

3.1 Notation

Definition 1. Bilinearity Let G1 and G2 be two cyclic groups of same prime order q. G1 is an
additive group and G2 is a multiplicative group. Let e be a computable bilinear map e : G1×G1 →
G2 , which satisfies the following properties:

– Bilinear: e(aP, bQ) = e(P,Q)ab, where P,Q ∈ G and a, b ∈ Z∗
q , i.e for P,Q,R ∈ G1, e(P +

Q,R) = e(P,R)e(Q,R).

– Non-degenerate: If P is a generator of G1, then e(P, P ) is generator of G2. There exists
P,Q ∈ G such that e(P,Q) ̸= 1G2

– Computability: There exists an efficient algorithm to compute e(P,Q) for all P,Q ∈ G1.

We call such a bilinear map e is an admissible bilinear pairing and Weil or Tate pairing in elliptic
curve can give a good implementation of the admissible bilinear pairing.



3.2 Mathematical Assumption

Definition 2. Decision Diffie-Hellman Problem (DDHP): For a, b, c ∈ Z∗
q , given P, aP, bP, cP

decide whether c ≡ ab mod q

Definition 3. Computational Diffie-Hellman Problem (CDHP): For a, b ∈ Z∗
q , given

P, aP, bP compute abP .

Definition 4. Bilinear Diffie-Hellman Problem: Let (q,G1,G2, e, P ) be a 5-tuple generated
by G(k), and let a, b, c ∈ Z∗

q . The BDHP in G is as follows: Given (P, aP, bP, cP ) with a, b, c ∈ Z∗
q ,

compute e(P, P )abc ∈ GT . The (t, ϵ)-BDH assumption holds in G if there is no algorithm A
running in time at most t such that

AdvBDH
G (A) = Pr[A(P, aP, bP, cP ) = e(P, P )abc] ≥ ϵ

where the probability is taken over all possible choices of (a, b, c). Here the probability is measured
over random choices of a, b, c ∈ Z∗

q and the internal random operation of A. We assume that
BDHP is a hard computational problem: letting q have the magnitude 2k where k is a security
parameter, there is no polynomial time (in k) algorithm which has a non-negligible advantage
(again, in terms of k) in solving the BDHP for all sufficiently large k. Following are the two
variations of BDHP [3].

Definition 5. Decisional Diffie-Hellman Problem : Let (q,G,GT , e, P ) be a 5-tuple gener-
ated by G(k), and let a, b, c, r ∈ Z∗

q . The DBDHP in G is as follows: Given Given (P, aP, bP, cP, r)

with some a, b, c ∈ Z∗
q , Output is yes if r = e(P, P )abc and no otherwise. The (t, ϵ)-HDDH as-

sumption holds in G if there is no algorithm A running in time at most t such that

AdvDBDH
G (A) = |Pr[A(P, aP, bP, cP, e(P, P )abc)) = 1]− Pr[A(P, aP, bP, cP, r) = 1]| ≥ ϵ

where the probability is taken over all possible choices of (a, b, c, h).

Definition 6. Hash Decisional Diffie-Hellman Problem :Let (q,G,GT , e, g) be a 5-tuple
generated by G(k),H : {0, 1}∗ → {0, 1}l be a secure cryptographic hash function, whether l is a
security parameter, and let x, y ∈ Z∗

q , h ∈ {0, 1}l, the HDDH problem in G is as follows: Given

(P, aP, bP, cP, h), decide whether it is a hash Diffie-Hellman tuple ((P, aP, bP, cPH(e(P, P )abc)).
If it is right, outputs 1; and 0 otherwise. The (t, ϵ)-HDDH assumption holds in G if there is no
algorithm A running in time at most t such that

AdvHDDH
G (A) = |Pr[A(P, aP, bP, cPH(e(P, P )abc)) = 1]− Pr[A(P, aP, bP, cP, h) = 1]| ≥ ϵ

where the probability is taken over all possible choices of (a, b, h).

4 Framework of Aggregate Signcryption

An ID-based Aggregate Signcryption scheme (IDASC) consists of the following six probabilistic
polynomial time (PPT) algorithms:

– Setup: (param,msk)← Set(1k) takes a security parameter k ∈ N and generates param, the
global public parameters and msk, the master secret key.

– Key Extract: (<SIDi , di>,Ppub, qi)← Ext(1k, param,msk, IDi) takes a security parame-
ter k, the global parameters param, a master secret key msk and an identity of the sender
IDi to generate a private key <SIDi , di> and public key Ppub and qi corresponding to this
identity.



– Signcrypt: σi ← Signcrypt(1k, param,mi, Xi, di, IDi, IDB) takes a security parameter k,
global parameters param and (mi, Xi, di, SIDi , IDi, IDB) to generate signcrypt σi. LetM,
W and R are the message space, signcrypted message space and the space of sender respec-
tively. Any member can be identified as U by its identity IDU , where U ∈ R.
For any message mi ∈M, 1 ≤ i ≤ n, n ∈ Z+.

– Aggregate:σ ← Aggregate({σi, IDi}i= 1...n) The algorithm take the set of all signcryption
{σi}i=1...n and the corresponding identity IDi outputs the final aggregate signcryption σ.

– UnSigncrypt: ({mi}i=1...n, Zagg)← UnSigncrypt(1k, param, σagg, SIDB , dB , IDB) takes a
security parameter k, the global parameters param, aggregate signcryption σagg, secret key
of the receiver SIDB and dB to generate the plaintext mi and signature Zagg.

– Verify: (V alid/⊥)← V erify(1k, param, {mi}i=1...n, Zagg, SIDB , dB). The algorithm takes a
security parameter k, a global parameters param, message m, signature Zagg an the private
key <IDB , dB> outputs V alid or ⊥ for invalid signature.

5 Security notions

Security of signcryption consists of two different mechanism: one ensuring privacy, and the other
authenticity. On a high level, privacy is defined somewhat analogously to the privacy of an
ordinary encryption, while authenticity to that of an ordinary digital signature. For example, one
can talk about indistinguishability of signcryptexts under chosen ciphertext attack, or existential
unforgeability of signcryptexts under chosen message attack, among others. For compactness, we
focus on the above two forms of security too, since they are the strongest. However, several new
issues come up due to the fact that Signcryption and Unsigncryption take as an extra argument
the identity of the sender and recipient.

Definition 7. (Confidentiality) An identity based signcryption scheme is semantically secure
or has indistinguishability against adaptive chosen ciphertext attack (IND-IDASC-CCA2) is no
polynomial bounded(PPT) adversary has a non-negligible advantage in the following game.

1. Initial: The challenger C runs the Setup algorithm with the security parameter k as input
and sends the system parameters param to the adversary A and keeps the master private
key msk secret.

2. The adversary A performs polynomial bounded number of queries to the oracles provided to
A by C. The description of the queries in the first phase are listed below:
– Extraction oracle : <SIDi , di>← Ext(mask, IDi). A submits an identity IDi to the

extraction oracle and receives the private key pairs <SIDi , di> corresponding to IDi.
– Signcryption oracle : A submits a message mi, the signer identity IDi and the receiver

identity IDr to the challenger C. C computes private key <SIDi , di> for IDiand runs the
algorithm Signcrypt(mi, Xi, di, IDi, IDB) to obtain signcryption σi . Finally C returns
σi to A .

– UnSigncryption oracle: A submits the receiver identity IDB /∈ {IDi}i=1...n to C. C
generates the private key pair <SIDB

, dB> by querying the Key Extraction oracle. C
unsigncrypts using the private key pairs <SIDB

, dB> and returns the output to A. If σ
is an invalid signcrypted ciphertext returns a symbol ⊥ for rejection from {IDi}i=1...n to
IDB . A can present its queries adaptively i.e every request may depend on the response
to the previous queries.

3. A chooses two messages mi0,mi1, identities {IDi}i=1...n and IDB of sender and receiver on
which A wishes to be challenged. The challenger C now chooses a random bit b ∈ {0, 1} and
computes the aggregate signcryption σagg by running σ

∗
i = Signcrypt(1k, param,mi, Xi, di, IDi, IDB)

and aggregate algorithm Aggregate({σi, IDi}i= 1...n) and sends to A.



4. A performs polynomially bounded number of new queries in the first stage, with the restric-
tions that A cannot query the UnSigncryption oracle for the unsigncryption of σ∗

agg or the
Keygen oracles for the private keys pairs of ID∗

B .
5. At the end of the game A returns a bit b

′
and wins the game if b

′
= b. The success probability

is defined by:

Adv(IDASC−IND−CCA2)(A) = |Pr[b
′
= b]− 1

2 |
Here Adv is called the advantage for the adversary in the above game.

Definition 8. (Signature Unforgeability) An identity based aggregate signcryption scheme
(IDASC) is said to be existentially signature unforgeable against adaptive chosen-messages at-
tacks (EUF-IDASC-CMA) if no polynomial bounded adversary (PPT) has a non-negligible ad-
vantage in the following game:

1. The challenger C runs the Setup algorithm with the security parameter k as input and
sends the system parameters param to the adversary A and keeps the master private key
msk secret.

2. A performs polynomial bounded number of queries to the same oracles described in IDASC-
IND-CCA2 game which are simulated by the challenger C. The queries may be adaptive i.e
the current query may depend on the previous query responses.
The adversary A returns a recipient identity IDB and a ciphertext σi

A submits a signcryption ciphertext σi and two identity ID∗
B and ID∗

i , A wins the game if
the ciphertext σi is decrypted as a signed message (IDi,m

∗
i , V

∗
i ) having IDi ̸= IDB, IDi ∈

{IDi}i=1...n result of the UnSingncrypt(σagg, SIDB
, dB), otherwise returns the symbol ⊥.

Formally, we can be defined as
– ({m∗

i }i=1...n, Z
∗
agg)← UnSigncrypt(1k, param, σ∗

agg, SID∗
B
, d∗B , ID

∗
B)

takes a security parameter k, the global parameters param, aggregate signcryption σagg,
secret key of the receiver SIDB

and dB to generate the plaintext mi and signature Zagg.
i.e A submit a signcryption ciphertext σ∗

agg, global parameters param, k and identity
ID∗

B returns {m∗
i }i=1...n, Z

∗
agg such that valid← V erify(m∗

i , σ
∗, {ID∗

i }i=1...n).
– There will be no signcryption oracle decrypts to (m∗, σ∗) such that valid← V erify(m∗, σ∗, {ID∗

i }i=1...n).
– No extra query was made on {ID∗

i }i=1...n.
A’s advantage is defined as

AdvEUF−IDASC−CMS
A = Pr[V erify(m∗

i , σ
∗, {ID∗

i }i=1...n) = V alid]

Definition 9. (Ciphertext Unforgeability) An identity based aggregate signcryption scheme
(IDASC) is said to be existentially ciphertext unforgeable against adaptive chosen-messages at-
tacks (AUTH-IDASC-CMA) if no polynomial bounded adversary (PPT) has a non-negligible
advantage in the following game:

1. The challenger C runs the Setup algorithm with the security parameter k as input and
sends the system parameters param to the adversary A and keeps the master private key
msk secret.

2. The adversary A performs polynomial bounded number of queries to the oracles provided
to A by C. The attack may be conducted adaptively i.e the current query may depend on
the previous query responses and allows the same queries described as in the (IND-IDASC-
CCA2) game .

3. Forgery. The adversary A produces a new aggregate signcryption σagg from a set {IDi}i=1...n

of n users on messages mi,∀i = 1 . . . n to a final receiver IDB /∈ {IDi}i=1...n, where the
private keys of the users in {IDi}i=1...n was not queried in query phase and σi is not the
output of a previous query to the Signcrypt queries. Outcome. The adversary A wins the
game if ⊥ is not returned by UnSigncrypt(1k, param, σagg, SIDB , dB , IDB).



6 Proposed ID-based Aggregate Signcryption Scheme

The scheme comprise five randomized polynomials algorithms.

– Setup Given security parameters k, the PKG chooses groups G1 and G2 of prime order q.
A generator P of G1, a bilinear map ê : G1 ×G1 → G2 and collision resistant hash function
H0 : {0, 1}∗ → F∗

q ,H1 : G2 :→ {0, 1}l×F∗
q ,H2 : {0, 1}l×{0, 1}∗×G1×G1×{0, 1}∗×G1 → F∗

q ,

H3 : {0, 1}l × {0, 1}∗ × G1 × F∗
q × G1 × {0, 1}∗ × G1 → F∗

q . It chooses a master-key s ∈ F∗
q

and computes Ppub = sP . The PKG publishes the system public parameters

P = (G1,G2, n, ê, P, Ppub,H0,H1,H2,H3)

– Extract This algorithms follows of the following steps

• Given an identity IDi ∈ {0, 1}∗, PKG computes QIDi = H0(IDi) and the partial
private key as SIDi = s ·QIDi .

• Chooses a random number xi ←R F∗
q and computes Xi = xi · P .

• Computes di = (xi + sqi) mod q, for all i = 1 . . . n. corresponding public key qi =
H0(IDi∥Xi).

• The PKG send the corresponding private key <SIDi , di> and public key <Xi, qi>
through a secure channel to the users.

– Signcrypt(mi, Xi, di, IDi, IDB): The algorithm works as follows

• Chooses a random ri ←R F∗
q and computes Wi = ri · P,wi = ê(Ppub, QIDB

)ri .

• Computes h1i = H1(wi), h2i = H2(mi, IDi, Xi, wi, IDB, XB).

• Computes h3i = H3(mi, IDi, Xi, wi, IDB, XB , h2i).

• Computes vi = (rih2i + h3idi) mod q.

• Computes Ci = (mi∥vi)⊕ h2i, Zi = vi · P .

• Output σi = <Ci,Wi, Zi, Xi> is the signcryption of IDi on message mi.

– Aggregate({σi, IDi}i= 1...n): On input a set of signcryption σi = <Ci,Wi, Zi, Xi>, i =
1 . . . n and the corresponding identity IDi such that ∀i = 1 . . . n, σi are the signcryption of
message mi by IDi.

1. Zagg =
∑n

i= 1 Zi, Zi = vi · P , i = 1 . . . n

2. Output the final aggregate signcryption σagg = <{Ci,Wi, Xi, IDi}i= 1...n, Zagg>.

The aggregate can be computed by the sender or a trusted third party.

– UnSigncrypt(σagg, SIDB
, dB) : To decrypt and verify the aggregate signcryption σagg =

<{Ci,Wi, Xi, IDi}i= 1...n, Zagg>, the receiver with identity IDB use his private key<SIDB , dB>
and follows the following steps.

• Computes Ci ⊕ h1i = mi∥vi, where h1i = H1(wi), wi = ê(Wi, SIDB ).

• ∀i = 1 . . . n, computes h2i = H2(mi, IDi, Xi, wi, IDB , XB).

• Checks whether the following equation holds

Zagg =
n∑

i=1

vi · P (1)

Zagg =

n∑
i=1

(h2iWi) +

n∑
i=1

(h3iXi) + Ppub

n∑
i=1

h3iqi (2)



7 Proof of Correctness

wi = ê(Wi, SIDB ) = ê(riP, SIDB )
= ê(P, SIDB

)ri

= ê(P, sQIDB )
ri = ê(sP,QIDB )

ri

= ê(Ppub, QIDB
)ri .

Zagg =
∑n

i=1(vi · P ) =
∑n

i=1(rih2i + h3idi) · P
=

∑n
i=1 h2i(ri · P ) +

∑n
i=1 h3i(di · P )

=
∑n

i=1 h2i(ri · P ) +
∑n

i=1 h3i(xi + sqi) · P
=

∑n
i=1 h2iWi +

∑n
i=1 h3iXi + Ppub

∑n
i=1 h3iqi

Zagg =
∑n

i=1 vi · P
=

∑n
i=1(h2iWi) +

∑n
i=1(h3iXi) + Ppub

∑n
i=1(h3iqi).

7.1 Security Analysis

In this section we have proved that the proposed scheme is secure in random oracle model with re-
spect to security properties IDASC-IDASC-CCC2, AUTH-IDASC-CMA and EUF-IDASC-CMA
defined in definition-7, 8 and 9. We prove the security as similar to [2].

Theorem 1 In the random oracle model, we assume the adversary A for IND-IDASC-CCA2
able to distinguish two valid ciphertext during the game with a non-negligible advantage and run
Keygen queries, Signcrypt queries, and Unsigncrypt queries; then there exists a distinguisher
B that can solve an instances of Decisional Bilinear Diffie-Hellman problem with a non-negligible
advantage.

Proof:

– Setup: The distinguisher B receives a random instance (P, aP, bP, cP, µ) of the Decisional
Bilinear Diffie-Hellman problem. His goal is to decide whether µ = ê(P, P )abc or not. B will
run A as a subroutine and act as As challenger in the IND-IDASC-CCA2 game. B needs to
maintain lists L0, L1, L2 and L3 that are initial empty and are used to keep track of answers
to queries asked by A to oracles H0,H1,H2,H3 respectively.

Oracle Simulation:

1. H0-Oracle: For H0-queries, at the beginning of the game, B gives A the system param-
eters with Ppub = cP (c is unknown to B and plays the role of the PKGs master-key).
Then B chooses two distinct random numbers i, j ∈ {1 . . . qH0}. A asks a polynomial
bounded number of H0 requests on identities of his choice. At the ith H0 request, B
answers by H0(IDi) = aP . At the jth, he answers by H0(IDj) = bP . Since aP and
bP belong to a random instance of the DBDH problem, As view will not be modified
by these changes. Hence, the private keys SIDi and SIDj (which are not computable by
B) are respectively acP and bcP . Thus the solution ê(P, P )abc of the BDH problem is
given by ê(QIDi , SIDj ) = ê(SIDi , QIDj ). For requests H0(IDk) with k ̸= i, j, B chooses
bk ←R F∗

q , puts the pair (IDk, bk) in list L0 and answers H0(IDk) = bkP .

Further on input IDi ∈ {0, 1}∗, B first checks the L0-list<IDi, Xi, qi, xi, if IDi = IDB>,
selects new random γi ←R F∗

q , sets Xi = b · P, qi = γi, add this tuple <IDi, Xi, qi, ∗>
to the L0-list and returns qi. Otherwise, B selects a new random γi ←R F∗

q , xi ←R F∗
q ,

sets Xi = xi · P, qi = γi, add this tuple <IDi, Xi, qi, xi> to the L0-list and returns qi.



2. H1-Oracle: When a (mi, IDi, Xi, wi, IDB , XB) is submitted in H1 query for the first
time, B returns checks the L1-list, whether the tuples <wi, h1i> in L1-list, B returns
h1i, otherwise, B chooses a new random h1i ←R F∗

q , includes the tuples <wi, h1i> to the
L1-list and return h1i.

3. H2-Oracle: On input (mi, IDi, Xi, wi, IDB , XB), B first checks the L2-List, whether the
tuple <mi, IDi, Xi,Wi, IDB , XB , h2i> in the L2-List, B returns h2i, otherwise B chooses
a new random h2i ←R F∗

q , includes h2i to the L2-list and return h2i.

4. H3-Oracle: On input (mi, IDi, Xi, wi, IDB , XB , h2i), B first checks the L3-List, whether
the tuple <mi, IDi, Xi,Wi, IDB , XB , h2i> in the L3-List, B returns h3i, otherwise B
chooses a new random h3i ←R F∗

q , includes h3i to the L3-list and return h3i.

5. Keygen-Oracle: When A makes a Keygen query with IDi as the input, B checks
the L0-List to verify whether or not there is an entry for IDi. If the L0-List does not
contain an entry for IDi, return ⊥. Otherwise, if IDi = IDB , B recovers the tuple
<IDi, Xi, qi, xi> from the L0-List and returns <Xi, qi, ∗, ∗>, if IDi ̸= {IDi}i= 1...n

B recovers the tuple <IDi, Xi, qi, xi> from the L0-List and returns <Xi, qi, SIDi , di>,
where SIDi = xi(aP ) = a(xiP ) = aXi and di ←R F∗

q is randomly selected.

6. Signcryption Oracle: WhenAmakes a Signcrypt query with IDi as the input, B checks
the L0-List to verify whether or not there is an entry for IDi. If the L0-List does not con-
tain an entry for IDi returns⊥. Otherwise, B executes Signcrypt(mi, Xi, di, IDi, IDB)
as usual and returns what the signcrypt algorithm returns.

7. UnSigncryption Oracle: When A makes an Unsigncrypt query with
σagg = <{Ci,Wi, Xi, IDi}i= 1...n, Zagg> and the receiver with identity IDB , B first
verifies whether or not there are entries for IDi, (IDi ̸= IDB) and IDB in L0-List and
there is an entry of the form <IDi, Xi, qi, γi>. If at least one of these conditions is not
satisfied, B returns⊥. Otherwise, B executes Unsigncrypt(σagg, SIDB

, dB) in the normal
way and returns what the Unsigncrypt algorithm returns.

After getting sufficient training, A submits two equal length of messages mi0 and mi1. A
randomly chooses a bit b∗ ← {0, 1} and obtains the challenge signcrypted ciphertext by running
Signcrypt(mib∗ , Xi, di, IDi, IDB) and Aggregate({σ∗

i , IDi}i= 1...n), then returns σ∗
agg to A.

Phase 2. This phase is similar to Phase 1. However, in Phase 2, A cannot ask for Unsigncrypt
on the challenge aggregate Signcrypt σ∗

agg = <{Ci,Wi, Xi, IDi}i=1...n, Zagg> or the Keygen
queries for the secret keys IDB .

Output: After A has made a sufficient number of queries, A returns its guess: a bit. If then
B outputs 1 as the answer to the DBDH problem. Otherwise, it outputs 0. Since the adversary is
denied access to the Unsigncrypt oracle with the challenge signcryption, for A to find that mi is
not a valid ciphertext, A should have queried the H1 Oracle with wi = e(Wi, SIDB

). Here SIDB

is the private key of the receiver, and it is aXB = (bP )a = abP . Also, B has set Wi = cP . We
have wi = e(Wi, SIDB

) = e(cP, abP ) = e(P, P )abc.

Theorem 2 In the random oracle model, the proposed ASC is secure against any probabilistic
polynomial time adversary A for AUTH-IDASC-CMA if the Elliptic Curve Discrete Logarithm
Problem is hard in G1.

Proof: B receives a random instance (P,Wrα) = rαP and (P, dαP ) of ECDLP as a challenge
in the AUTH-IDASC-CMA game defined in Definition 2. His goal is to determine rα and dα. B
will run A as a subroutine and act as As challenger in the AUTH-IDASC-CMA game. A can
compute dαP as Wα + (sP )qα, dαP = (xα + sqα) · P = Wα + (sP )qα.



– H0 Oracle: ForH0-queries on input IDi ∈ {0, 1}∗, B first checks the L0-list<IDi, Xi, qi, xi>,
selects random γi ←R F∗

q , sets Xi = xi · P, qi = γi, add this tuple <IDi, Xi, qi, ∗> to the
L0-list and returns qi.

– Keygen Oracle: When A makes a Keygen query with IDi as the input, B checks the L0-
List to verify whether or not there is an entry for IDi. If the L0-List does not contain an entry
for IDi, return ⊥. Otherwise, if IDi ∈ {IDi}i= 1...n, B recovers the tuple <IDi, Xi, qi, xi>
from the L0-List and returns <Xi, qi, ∗, ∗>, if IDi ̸= {IDi}i= 1...n B recovers the tuple
<IDi, Xi, qi, xi> from the L0-List and returns <Xi, qi, SIDi , di>, where SIDi = xi(aP ) =
a(xiP ) = aXi and di ←R F∗

q is randomly selected.
– Forgery: A chooses the corresponding senders identities set {IDi}i= 1...n and receiver iden-

tity IDB and returns a forged signcryption σ∗
α = <C∗

α,W
∗
α, Z

∗
α, X

∗
α> on message m∗

α from
IDα ∈ {IDi}i= 1...n to B. B retrieves the entry corresponding to IDB in the L0-List and
uses sB to execute Unsigncrypt(σagg, SIDB

, dB). If σ
∗
α is a valid signcryption from IDα to

receiver IDB, that is, a message m∗
α is returned by the Unsigncrypt algorithm, then B ap-

plies the oracle replay technique to produce two valid signcryptions σ
′

α = <C
′

α,W
′

α, Z
′

α, X
′

α>
and σ

′′

α = <C
′′

α ,W
′′

α , Z
′′

α , X
′′

α> on message mα from the IDα to receiver IDB . B obtains the
signatures as v

′

α = rαh
′

2α + h
′

3αdα and v
′′

α = rαh
′′

2α + h
′′

3αdα with h
′

2α ̸= h
′′

2α and h
′

3α ̸= h
′′

3α.
The PPT algorithm B can computes rα and dα as

rα =
v
′
αh

′′
3α−v

′′
αh

′
3α

h
′
2αh

′′
3α−h

′′
2αh

′
3α

, h
′

2αh
′′

3α − h
′′

2αh
′

3α ̸= 0.

dα =
v
′
αh

′′
2α−v

′′
αh

′
2α

h
′
3αh

′′
2α−h

′′
3αh

′
2α

, h
′

3αh
′′

2α − h
′′

3αh
′

2α ̸= 0.

Theorem 3 In the random oracle model, the proposed ASC is secure against any probabilistic
polynomial time adversary A for EUF-IDASC-CMA if the Decisional Biliner Diffie-Hellman
Problem is hard in G1

Proof: B simulates the A’s challenger in the EUF-IDASC-CMA game. B can performs queries as
defined in Definition-9. we describe the process as follows.

Keygen Oracle: When A makes a Keygen query with IDi as the input, B checks the L0-
List to verify whether or not there is an entry for IDi. If the L0-List does not contain an entry
for IDi, return ⊥. Otherwise, if IDi = IDα, B recovers the tuple <IDi, Xi, qi, xi> from the
L0-List and returns <Xi, qi, ∗, ∗>, if IDi ̸= IDα B recovers the tuple <IDi, Xi, qi, xi> from
the L0-List and returns <Xi, qi, SIDi , di>, where SIDi = xi(sP ) and di ←R F∗

q is randomly
selected.

Eventually, A returns a forgery, consisting of a ciphertext and a recipient identity IDB .
B decrypts the ciphertext for IDB (by invoking its own decryption oracle), which causes the
plaintext forgery (IDi,mi, Vi) to be revealed. Note that if B has made the correct guess, that is,
IDi = IDα, then IDB ̸= IDα and the decryption works.

If σi is a valid signcryption from IDi to receiver IDB, that is, a message mi is returned
by the Unsigncrypt algorithm, then B applies the oracle replay technique to produce two valid
signed messages (IDi,mi, Vi) and (IDi,mi, Vi) on a message mi from the IDi to receiver IDB .
This is achieved by running the truing machine again with the same random tape but with a
different hash value. B obtains the signaturesv

′

α = rαh
′

2α+h
′

3αdα and v
′′

α = rαh
′′

2α+h
′′

3αdα with
h

′

2α ̸= h
′′

2α and h
′

3α ̸= h
′′

3α.

8 Performance

Efficiency of aggregate sincryption scheme can be evaluated with respect to computational cost
and ciphertext length [2]. To compute the computational cost, we consider costly operations that



include point multiplications in G1 (Mul(G1)), exponentiations in G2 (Exp(G2)), and pairing
operations (Pairing).

Let we symbolize confidentiality (Con), unforgeability (Unf), public verifiability (PuV ),
forward security (FoS), ciphertext unlinkability (CiU) and ciphertext anonymity (CiA). “

√
”

and “×” denotes Yes and No respectively.

Table 1. Security Comparison

Scheme Conf Unf PuV Fos CiU CiA

Libert and Quisquater-1
√ √ √ √

× ×
Libert and Quisquater-2

√ √ √ √
× ×

Libert and Quisquater-3
√ √ √

×
√

×
Malone-Lee ×

√ √ √
× ×

Barreto et al.
√ √ √ √

× ×
Boyen

√ √ √ √ √ √

Chow et al.
√ √ √ √

× ×
IDASC

√ √ √ √ √ √

Table 2. Comparison of Computational Cost

Signcrypt UnSigncrypt

Pairing Mul(G1) Exp(G2) Pairing Mul(G1) Exp(G2)

Libert and Quisquater-1 1(+1) 2 2 4 2

Libert and Quisquater-2 1(+1) 2 2 4 2

Libert and Quisquater-3 1 2 1 2 1

Malone-Lee 1 3 4 1

Barreto et al. 2 1 2 1 1

Boyen 1 3 1 4 2

Chow et al. 2 2 4 1

IDASC 1 2 1 1

9 Conclusion

In this article, we proposed a provably secure aggregate signcryption scheme in random oracle
model which is more efficient than the scheme proposed by Xun-Yi Ren et al. [2] with respect to
the length of Ciphertext and secure than the other schemes summarized in the tables. We prove
that the scheme meets the three strong security requirements confidentiality, signature unforge-
ability and ciphertext unforgeability in the random oracle model under the assumption, Elliptic
Curve Discrete Logarithm problem and Bilinear Diffie-Hellman Problem are computationally
hard. It can be implemented on low power devices such as PDA, smart card, cell phone, wireless



Table 3. Comparison of Ciphertext size

Scheme Ciphertext size

S.S.D.Selvi et al. and D.Boneh et al. | M | + | Z∗
q | +3 | G1 |

Xun-Yi Ren et al. | M | + | Z∗
q | +4 | G1 |

IDASC | M | + | Z∗
q | +2 | G1 |

sensor network. Since our scheme is compact, fast and unforgeable, in real time application such
as key transport, multi cast electronics commerce, authenticated e-mail, it can be applied.
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