
A preliminary version appears in ACM Conference on Computer and Communications Security (CCS) 2012.

Verifiable Data Streaming

Dominique Schröder
Department of Computer Science

University of Maryland, USA

Heike Schröder
Department of Computer Science

TU Darmstadt, Germany

Abstract. In a verifiable data streaming protocol, the client streams a long string to the server
who stores it in its database. The stream is verifiable in the sense that the server can neither
change the order of the elements nor manipulate them. The client may also retrieve data from
the database and update them. The content of the database is publicly verifiable such that any
party in possession of some value s and a proof π can check that s is indeed in the database.

We introduce the notion of verifiable data streaming and present an efficient instantiation that

supports an exponential number of values based on general assumptions. Our main technique is

an authentication tree in which the leaves are not fixed in advanced such that the user, knowing

some trapdoor, can authenticate a new element on demand without pre- or re-computing all other

leaves. We call this data structure chameleon authentication tree (CAT). We instantiate our

scheme with primitives that are secure under the discrete logarithm assumption. The algebraic

properties of this assumption allow us to obtain a very efficient verification algorithm. As a

second application of CATs, we present a new transformation from any one-time to many-time

signature scheme that is more efficient than previously known solutions.

1 Introduction

In a verifiable data streaming protocol (VDS), the client C streams a long string S = s[1], . . . , s[m]
to the server S who stores the string in its database DB . The length of S exceeds the client’s
memory such that C cannot read or store the entire string at once. Instead, C reads some substring
s[i] ∈ {0, 1}k and sends it to the server. The stream is verifiable in the sense that the server cannot
change the order of the elements or manipulate them. The entries in the database are publicly
verifiable such that any party in possession of s[i] and a proof πs[i] can check that C stored s[i] in
DB hold by S.

The client has also the ability to retrieve and update any element in the database. Whenever
the client wishes to get some value s[j] from DB , then the server appends a proof πs[j] that shows
the authenticity of s[j] with respect to some verification key PK . To update some element i in DB ,
the client retrieves (s[i], πs[i]) from S, checks its validity, and sends the updated value s′[i] back to
the server.

1

1.1 Trivial Approaches

It seems that a VDS can easily obtained by letting the client sign all values it streams to the
server. This solution indeed works for append-only databases that do not consider the order of
the elements (clearly, a stateful solution encodes the position into each element). What makes the
problem interesting is that the client can update the elements in the database. In this setting, the
trivial solution does not work anymore, because all previous entries in DB would still verify under
the public key and it is unclear how to revoke previous signatures. One could let the client store all
previous elements locally in order to keep track of all changes. This approach, however, would not
only lead the problem ad absurdum, but it simply is impossible due to the limited storage capacities
of the client.

1.2 Applications

Several companies offer already storage in the Internet such as, e.g., Google drive, Dropbox, Apple’s
iCloud, and many more. The basic idea is that users can outsource most of their data to a seemingly
unbounded storage. In some cases, such as Google’s Chromebook, the complete data are stored in
the cloud while the client keeps only a small portion of the data. Google provides for the users of
the Chromebook some free storage, but they have to pay a yearly fee for any additional space.

From a high-level point of view, this can be seen as data streaming, where a weak client streams
a huge amount of data to a very powerful server. A crucial point here is the authenticity of the
data. How can the client make sure that the server is not charging the client for space it is not
using (e.g., by adding random data to the user’s database)? Furthermore, the client needs to verify
that the server keeps the current version of the data without modifying it, or switching back to an
old version.

Taking the order of data into account is a very natural requirement in computer science. As
an example consider a server that stores the DNA sequences for a health insurance. A difference
in the sequence of the DNA usually means some sort of mutation which effects, e.g., in a disease.
Thus, if a malicious server manages to change the order in a patient’s DNA sequence, then the
client might have to pay a higher fee due to some medical risks (such as genetic disease) that might
be implied by this mutation. The website of the Museum of Paleontology of UC Berkley describes
the affect of mutations [oCMoP12].

1.3 Our Contribution

We introduce the notion of verifiable data streaming and present an instantiation that supports
an exponential number of values based on general assumptions. Our solution has efficient updates
and the data in the database are publicly verifiable. Moreover, our construction is secure in the
standard model. We summarize our contributions as follows:

• Our main technical contribution is an authentication tree that authenticates an exponential
number of values, but where the leaves are not defined in advance. The owner of a trapdoor
can add elements to the tree without pre- or re-computing all other elements. We call such a
tree a chameleon authentication tree (CAT).

• We show the generality of our technique by applying it to two different problems: Firstly,
we build a verifiable data streaming protocol based on CATs. This scheme supports an

2

exponential number of elements, efficient updates, and the items in the database are publicly
verifiable. The second application of CATs is a new transformation from any one-time to a
many-time signature scheme in the standard model that is more efficient than all previous
approaches.

• We instantiate our construction with primitives that are secure under the discrete logarithm
assumption in the standard model. This assumption is not only very mild, but the algebraic
structure allows us to obtain a more efficient verification algorithm. The basic idea is to apply
batch verification techniques to our verification algorithm.

• Concretely, this means that the verification algorithm of the many-time signature scheme is
50 times faster than the one obtained via the Goldwasser-Micali-Rivest (GMR) transforma-
tion. Batch verification techniques do not seem to be applicable to the GMR transformation,
because every one-time signature scheme uses different keys, while our transformation does
not. Since no direct construction of a signature scheme secure under the discrete logarithm
assumption is known in the standard model, our construction is the most efficient one.

1.4 Related Work

Verifiable data streaming is related to verifiable databases (VDB) by Benabbas, Gennaro, and
Vahlis [BGV11]. The main difference to their work is that the data during the setup phase in
a streaming protocol are unknown. Moreover, our notion has an algorithm that allows adding
elements to the database that consists of a single message from the user to the server (which
does not change the verification key of the database). One might wonder if VDBs can be used
to simulate verifiable data streaming protocols by generating a database of exponential size and
adding the entries via the update algorithm. This idea, however, does not work because the
update procedure usually requires interaction and the server updates the verification key afterwards.
Another difference is that the data in a VDB are usually unordered. That is, the element di in the
database DB is associated to some key xi, i.e., DB(xi) = di. But there is no explicit ordering of
the elements.

The problem of VDBs has previously been investigated in the context of accumulators [Ngu05,
CKS09, CL02] and authenticated data structures [NN00, MND+01, PT07, TT10]. These ap-
proaches, however, often rely on non-constant assumptions (such as the q-Strong Diffie-Hellman
assumption) as observed in [BGV11]. More recent works, such as [BGV11] or [CF11], focus on stor-
ing specific values (such as polynomials) instead of arbitrary ones and they usually only support a
polynomial number of values (instead of exponentially many). Moreover, the scheme of [BGV11]
is not publicly verifiable.

Proofs-of-retrievability are also similar in the sense that the server proves to the client that
it is actually storing all of the client’s data [SW08, FB06, SM06]. The interesting research area
of memory delegation [CKLR11] is also different, because it considers verifiable computation on
(streamed) data. A more efficient solution has been suggested by Cormode, Mitzenmacher, and
Thaler in [CMT12].

3

2 Verifiable Data Streaming

In a verifiable data streaming protocol (VDS), a client C reads some long string S = s[1], . . . , s[m] ∈
{0, 1}mk that C wishes to outsource to a server S in a streaming manner. Since the client cannot
store and read the entire string at once, C reads a substring s[i] ∈ {0, 1}k of S and sends s[i] to the
server who stores the value in its database DB . We stress that we are interested in a streaming
protocol, i.e., the communication between the client and the server at this stage is unidirectional
and the string is ordered. The data must be publicly verifiable in the sense that the server holds
some public key PK and everybody in possession of some data s[i] and a proof πs[i] can verify that
s[i] is stored in DB . Whenever the client wishes to retrieve some data s[i] from the database DB,
C sends i to the server who returns s[i] together with a proof πs[i]. This proof shows that s is the

ith element in DB and its authenticity with respect to PK . In addition, the client has the ability to
update any value s[i] to a new string s′[i] which leads to a new verification key PK ′. More formally:

Definition 2.1. A verifiable data streaming protocol VDS = (Setup,Append,Query,Verify,Update)
is a protocol between two PPT algorithms: a client C and a server S. The server can store an
exponential number n of elements in its database DB and the client keeps some small state O(log n).
The scheme consists of the following PPT algorithms:

Setup(1λ): The setup algorithm takes as input the security parameter 1λ. It returns a verification
key PK and a secret key SK . The verification key PK is given to the server S and the secret
key to the client C. W.l.o.g., SK always contains PK .

Append(SK , s): This algorithm appends the value s to the database DB hold by the server. The
client sends a single message to the server who stores the element in DB. Adding elements
to the database may change the private key to SK ′, but it does not change the verification key
PK .

Query(PK ,DB , i): The interactive query protocol is defined as 〈S(PK ,DB), C(i)〉 and is executed
between S(PK ,DB) and C(i). At the end of the protocol, the client either outputs the ith

entry s[i] of DB together with a proof πs[i], or ⊥.

Verify(PK , i, s, πs[i]): The verification algorithm outputs s[i] if s[i] is the ith element in the database
DB, otherwise it returns ⊥.

Update(PK ,DB ,SK , i, s′): The interactive update protocol 〈S(PK ,DB), C(SK , i, s′)〉 takes place
between the server S(PK ,DB) and the client C(SK , i, s′) who wishes to update the ith entry
of the database DB to s′. At the end of the protocol the server sets s[i]← s′ and both parties
update PK to PK ′.

A verifiable data streaming protocol must fulfill the usual completeness requirements.

2.1 Efficiency and Security Evaluation of VDS

Verifiable data streaming protocols should fulfill both “system” and “crypto” criteria. System
criteria usually require that a scheme must be as efficient as possible. In our setting, efficiency should
be evaluated w.r.t. computational complexity, storage complexity, and communication complexity.
The server in a VDS must be able to store an exponential number of elements and we require that

4

there is no a-priori bound on the number of queries to the server. The verifiers in the system should
be stateless with public verifiability. Everybody in possession of a data s and a proof πs should be
able to verify that s is stored at position i and that s is valid w.r.t. the verification key PK .

The most important crypto criteria are the following: A malicious server A should not be able
to add elements to the database outsourced by the client without its help. This means that A
might ask the client to add q elements to its database DB (where q is adaptively determined by
A), but he is unable to add any further element that verifies under PK . A verifiable streaming
protocol is order-preserving, i.e., the malicious server A cannot change the order of any element in
the database. Furthermore, A should not be able to change any element in the database. Again,
this property must hold even if A has the ability to ask the client to update q elements of its choice.
Finally, the server should only be able to issue proofs that allow to recover the stored file. These
criteria follow the ones that have been suggested in the context of proofs-of-retrievability [SW08].

2.2 Security of VDS

The security notion of VDS is similar to the one of verifiable databases [BGV11], but differs in
many aspects: First, our model considers the case of public verifiability, while the one of [BGV11]
does not. Second, we are dealing with a stream of data that has an explicit ordering. In contrast,
the model of [BGV11] fixes the size of DB during the setup and guarantees authenticity only for
these data. In particular, the adversary breaks the security in our model if he manages to output
a data s[i] with a valid proof πs[i], but where s[i] is not the ith value in DB .

We model this intuition in a game between a challenger and an adversary A that adaptively
adds and updates elements to resp. in the database. At the end of the game, A tries to compute
a false statement saying that a different data s[i] is the ith value in the database. This covers
the different attack scenarios we have discussed so far. A successful attacker could (1) change the
order of an element; (2) add an element to the database without the help of the user; (3) break the
update mechanism. More formally:

Setup: The challenger runs Setup(1λ) to generate a private key SK and a public key PK . It sets
up an initially empty database DB and gives the public key PK to the adversary A.

Queries: The challenger provides two interfaces for A that A may query adaptively and in an
arbitrary order. If the adversary queries the append interface on some data s, then the
challenger will run Append(SK , s) to append s to its database DB . Subsequently, it returns
the corresponding proof πs to A. The second interface is an update interface that takes as
input an index j and an element s′[j]. Whenever A invokes this interface, the challenger will
run the protocol Update(PK ,DB ,SK , i, s′) with A. Notice that each call to this interface
will update the verification key as well. By DB = s[1], . . . , s[q] we denote the state of the
database after A’s last query and PK ∗ is the corresponding verification key stored by the
challenger.

Output: Eventually, the adversary outputs (i∗, s∗, π∗s∗) and let ŝ ← Verify(PK ∗, i∗, s∗, π∗s∗). The
adversary is said to win the game if ŝ 6= ⊥ and ŝ 6= s[i∗].

We define Advos
A to be the probability that the adversary A wins in the above game.

Definition 2.2. A verifiable data streaming protocol is secure if for any efficient adversary A the
probability Advos

A is negligible (as a function of λ).

5

ρ h=4

υ3,0

0

υ2,0

0

υ1,0

0

`0

0

`1

1

υ1,1

1

`2

2

`3

3

υ2,1

1

υ1,2

. . .

`4

. . .

`5

υ1,3

`6 `7

υ3,1 h=3

1

υ2,2

2

υ1,4

`8 `9

υ1,5

`10 `11

υ2,3 h=2

3

υ1,6

. . .

`12 `13

υ1,7 h=1

7

`14

. . .

`15 h=0

15

Figure 1: Given a binary tree CAT which consists of a root node ρ, a set of inner nodes υ, and some
leaf nodes `. The blue nodes define the authentication path of leaf `4. The gray nodes right-handed
of `5 do not exist at this stage.

3 Preliminaries

Before describing our construction formally, we introduce the following basic notations for binary
trees (c.f. consider the tree depicted in Figure 1). The algorithms using this tree will be described
in the subsequent sections. Let CAT be a binary tree consisting of a root node ρ, a set of inner
nodes υ, and some leaf nodes `. The depth of the tree is defined by D = poly(λ) and the level of a
node in the tree is denoted by h = 0, . . . , D−1, where leaf nodes have level h = 0 and the root node
in turn has level h = D− 1. At each level h the nodes are defined by υh,i, where i = 0, . . . , 2D−h is
the position of the node in the tree counted from left to right. Furthermore, inner nodes of the tree
are computed according the following rule: vh,i ← Ch(vh−1,bi/2h−1c||vh−1,bi/2h−1−2c; rh,bi/2h+1c), if
⌊
i/2h

⌋
≡ 1 mod 2 and vh,i ← H(vh−1,bi/2h−1c−2||vh−1,bi/2h−1−1c), if

⌊
i/2h

⌋
≡ 0 mod 2. Notice

that H is a hash function, Ch a chameleon hash function, and r some randomness. By `i we denote
the ith leaf counted from left to right. The authentication path auth of a leaf ` consists of all siblings
of the nodes on the path from ` to ρ. If a parent node is computed by a chameleon hash, then it
also stores the corresponding randomness in a list R. E.g., the authentication path auth`15 of the
leaf `15 is auth`15 = (`14, v1,6, r2,3, v2,2, r3,1, v3,0) and R`15 = (r1,7, r2,3, r3,1, rρ).

3.1 Chameleon Hash Functions and their Security

A chameleon hash function is a randomized hash function that is collision-resistant but provides a
trapdoor [KR00]. Given the trapdoor csk, a message x with some randomness r, and any additional
message x′, it is possible to efficiently compute a value r′ such that the chameleon hash algorithm
Ch maps to the same y, i.e., Ch(x; r) = Ch(x′; r′) = y.

Definition 3.1. A chameleon hash function is a tuple of PPT algorithms CH = (Gen,Ch,Col):

Gen(1λ): The key generation algorithm returns a key pair (csk, cpk) and we set Ch(·) := Ch(cpk, ·).

6

Ch(x; r): The input of the hash algorithm is a message x ∈ {0, 1}in and some randomness r ∈
{0, 1}λ (which is efficiently sampable from some range Rcpk). It outputs a hash value h =
Ch(x; r) ∈ {0, 1}out.

Col(csk, x, r, x′): The collision-finding algorithm returns a value r′ such that Ch(x; r) = y =
Ch(x′; r′).

Uniform Distribution: The output of Ch is uniformly distributed, i.e., it also holds that for
any cpk, x, r, x′ the distribution of Col(csk, x, r, x′) (over the choice of r) is the same as the
distribution of r itself, also implying that a hash value Ch(x; r) (over the choice of r) is
distributed independently of x.

A chameleon hash function must be collision-resistant. This means that any malicious party
should not be able to find two pairs (x0, r0) and (x1, r1) that map to the same image. More precisely
is the following definition.

Definition 3.2. A chameleon hash function CH = (Gen,Ch,Col) is collision-resistant if the advan-
tage function Advch-col

CH,A is a negligible function in λ for all PPT adversaries A, where

Advch-col
CH,A := Pr

[
Ch(x; r) = Ch(x′; r′)
and (x, r) 6= (x′, r′)

:
(csk, cpk)← Gen(1λ);
(x, x′, r, r′)← A(Ch)

]
.

Observe that collision-resistance only holds as long as the adversary has not learned a collision.
Indeed, some chameleon hash functions allow to recover the private key if a collision is known, such
as, e.g., [KR00]. A comprehensive discussion about this problem is given in [Ad04].

Collision-resistance of hash functions is defined analogously and omitted here.

4 Chameleon Authentication Trees

The central building block that we use in our VDS protocol is a technique that we call chameleon
authentication tree (CAT). A CAT is an authentication tree that has the ability to authenticate an
exponential number of 2D leaves that are not fixed in advanced, where D = poly(λ). Instead, the
owner of a trapdoor can authenticate a new element on demand without pre- or re-computing all
other leaves.

4.1 Formal Definition of CATs

We formalize CATs as a triple of efficient algorithms: A CAT generation algorithm catGen, a
path generation algorithm addLeaf that adds a leaf to the tree and returns the corresponding
authentication path, and a path verification algorithm catVrfy that checks if a certain leaf is part
of the tree.

Definition 4.1. A chameleon authentication tree is a tuple of PPT algorithms CAT = (catGen,
addLeaf, catVrfy):

catGen(1λ, D): The CAT generation algorithm takes as input a security parameter λ and an integer
D that defines the depth of the tree. It returns a private key sp and verification key vp.

7

addLeaf(sp, `): The path generation algorithm takes as input a private key sp and a leaf ` ∈ L from
some leaf space L. It outputs a key sp′, the index i of ` in the tree, and the authentication
path auth.

catVrfy(vp, i, `, auth): The verification algorithm takes as input a public key vp, an index i, a leaf
` ∈ L, and a path auth. It outputs 1 iff ` is the ith leaf in the tree, otherwise 0.

A CAT is complete if for each (sp, vp) outputted by catGen(1λ, D) and for any ` ∈ L, the following
holds: if (sp′, i, auth)← addLeaf(sp, `), then catVrfy(vp, i, `, auth) = 1.

4.2 Security of CATs

We identify two security properties that a CAT should support. Loosely speaking, an adversary
A should not be able to change the structure of the CAT. In particular, changing the sequence of
the leaves, or substitute any leaf should be a successful attack. We call this property structure-
preserving. Furthermore, an adversary should not be able to add further leaves to a CAT. We refer
to this property as one-wayness.

Structure-Preserving. We formalize the first property by an interactive game between the chal-
lenger and an adversary A. The challenger generates a key pair (sp, vp) and hands the verification
key vp over to the adversary A. The attacker may then send q leaves `1, . . . , `q(λ) (adaptively) to the
challenger who returns the corresponding authentication paths (auth1, . . . , authq(λ)). Afterwards,
the adversary A tries to break the structure of the CAT by outputting a leaf that has not been
added to the tree at a particular position. More formally:

Setup: The challenger runs the algorithm catGen(1λ, D) to compute a private key sp and a verifi-
cation key vp. It gives vp to the adversary A.

Streaming: Proceeding adaptively, the attacker A streams a leaf ` ∈ L to the challenger. The
challenger computes (sp′, i, auth) ← addLeaf(sp, `) and returns (i, auth) to A. Denote by
Q := {(`1, 1, auth1), . . . , (`q(λ), q(λ), authq(λ))} the ordered sequence of query-answer pairs.

Output: Eventually, A outputs (`∗, i∗, auth∗). The attacker A is said to win the game if: 1 ≤ i∗ ≤
q(λ) and (`∗, i∗, auth∗) 6∈ Q and catVrfy(vp, i∗, `∗, auth∗) = 1.

We define Advsp
A to be the probability that the adversary A wins in the above game.

Definition 4.2. A chameleon authentication tree CAT, defined by the efficient algorithms (catGen,
addLeaf, catVrfy) with n leaves, is structure-preserving if for any q ∈ N, and for any PPT algorithm
A, the probability Advsp

A is negligible (as a function of λ).

One-Wayness. We model the second property in a game between a challenger and an adversary
as follows:

Setup: The challenger runs the algorithm catGen(1λ, D) to compute a private key sp and a verifi-
cation key vp. It gives vp to the adversary A.

Streaming: Proceeding adaptively, the attacker A streams a leaf ` ∈ L to the challenger. The
challenger computes (sp′, i, auth)← addLeaf(sp, `) and returns (i, auth) to A.

8

Output: Eventually, A outputs (`∗, i∗, auth∗). The attacker A is said to win the game if: q(λ) <
i∗ ≤ n and catVrfy(vp, i∗, `∗, auth∗) = 1.

We define Advow
A to be the probability that the attacker A wins in the above game.

Definition 4.3. A chameleon authentication tree CAT, defined by the PPT algorithms (catGen,
addLeaf, catVrfy) with n leaves, is one-way if for any q ∈ N, and for any PPT algorithm A, the
probability Advow

A is negligible (as a function of λ).

4.3 Weakly Secure CATs

We give two weaker security definitions for CATs that are sufficient for our compiler that turns
any one-time signature scheme into a many-time signature scheme. The difference to the previous
definition is that the attacker has to commit to its queries before seeing the public key.

Weak Structure-Preserving. The game between the challenge and the adversary A is defined
as follows:

Queries: The attacker A outputs a sequence of queries (`1, . . . , `q(λ)).

Responses: The challenger runs the algorithm catGen(1λ, D) to compute a private key sp and
a verification key vp. Let sp0 := sp. It runs (spi, i, authi) ← addLeaf(spi−1, `i) for i =
1, . . . , q(λ) and returns (vp, (1, auth1), . . . , (q(λ), authq(λ))) to the adversary A. Let Q :=
{(`1, 1, auth1), . . . , (`q(λ), q(λ), authq(λ))} be the ordered sequence of query/answer pairs.

Output: Eventually, A outputs a tuple (`∗, i∗, auth∗). The attacker A is said to win the game if:
1 ≤ i∗ ≤ q(λ) and (`∗, i∗, auth∗) 6∈ Q and catVrfy(vp, i∗, `∗, auth∗) = 1.

We define Advw-sp
A to be the probability that the adversary A wins in the above game.

Definition 4.4. A chameleon authentication tree CAT, defined by the efficient algorithms (catGen,
addLeaf, catVrfy) with n leaves, is weakly structure-preserving if for any q ∈ N, and for any PPT
algorithm A, the probability Advw-sp

A is negligible (as a function of λ).

Weak One-Wayness. Analogously, we model this game between a challenger and an adversary
as follows:

Queries: The attacker A outputs a sequence of queries (`1, . . . , `q(λ)).

Responses: The challenger runs the algorithm catGen(1λ, D) to compute a private key sp and
a verification key vp. Let sp0 := sp. It runs (spi, i, authi) ← addLeaf(spi−1, `i) for i =
1, . . . , q(λ) and returns (vp, (1, auth1), . . . , (q(λ), authq(λ))) to the adversary A. Let Q :=
{(`1, 1, auth1), . . . , (`q(λ), q(λ), authq(λ))} be the ordered sequence of query/answer pairs.

Output: Eventually, A outputs (`∗, i∗, auth∗). The attacker A is said to win the game if: q(λ) <
i∗ ≤ n and catVrfy(vp, i∗, `∗, auth∗) = 1.

We define Advw-ow
A to be the probability that the attacker A wins in the above game.

Definition 4.5. A chameleon authentication tree CAT, defined by the PPT algorithms (catGen,
addLeaf, catVrfy) with n leaves, is weakly one-way if for any q ∈ N, and for any PPT algorithm A,
the probability Advw-ow

A is negligible (as a function of λ).

9

5 A Weakly Secure Scheme

In this section, we describe a weakly secure CAT and we give a general transformation from a
weakly secure CAT to a fully secure one in Section 6. The basic idea of our construction is
a careful combination of hash functions H and chameleon hash functions Ch. Recall that in a
chameleon hash function the owner of the trapdoor can easily find collisions, i.e., for a given
string x (and randomness r) there exists an efficient algorithm that computes a value r′ such that
Ch(x; r) = Ch(x′; r′). We first discuss why obvious approaches do not seem to work. Subsequently,
we explain the main ideas of our construction, define them formally, and give a proof of security.

5.1 Näıve Approaches do not Work

The first idea would be to build a Merkle tree, where the server stores the entire tree and the client
keeps the last authentication path in its state. This idea, however, does not work, because all
leaves are necessary to compute the root. Using dummy nodes does not solve the problem, because
the root would change whenever a new leaf is authenticated. Thus, the second approach might be
to store the outputs of chameleon hash functions as the leaves with the idea that whenever the
client wishes to authenticate a new value, it simply applies the trapdoor such that the new leaf
authenticates under the same root. This idea, however, does still not work. One reason is that
the client would have to store all leaves (together with the corresponding randomness) in order
to compute a collision. One might be temped to let the server store these values, but this does
not work for several reasons: First of all, the data are streamed. This means that there is no
communication from the server to the client at this stage. But even if we would allow bi-directional
interaction, it would immediately lead to an attack: Suppose that the client wishes to append the
leaf ˆ̀. To do so, C asks the server to send the dummy leaf ` with the corresponding randomness
r. Then, the client applies the trapdoor to compute the matching randomness r̂ and sends the
updated values ˆ̀, r̂ to the server. The problem is that the malicious server would learn a colluding
pair (`, r), (ˆ̀, r̂) such that Ch(`; r) = Ch(ˆ̀; r̂). In many schemes, this knowledge would allow the
server to compute another pair (`∗, r∗) such that Ch(`; r) = Ch(ˆ̀; r̂) = Ch(`∗; r∗) (some schemes
even allow to recover the trapdoor csk if one knows a collision, such as, e.g., [KR00]).

5.2 Intuition of our Construction

As a warm up, we first illustrate the high-level idea of our instantiation with the tree shown in the
left part of Figure 2. We stress that our actual construction is slightly different, because the catGen
algorithm does not know the leaves `0 and `1.

We set up the tree such that the root and every right-handed node of the tree are computed by
a chameleon hash function and all left-handed nodes with a collision-resistant hash function. The
first step is to set up the tree by computing the hash value of the leaves `0 and `1 as v1,0 ← H(`0‖`1).
Then, the algorithm picks two random values x1,1, r1,1 to compute the dummy right-handed node
v1,1 ← Ch(x1,1; r1,1). The next step is to compute the parent node v2,0 ← H(v1,0‖v1,1) and to
pick two additional random values x2,1, r2,1. The algorithm then sets v2,1 ← Ch(x2;1; r2,1) and
ρ ← Ch(v2,0‖v2,1; rρ) using some randomness rρ. The authentication path of the leaves `0 and `1
only consists of the nodes v1,1, v2,1 and the randomness rρ. It does not contain the pre-images
x1,1, r1,1 (resp. x2,1, r2,1). We stress that this is crucial for the security proof.

10

ρ

v2,0 ← H(v1,0‖v1,1)

`0 `1

v1,1 ← Ch(x1,1; r1,1)

v2,1 ← Ch(x2,1; r2,1)

ρ

`4 `5

v1,3 ← Ch(x1,3; r1,3)

Figure 2: Left: A CAT of depth 3 that authenticates the leaves `0 and `1. The root and the right
nodes are computed by a chameleon hash and the left nodes by a collision-resistant hash function.
The leaves `2, . . . , `7 are unknown. Right: Appending the leaves `4 and `5 to the CAT, requires
the computation of a collision in node v2,1.

To add the elements `2 and `3 to the tree, the algorithm sets x′1,1 ← (`2‖`3) and com-
putes the collision for the node v1,1 using its trapdoor csk and randomness r1,1, i.e., r′1,1 ←
Col(csk, x1,1, r1,1, x

′
1,1). This means that the chameleon hash function maps to the same value

v1,1 = Ch(x1,1; r1,1) = Ch(x′1,1; r′1,1) and thus, the tree authenticates the leaves `2, `3 (using ran-
domness r′1,1). The authentication path of the leaves `2, `3 consists of auth = (v0,1, v2,1) and
R = (r′1,1, rρ). Thus, the attacker only learns x′1,1, r

′
1,1 and not the dummy values x1,1, r1,1 that has

been used to compute v1,1.
Now, assume that we would like to add two additional elements `4 and `5 to the CAT (c.f. right

part of Figure 2). Observe that we are in the situation where all leaves in the left part of tree are
used and the right part of the tree consists only of the element v2,1. The complete right subtree
with root node v2,1 does not exist at this point as it was unnecessary to authenticate any of the
previous leaves. In order to authenticate the leaves `4 and `5, our algorithm generates the skeleton
of the right subtree that is needed for the corresponding authentication path. That is, the algorithm
computes v1,2 ← H(`4‖`5), picks two random values x1,3, r1,3, and sets v1,3 ← Ch(x1,3; r1,3). The
last step is to apply the trapdoor to the chameleon hash function used in node v2,1 = Ch(x2,1; r2,1),
i.e., it sets x′2,1 ← (v1,2‖v1,3) computes r′2,1 ← Col(csk, x2,1, r2,1, x

′
2,1). The authentication path of

the leaves `4, `5 consists of auth = (v1,3, v2,0) and R = (r2,1, rρ).
We would like to draw the readers attention to the way we apply the trapdoor to the nodes.

The idea is to apply the trapdoor to the first node on the path from the leaf `i to the root ρ that
is computed by a chameleon hash. This way we guarantee that each trapdoor is applied to each
node only once and therefore, the one who stores the tree never sees a collision.

5.3 Special Property of the Construction

One of the interesting properties of our construction is the amount of information that is needed
to add an element to the tree. In fact, only the current authentication path, the pre-images of
the chameleon hashes with the corresponding randomness, and the trapdoor are needed. More
precisely, consider the tree shown in the left part of Figure 2. The CAT on the left side is basically
the authentication path for the leaves `0, `1 and the missing nodes that are required to compute
the authentication path for the leaves `4 and `5 are computed on the fly. This means that if the

11

tree has depth 2D for some D = poly(λ), the clients stores only log(2D) = poly(λ) elements. As it
turns out, this property will be very useful for our verifiable data streaming protocol, where the
client essentially stores these elements and the sever the entire tree.

5.4 Construction

Although the high level idea of CATs is quickly graspable, the formal description is rather compli-
cated. To simplify the exposition, we denote by [a] a vector of elements, i.e., [a] = (a0, . . . , aD−1)
and [(x, r)] = ((x0, r0), . . . , (xD−1, rD−1)), resp.

Construction 5.1. Let H : {0, 1}2len 7→ {0, 1}len be a hash function and let CH = (Gen,Ch,Col)
be a chameleon hash function such that Ch : {0, 1}2len 7→ {0, 1}len. We define the chameleon
authentication tree wCAT = (wcatGen,waddLeaf,wcatVrfy) as follows:

wcatGen(1λ, D): The key generation algorithm computes (cpk, csk)← Gen(1λ), it picks two random
values xρ ← {0, 1}2len, rρ ← {0, 1}λ, sets ρ← Ch(xρ; rρ), sets the counter c← 0, and the state
to st ← (c,D, xρ, rρ). It returns the private key sp as (csk, st) and the public key vp as
(cpk, ρ).

waddLeaf(sp, `): The path generation algorithm parses the private key sp as (csk, st) and recovers
the counter c from st. Then, it parses the leaf ` ∈ {0, 1}2len as (`c, `c+1) and distinguishes
between two cases:

c = 0: waddLeaf picks random values xh,1 ← {0, 1}2lenrh,1 ← {0, 1}λ (for h = 1, . . . , D − 2),
and sets vh,1 ← Ch(xh,1; rh,1). Subsequently, it computes the authentication path for `
as defined in the algorithm wcatVrfy up to the level D − 2. Denote by x′ρ the resulting
value. Then, waddLeaf applies the trapdoor csk to the root node ρ to obtain the matching
randomness r′ρ, i.e., r′ρ ← Col(csk, xρ, rρ, x

′
ρ). The algorithm computes the corresponding

authentication path for the leaf ` as auth = ((vh+1,1, . . . , vD−1,1), r′ρ), it sets the counter
c← 2, and the state st’← (c,D, x′ρ, r

′
ρ, [x, r], `0, `1). The algorithm returns sp′ = (csk,

st′), the index 0, and the authentication path auth.

c > 0: The algorithm waddLeaf gets the counter c from the state st, creates a new list auth
and proceeds as defined in Figure 3.

wcatVrfy(vp, i, `, auth): The input of the path verification algorithm is a public key vp = (cpk, ρ),
the index i of the leaf `, and the authentication path auth = ((v1,bi/2c, . . . , vD−2,bi/2D−2c), R),
where R is a non-empty set that contains all randomness that are necessary to compute the
chameleon hash functions. The verification algorithm sets (`i, `i+1)← Ch1(`; r) and computes
the node vh,i for h = 2, . . . , D − 2 as follows:

If
⌊
i/2h

⌋
≡ 1 mod 2:

x← vh−1,bi/2h−1c||vh−1,bi/2h−1c+1,

vh,i ← Ch
(
x; rh,bi/2hc

)
, with rh,bi/2hc ∈ R.

If
⌊
i/2h

⌋
≡ 0 mod 2:

x← vh−1,bi/2h−1c−2||vh−1,bi/2h−1c−1,

vh,i ← H(x).

12

c← c+ 2
for h = 1 to D − 2 do

if bc/2hc is even then if bc/2hc is odd then
if (vh,bc/2hc+1) 6∈ st then if (vh,bc/2hc) ∈ st then

xh,bc/2hc+1 ← {0, 1}2len x′
h,bc/2hc = (vh−1,bc/2h−1c||vh−1,bc/2h−1b+1)

rh,bc/2hc+1 ← {0, 1}λ r′
h,bc/2hc ← Col(csk, xh,bc/2hc, rh,bc/2hc, x

′
h,bc/2hc)

vh,bc/2hc+1 = Ch(xh,bc/2hc+1; rh,bc/2hc+1) vh,bc/2hc−1 = H(vh−1,bc/2h−1c−2||vh−1,bc/2h−1c−1)

st.add(xh,bc/2hc+1, rh,bc/2hc+1) R.add(r′
h,bc/2hc)

auth.add(vh,bc/2hc+1) st.add(r′
h,bc/2hc)

else auth.add(vh,bc/2hc−1)

auth.add(vh,bc/2hc+1) st.del(vh−1,bc/2h−1c−2, vh−1,bc/2h−1c−1, xh,bc/2hc, rh,bc/2hc)
end if else

end if end if

end for
R.add(r)
output (sp’,c,(auth, R))

Figure 3: Algorithm to generate the authentication path.

Finally, the verifier computes the root node ρ̂ as ρ̂← Ch(vD−2,0||vD−2,1; rρ) (with rρ ∈ R). If
ρ̂ = ρ, then the leaf is authenticated, and otherwise rejected.

5.5 Proof of Security

To explain the proof idea, consider an efficient adversary A that inserts at most q := q(λ) leaves.
Since the adversary is efficient, the number of leaves are polynomially bounded. The idea is to store
the q leaves `1, . . . , `q in the tree and then to choose dummy nodes such that the entire tree has
polynomial depth D = poly(λ). Notice that the entire tree does not exist at any time (cf. the tree
shown in Figure 4), i.e., the subtree consists of the leaves `1, . . . , `q, but the gray nodes, and the
dotted nodes in the tree are dummy nodes. Now, recall that the adversary wins if it outputs a tuple
(`∗, i∗, auth∗) 6∈ Q. We distinguish between the case where 1 ≤ i∗ ≤ q and where q + 1 ≤ i∗ ≤ 2D.

In the first part of the proof, where 1 ≤ i∗ ≤ q, we show how to find a collision in either (1)
the hash function or (2) the chameleon hash function. In the second case where we assume that
q + 1 ≤ i∗ ≤ 2D, we further distinguish between the cases where either (2.1) the adversary inverts
the chameleon hash function or (2.2) it finds a collision in it.

The main observation in the second part is that the path from the leaf `∗ to the root ρ must
contain a right-handed node on the authentication path of the node `q. In particular, this node must
be one of dummy nodes. Since we only create a polynomial number of dummy nodes, we can guess
which of these nodes is contained in the path. If the reduction guesses this index correctly, then
it can embed the challenge of the one-wayness game. Notice, that the adversary might compute a
different pre-image. In this case, however, we break the collision-resistance of the chameleon hash
function. Notice that embedding this challenge is only possible, because of the careful construction
of the tree as discussed in Section 5.2. In particular, this technique would not work if we would
use the trapdoor of the chameleon hash function in a different way. Observe, that the tree still
authenticates an exponential number of leaves (even if A is only capable of adding polynomial
number of leaves to the tree).

13

ρ

...

...

`1

...

...

...
...

`q `∗

︸ ︷︷ ︸
q

Figure 4: This figure shows how we set up the tree in the proof. The gray path corresponds to the
case where the adversary outputs a pair (`∗, i∗, auth∗) such that i∗ > q.

Theorem 5.2. If H is a collision-resistant hash function and CH a one-way collision-resistant
chameleon hash function, then Construction 5.1 is a chameleon authentication tree with depth
D = poly(λ) and that is weakly structure-preserving and weakly one-way.

We prove this theorem with the following two propositions.

Proposition 5.3. If H is a collision-resistant hash function and CH a collision-resistant chameleon
hash function, then Construction 5.1 is weakly structure-preserving.

Proof. Suppose towards contradiction that Construction 5.1 is not weakly structure-preserving.
Then, there exists an efficient attacker A that wins the security game defined in Definition 4.4
with non-negligible probability. In the following we show how to construct an algorithm B that
either finds a collision in the hash function H (denoted by BH) or in the chameleon hash function
Ch (denoted by BCh). Since the reduction is in both cases roughly the same, we only describe the
algorithm BH .

Setup: The algorithm BH runs a black-box simulation of AH , who outputs a sequence of leaves
`1, . . . , `q. The reduction BH sets up a CAT as follows: It generates a key pair of the chameleon
hash function (csk, cpk) ← Gen(1λ) and picks dummy nodes yi ← {0, 1}len uniformly at
random such that the entire tree has depth D = poly(λ). It then computes the root ρ
of the tree from the bottom to the top. Whenever a computation of a chameleon hash is
involved, then B picks a fresh randomness uniformly at random. It stores all nodes x and
the corresponding randomness r in a table T . Furthermore, it computes the authentication
path authi for the leaf `i (for i = 1, . . . , q) and sets vp← (cpk, ρ). Finally, B runs a black-box
simulation of AH on (vp, {(`i, i, authi)}qi=1).

14

Computing the collision: Eventually, AH stops outputting a pair (`∗, i∗, auth∗) 6∈ Q with auth∗ =
((v∗1,bi/2c, . . . , v

∗
D−2,bi/2D−2c), R

∗) and 1 ≤ i∗ ≤ q. Let mPath∗ = (v′∗0 , . . . , v
′∗
D−1) denote

the path from the leaf `∗ to the root. If AH succeeds, then the nodes auth∗ authenti-
cates the leaf `∗, but AH has not received the tuple (`∗, i∗, auth∗), i.e., (`∗, i∗, auth∗) 6∈ Q
where Q = ((`1, 1, auth1), . . . , (`q(λ), q, authq)). Now consider the leaf `i∗ together with the
corresponding authentication path auth = ((v1,bi/2c, . . . , vD−2,bi/2D−2c), R) and with its path
mPath = (v′0, . . . , v

′
D−1)) to the root. Let authi∗ := (v′0, . . . , v

′
i∗) be the sub-path and let

mPathi∗ = (i, `, (v′0, . . . , v
′
i∗)), respectively. Then, we distinguish two cases:

Case 1: Suppose that mPath 6= mPath∗. Since both paths have the same root ρ, there must
exist an index 0 ≤ i < D − 1 with mPathi+1 = mPath∗i+1 and mPathi 6= mPath∗i.
Now, a collision is found since mPathi+1 = H(authi||mPathi) and since mPath∗i+1 =
H(aPath∗i||mPath∗i).

Case 2: Suppose that mPath = mPath∗. If `i 6= `∗, then a collision is found. On the other
hand, if `i = `∗, then authi and auth∗ are distinct. Suppose that authi 6= aPath∗i for
an index i < D − 1. Since mPathi+1 = H(authi||mPathi) and because mPath∗i+1 =
H(aPath∗i||mPath∗i) a collision is found.

It follows easily from the reduction that BH performs a perfect simulation from AH ’s point of view,
and that both algorithms are efficient. Thus, BH finds a collision whenever AH succeeds. Denote
by εH the corresponding probability. Assuming hat εH is non-negligible, however, contradicts the
assumption that the hash function is collision-resistant.

The algorithm BCh that finds a collision in the chameleon hash function Ch works analogously to
BH . We denote byACh the underlying adversary and by εCh its success probability. The algorithm B
then simply guesses if it has access to AH or ACh. Thus, we calculate the overall success probability
ε′(λ) of B as

ε′(λ) := Prob[B succ] =
1

2
(εH(λ) + εCh(λ)),

where X succ denotes the event that the algorithm X wins its security game.

Proposition 5.4. If CH is a one-way collision-resistant chameleon hash function, then Construc-
tion 5.1 is weakly one-way.

Proof. Assume to the contrary that A is an adversary that returns a pair (`∗, i∗, auth∗) such that
q + 1 ≤ i∗ ≤ 2D. Then, we construct an attacker B against the one-wayness of Ch.

Setup: The input of B is an image y∗ ← Ch(x; r) and the public key cpk of the chameleon hash
function. It runs A in a black-box way obtaining q leaves `1, . . . , `q. It sets up the tree
by picking t − 1 dummy nodes yi ← {0, 1}len and guessing a random index j = 1, . . . , t.
Then, B computes the tree from the bottom to the top using where the first q leaves are
`1, . . . , `q. It uses the nodes y1, . . . , y

∗, . . . , yt−1 as dummy nodes such that the entire tree
has depth D = poly(λ) and let ρ be the resulting root node. Furthermore, B computes
the authentication paths authi for the leaves `i (for i = 1, . . . , q). The attacker B then sets
vp← (cpk, ρ) and runs a black-box simulation of A on input (vp, {(`i, i, authi)}qi=1).

Inverting Ch: At some point, Amight stop, outputting a pair (`∗, i∗, auth∗) with auth∗ = ((v∗1,bi/2c,

. . . , v∗
D−2,bi/2D−2c), R

∗) and q + 1 ≤ i∗ ≤ 2D. Let mPath∗ = (v′∗0 , . . . , v
′∗
D−1) denote the path

15

from the leaf `∗ to the root. If there exists an index j such that v′j = y∗, then B computes the
authentication path auth∗ up to y∗. Then, the algorithm B outputs the resulting pre-image
x∗ = auth∗ together with the corresponding randomness r∗. Otherwise, it aborts.

For the analysis first note that B performs a perfect simulation from A’s point of view (applying the
same arguments as in the previous proof). Now, assume that A succeeds with non-negligible prob-
ability. Then, it returns a valid pair (`∗, i∗, auth∗) with auth∗ = ((v∗1,bi/2c, . . . , v

∗
D−2,bi/2D−2c), R

∗)

such that q + 1 ≤ i∗ ≤ 2D. Since the authentication path verifies, it follows from our construction
that one node in auth∗ is a right-handed node on the authentication path of `q. Since it is a right
node, it follows that this node is the output of a chameleon hash function. Now, assume that B has
guessed this node correctly. Then, it follows from our construction that B computes a pre-image
(x∗, r∗) of y∗. We have to show that (x∗, r∗) = (x, r). This, however, follows from the collision-
resistance of Ch. If we assume towards contradiction that (x∗, r∗) 6= (x, r), then we can easily build
an adversary that finds a collision in Ch.

Assume further that A succeeds with non-negligible probability εO(λ). Then, it is easy to see
that B wins with probability δO(λ) := εO(λ)/t. This, however, either contradicts the one-wayness
or the collision-resistance of Ch.

Remark. It is well-known that chameleon hash function can be build under the discrete logarithm
assumption [KR00] and also assuming the hardness of the short integer solution (SIS) that is related
to worst-case lattice-based assumptions such as approximating the shortest vector problem [GPV08,
CHKP10]. Thus, we obtain the following result.

Proposition 5.5. Chameleon authentication trees exist in the standard model if the discrete loga-
rithm problem is hard (according to Theorem 8.1) and also under the SIS assumption.

6 Adaptively Secure CATs

In this section, we present a general transformation that turns any weakly secure CAT into one that
satisfies our strong notions of security according to Definitions 4.2 and 4.3. Our construction follows
the transformation that turns any signature scheme secure against existential unforgeability with
respect to weak chosen-message attacks into an adaptively secure one [KR00, ST01, BB04, HW09a].
The basic idea is to store the output of a chameleon hash with an independent key in the leaves.

Construction 6.1. Let wCAT = (wcatGen,waddLeaf,wcatVrfy) be a CAT and CH = (Gen,Ch,Col)
a chameleon hash function. We define the chameleon authentication tree CAT = (catGen, addLeaf,
catVrfy) as follows:

catGen(1λ, D): The key generation algorithm runs (wsp,wvp) ← wcatGen(1λ) and (csk, cpk) ←
catGen(1λ), it sets (wsp, csk) as sp and (wvp, cpk) as vp.

addLeaf(sp, `): The path generation algorithm parses sp as (wsp, csk). It picks r ← {0, 1}λ uni-
formly at random, sets x ← Ch(`; r), computes (wsp′, i,wauth) ← waddLeaf(wsp, x) and
returns auth← (wauth, i, r).

catVrfy(vp, i, `, auth): The path verification algorithm parses vp as (wvp, cpk) and auth as (wauth, i, r).
It sets x← Ch(`; r) and returns wcatVrfy(wvp, i,wauth, x).

16

We prove the security of our construction with the following theorem.

Theorem 6.2. If wCAT = (wcatGen,waddLeaf,wcatVrfy) is a weakly structure-preserving (resp.
weakly one-way) chameleon authentication tree and CH = (Gen,Ch,Col) a one-way collision-resistant
chameleon hash function, then Construction 6.1 is structure-preserving (resp. one-way).

The proof follows the one of [HW09b], but differs in one aspect. In the case of signature
schemes, the attacker succeeds if he forges a fresh message. In our case, however, this might
not be the case. In particular, an attacker succeeds if he manages to change the order of two
streamed values. Thus, we have to cover the case where A re-uses some values without violating
the collision-resistance property of CH.

Proof. Let (`∗, i∗, auth∗) be the output by the adversaryA against the structure-preserving (resp. one-
wayness) property, where auth∗ = (wauth∗, i∗, r∗) and x∗ = Ch(`∗; r∗). We construct an algorithm
B that constructs the CAT and records the values of all leaves and their corresponding authenti-
cation paths. Let ((x1, 1, auth1), . . . , (xq, q, authq)) be the CAT after A added q leaves (adaptively)
and consider the tuple (`i∗ , i

∗, authi∗) that was initially stored in the CAT at position i∗. The key
observation is that we can distinguish between two cases: We say that the adversary A is a type-1
attacker, if xi∗ = x∗. Otherwise, if xi 6= x∗, then we say that A is of type-2. In the first case, we
construct an attacker against the collision-resistance of CH. Otherwise, if xi∗ 6= x∗, then we build
an attacker breaking the weak structure-preserving (resp. one-wayness) property of wCAT. The
algorithm B initially guesses which type of attacker A is.

Type-1 Attacker. If B has black-box access to a type-1 attacker, then it breaks the collision-
resistance of CH as follows:

Setup: The input of B is the public key cpk of the chameleon hash CH. It generates a key pair of
the CAT (wsp,wvp)← wcatGen(1λ, D) and runs A on vp = (wvp, cpk).

Queries: Whenever A wishes to add a leaf ` to the tree, then B picks a value r ← {0, 1}λ uniformly
at random, sets x← Ch(`; r), computes the path as (wsp′, i,wauth)← waddLeaf(wsp, x), and
returns auth = (wauth, i, r). In addition, it records the pair (`, r) in a table T .

Output: Eventually, A stops, outputting a pair (`∗, i∗, auth∗) with auth∗ = (wauth∗, r∗), x∗ =
Ch(`∗; r∗). The reduction B returns (`∗, r∗), (`i∗ , ri∗).

For the analysis observe, that B is efficient, because A runs in polynomial time. Now, assume that
A succeeds with non-negligible probability and that B guessed correctly. In this case, B returns a
collision. To see this, note that `∗ and `i∗ must be distinct, because A wins the game. Since A is
a type-1 attacker, it follows that xi = x∗i . This, however, contradicts the assumption that CH is
collision-resistant.

Type-2 Attacker. We use a type-2 attacker A in a black-box way to construction a reduction
B against the weak structure-preserving property as follows:

Setup: The algorithm B picks q values `1, . . . , `q uniformly at random from {0, 1}in and q strings
r1, . . . , rq at random from {0, 1}λ. It stores these values in a table T and generates a key pair
of the chameleon hash (csk, cpk)← Gen(1λ) and outputs xi ← Ch(`i; ri) for i = 1, . . . , q. The

17

challenger answers with the public key wvp and the list of corresponding authentication paths
((1,wauth1), . . . , (q,wauthq)). Then, B sets vp← (wvp, cpk) and runs a black-box simulation
of A on vp.

Queries: Whenever A wishes to add a leaf `′ to the tree, then B computes a collision in the
chameleon hash r′ ← Col(csk, `, r, `′), and returns auth = (wauth, i, r′).

Output: Eventually, A stops, outputting a pair (`∗, i∗, auth∗) with auth∗ = (wauth∗, r∗), x∗ =
Ch(`∗; r∗). The algorithm B returns (x∗, i∗,wauth∗).

It follows from our construction that B is efficient, because A runs in polynomial-time. Let us
assume that A succeeds with non-negligible probability and that B guessed the type of attacker
correctly. This means, however, that x∗ 6= xi∗ which contradicts the assumption that the underlying
CAT is weakly structure-preserving.

The proof for (weakly) one-wayness is the same and is omitted.

6.1 Comparison to Mercurial Commitments

Building authentication trees like structures from other primitives than collision-resistant hash
functions has been done before. For example Chase et al. introduce a new flavor of commitment
schemes that are called mercurial commitments [CHL+05]. Loosely speaking, a mercurial com-
mitment is a commitment scheme that provides a hard and a soft decommitment algorithm. The
hard decommitment behaves like a regular decommitment. But soft decommitment are different
in the sense that binding does not hold anymore. In some sense a soft decommitment provides
a chameleon hash functionality to the commitment scheme. In [CHL+05] the author also suggest
a tree based construction where they combine hard and soft commitments in the tree. This con-
struction, however, is not comparable to our solution. The main reason is that the efficiency of
our construction depends heavily on an exact combination of hash functions and chameleon hash
functions. Moreover, we designed our construction in such a way that only a single inversion of
the chameleon hash is needed. The tree designed in [CHL+05] depends on the database. Thus,
the structure of both trees is simply not comparable. Moreover, it is easy to show that mercurial
commitments are a strictly stronger primitive.

7 Construction of a Verifiable Data Streaming Protocol

Our VDS is not a completely black-box construction from a CAT, because updating leaves is not
supported by a CAT in general. Instead, we use the algorithms of a CAT whenever it is possible
and exploit the concrete structure of our scheme when we describe the update mechanism and also
in the proof.

The main idea of our construction is to split the data in the CAT between the server S and the
client C. That is, the client basically stores the trapdoor and the authentication path of the current
value. As discussed in Section 5.3, this information is sufficient to authenticate the next leaf. The
server, however, stores the entire tree (as it has been specified so far) and the randomness of all
chameleon hashes learned so far. As an example, consider the tree in Figure 1. The client stores
the blue authentication path including the values (x3,1, r3,1) and (x1,3, r1,3) of the two “unused”
inner nodes and the trapdoor csk, while the sever stores the entire tree.

18

To retrieve any element from the database, the client sends the index i to the server who returns
the element s[i] together with the corresponding authentication path πs[i] = auths[i]. Verifying works
straightforwardly by checking the authentication path.

Updating an element s[i] to s′[i] in DB work as follows: First, C runs the query algorithm to
obtain the element s[i] and the corresponding authentication path πs[i] = auths[i]. If the verification
algorithm Verify(PK , i, s, πs[i]) evaluates to 1, then C updates the leaf `i = s[i] to s[i]′. Subsequently,
it updates the authentication path auth`[i] to auths′[i] analogously to the algorithm wcatVrfy as
defined in Construction 5.1. Denote by ρ′ the resulting value. The client C sets ρ← ρ′ in its public
key PK and sends the new authentication path auths′[i] to S. The server updates the entry in DB ,
all leaves, and the root, which results in a new public key PK ′.

Construction 7.1. Let CAT = (catGen, addLeaf, catVrfy) be the chameleon authentication tree as de-
fined in Construction 6.1. We define the verifiable data streaming protocol VDS = (Setup,Append,
Query,Verify,Update) as follows:

Setup(1λ): The setup algorithm picks some D = poly(λ) and generates the CAT (sp, vp) ←
catGen(1λ, D) as defined in Construction 6.1. In particular, the private key is SK = sp =
(csk, csk1, st) and the public key is PK = vp = (cpk, cpk1, ρ), where ρ is the root of the
initially empty tree. The client C gets the private key SK and the server the public key PK .
The server also sets up an initially empty database DB .

Append(SK , s): To append an element s to DB , the client C runs the algorithm addLeaf(sp, s)
locally which returns a key sp′, an index i, and an authentication path authi. It sends i, s
and authi to the sever S. The server appends s to DB , it adds the unknown nodes from
authi = ((v1,bi/2c, . . . , vD−2,bi/2D−2c), R) to its tree, and stores the new randomness from R.

Query(PK ,DB , i): The client sends the index i to the server who responses with s[i] and the
corresponding authentication path πs[i] = authi, or with ⊥ if the ith entry in DB is empty.

Verify(PK , i, s, πs[i]): The verification algorithm parses PK as vp and πs[i] as auths[i], it returns s
if the algorithm catVrfy(vp, i, s, πi) outputs 1. Otherwise, it outputs ⊥.

Update(PK ,DB ,SK , i, s′): To update the ith element in DB to s′, the clients parses SK as the
trapdoor sp of the CAT, its state st, and the pairs (xi,j , ri,j) of the “unused” nodes computed
via the chameleon hash function (“unused” means that the trapdoor has not been applied to
these nodes). The first move in the protocol is by the client who sends the index i to S. The
server returns s[i] and the corresponding proof πs[i] (which is the authentication path authi).
The client C runs Verify(PK , i, s[i], πs[i]) to check the validity of s[i]. If Verify returns ⊥, then
C aborts. Otherwise, it sets the leaf `i = s[i] to s′ and re-computes the authentication path
with the new leaf (as described in Construction 5.4). The output of this algorithm is a new
root ρ′. Subsequently, the client updates all nodes that are stored in its state st, but that
have been updated by re-computing the authentication path with the new leaf (this includes
at least the root ρ and thus, the verification key PK). Notice that the randomness used for
the chameleon hash functions remain the same. Then, C sends the new authentication path
auth′i, the updated leaf s′, and the updated verification key PK ′ to the server. The server
first verifies the authentication path. If it is valid, then S updates the stored value s[i] to
s[i]′, the corresponding nodes in the CAT, as well as its verification key PK ′. Otherwise, it
aborts.

19

Regarding security, we prove the following theorem:

Theorem 7.2. If H is a collision-resistant hash function and CH = (Gen,Ch,Col) a chameleon
hash function that is one-way and collision-resistant, then Construction 7.1 is a secure verifiable
data streaming protocol w.r.t. Definition 2.2.

Proof. The following proof is nonblack-box in the sense that we present a reduction to the collision-
resistance (resp. one-wayness) of the chameleon hash (resp. of the hash function). The proof idea
builds up on both, the proofs of Theorems 5.2 and 6.2. That is, the proof consists of three main
parts:

• First, we build a weakly secure CAT from a (chameleon) hash function. Recall that weakly
secure means that the adversary commits to his queries before learning the public key. This
part follows from Theorem 5.2.

• Second, we store the output of a different chameleon hash in the leaves of our weakly secure
CAT. The basic idea of this transformation is that the simulator commits to random values
in order to obtain the public key. Then it uses the trapdoor of the chameleon hash in order
to answer the adaptively chosen queries by the adversary (see Theorem 6.2).

• Third, the problem with the adaptivity of CATs is that leaves cannot be changed after-the-
fact. In a VDS, however, the client is allowed to change previously streamed values whenever
it wishes. Recall that updating means in our construction to re-compute the tree with the
fresh leaf. Since this operation does not affect “unused” leaves (in particular, this operation
does not leak any information about the randomness of “future” leaves), the simulator can
safely perform this operation locally.

Recall that the public key PK = (cpk, cpk1, ρ) and we set Ch(·) := Ch(cpk, ·) and Ch1(·) :=
Ch(cpk1, ·). Suppose that A is a PPT adversary against the VDS according to Definition 2.2 that
streams at most q := q(λ) elements to the challenger. Eventually, A returns a tuple (i∗, s∗, π∗),
such that (i∗, s∗, π∗) is a valid tuple w.r.t. PK ∗, but s∗ 6= s[i∗]. In the following, we distinguish
between two cases: we say that A is a type-1 attacker if 1 ≤ i∗ ≤ q and he is of type-2 if q < i∗ ≤ n
(recall that n is the size of the database). In what follows, we are building a reduction that initially
guesses which type of adversary A is.

Type-1 Attacker: Consider the output (i∗, s∗, π∗) of the attacker A, where the proof π∗ =
auth∗ = (wauth∗, i∗, r∗) and x∗ = Ch1(s∗; r∗). Now, similar to the proof of Theorem 5.2, we
distinguish between two cases: If the value x∗ is stored at position i∗, then we say that A is of
type-1a. Otherwise, if x∗ 6= x[i∗], we say that A is of type-1b. If B has access to an attacker of
type-1a, then B finds a collision in CH1 and if A is of type-1b he finds in a collision in either CH
or in H. The algorithm B initially guesses what type A is.

Type-1a Attacker: The algorithm B with access to an adversary A of type-1a works as follows:

Setup: The input of B is a public key cpk1 and recall that Ch1(·) := Ch(cpk1, ·). The algorithm
B picks another key pair of a chameleon hash function (cpk, csk) ← Gen(1λ) (with Ch(·) :=
Ch(cpk, ·)) and picks two values (xρ, rρ) uniformly at random. Then, B sets ρ ← Ch(xρ; rρ),
PK ← (cpk, cpk1, ρ), it creates an initially empty database DB , sets the counter c ← 0, and
runs A on input PK .

20

Insert Query: Whenever A asks the challenger to insert an element s into DB , then B, increases
the counter c← c+1, picks a fresh value rc uniformly at random, sets xc ← Ch(sc; rc) records
the tuple (c, sc, rc) in DB , and simulates the algorithm (sp′, i,wauth)← waddLeaf(csk, xc) as
defined in Construction 5.1. It returns πs[c] = authc = (wauthc, c, rc) to A.

Update Query: The algorithm B answers update queries of the form (i, s′) in the following way.
It sets the ith entry of DB to s′ and updates the nodes that lay on the authentication
path auth′ of s′. Denote the updated root node by ρ′. Then, it updates the public key to
PK ′ ← (cpk, cpk1, ρ

′), and returns the proof πs′ to A.

Output: At some point, the attacker A may stop, outputting a tuple (i∗, s∗, π∗), such that
Verify(PK ∗, i∗, s∗, πs∗) = 1. Notice that PK ∗ is the public key hold by the challenger. The
algorithm B parses π∗ = auth∗ = (wauth, r∗), it recovers (si∗ , ri∗) from DB and returns
(s∗, r∗), (si∗ , ri∗).

It follows from the construction that B is efficient and that it performs a perfect simulation from
A’s point of view. In the following assume that A is of type-1a and that it succeeds with non-
negligible probability. But if both conditions hold, then s∗ 6= si∗ (because A succeeds) and
Ch(s∗; r∗) = Ch(si∗ ; ri∗) (because A is of type-1a). This, however, contradicts the assumption
that CH is collision-resistant.

Type-1b Attacker: This part of the proof is the same as the proof of Theorem 6.2. The main
observation is that both elements (s[i∗], auth[i∗]) and the adversaries output (s∗, auth∗) verify under
the same public key PK ∗ at the same position i∗ in tree. Thus, there must be a collision in either
the hash function or the chameleon hash function. Since the proof is roughly the same as the one
of Theorem 6.2, we omit it here.

Type-2 Attacker: This part of the proof is analogously to the one of Proposition 5.4. The
main observation is that the authentication path corresponding to A’s output, must contain at
least one right-handed node on the authentication path of the last inserted value sq. Since it must
be a right-handed node, it is computed by a chameleon hash function. Furthermore, the update
queries do not change this fact as they only involve “old” values. We build an algorithm B that
either breaks the one-wayness or the collision-resistance of CH. We describe the reduction to the
one-wayness, but we stress that the one against collision-resistance is roughly the same.

Setup: The input of B is a public key cpk and a challenge image y∗. Let Ch(·) := Ch(cpk, ·). It
generates an additional key pair (csk1, cpk1) ← Gen(1λ), q pairs (x, r) uniformly at random,
and t random dummy nodes y ∈ {0, 1}len such that the resulting tree has depth D. Let
Ch1(·) := Ch(cpk1, ·). Then, B sets `i ← Ch1(xi; ri) (for i = 1, . . . , q), it stores the pairs
(xi, ri) in a table T , and creates a binary authentication tree as follows. The first q leaves of
the tree are `1, . . . , `q. Then, it sets up a list y1, . . . , y

∗, . . . , yt in which the challenge y∗ is
embedded at a randomly chosen position i. These dummy nodes are the right nodes on the
authentication paths in the tree that are needed to obtain a tree of depth D (see Figure 4).
It sets PK ← (cpk, cpk1, ρ) and runs A in a black-box way on PK .

Insert Queries: Whenever A wishes to insert an element si in the database, then B retrieves the
pair (xi, ri) from T and computes a collision in the chameleon hash for which B knows the

21

trapdoor: r′i ← Col(csk1, xi, ri, si). It returns the corresponding authentication path authi as
the proof πi to A.

Update Queries: At some point, A sends (i, s′) to the challenger to update the ith entry in DB
to s′. The algorithm B replaces s by s′ and updates the nodes that lay on the authentication
path auth′ of s′. Denote the updated root node by ρ′. Then, it updates the public key to
(PK ′ ← (cpk, cpk1, ρ

′)), and returns the proof πs′ to A.

Output: Eventually, A stops, outputting a tuple (i∗, s∗, π∗), such that Verify(PK , i∗, s∗, πs∗) = 1.
The algorithm B inverts Ch as follows. It first checks that y∗ lies on the authentication path
πs∗ = auths∗ . If this is not the case, it aborts. Otherwise, if y∗ lies on the authentication
path, then B re-computes the authentication path up to the point where y∗ is the root node
(following Construction 5.1) and denote by x∗, r∗ the resulting values. The algorithm B stops,
outputting x∗, r∗.

For the analysis, observe that B performs a perfect simulation from A’s point of view and that B
is efficient, because A runs in polynomial time. Furthermore, assume that A succeeds with non-
negligible probability ε and that q < i∗ ≤ n because A is a type -2 attacker. If q < i∗ ≤ n, then
at least one node of y1, . . . , y

∗, . . . , yt lies on the authentication path of s∗. Since t is polynomially
bounded, B can guess the index with non-negligible probability 1/t. Assuming that B guessed
the index correctly, implies that x∗, r∗ is a valid pre-image of the challenge y∗. Finally, it might
be the case that B computes a different pre-image, i.e., y∗ ← Ch(x̂, r̂), but (x∗, r∗) 6= (x̂, r̂). If
this would be the case, then we could easily build a reduction against the collision-resistance of
CH by initially choosing (x̂, r̂) uniformly at random and performing the same simulation. Thus,
we now assume that (x∗, r∗) = (x̂, r̂), and therefore B inverts the chameleon hash function with
non-negligible probability. This, however, contradicts our initial assumption that CH is one-way
(resp. collision-resistant).

8 Concrete Instantiation With Faster Verification

Our construction can be instantiated with any chameleon hash function, but we choose the one of
Krawczyk and Rabin (in the following called KR chameleon hash function) [KR00]. The scheme is
secure under the discrete logarithm assumption (in the standard model)1, which is a very appealing
and mild assumption. Furthermore, the algebraic properties allow us to construct a very efficient
path verification algorithm by applying batch verification techniques.

Assumption 8.1. Let q be a prime and let p = 2q + 1 be a strong prime. Let G be the unique
cyclic subgroup of Z∗p of order q and let g be a generator of G. Then, the discrete logarithm problem
holds if for all efficient algorithms A the probability

Prob
[
y ← G ;α← A(p, q, g, y) : 0 ≤ α ≤ q − 1 ∧ gα ≡ y mod p

]
= ν(λ)

is negligible (as a function of λ).

1To the best of our knowledge, this instantiation is currently the most efficient one based on the discrete logarithm
assumption in the standard model.

22

8.1 Building Block

The KR chameleon hash function CH = (Gen,Ch,Col) is defined as follows:

Gen(1λ): The key generation algorithm picks a prime q such that p = 2q + 1 is also prime. It also
chooses a random generator g and a value α ∈ Z∗q . It returns (csk, cpk)← ((α, g), (X, g, p, q))
with X = gα mod p.

Ch(cpk, x): The input of the hash algorithm is a key cpk = (X, g, p, q) and a message x ∈ Z∗q . It
picks a random value r ∈ Z∗q and outputs gxXr mod p.

Col(csk, x, r, x′): The collision finding algorithm returns r′ ← α−1(x− x′) + r mod q.

8.2 Batch Verification of Chameleon Hash Functions

The most expensive operation in a CAT of depth D is the verification of an authentication path.
This computation involves (in the worst case) D computations of the chameleon hash function
(which is the authentication of the last leaf). For our concrete instantiation this means that the ver-
ification algorithm verifies D times equations of the form hi = gxiXri . This step is rather expensive
as it involves many modular exponentiations. Instead of verifying all equations straightforwardly,
we apply batch verification techniques as introduced by Bellare, Garay, and Rabin [BGR98]. The
basic idea is to verify sequences of modular exponentiations significantly faster than the näıve re-
computation method. In what follows, let λb be the security parameter such that the probability
of accepting a batch that contains an invalid hash is at most 2−λb . Note, that it is necessary to
test that all elements belong to the group G as discussed comprehensively by Boyd and Pavlovski
in [BP00]. The size of λb is a trade off between efficiency and security. Therefore, it depends heavily
on the application. Camenisch, Hohenberger, and Pedersen suggest λb = 20 bits for a rough check
and λb = 64 bit for higher security [CHP07].

Definition 8.2. A batch verifier for a relation R is a probabilistic algorithm V that takes as input
(possibly a description of R) a batch instance X = (inst1, . . . , instD) for R, and a security parameter
λ. It satisfies:

(1) If X is correct, then V outputs 1.

(2) If X is incorrect, then the probability that V outputs 1 is at most 2−λb.

The näıve batch verifier re-computes all instances, i.e., it consists of computing R(insti) for each
i = 1, . . . , D, and checking that each of these D values is 1.

8.2.1 Small Exponent Test for Chameleon Hash Functions

Bellare, Garay, and Rabin suggest three different methods of computing batch verification for
modular exponentiations [BGR98]. Here, we focus only on the small exponent test because it is the
most efficient one for the verification of up to 200 elements. In our scenario, 200 elements means
that we can authenticate 2200 elements. The authors consider equations of the form yi = gxi . The
näıve approach would be to check if

∏
D yi = g

∑
D xi . This, however, is not sufficient as it is easy

to produce two pairs (x1, y1) and (x2, y2) that pass the verification but each individual does not.
One example of such a pair is (x1 − β, y1) and (x2 + β, y2) for any β.

23

According to [FGHP09], the small exponent test works as follows: Pick D exponents δi of a
small number of {0, 1}λb at random and compute x←

∑
D xiδi mod q and y ←

∏
D y

δi
i . Output 1

iff gx = y. The probability of accepting a bad pair is 2−λb and the value λb is a trade off between
efficiency and security.

8.3 Batch Verification of KR Chameleon Hash Function

The algorithm Batch that performs the batch verification of D chameleon hash values h1, . . . , hD
on messages x1, . . . , xD using the randomness r1, . . . , rD works as follows: It first checks that all
elements are in the group. If not, then it rejects the query. Otherwise, it picks D random elements
δ1, . . . , δD where δi ∈ {0, 1}λb and checks that

g
∑
D xiδiX

∑
D riδi =

∏

D

hδii .

It outputs 1 if the equation holds and otherwise 0.

Theorem 8.3. The algorithm Batch is a batch verifier for the KR chameleon hash function.

The following proof follows the proofs of [CHP07, BGR98].

Proof. We first show that if all hash values have the desired form, then our batch verification
algorithm accepts with probability 1. Keeping in mind that the validation of the hash function
checks that hi = gxiXri , then we can easily show that

g
∑
D xiδiX

∑
D riδi =

∏

D

hδii =
∏

D

(gxiXri)δi

=
∏

D

gxiδiXriδi = g
∑
D xiδiX

∑
D riδi .

The next step is to show that the other direction is also true. To do so, we apply the technique
for proving small exponents test as in [BGR98]. Since our batch verification algorithm accepts, it
follows that hi ∈ G. This allows us to write hi = gρi for some ρi ∈ Zq. Moreover, we know that
X = gx for some x ∈ Zq. We then can re-write the above equation as

∏

D

hδii = gρiδi = g
∑
D δi(mi+αri)

⇒
∑

D

ρiδi =
∑

D

δi(xi + αri)

⇒
∑

D

ρiδi −
∑

D

δi(xi + αri) ≡ 0 mod q.

Setting βi = ρi − (xi + αri) this is equivalent to:

∏

D

δiβi ≡ 0 mod q. (1)

Now, assume that Batch((h1, x1, r1), . . . , (hD, xD, rD)) outputs 1, but there exists an index i = 1
(this holds w.l.o.g.) such that gx1δ1Xr1δ1 6= hδ11 . In particular, this means that β1 6= 0. Since q is

24

prime, then β1 is the inverse of γ1 such that β1γ1 ≡ 1 mod q. Taking this and Equation (1), we
obtain

δ1 = −γ1

D∑

i=2

δiβi mod q. (2)

Now, given the elements ((h1, x1, r1), . . . , (hD, xD, rD)) such that Batch((h1, x1, r1), . . . , (hD, xD,
rD)) = 1 and let bad denote the event that we break the batch verification, i.e., gx1δ1Xr1δ1 6= hδ11 .
Observe that we do not make any assumptions about the remaining values. Let ∆′ = δ2, . . . , δD and
let |∆′| be the number of possible values for this vector. It follows from Equation 2 and from the fact
that ∆′ is fixed that there exists exactly one value δ1 that will make bad happen. This means, how-
ever, that the probability that bad occurs is Prob[bad |∆′] = 2−λb . Choosing the value δ1 at random

and summing over all possible choices of ∆′, we get Prob[bad] ≤
∑∆′

i=1(Prob[bad |∆′] ·Prob[∆′]).

Thus, we can calculate the overall probability as Prob[bad] ≤
∑2λb(D−1)

i=1 (2λb ·2−λb(D−1)) = 2−λb .

8.4 Efficiency

We analyze the efficiency of our batch verifier for the KR chameleon hash using the following
notation. By exp(k1) we denote the time to compute gb in the group G where |b| = k1. The
efficiency is measured in number of multiplications. First, we have to compute

∏
a h

δi
i . Instead of

computing this product straightforwardly, we apply the algorithm FastMult((h1, δ1), . . . , (hD, δD))
obtaining a total number of λb + Dλb/2 multiplications on the average [BGR98]. In addition we
have to compute 2D multiplications and finally 2exp(k1) exponentiations. Thus, the total number
of multiplications is λb +D(2 + λb/2) + 2exp(k1).

8.5 Benchmarking Results

We estimate the performance of our scheme by analyzing the most expensive component of our
construction. That is, we have implemented the KR chameleon hash function and we use the
implementation of SHA1 provided by the Java security package. These are the two main components
of our construction. The additional overhead determining the nodes should add only a negligible
overhead to the overall computational costs (recall that computing a chameleon hash involves
modular exponentiations, which we believe is the most expensive step). We have implement the
KR chameleon hash in Java 1.6 on a Intel Core i5 using 4GB 1333MHz DDR3 RAM. We have
conducted two different experiments where we executed each algorithm 500 times with a CAT of
depth 80 (thus it authenticates 280 elements). The bit length of the primes in the first experiment
is 1024 bits and in the second 2048 bits. The following values are the average computational costs.
Adding a leaf to the tree in the worst case (this happens when the tree is empty) takes on average
283ms for 1024 bits and 1400ms for 2048 bits. Each of these executions involves 40 evaluations
of the chameleon hash (including the generation of randomness), 40 SHA1 computations, and
the computation of a collision. The timings to verify a path and to update it are slightly faster,
because both operations do neither include the generation of random values, nor the computation of
a collision. In the full version of this paper, we will include running times of the full implementation.

25

9 From One-Time to Many-Time Signature Schemes Using CATs

The second application of CATs is a new transformation that turns any one-time signature (OTS)
scheme into a many-time signature (MTS) scheme. A one-time signature scheme allows a user to
sign a single message. This primitive is well-known and has been introduced by Lamport [Lam79]
and Rabin [Rab79]. One-time signature schemes are interesting from both, a theoretical and a
practical point of view. Theoreticians study the primitive because it is used as a building block
in realizing secure signature schemes based on one-way functions (in a black-box way). On the
other hand, several extremely efficient instantiations have been suggested in practice. However,
the “one-timeness” of such schemes regrettably causes a complex key-scheduling process since the
signer has to generate a new key pair whenever it wishes to sign a new message. Motivated by this
drawback – and also by the hope of obtaining an efficient many-time signature scheme – several
publications investigate efficient transformations from a OTS to a MTS scheme.

9.1 Related Work

The related work covers the main transformations from OTS to MTS schemes. Furthermore, since
we are interested in constructing a signature scheme based on the discrete logarithm assumption
in the standard model, we also review the relevant publications.

Known Transformations. The two main transformation from OTS to MTS are Merkle trees
and the one by Goldwasser-Micali-Rivest (GMR). Both schemes are very different in nature: Merkle
trees are very efficient, but yield a stateful scheme where the number of signatures is polynomially
bounded. The GMR transformation is not very efficient, but provides a stateless solution where
the number of signatures is not a-priori bounded.

Merkle Tree. Merkle suggested a hash tree technique to authenticate many one-time keys
[Mer88, Mer90]. Roughly speaking, in such a tree a user authenticates up to 2D (for a small D)
public one-time signature keys with a single element. The idea is to store all one-time public keys
in the leaves of a complete binary tree and to build up the tree storing in each father node the
hash value of the concatenation of its children nodes. To authenticate an element, stored in a leaf,
the user publishes all hash values that are adjacent to the nodes along the path from the leaf node
to the root node. Although this construction is very elegant and it offers very efficient signing and
verification algorithm, it has several drawbacks:

Key generation: The key generation algorithm has to pre-compute the entire tree. Thus, this
method is extremely expensive and the total number of signatures is bounded in advance
and depends heavily on the storage and computational power. Many follow-up papers reduce
the needed storage by adding a pseudorandom number generator (PRNG) to the construc-
tion [Nao91]. The basic idea is to store an initially seed in the first leaf and to use this seed
to compute the values of all following leaves. It is clear that this idea reduces the needed
storage, but it increases the computational cost. In particular, if D is large, this algorithm
has to perform more than 2D computations during the key generation process.

Number of signatures: The overall number of signatures is bounded by the key generation and
it therefore supports only a fixed number of signatures. This follows from the fact that the
key generation algorithm has to pre-compute all elements in the leaves in advance. Further

26

follow-up works also focus on improving the efficiency of the computation of the verification
path, e.g., [Szy04, BDK+07, RLB+08].

Goldwasser-Micali-Rivest (GMR). A different approach, which can be seen as a generalization
of the Naor-Yung construction [NY89], is the transformation due to Goldwasser, Micali, and Rivest
[GMR88]. This method also relies on a tree-based structure in which the binary representation of
the message defines the path from the root to the leaf. Each node consists of a one-time signature of
the bit associated to the node and the public key of the next node. More precisely, let (SK ρ,PK ρ)
be the key pair of the one-time signature scheme. This pair is associated to the root ρ of the tree.
To sign a bit mb ∈ {0, 1}, the signing algorithm sets up the tree from the root to the leaves by
generating two fresh key pairs (SK 0,0,PK 0,0), (SK 0,1,PK 0,1) of the one-time signature scheme.
Subsequently, it signs the public keys by computing σρ ← Sign(SK ρ,PK 0,0‖PK 0,1). The signing
algorithm now uses SK b to sign the message mb by generating σb ← Sign(SK 0,b,mb). Finally,
it outputs the signature σ = (PK 0,b, σb). The verification algorithm checks the validity of all
individual one-time signatures. To extend this idea to an η-bit message, one parses the binary
representation of the message m = (m0,m1, . . . ,mη) as the sequence from the top of the tree to
the bottom. The signature itself consists of η+ 1 public-keys and the verification algorithm has to
verify η + 1 one-time signatures.

From a theoretical point of view, this construction is very interesting because the entire con-
struction relies only on the assumption that one-way functions exists. Moreover, it handles an
exponential number of signatures. In doing so, however, there is additional work required since
the signing algorithm has to store all keys in its state to answer consistently. This means that we
have to store a very large number of keys, which is again, impossible. To overcome this weakness,
and also to remove the state, Goldreich suggested to apply a pseudo-random function (PRF) to
the private key of the root and to the message in order to derive the randomness for all following
one-time signature key pairs. Now, the main drawbacks of this construction are:

Signature Computation and Verification: The computation of a single signature involves η
calls to the pseudo-random function, η key generations of the one-time signature scheme, and
η signing operations of the one-time signature scheme. The verification algorithm performs
η + 1 verification calls to the one-time signature scheme verification algorithm.

Signature Size: The signature consists of η + 1 public keys and η + 1 one-time signatures.

It is understood that the main contribution of the GMR construction is a transformation from one-
time signature to many-time signature under the only assumption that one-time signature schemes
exist.

Discrete Logarithm Based Signature Schemes. The construction of signature schemes is
in general very complicated. Many instantiations rely on random oracles (RO) such as [ElG85,
Sch90, Oka93, BR93, BLS04, GJKW07, GPV08], or they require strong assumptions, e.g., Strong
RSA [CS99, Fis03], q-Strong Diffie-Hellman [BB08], and LRSW [CL04]. The situation is even worse
if we consider only signature schemes based on the discrete logarithm assumption. Currently, there
exists no security proof for the DSA signature scheme – neither in the RO model, nor under any
other assumption. Even the security proof of the twin Nyberg-Rueppel [NPS01] signature scheme
holds only in the generic group model. This model, however, suffers from the same weaknesses as
the random oracle model as shown by Dent [Den02]. Moreover, Paillier and Vergnaud [PV05], Garg

27

et al. [GBL08], and Seurin [Seu12] give evidence that many prominent signature schemes based on
the dlog assumption in the RO model may not be reducible to the dlog without the RO model.
More precisely, the main results are:

Result I: The reduction of discrete logarithm based signature schemes in the standard model is
still unknown;

Result II: The discrete logarithm problem and the forgeability of Schnorr signatures are unlikely
to be equivalent in the standard model.

All signature schemes based on the discrete logarithm assumption secure in the standard model
instantiate general transformations from one-time signature (resp. collision-resistant hash functions)
to many-time signature schemes. These transformations, however, are either designed to rely on
weak assumptions (such as the existence of one-way functions) or they only support a limited
number of signatures. Therefore, we ask the following question:

Assuming that the discrete logarithm problem is hard, can we turn a one-time signature
scheme into a many-time signature scheme more efficiently?

The answer to this question not only leads to new signature schemes, but it also might help to find
a non-generic (more efficient) signature scheme based on the discrete logarithm in the standard
model.

9.2 Construction

The basic idea of our construction is to store the keys of the one-time signature scheme in the leaves
of the CAT. Since the keys are generated uniformly at random (and in particular, independent of
the message to be signed) a weakly secure CAT is sufficient.

Construction 9.1. Let Sig = (Gen, Sign,Vrfy) be a signature scheme defined over the message space
M = {0, 1}λ and let wCAT = (wcatGen,waddLeaf,wcatVrfy) be a chameleon authentication tree.
We define the signature scheme cSig = (cGen, cSign, cVrfy) as follows:

cGen(1λ): The key generation algorithm runs (wsp,wvp) ← wcatGen(1λ). It returns the private
key SK ← wsp, and the corresponding public key PK ← wvp.

cSign(SK ,m): To sign a messagem ∈ {0, 1}λ, the signing algorithm generates a key pair (SK ′,PK ′)←
Gen(1λ), signs the message σ0 ← Sign(SK ′,m), and adds the public key to the CAT by
computing (wsp′, i,wauth) ← waddLeaf(wsp,PK ′). It sets σ1 ← (i,wauth) and returns the
signature σ ← (σ0, σ1,PK ′).

cVrfy(PK ,m, σ): The verification algorithm parses PK = wvp and σ = (σ0, σ1,PK ′) and σ1 =
(i,wauth). It outputs 1 iff catVrfy(wvp, i,PK ′, auth) = 1 and Vrfy(PK ′,m, σ0) = 1.

9.3 Proof of Security

As already discussed in Section 5.5, the security of our construction holds for a tree that authen-
ticates an exponential number of 2D signatures. Again, this follows from our construction (as we
never store all elements at the same time). Let q := q(λ) be an upper bound on the number of
signing queries from the adversary. Then, we distinguish the case where the adversary outputs a

28

forgery for a leaf 1 ≤ i∗ ≤ q and the case where q+ 1 ≤ i∗ ≤ 2D. In the first case, where 1 ≤ i∗ ≤ q
is, we build an adversary that either breaks the structure-preserving property of the CAT or that
forges the one-time signature scheme. In the second case, where q + 1 ≤ i∗ ≤ 2D is, we show how
to beak the one-wayness the CAT.

Theorem 9.2. If Sig is a secure one-time signature scheme and CAT a weakly structure-preserving
and weakly one-way chameleon authentication tree, then Construction 9.1 is unforgeable under
adaptive chosen message attacks.

The proof idea is as follows: Fix an arbitrary adversary that asks at most q queries to its
signing oracle and that outputs a valid signature σ∗ = (σ∗0, σ

∗
1,PK ∗) on a fresh message m∗. The

authentication path verifies that PK ∗ is a leaf in the tree and the key is used to verify that σ∗0 is a
signature on the message m∗. Then, we guess if the index of the key of its forgery is smaller or bigger
than q. If it is smaller, then we further distinguish the case where there exits an index i such that
(1) PK ∗ = PK i and (2) PK ∗ 6= PK i (for all i ∈ {1, . . . , q}). The first case, where PK ∗ = PK i,
implies that the adversary forgers the underlying one-time signature scheme. The second case,
where PK ∗ 6= PK i, means that there exists a path in the tree that does not correspond to one
of the previously generated keys. This, however, yields a contradiction to the structure-preserving
property of the CAT. In the case that q + 1 ≤ i∗ ≤ 2D, we build an algorithm that break the
one-wayness of the CAT.

Proof. Suppose towards contradiction that Construction 9.1 is not secure. Then there exists a
PPT adversary A that queries its signing oracle at most q := q(λ) and forges a signature on a fresh
message of its choice. Namely, the algorithm A, giving access to a signing oracle, outputs a valid
signature σ∗ = (σ∗0, σ

∗
1,PK ∗) on a message m∗ that A has never queried before to its oracle. In the

following we distinguish between the class of adversaries that outputs an authentication path such
that 1 ≤ i∗ ≤ q (denoted by A≤) and the class for which q + 1 ≤ i∗ ≤ 2D (denoted by A≥).

To begin with, we consider the first case in that we further distinguish if A≤ returns a forgery
that satisfies PK ∗ = PK i for some i ∈ {1, . . . , q} if PK ∗ 6= PK i for all i ∈ {1, . . . , q)}. We refer
to the first type of attacker as ASig and to the latter one as ACAT. We show how to construct an
efficient adversary B that uses ASig against the underlying one-time signature scheme, or ACAT to
break the structure-preserving property of of the CAT. Algorithm B guesses initially whether it
gets access to an attacker ASig or ACAT.

Attacking the Signature Scheme. The algorithm B obtains as input a public-key PK (chal-
lenge key) of a one-time signature scheme and has access to a signing oracle. It guesses an index
i∗ ∈ {1, . . . , q} uniformly at random, it generates the keys of the chameleon authentication tree
with depth 2D running (sp, st, vp) ← catGen(1λ, D) and it runs a black-box simulation of ASig on
input PK ′ ← vp.

Whenever ASig invokes its signing oracle on a message mi, then B answers all queries i 6= i∗

as follows: It first computes a fresh key-pair of the one-time signature scheme (PK i,SK i) ←
Gen(1λ), signs the message σi0 ← Sign(SK i,mi) locally, adds the key to the CAT (sp′, i, auth) ←
addLeaf(sp,PK i), sets σi1 ← (i, auth), and returns the signature σi ← (σi0, σ

i
1,PK i). In the case

that i = i∗, then B queries its one-time signing oracle exactly once on the message mi obtaining
the corresponding signature σi

∗
0 . It then adds the key to the CAT (sp′, i, auth)← addLeaf(sp,PK),

sets σi1 ← (i, auth), and returns the signature as σi ← (σi
∗

0 , σ
i∗
1 ,PK).

29

Eventually, ASig stops, outputting a forgery (m∗, σ∗) with σ∗ = (σ∗0, σ
∗
1,PK ∗). If PK ∗ = PK ,

then B stops outputting (m∗, σ∗0). Otherwise, B aborts.
For the analysis it is easy to see that B performs a perfect simulation from ASig’s point of view

and that B is efficient. Assume that ASig outputs a forgery for which there exists an index i such
that PK ∗ = PK with non-negligible probability ε1(λ). The probability that B guesses this index
is 1/q(λ). We denote this event with hit and compute the success probability δ1(λ) of B as

δ1(λ) := Prob[hit] · ε1(λ) =
ε1(λ)

q(λ)
,

which is non-negligible.

Attacking the Structure-Preserving Property. The algorithm B generates q key pairs of the
one-time signature scheme uniformly at random (PK i,SK i)← Gen(1λ) and outputs PK 1, . . . ,PK q.
Subsequently, it obtains the public key vp and the corresponding authentication paths {(i, authi))}qi=1.
The algorithm B initializes the counter c = 0 and runs a black-box simulation of ACh on input
PK = vp.

Whenever the attacker ACh asks to see a signature on some message mc, then B increments
c, it signs the message σ0 ← Sign(SK c,m), and returns the signature σ ← (σ0, σ1,PK c), where
σ1 = (c, authc).

At a certain point ACh may stop outputting a forgery (m∗, σ∗) with σ∗ = (σ∗0, σ
∗
1,PK ∗), where

σ∗1 = (i∗, auth∗). If 1 ≤ i∗ ≤ q and PK ∗ 6= PK i∗ , then B returns (PK ∗, σ∗1) and stops (otherwise, B
aborts).

It follows from our construction that B performs a perfect simulation of A’s point of view and
that both algorithm are efficient. Moreover, whenever ACh succeeds, then ACh returns a valid pair
(m∗, σ∗) such that 1 ≤ i∗ ≤ q such that PK ∗ 6= PK i for all i = 1, . . . , q. Now, let assume that
ACh succeeds with non-negligible probability ε2(λ). Then it is easy to see that B break structure-
preserving property of the CAT with the same probability, i.e., δ2(λ) = ε2(λ).

Attacking One-wayness. Suppose that B has access to an attacker A≥ that outputs a valid
forgery (m∗, σ∗) such that q + 1 ≤ i∗ ≤ 2D. We invert the CAT as follows: B generates q key
pairs of the one-time signature scheme uniformly at random (PK i,SK i) ← Gen(1λ) and outputs
PK 1, . . . ,PK q. Subsequently, it obtains the public key vp and the corresponding authentication
paths {(i, authi))}qi=1. The algorithm B initializes the counter c = 0 and runs a black-box simulation
of A≥ on input PK = vp. If A≥ wants to see a signature σi on some message mi, then B sets
σ0 ← Sign(SK i,mi), it increments c, returns the signature σ ← (σ0, σ1,PK c), with σ1 = (c, authc).
Eventually, A≥ outputs a valid forgery (m∗, σ∗) with σ∗ = (σ∗, σ∗,PK ∗), where σ∗1 = (i∗, auth∗). If
q + 1 ≤ i∗ ≤ 2D, then B returns (PK ∗, σ∗1) (otherwise B aborts).

It follows from our construction that B runs in PPT because the algorithm A≥ is efficient.
Moreover, it follows from our construction that B performs a perfect simulation from A≥’s point of
view. But then, we conclude that B succeeds whenever A≥ wins. Denote by δO the corresponding
probability.

We calculate the overall success probability (denoted with the event win) of B putting all cases
together:

Prob[win] =
1

2

(
δO +

1

2
(δ1(λ) + δ2(λ))

)
=
δO
2

+
ε1(λ)

4q
+
ε2(λ)

4
.

30

Merkle GMR here 1 GMR-Groth here 2

no. of signa-
tures

poly(λ) exp exp 2160 2160

KeyGen 2η ·oKg+η·th toKg tGen+2η·tr+
η/2(th+ tCh)

4rnd + 4exp 160rnd + 80exp

signature size η · `h + `ots `m · (`ots +
`oSig)

`ots + η/2 ·
(`h + `Ch)

650 group
elements

82 group
elements

signing toSig +O(η) `m ·(tPRF+
toKg+toSig)

toKg + tCol +
O(η)

640rnd + 640exp
+ 320mult

82rnd + 84exp +
2mult + 80hash

verification η · th + toVf `m · toVf η/2 · (th +
tCh) + toVf

480exp+160mult (320+161λb)mult
+ 2exp(k1)

Table 1: Let `m be the bit length of the message and assume that 2η is the number of signatures.
By (SK ots,PK ots) we denote a key pair of a one-time signature scheme where the length of each
key is `ots = |SK ots| = |PK ots|, the length of a one-time signature is `oSig, and k is the key of
a PRF. We assume that each randomness r has length `r and the generation takes time tr. Let
h be a hash function with output length `h and Ch is a chameleon hash with output length `Ch.
By toKg, toSig, tCh, tCol, th, and tPRF we denote the running time of the key generation, the signing
algorithm, the chameleon hash Ch, the collision finding algorithm, the hash function h, and of the
PRF. The value λb is the security parameter such that the probability of accepting a batch that
contains an invalid hash is at most 2−λb .

Since this probability is non-negligible it follows easily that this contradicts the assumption that
either the one-time signature scheme is unforgeable or that the chameleon authentication tree is
not structure-preserving or one-way.

9.4 Comparison to Merkle Trees and GMR

We compare our transformation in terms of efficiency with previous solutions.
First of all, a CAT can handle an exponential number of leaves, thus it’s comparable with

the GMR transformation (using a PRF) and improves the Merkle tree. Recall, that the GMR
transformation computes for each node (from the root to the leave) a new key pair as well as a
signature of the OTS. The final signature consists of all ”intermediate” signatures and keys. In our
construction, however, calculating a new key pair for each new node is not necessary. Consequently,
our signature size is at least a logarithm factor smaller than the GMR signature size and the signing
algorithm is also more efficient because it does not need to run the key generation at each inner
node.

Key Generation: The key generation algorithm of our solution generates the keys of a chameleon
hash and computes the root node on dummy values xρ using randomness rρ. Thus, the key
generation is comparable to the one of the GMR construction, but much more efficient than
the Merkle tree.

Signature Size: If `m is the bit length of the message, then the size of a signature in our solution is
much smaller than the one of the GMR transformation. The main reason is that the signature
in the case of GMR consists of `m public keys plus `m one-time signatures. While in our case,

31

it only consists (in the worst case) of D chameleon hash values (resp. the corresponding
randomness) and a single one-time signature.

Signing: Signing an (`m) bit message in the case of GMR involves `m evaluations of the PRF plus
`m key generations plus `m signing operations. In our case, however, it only involves (in the
worst case!) the generation of D − 1 random values, D − 1 hash evaluations, a single key-
generation of the one-time signature scheme, and a single inversion of the trapdoor. All other
elements are pre-computed and/or inductively updated. Again, our construction is slightly
less efficient than the Merkle tree but it improves the GMR transformation.

Verification: The GMR transformation runs for each bit of the message the verification algorithm
of the underlying OTS scheme. The verification of a CAT based construction is more efficient
as involves (in the worst case) D chameleon hash executions and a single execution of the
OTS verification algorithm.

Our transformation achieves the best of both worlds: The transformation supports an exponential
number of 2D signatures while simultaneously storing only D elements. Therefore, it can handle
more signatures than the transformation based on the Merkle tree. On the other hand, the com-
putation of authentication path and its verification is less efficient than in the Merkle tree, but is
much more efficient than the GMR construction.

9.5 Applying Batch Verification Techniques to Chameleon Hash Functions

The right column of Table 1 describes the efficiency improvement by batch verification techniques.
Concretely, it shows that verifying is about 50 times faster than the one of the GMR construc-
tion. Note, that batch verification techniques do not seem to be applicable to the Groth one-time
signature scheme, because each node uses different keys.

Acknowledgments

We are very thankful to Nick Hopper for his comprehensive suggestions. We thank Marc Fischlin
for suggesting to take a look at batch verification techniques in order to improve the running time
of the verification algorithm. We also thank the anonymous reviewers for valuable and compre-
hensive comments. This work was supported by the German Ministry for Education and Research
(BMBF) through funding for the Center for IT-Security, Privacy and Accountability (CISPA —
www.cispa-security.de). This work was partially supported by the US Army Research Labora-
tory and the UK Ministry of Defense under Agreement Number W911NF-06-3-0001. The views
and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of the US Army Research Labo-
ratory, the US Government, the UK Ministry of Defense, or the UK Government. The US and
UK Governments are authorized to reproduce and distribute reprints for Government purposes,
notwithstanding any copyright notation herein.

References

[Ad04] Giuseppe Ateniese and Breno de Medeiros. On the key exposure problem in chameleon
hashes. In Carlo Blundo and Stelvio Cimato, editors, SCN 04: 4th International

32

Conference on Security in Communication Networks, volume 3352 of Lecture Notes
in Computer Science, pages 165–179, Amalfi, Italy, September 8–10, 2004. Springer,
Berlin, Germany.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In Christian
Cachin and Jan Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004,
volume 3027 of Lecture Notes in Computer Science, pages 56–73, Interlaken, Switzer-
land, May 2–6, 2004. Springer, Berlin, Germany.

[BB08] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH
assumption in bilinear groups. Journal of Cryptology, 21(2):149–177, April 2008.

[BDK+07] Johannes Buchmann, Erik Dahmen, Elena Klintsevich, Katsuyuki Okeya, and Camille
Vuillaume. Merkle signatures with virtually unlimited signature capacity. In Jonathan
Katz and Moti Yung, editors, ACNS 07: 5th International Conference on Applied Cryp-
tography and Network Security, volume 4521 of Lecture Notes in Computer Science,
pages 31–45, Zhuhai, China, June 5–8, 2007. Springer, Berlin, Germany.

[BGR98] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular
exponentiation and digital signatures. In Kaisa Nyberg, editor, Advances in Cryptology
– EUROCRYPT’98, volume 1403 of Lecture Notes in Computer Science, pages 236–
250, Espoo, Finland, May 31 – June 4, 1998. Springer, Berlin, Germany.

[BGV11] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation of
computation over large datasets. In Phillip Rogaway, editor, Advances in Cryptology
– CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 111–131,
Santa Barbara, CA, USA, August 14–18, 2011. Springer, Berlin, Germany.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing.
Journal of Cryptology, 17(4):297–319, September 2004.

[BP00] Colin Boyd and Chris Pavlovski. Attacking and repairing batch verification schemes. In
Tatsuaki Okamoto, editor, Advances in Cryptology – ASIACRYPT 2000, volume 1976
of Lecture Notes in Computer Science, pages 58–71, Kyoto, Japan, December 3–7,
2000. Springer, Berlin, Germany.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference on
Computer and Communications Security, pages 62–73, Fairfax, Virginia, USA, Novem-
ber 3–5, 1993. ACM Press.

[CF11] Dario Catalano and Dario Fiore. Vector commitments and their applications. Cryp-
tology ePrint Archive, Report 2011/495, 2011. http://eprint.iacr.org/.

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how
to delegate a lattice basis. In Henri Gilbert, editor, Advances in Cryptology – EU-
ROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 523–552,
French Riviera, May 30 – June 3, 2010. Springer, Berlin, Germany.

33

http://eprint.iacr.org/

[CHL+05] Melissa Chase, Alexander Healy, Anna Lysyanskaya, Tal Malkin, and Leonid Reyzin.
Mercurial commitments with applications to zero-knowledge sets. In Ronald Cramer,
editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes
in Computer Science, pages 422–439, Aarhus, Denmark, May 22–26, 2005. Springer,
Berlin, Germany.

[CHP07] Jan Camenisch, Susan Hohenberger, and Michael Østergaard Pedersen. Batch ver-
ification of short signatures. In Moni Naor, editor, Advances in Cryptology – EU-
ROCRYPT 2007, volume 4515 of Lecture Notes in Computer Science, pages 246–263,
Barcelona, Spain, May 20–24, 2007. Springer, Berlin, Germany.

[CKLR11] Kai-Min Chung, Yael Tauman Kalai, Feng-Hao Liu, and Ran Raz. Memory delega-
tion. In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume
6841 of Lecture Notes in Computer Science, pages 151–168, Santa Barbara, CA, USA,
August 14–18, 2011. Springer, Berlin, Germany.

[CKS09] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based on
bilinear maps and efficient revocation for anonymous credentials. In Stanislaw Jarecki
and Gene Tsudik, editors, PKC 2009: 12th International Conference on Theory and
Practice of Public Key Cryptography, volume 5443 of Lecture Notes in Computer Sci-
ence, pages 481–500, Irvine, CA, USA, March 18–20, 2009. Springer, Berlin, Germany.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to
efficient revocation of anonymous credentials. In Moti Yung, editor, Advances in Cryp-
tology – CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages
61–76, Santa Barbara, CA, USA, August 18–22, 2002. Springer, Berlin, Germany.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous creden-
tials from bilinear maps. In Matthew Franklin, editor, Advances in Cryptology –
CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, pages 56–72,
Santa Barbara, CA, USA, August 15–19, 2004. Springer, Berlin, Germany.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified com-
putation with streaming interactive proofs. In Innovations in Theoretical Computer
Science (ITCS), 2012.

[CS99] Ronald Cramer and Victor Shoup. Signature schemes based on the strong RSA assump-
tion. In ACM CCS 99: 6th Conference on Computer and Communications Security,
pages 46–51, Kent Ridge Digital Labs, Singapore, November 1–4, 1999. ACM Press.

[Den02] Alexander W. Dent. Adapting the weaknesses of the random oracle model to the generic
group model. In Yuliang Zheng, editor, Advances in Cryptology – ASIACRYPT 2002,
volume 2501 of Lecture Notes in Computer Science, pages 100–109, Queenstown, New
Zealand, December 1–5, 2002. Springer, Berlin, Germany.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. R. Blakley and David Chaum, editors, Advances in Cryptology –
CRYPTO’84, volume 196 of Lecture Notes in Computer Science, pages 10–18, Santa
Barbara, CA, USA, August 19–23, 1985. Springer, Berlin, Germany.

34

[FB06] Décio Luiz Gazzoni Filho and Paulo Sérgio Licciardi Messeder Barreto. Demonstrating
data possession and uncheatable data transfer. Cryptology ePrint Archive, Report
2006/150, 2006. http://eprint.iacr.org/.

[FGHP09] Anna Lisa Ferrara, Matthew Green, Susan Hohenberger, and Michael Østergaard Ped-
ersen. Practical short signature batch verification. In Marc Fischlin, editor, Topics in
Cryptology – CT-RSA 2009, volume 5473 of Lecture Notes in Computer Science, pages
309–324, San Francisco, CA, USA, April 20–24, 2009. Springer, Berlin, Germany.

[Fis03] Marc Fischlin. The Cramer-Shoup strong-RSA signature scheme revisited. In Yvo
Desmedt, editor, PKC 2003: 6th International Workshop on Theory and Practice in
Public Key Cryptography, volume 2567 of Lecture Notes in Computer Science, pages
116–129, Miami, USA, January 6–8, 2003. Springer, Berlin, Germany.

[GBL08] Sanjam Garg, Raghav Bhaskar, and Satyanarayana V. Lokam. Improved bounds on se-
curity reductions for discrete log based signatures. In David Wagner, editor, Advances
in Cryptology – CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science,
pages 93–107, Santa Barbara, CA, USA, August 17–21, 2008. Springer, Berlin, Ger-
many.

[GJKW07] Eu-Jin Goh, Stanislaw Jarecki, Jonathan Katz, and Nan Wang. Efficient signature
schemes with tight reductions to the Diffie-Hellman problems. Journal of Cryptology,
20(4):493–514, October 2007.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
April 1988.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, edi-
tors, 40th Annual ACM Symposium on Theory of Computing, pages 197–206, Victoria,
British Columbia, Canada, May 17–20, 2008. ACM Press.

[HW09a] Susan Hohenberger and Brent Waters. Realizing hash-and-sign signatures under
standard assumptions. In Antoine Joux, editor, Advances in Cryptology – EURO-
CRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages 333–350,
Cologne, Germany, April 26–30, 2009. Springer, Berlin, Germany.

[HW09b] Susan Hohenberger and Brent Waters. Short and stateless signatures from the RSA
assumption. In Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009, volume
5677 of Lecture Notes in Computer Science, pages 654–670, Santa Barbara, CA, USA,
August 16–20, 2009. Springer, Berlin, Germany.

[KR00] Hugo Krawczyk and Tal Rabin. Chameleon signatures. In ISOC Network and Dis-
tributed System Security Symposium – NDSS 2000, San Diego, California, USA, Febru-
ary 2–4, 2000. The Internet Society.

[Lam79] Leslie Lamport. Constructing digital signatures from a one-way function. Technical
Report SRI-CSL-98, SRI International Computer Science Laboratory, October 1979.

35

http://eprint.iacr.org/

[Mer88] Ralph C. Merkle. A digital signature based on a conventional encryption function. In
Carl Pomerance, editor, Advances in Cryptology – CRYPTO’87, volume 293 of Lecture
Notes in Computer Science, pages 369–378, Santa Barbara, CA, USA, August 16–20,
1988. Springer, Berlin, Germany.

[Mer90] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in
Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages
218–238, Santa Barbara, CA, USA, August 20–24, 1990. Springer, Berlin, Germany.

[MND+01] Chip Martel, Glen Nuckolls, Prem Devanbu, Michael Gertz, April Kwong, and Stu-
art G. Stubblebine. A general model for authenticated data structures. Algorithmica,
39:2004, 2001.

[Nao91] Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151–
158, 1991.

[Ngu05] Lan Nguyen. Accumulators from bilinear pairings and applications. In Alfred Menezes,
editor, Topics in Cryptology – CT-RSA 2005, volume 3376 of Lecture Notes in Com-
puter Science, pages 275–292, San Francisco, CA, USA, February 14–18, 2005. Springer,
Berlin, Germany.

[NN00] Moni Naor and Kobbi Nissim. Certificate revocation and certificate update. IEEE
Journal on Selected Areas in Communications, 18(4):561–570, 2000.

[NPS01] David Naccache, David Pointcheval, and Jacques Stern. Twin signatures: An alterna-
tive to the hash-and-sign paradigm. In ACM CCS 01: 8th Conference on Computer
and Communications Security, pages 20–27, Philadelphia, PA, USA, November 5–8,
2001. ACM Press.

[NY89] Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In 21st Annual ACM Symposium on Theory of Computing, pages 33–43,
Seattle, Washington, USA, May 15–17, 1989. ACM Press.

[oCMoP12] University of California Museum of Paleontology. The effects of mutations. under-
standing evolution., 2012. Last access 05/03/12 - http://evolution.berkeley.edu/
evolibrary/article/0_0_0/mutations_05.

[Oka93] Tatsuaki Okamoto. Provably secure and practical identification schemes and corre-
sponding signature schemes. In Ernest F. Brickell, editor, Advances in Cryptology –
CRYPTO’92, volume 740 of Lecture Notes in Computer Science, pages 31–53, Santa
Barbara, CA, USA, August 16–20, 1993. Springer, Berlin, Germany.

[PT07] Charalampos Papamanthou and Roberto Tamassia. Time and space efficient algo-
rithms for two-party authenticated data structures. In Proceedings of the 9th interna-
tional conference on Information and communications security, ICICS’07, pages 1–15,
Berlin, Heidelberg, 2007. Springer-Verlag.

[PV05] Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may not be
equivalent to discrete log. In Bimal K. Roy, editor, Advances in Cryptology – ASI-
ACRYPT 2005, volume 3788 of Lecture Notes in Computer Science, pages 1–20, Chen-
nai, India, December 4–8, 2005. Springer, Berlin, Germany.

36

http://evolution.berkeley.edu/evolibrary/article/0_0_0/mutations_05
http://evolution.berkeley.edu/evolibrary/article/0_0_0/mutations_05

[Rab79] Michael O. Rabin. Digital signatures and public key functions as intractable as factor-
ization. Technical Report MIT/LCS/TR-212, Massachusetts Institute of Technology,
January 1979.

[RLB+08] Andy Rupp, Gregor Leander, Endre Bangerter, Alexander W. Dent, and Ahmad-Reza
Sadeghi. Sufficient conditions for intractability over black-box groups: Generic lower
bounds for generalized DL and DH problems. In Josef Pieprzyk, editor, Advances
in Cryptology – ASIACRYPT 2008, volume 5350 of Lecture Notes in Computer Sci-
ence, pages 489–505, Melbourne, Australia, December 7–11, 2008. Springer, Berlin,
Germany.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles
Brassard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes
in Computer Science, pages 239–252, Santa Barbara, CA, USA, August 20–24, 1990.
Springer, Berlin, Germany.

[Seu12] Yannick Seurin. On the exact security of schnorr-type signatures in the random oracle
model. In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages
554–571. Springer, 2012.

[SM06] Thomas Schwarz and Ethan L. Miller. Store, forget, and check: Using algebraic signa-
tures to check remotely administered storage. Proceedings of the IEEE Int’l Conference
on Distributed Computing Systems (ICDCS ’06), July 2006.

[ST01] Adi Shamir and Yael Tauman. Improved online/offline signature schemes. In Joe
Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes
in Computer Science, pages 355–367, Santa Barbara, CA, USA, August 19–23, 2001.
Springer, Berlin, Germany.

[SW08] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Josef Pieprzyk,
editor, Advances in Cryptology – ASIACRYPT 2008, volume 5350 of Lecture Notes
in Computer Science, pages 90–107, Melbourne, Australia, December 7–11, 2008.
Springer, Berlin, Germany.

[Szy04] Michael Szydlo. Merkle tree traversal in log space and time. In Christian Cachin and
Jan Camenisch, editors, Advances in Cryptology – EUROCRYPT 2004, volume 3027 of
Lecture Notes in Computer Science, pages 541–554, Interlaken, Switzerland, May 2–6,
2004. Springer, Berlin, Germany.

[TT10] Roberto Tamassia and Nikos Triandopoulos. Certification and authentication of data
structures. In AMW, 2010.

37

	Introduction
	Trivial Approaches
	Applications
	Our Contribution
	Related Work

	Verifiable Data Streaming
	Efficiency and Security Evaluation of VDS
	Security of VDS

	Preliminaries
	Chameleon Hash Functions and their Security

	Chameleon Authentication Trees
	Formal Definition of CATs
	Security of CATs
	Weakly Secure CATs

	A Weakly Secure Scheme
	Naïve Approaches do not Work
	Intuition of our Construction
	Special Property of the Construction
	Construction
	Proof of Security

	Adaptively Secure CATs
	Comparison to Mercurial Commitments

	Construction of a Verifiable Data Streaming Protocol
	Concrete Instantiation With Faster Verification
	Building Block
	Batch Verification of Chameleon Hash Functions
	Small Exponent Test for Chameleon Hash Functions

	Batch Verification of KR Chameleon Hash Function
	Efficiency
	Benchmarking Results

	From One-Time to Many-Time Signature Schemes Using CATs
	Related Work
	Construction
	Proof of Security
	Comparison to Merkle Trees and GMR
	Applying Batch Verification Techniques to Chameleon Hash Functions

