
An Efficient CCA2-Secure Variant of the McEliece Cryptosystem
in the Standard Model

Roohallah Rastaghi

Advanced Intelligent Signal Processing Center, Tehran, Iran

r.rastaghi59@gamail.com

Abstract

Recently, a few chosen-ciphertext secure (CCA2-secure) variants of the McEliece public-key en-
cryption (PKE) scheme in the standard model were introduced. All the proposed schemes are based on
encryption repetition paradigm and use general transformation from CPA-secure scheme to a CCA2-
secure one. Therefore, the resulting encryption scheme needs separate encryption and has large key
size compared to the original scheme, which complex public key size problem in the code-based PKE
schemes. Thus, the proposed schemes are not sufficiently efficient to be used in practice.

In this work, we propose an efficient CCA2-secure variant of the McEliece PKE scheme in the stan-
dard model. The main novelty is that, unlike previous approaches, our approach is a generic conversion
and can be applied to any one-way trapdoor function (OW-TDF), the lowest-level security notion in the
context of public-key cryptography, resolving a big fundamental and central problem that has remained
unsolved in the past two decades.

Keywords: Post-quantum cryptography, McEliece cryptosystem, Permutation algorithm, CCA2 security,
Standard model.

1 Introduction

Post-quantum cryptography has obtained great attention in recent years. Code-based cryptography holds a
great promise for the post-quantum cryptography, as it enjoys very strong security proofs based on average-
case hardness [22], relatively fast and efficient encryption/decryption nature, as well as great simplicity. In
the context of code-based cryptography, there are two well-known public-key encryption (PKE) schemes,
namely McEliece [13] and Niederreiter [15] PKE schemes. The McEliece encryption scheme was the first
PKE scheme based on linear error-correcting codes. It has a very fast and efficient encryption procedure,
but it has one big flaw: the size of the public key. Recently, how to reduce the public key size and how to
secure the parameter choice in the code-based cryptography are deeply explored [1, 2, 3, 9, 14].

Semantic security (a.k.a indistinguishability) against adaptive chosen ciphertext attacks (CCA2 security)
is one of the strongest known notions of security for the PKE schemes was introduced by Rackoff and Simon
[20]. It is possible to produce CCA2-secure variants of the code-based PKE schemes in the random oracle
model [4, 11, 12], however, CCA2 security in the standard model has not been widely discussed. To the best
of our knowledge, only a few papers have touched this research issue.

1.1 Related work

There are mainly two class of CCA2-secure code-based PKE schemes in the standard model.

1

• CCA-secure schemes based on syndrome decoding problem. Freeman et al. [10] used Rosen-Segev
approach [21] to introduce a correlation-secure trapdoor function related to the hardness of syndrome
decoding. Their construction is based on the Niederreiter PKE scheme. Very recently, Preetha Mathew
et al. [19] proposed a somewhat efficient variant of the Niederreiter scheme based on lossy trapdoor
functions [17], which avoids encryption repetition paradigm.

• CCA-secure schemes based on general decoding problem. The first CCA2-secure variants of the
McEliece cryptosystem was introduced by Dowsley et al. [5]. They proposed a scheme that resembles
the Rosen-Segev approach trying to apply it to the McEliece PKE scheme. Their construction has
some ambiguity. The scheme does not rely on a collection of functions but instead defines a structure
called k-repetition PKE scheme. This is essentially an application of k-samples of the PKE to the
same input, in which the decryption algorithm also includes a verification step on the k outputs. The
encryption algorithm produces a signature directly on the McEliece ciphertexts instead of introducing
a random vector x as in the original Rosen-Segev scheme; therefore a CPA-secure variant of the
McEliece cryptosystem is necessary to achieve CCA2 security [18]. Very recently, Döttling et al.
[6] showed that Nojima et al. [16] randomized version of the McEliece cryptosystem is k-repetitions
CPA-secure and, as we mentioned earlier, it can obtain CCA2 security by using a strongly unforgeable
one-time signature scheme. In a subsequent work, Persichetti [18] proposed a CCA2-secure PKE
scheme based on the McEliece assumptions using the original Rosen-Segev approach.

1.2 Motivation

To date, as we stated above, all the proposed CCA2-secure code-based PKE schemes in the standard model
are based on either lossy and correlation-secure trapdoor functions or k-repetitions encryption paradigm.
Therefore, the resulting encryption schemes are not efficient as they need to run encryption/decryption
algorithms several times and use a strongly unforgeable one-time signature scheme to handle CCA2 security
related issues. Moreover, in these schemes, excluding the keys of the signature scheme, the public/secret
keys are 2k-times larger than the public/secret keys of the original scheme, which complex the public key
length problem in the code-based PKE schemes. Although the Preetha Mathew et al.’s scheme [19] avoids
k-repetitions paradigm, it yet needs to run encryption/decryption algorithms 2-times and the public/secret
keys are larger than the original Niederreiter scheme. Further, it also uses a strongly unforgeable one-time
signature scheme to achieve CCA2 security, and so needs separate encryption. Hence, how to design an
efficient CCA2-secure code-based encryption scheme in the standard model is still worth of investigation.
This motivates us to investigate new approach for construction efficient such schemes in the standard model
without using encryption repetition and generic transformation from CPA-secure schemes to a CCA2-secure
one.

1.3 Our Contributions

To tackle the above challenging issues, we introduce a randomized encoding algorithm called PCA and use
it along with the McEliece PKE scheme to construct a CCA2-secure PKE scheme in the standard model.
Our contributions in this paper are:

• The main novelty is that our construction is a generic conversion and can be applied to any low-level
primitive. To further demonstrate the usefulness of our approach, in Section 4 we also introduce
direct “black-box” construction of a CCA2-secure PKE scheme from any TDF in the standard model,
resolving a big fundamental and central problem in the context of public-key cryptography that has
remained unsolved in the past two decades.

2

• Our proposed scheme is more efficient, the publick/secret keys are as in the original scheme and the
encryption/decryption complexity are comparable to the original scheme.

• This novel approach leads to the elimination of the encryption repetition and using strongly unforge-
able one-time signature scheme.

• This scheme can be used for encryption of long length messages without employing the hybrid en-
cryption method and symmetric encryption.

Organisation. In the next section, we briefly explain some mathematical background and definitions. Then,
in Section 3, we introduce our proposed scheme. Finally, a generalized construction based on OW-TDFs
will be given in Section 4.

2 Preliminary

2.1 Notation

We represent a binary string in general by bold face letter such as x = (x1, . . . xn). Regular small font letter
x denotes its corresponding decimal value, that is x =

∑n
i=1 xi2

(n−i) and |x| denotes its binary length. If
k ∈ N then {0, 1}k denote the set of k-bit strings, 1k denote a string of k ones and {0, 1}∗ denote the
set of bit strings of finite length. y ← x denotes the assignment to y of the value x. For a set S, s ← S
denote the assignment to s of a uniformly random element of S. For a deterministic algorithm A, we write
x ← AO(y, z) to mean that x is assigned the output of running A on inputs y and z, with access to oracle
O. If A is a probabilistic algorithm, we may write x← AO(y, z, R) to mean the output of A when run on
inputs y and z with oracle access to O and using the random coins R. We denote by Pr[E] the probability
that the event E occurs. If a and b are two strings of bits, we denote by a‖b their concatenation. Lsbx1(a)
means the right x1 bits of a and Msbx2(a) means the left x2 bits of a.

Since the proposed cryptosystem is code-based, a few notations regarding coding theory are introduced.
Let F2 be the finite field with 2 elements {0, 1}, k ∈ N be a security parameter. A binary linear-error
correcting code C of length n and dimension k or an [n, k]-code is a k-dimensional subspace of Fn

2 . Elements
of Fn

2 are called words, and elements of C are called codewords. If the minimum hamming distance between
any two codewords is d, then the code is a [n, k, d] code. The Hamming weight of a codeword x, wt(x), is
the number of non-zero bits in the codeword. For t ≤ bd−12 c, the code is said to be t-error correcting if it
detects and corrects errors of weight at most t. Hence, the code can also be represented as a [n, k, 2t + 1]
code. The generator matrix G ∈ Fk×n

2 of a [n, k] linear code C is a matrix of rank k whose rows span the
code C.

2.2 Definitions

Definition 1 (Trapdoor functions). A trapdoor function family is a triple of algorithms
TDF = (Tdg,F,F−1), where Tdg is probabilistic and on input 1k generates an evaluation/trapdoor
key-pair (ek, td)← Tdg(1k). F(ek, ·) implements a function fek(·) over {0, 1}k and F−1(td, ·) implements
its inverse f−1(·).

Definition 2 (One-wayness). Let A be an inverter and define its OW-advantage against TDF as

Advow
TDF,A(k) = Pr

[
x = x′ :

(ek, td)← Tdg(1k);x← {0, 1}k
y ← F(ek, x);x′ ← A(ek, y)

]
.

3

Trapdoor function TDF is one-way if Advow
TDF,A(k) is negligible for every PPT inverter A.

Definition 3 (Circular Shift). A circular (cyclic) shift is the operation of rearranging the components in a
string circularly with a prescribed number of positions. Thus, a q-position circular shift (or circular q-shift)
defines as the operation in which the i-th sample, si, replace with the (i + q mod n)-th sample in a n
sample ensemble. We denote this operation by CSq,n(si) = s(i+q mod n), 1 ≤ i ≤ n.

Definition 4 (General Decoding Problem). Given a generator matrix G ∈ Fk×n
2 and a word m ∈ Fn

2 , find
a codeword c ∈ Fk

2 such that e = m− cG has Hamming weight wt(e) ≤ t.

Definition 5 (General Decoding Assumption). Let C be an [n, k, d]-binary linear code defined by a k × n
generator matrix G with the minimal distance d, and t ≤ bd−12 c. An adversary A that takes an input of
a word m ∈ Fn

2 , returns a codeword c ∈ Fk
2 . We consider the following random experiment on GDP

problem.

ExpGDP
A :

c ∈ Fk
2 ← A(G,m ∈ Fn

2)

if x = m− cG and wt(x) ≤ t
then b← 1, else b← 0

return b.

We define the corresponding success probability of A in solving the GDP problem via

SuccGDP
A = Pr[ExpGDP

A = 1].

Let τ ∈ N and ε ∈ [0, 1]. We call GDP to be (τ, ε)-secure if no polynomial algorithm A running in time τ
has success SuccGDP

A ≥ ε.

Definition 6 (Public-key encryption). A public-key encryption (PKE) scheme is a triple of probabilistic
polynomial time (PPT) algorithms (Gen, Enc, Dec) such that:

• Gen is a probabilistic polynomial time key generation algorithm which takes a security parameter 1n

as input and outputs a public key pk and a secret-key sk. We write (pk, sk) ← Gen(1n). The public
key specifies the message spaceM and the ciphertext space C.

• Enc is a (possibly) probabilistic polynomial time encryption algorithm which takes as input a public
key pk, a m ∈ M and random coins r, and outputs a ciphertext C ∈ C. We write Enc(pk,m; r) to
indicate explicitly that the random coins r is used and Enc(pk,m) if fresh random coins are used.

• Dec is a deterministic polynomial time decryption algorithm which takes as input a secret-key sk
and a ciphertext C ∈ C, and outputs either a message m ∈ M or an error symbol ⊥. We write
m← Dec(C, sk).

• (Completeness) For any pair of public and secret-keys generated by Gen and any message m ∈ M
it holds that Dec(sk, Enc(pk,m; r)) = m with overwhelming probability over the randomness used
by Gen and the random coins r used by Enc.

4

Definition 7 (CCA2 security). A public-key encryption scheme is secure against adaptive chosen-ciphertext
attacks (i.e. CCA2-secure) if the advantage of any two-stage PPT adversaryA = (A1, A2) in the following
experiment is negligible in the security parameter k:

Expcca2
PKE,A(k) :

(pk, sk)← Gen(1k)

(m0,m1, state)← ADec(sk,·)
1 (pk) s.t. |m0| = |m1|

b← {0, 1}
C∗ ← Enc(pk,mb)

b′ ← ADec(sk,·)
2 (C∗, state)

if b = b
′
return 1, else return 0.

The attacker may query a decryption oracle with a ciphertext C at any point during its execution, with the
exception thatA2 is not allowed to query Dec(sk, .) with “challenge” ciphertext C∗. The decryption oracle
returns b

′ ← ADec(sk,·)
2 (C∗, state). The attacker wins the game if b = b′ and the probability of this event is

defined as Pr[Exp cca2
PKE,A (k)]. We define the advantage of A in the experiment as

AdvInd−cca2PKE,A (k) =

∣∣∣∣Pr[Expcca2
PKE,A (k) = 1]− 1

2

∣∣∣∣ . (1)

2.3 The McEliece PKE scheme

The McEliece PKE consists of a triplet of probabilistic polynomial time algorithms
(GenMcE,EncMcE,DecMcE).

• System parameters. q, n, t ∈ N, where t� n.

• Key Generation. GenMcE take as input security parameter 1k and generate the following matrices:

1. A k×n generator matrix G of a code G over Fq of dimension k and minimum distance d ≥ 2t+1.
(A binary irreducible Goppa code in the original proposal).

2. A k × k random binary non-singular matrix S

3. A n× n random permutation matrix P.

Then, Gen compute the k × n matrix Gpub = SGP and outputs a public key pk and a secret key sk,
where

pk = (Gpub, t) and pk = (S, DG ,P)

where DG is an efficient decoding algorithm for G.

• Encryption. EncMcE(pk) takes plaintext m ∈ Fk
2 as input and randomly choose a vector e ∈ Fn

2 wit
Hamming weight wt(e) = t and computes the ciphertext c as follows.

c = mGpub ⊕ e.

• Decryption. To decrypt a ciphertext c, DecMcE(sk, c) first calculates

cP−1 = (mS)G⊕ eP−1

5

and then apply the decoding algorithm DG to it. If the decoding succeeds, output

m = (mS)S−1.

Otherwise, output ⊥.

There are two computational assumptions underlying the security of the McEliece scheme.
Assumption 1 (Indistinguishability1). The matrix G output by Gen is computationally indistinguish-

able from a uniformly chosen matrix of the same size.
Assumption 2 (Decoding hardness). Decoding a random linear code with parameters n, k, w is hard.
Note that Assumption 2 is in fact equivalent to assuming the hardness of GDP. It is immediately clear

that the following corollary is true.
Corollary 1. Given that both the above assumptions hold, the McEliece cryptosystem is one-way secure

under passive attacks.

3 The proposed cryptosystem

In this section, we introduce our conversion. Our construction consists of two parts: 1) Encryption of
random coins r using the original McEliece PKE scheme; 2) Randomized encoding of the plaintext, where
randomization is done using r (that used for consistency check) based on a heuristic encoding algorithm.
Encoding includes a permutation and combination on the message bits that performs using an algorithm
called permutation combination algorithm (PCA).

3.1 PCA encoding algorithm

To encode message m ∈ {0, 1}n with n � k, we firstly pick coins r ∈ {0, 1}k, r 6= 0k, 1k uniformly
at random, where k is the security parameter. Let wt(r) = h be its Hamming weight. We divide m into
l blocks (b1‖ . . . ‖bl) with equal binary length dn/le, where l = h if h ≥ k − h, else l = k − h. If
l - n, then we should pad m. In such cases, we can sample a random binary string (RBS) from r, say
RBS = Msbldn/le−n(r), and pad it on the right of m2. Therefore, if l | n then v = n/l, RBS = ϕ (the empty
set) and bl = Lsbv (m), else v = dn/le, RBS is a random string with length l dn/le − n which sampled
from r and dl = Lsb(n−(l−1)dn/le) (m)‖RBS. Now, we perform a secure permutation on the message blocks
bi, 1 ≤ i ≤ l with the following algorithm.

First, note that any positive integer s, 1 ≤ s ≤ l!− 1 uniquely can be shown as

s = u1 × (l − 1)! + u2 × (l − 2)! + · · ·+ ul × 0, 0 ≤ ui ≤ l − i.

Note that based on this definition we have ul = 0. The sequence Us = (u1, . . . , ul) is called factorial carry
value of s. We define original sequence m0 as m0 = (b1‖ . . . ‖bl). Recombine all elements of the original
sequence m0 obtain l! − 1 new sequences m1, . . . ,m(l!−1), which any sequence owns a corresponding
factorial carry value. Using the factorial carry value of s, we can efficiently obtain any sequence ms, 1 ≤
s ≤ l!− 1 with the following algorithm.

Algorithm 3.1 (PCA encoding algorithm).
Input: Message m ∈ {0, 1}n, coins r ∈ {0, 1}k and integer s, 1 ≤ s ≤ l!− 1.

1This statement is not true in general. See [7, 8] for instance.
2Note that since l ∈ [dk/2e, k− 1], the length of sampled RBS, i.e. ldn/le−n, is smaller than k, i.e. the length of r. Therefor,

for all cases we do not have any problem for sampling RBS from r.

6

Output: Encoded message y′ = ms = (b′1‖ . . . ‖b′l).

SETUP:

1. h← wt(r). If 2h ≥ k then l← h, else l← k − h.

2. If l | n then set RBS = ϕ; otherwise, RBS← MSb(ldn/le−n) (r).

3. m′ ← m‖RBS and divide m′ into l blocks (b1‖ . . . ‖bl) with equal length v = dn/le.

PERMUTATION:

1. Write s as s =
∑l−1

i=1 ui (l − i)! + ul × 0, 0 ≤ ui ≤ l − i.

2. For 1 ≤ i ≤ l:
If ui = 0, then b′i ← bi;
Else, b′i ← bi+ui , and for 1 ≤ j ≤ ui:

b′i+j ← bi;

3. Return y′ = ms = (b′1‖ . . . ‖b′l).

Note that the number and the length of the message blocks are variable and changed by r.
It is clear that the above encoding algorithm satisfies correctness. Namely, for any (m, r) we have

∀m ∈ {0, 1}n, r ∈ {0, 1}k and s ∈ N : PCA−1(PCA(m, r, s), r, s) = m.

We illustrate PCA encoding algorithm with a small example. Suppose m = (m1, . . . ,m512) and r =
(r1, . . . , r25) with h =

∑25
i=1 ri = 12. Since 2h < k, thus l = k − h = 13. Therefore, the algorithm

divides m into 13 blocks with equal length v = dn/le = d512/13e = 40. In this case, we have to
sample a string with length ldn/le − n = 8 from r and pad it on the right of m. Therefore, we have
m′ = (m1, . . . , m40︸ ︷︷ ︸

b1

‖m41, . . . , m80︸ ︷︷ ︸
b2

‖ . . . ‖m481, . . . ,m512‖r1, . . . r8︸ ︷︷ ︸
b13

).

We choose integer s, 1 ≤ s ≤ 13!− 1, say s = 4819995015. We have

4819995015 = 10× 12! + 0× 11! + 8× 10! + 2× 9! + 5× 8! + 4× 7! + 1× 6!

+3× 5! + 0× 4! + 2× 3! + 1× 2! + 1× 1! + 0

Thus, the factorial carry value of m4819995015 is {10, 0, 8, 2, 5, 4, 1, 3, 0, 2, 1, 1, 0}. Compute sequence
D4819995015 with its factorial carry value {10, 0, 8, 2, 5, 4, 1, 3, 0, 2, 1, 1, 0}. We have

10−−{b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13} → b11

0−−{b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b12, b13} → b1

8−−{b2, b3, b4, b5, b6, b7, b8, b9, b10, b12, b13} → b10

2−−{b2, b3, b4, b5, b6, b7, b8, b9, b12, b13} → b4
...

1−−{b5, b6, b13} → b6

1−−{b5, b13} → b13

0−−{b5} → b5

Therefore, the permutation of sequence m4819995015 is (b11‖b1‖b10‖b4‖b8‖b7‖b3‖b9‖b2‖b12‖b6‖b13‖b5).

7

3.2 The proposed scheme

Now, we are ready to define our conversion. Given a McEliece PKE scheme Π =
(GenMcE,EncMcE,DecMcE), we transform it into CCA2-secure PKE scheme Π′ =
(Gencca2,Enccca2,Deccca2).

Key Generation. On security parameter k, Gencca2(1
k) run (skMcE, pkMcE) ← GenMcE(1k) to ob-

tain skMcE = (S, DG ,P) and pkMcE = (Gpub, t) as in subsection 2.3. It also choose target collision
resistant (aka universal one-way) hash function T : {0, 1}k → {0, 1}k and pseudorandom generator
G : {0, 1}k → {0, 1}n. pk = {(S, DG ,P), G,T} is the public key and sk = {(Gpub, t), G,T} is the secret
key.

Encryption. To create ciphertext, encryption algorithm in some cases performs operations in deci-
mal, and in other cases it performs operations in binary representation of the components. When we do
operations in decimal, we show components by regular small fonts, and when we perform operations in
binary, we show components by bold face fonts. To encrypt message m ∈ {0, 1}n with n� k, Enccca2:

1. Randomly choose error vector e ∈ {0, 1}k wit Hamming weight wt(e) = t.

2. Compute r = T(e) ∈ {0, 1}k, r 6= 0k, 1k. Let wt(r) = h. If 2h > k then l← h, else l← k − h.

3. Compute m̃ = m⊕G(r).

4. Set s =
∑l−1

i=1 ui(l − i)! + ul × 0, where ui = (r + i) mod (l − i), 1 ≤ i ≤ l − 1 and ul = 0,
and run PCA encoding algorithm (Algorithm 3.1) on inputs (m̃, r, s) to generate encoded message
y′ = PCA(m̃, r, s). Note that we have Us = (u1, . . . , ul−1, 0).

5. Perform a circular q-shift on the encoded message y′ and compute sequence y = CSq,|y′|(y′), where
q = r mod n. Note n and so q < |y′|.

6. Compute

C1 = (hy + r̄)r + z, C2 = EncMcE(pk, r; e) = rGpub ⊕ e,

where r, y are the corresponding decimal value of r and y. r̄ is the decimal value of the complement of r
and z =

∑l−1
i=1 ui.

As we know, in hybrid PKE schemes XOR alone cannot perfectly hide challenge bit to the CCA2
adversary. To handle CCA2 security related issues, we increase obfuscation of the XORed message by a)
perform a randomized encoding on its bits and b) perform a secure circular shift on the bits of encoded
message, whose shift step depends on the value of r. Moreover, we disguise encoded message and conceal
its bits by setting C1 = (hy + r̄)r + z in order to decrease malleability of the ciphertext. (See Proposition
1). Therefore, the CCA2 adversary to extract any useful information about challenge bit from C1 must first
recover the same coins r that was used to create the ciphertext from the McEliece PKE scheme, which is
impossible if the McEliece PKE scheme be secure.

Decryption. To recover message m from C = (C1, C2), Deccca2 perform the following steps.

1. Compute coins r as r = DecMcE(skMcE, C2) and retrieve error vector e = C2 ⊕ rGpub

2. Check whether
r ?

= T(e) (2)

8

holds3 and reject if not (consistency check). If it holds compute wt(r) = h. If 2h ≥ k then l ← h,
else l← k − h.

3. Compute s =
∑l−1

i=1 ui(l − i)!, Us = (u1, . . . , ul−1, 0) and z =
∑l−1

i=1 ui, where ui = (r + i)
mod (l − i).

4. Compute

y =
(C1 − z)/r − r̄

h
, (3)

and reject if y is not a (ldn/le)-bit integer (consistency check). Note that if l | n then |y| = n.

5. Compute y′ = CS−1q,|y|(y), where y is the binary representation of y. q = r mod n and |y′| = |y|.

6. Compute m̃ = PCA−1(y′, r, s).

7. Compute m′ = m̃⊕G(r) and RBS = Msbldn/le−n(r). Check wether

Lsbldn/le−n(m′) ?
= RBS (4)

holds and reject if not (consistency check). If it holds output

m = Msbldn/le−n(m′), (5)

else output ⊥.

Remark 1. Note that if either y or r be illegal values, then the decryption algorithm outputs a random string.

Proposition 1. The ciphertext C1 is non-malleable.

Proof. We say that (Ĉ1, C2) is a valid forgery on (C1, C2) if ŷ differ from y in some bits, where ŷ and y are
the corresponding binary representation of ŷ = ((Ĉ1−z)/r−r̄)/h and y = ((C1−z)/r−r̄)/h respectively.
If the adversary can produce such Ĉ1, then he can guess challenge bit from m̂ = Msbldn/le−n(ˆ̃m ⊕ G(r)).
Without loss of generality, we assume ŷ and y differ in i-th bit. Namely ŷ = y⊕ ei, where ei is the i-th unit
vector. Thus, we should have ŷ = y ± 2i. That is, Ĉ1 = (hŷ + r̄)r + z = C1 ± 2ihr. Since secret coins
r ∈ {0, 1}k is not known to the adversary, thus the probability that the adversary produces a valid forgery on
C1 is negligible and it is 2−k. This is because in the encryption algorithm we set C1 = (hy + r̄)r + z.

Theorem 1. Suppose Π = (GenMcE,EncMcE,DecMcE) be the McEliece PKE scheme. Then, the proposed
scheme Π′ = (Gencca2,Enccca2,Deccca2) is CCA2-secure in the standard model.

Proof. The encryption algorithm uses coins r to encrypt challenge message. In the encryption algorithm,
we do not use any cryptographic primitives to be able to reduce CCA security of the proposed PKE scheme
to the hardness or security of them. Note that we only use the McEliece PKE scheme to encrypt the coins r
and encryption of the challenge message independent of its output.
In the proof of security, we exploit the fact that for a given ciphertext, we can recover the message if we
know the same encoded message y and randomness r that was used to create the ciphertext. We stress that if

3In deterministic code-based PKE schemes such as Niederreiter PKE scheme, we don’t need to perform this checking. In
these schemes since encryption algorithm is deterministic, each message has one pre-image. Therefore if C2 6= C∗2 , then r =
Dec(C2, sk) 6= Dec(C∗2 , sk) = r∗. But in the McEliece encryption scheme, for i-th and j-th unit vectors ei and ej (with i 6= j) if
wt(e, ei) = 1 and wt(e, ej) = 0, then C′2 = (rGpub⊕e)⊕ei⊕ej is a correct ciphertext, since the Hamming weight of e⊕ei⊕ej
is t. Therefore, queried ciphertext of the form (C1, C2 ⊕ ei ⊕ ej) may leaks information of the original message. Thus, we need
to check well-formedness of the ciphertext and reject such maliciously-formed one.

9

either y or r is not legal values, then the output of the decryption algorithm is random. Thus, the challenge
bit is information-theoretically hidden to the CCA2 adversary, and so, his advantage in guessing challenge
bit is 0.

Let C∗ = (C∗1 , C
∗
2) be the challenge ciphertext, where C∗1 = (h∗y∗ + r̄∗)r∗ + z∗ and

y∗ = PCA(mb⊕G(r∗), r∗). Denote the secret randomness used to encrypt mb by r∗. Assume towards con-
tradiction that there is an efficient adversary A breaking CCA2 security of the proposed PKE scheme with
non-negligible probability. That is, the adversary A can guess challenge bit with non-negligible probability
at least from one of the below cases. Since a decryption query on the challenge ciphertext is forbidden by the
CCA2-experiment, thus ifC1 = C∗1 , thenC2 6= C∗2 and vice versa. Therefore, there are three possible cases:

Case1. C = (C1, C2) 6= (C∗1 , C
∗
2). In this case, the decryption oracle takes as input (C1, C2) and

compute r = DecMcE(C2) ∈ {0, 1}k. If r = r∗ while C2 6= C∗2 , then the decryption oracle will
reject in (2). It also computes l, ui = (r + i) mod (l − i), 1 ≤ i ≤ l − 1, s =

∑l−1
i=1 ui(l − i)!

and z =
∑l−1

i=1 ui. In the worst case, we assume y = ((C1 − z)/r − r̄)/h is a (n + ldn/le − n)-bit
integer. That is, there is an integer y such that C1 = (hy + r̄)r + z. The decryption oracle computes
y′ = CS−1r mod n,|y|(y) and decodes y′ based on recovered coins r and computed value s. We have

m̃ = PCA−1(y′, r, s) 6= PCA−1(y′∗, r∗, s∗) = m̃∗, even we assume y′ = y′∗. If we also assume
condition (6) holds (i.e., Lsbldn/le−n(m̃ ⊕ G(r)) = Msbldn/le−n(r)), then the decryption oracle outputs
random string m = Msbldn/le−n(m̃ ⊕ G(r)) in (7). Since m is a random string, thus challenge bit is
information-theoretically hidden to the CCA2 adversary, and so, his advantage to guess challenge bit is 0.

Case2. C = (C∗1 , C2 6= C∗2). In this case, the decryption oracle takes as input (C∗1 , C2) and compute
r = DecMcE(C2). If r = r∗ while C2 6= C∗2 , then the decryption oracle will reject in (2). In the worst case,
we assume y = ((C∗1 −z)/r− r̄)/h is a (n+ ldn/le−n)-bit integer and y′ = CS−1r mod n,|y|(y) = y′∗. Since

r is illegal, i.e. r 6= r∗ (and so s 6= s∗), thus m̃ = PCA−1(y′, r, s) 6= PCA−1(y′∗, r∗, s∗) = m̃∗.
If we also assume condition (6) is hold, then the decryption algorithm outputs random string
m = Msbldn/le−n(m̃ ⊕ G(r)) in (7). Therefore, challenge bit is information-theoretically hidden to
the CCA2 adversary, and so, his advantage to guess challenge bit is 0.

Case3. C = (C1 6= C∗1 , C
∗
2). In this case, the decryption oracle takes as input (C1, C

∗
2) and com-

pute r = DecMcE(C∗2) = r∗. It also computes y = ((C1 − z∗)/r∗ − r̄∗)/h∗ 6= y∗ 4. In the worst case, we
assume y is an integer. We consider tree possible cases for y:

a) y is a multiple of y∗. That is, for any k ∈ N, k 6= 1 we have y = ky∗. In this case
|y| = |k||y∗| 6= |y∗| = n+ ldn/le − n and the decryption oracle reject in (3).

b) |y| = |y∗|, and, y and y∗ are differ from each other only in some bits. In this case, y′ = CS−1q∗,|y|(y)

and y′∗ = CS−1q∗,|y|(y) are also differ from each other only in some bits. Therefore, the CCA2

adversary can guess challenge bit from m′ = PCA−1(y′, r∗, s∗) ⊕ G(r∗). Without loss of gener-
ality, we can assume y = y∗ ⊕ ei, where ei is the i-th unit vector. Thus we have y = y∗ ± 2i,
where y and y∗ are the corresponding decimal value of y and y∗. Therefore, we should have
C1 = (y∗h∗ + r̄∗)r∗ + z∗ ± 2ih∗r∗ = C∗1 ± 2ih∗r∗. Since secret coins r∗ ∈ {0, 1}k is not
known to the CCA2 adversary, thus the probability that CCA2 adversary produce a forgery on C1 is
negligible and it is 2−k. Therefore, the CCA2 adversary’s advantage in this case is negligible (see

4In this case we have y 6= y∗. If y = y∗, then we have C1 = (h∗y + r̄∗)r∗ + z∗ = (h∗y∗ + r̄∗)r∗ + z∗ = C∗1 , which is a
contradiction since a decryption query on the challenge ciphertext is forbidden by the CCA2-experiment.

10

also Proposition1).

c) |y| = |y∗|, and, y 6= y∗ (and so y′ = CS−1q∗,|y|(y)) is a random string. In this case m′ =

PCA−1(y′, r∗, s∗) ⊕ G(r∗) also is a random string and the decryption oracle outputs random string
Msbldn/le−n(m′). Thus, challenge bit is information-theoretically hidden to the CCA2 adversary, and
so, his advantage to guess challenge bit is 0.

From Case1, Case2 and Case3, the CCA2 adversary advantage to guess challenge bit is negligible. This
contradicts the assumption that the CCA2 adversary can break CCA2 security of the proposed PKE scheme
with non-negligible probability.

3.3 Performance analysis

The performance-related issues can be discussed with respect to the computational complexity of key gen-
eration, key sizes, encryption and decryption speed.

The resulting encryption scheme is very efficient. The public/secret keys are roughly as in the original
scheme. The time for computing T(·), G(·) and the time for encoding and decoding is negligible compared
to the time for computing EncMcE and DecMcE. Encryption roughly needs one application of EncMcE, and
decryption roughly needs one application of DecMcE.

As we previously stated, the Niederreiter-based proposed scheme does not need to perform well-
formedness checking. Therefore, compared to Freeman et al.[10] and Mathew et al.[19] schemes, our
scheme is more efficient. The comparison of the proposed schemes with existing schemes are presented in
Table 1.

Table 1. Comparison with other proposed CCA2-secure code-based cryptosystems
Scheme Public-key Secret key Ciphertext Encryption Decryption

Size Complexity complexity
Dowsley and 2k × pkMcE 2k × skMcE k × CiphMcE k × EncMcE+ 1VerOT −SS+

Döttling
et al.[5, 6] 1OT − SS 1× DecMcE+

t× EncMcE

Freeman 2k × pkNie 2k × skNie k × CiphNie k × EncNie+ 1VerOT −SS+
et al.[10] 1OT − SS 1× DecNie+

t× EncNie

Mathew 1 pkNie+ 2× skNie 2× CiphNie 2× EncNie+ 1VerOT −SS+
et al.[19] 1 (n× n) 1 MM+ 1× DecNie+

Matrix 1OT − SS 2× EncNie+
1 MM

Proposed ≈ 1 pkMcE ≈ 1 skMcE ≈ 2CiphMcE ≈ 1EncMcE ≈ 1DecMcE

Scheme +n

McE: McEliece cryptosystem, Nie: Niederreiter cryptosystem, Ciph: Ciphertext, Ver: Verification,
OT − SS: Strongly unforgeable one-time signature scheme, P: Product, D: Division, MM: Matrix
Multiplication, PCA: Permutation Combination Algorithm (algorithm 3.1), PCA−1: Reverse Permutation
Combination Algorithm and t ≤ k.

11

4 General construction from TDFs

Devising public-key encryption schemes which are secure against chosen ciphertext attack from low-level
primitives has been the subject of investigation by many researchers. Currently, the minimal security as-
sumption on trapdoor functions need to obtain CCA2-secure PKE schemes, in terms of “black-box” impli-
cations, is that of adaptivity was proposed by Kiltz, Mohassel and O’Neill in Eurocrypt 2010 [11]. They
proposed a black-box one-bit CCA2-secure encryption scheme and then apply a transform of Myers and
shelat [16] from one-bit to multi-bit CCA-secure encryption scheme. The Myers-shelat conversion is not ef-
ficient; it uses encryption reputation paradigm along with a strongly unforgeable one-time signature scheme
to handle CCA2 security related issues. Therefore, the resulting encryption scheme needs separate encryp-
tion and it is not sufficiently efficient to be used in practice.

Here, we give direct black-box construction of a CCA2-Secure PKE scheme from TDFs. Our
construction is similar to the construction of Section 3. We only need to replace the underlying code-based
PKE scheme with a OW-TDF. Let TDF = (Tdg,F,F−1) be an injective TDF. We construct multi-bit PKE
scheme PKE[TDF] = (Gen,Enc,Dec) as follows:

Key Generation. On security parameter k, the generator Gen runs Tdg to obtain (ek, td) ← Tdg(1k)
and return (ek, td). It also chooses PRG G : {0, 1}k → {0, 1}n. pk = (ek,G) is the public key and
sk = (td,G) is the secret key.

Encryption. On inputs (m, ek), where m ∈ {0, 1}n, Enc perform as follows:

1. Choose coins r ∈ {0, 1}k, r 6= 0, 1k uniformly at random and let wt(r) = h. If 2h > k then l ← h,
else l← k − h.

2. Compute m̃ = m⊕G(r).

3. Set s =
∑l−1

i=1 ui(l − i)! + ul × 0, where ui = (r + i) mod (l − i), 1 ≤ i ≤ l − 1 and ul = 0,
and run PCA encodding algorithm (Algorithm 3.1) on inputs (m̃, r, s) to generate encoded message
y′ = PCA(m̃, r, s).

4. Perform a circular q-shift on the encoded message y′ and compute y = CSq,|y′|(y′), where q = r
mod n.

5. Compute

C1 = (hy + r̄)r + z, C2 = F(ek, r),

where r̄ is the decimal value of the complement of r and z =
∑l−1

i=1 ui.

Decryption. On inputs (C, td), Dec perform as follows:

1. Compute coins r as r = F−1(C2, td). Compute r̄ and h = wt(r). If h ≥ k − h then l ← h, else
l← k − h.

2. Compute Us = (u1, . . . , ul−1, 0) and z =
∑l−1

i=1 ui, where ui = (r + i) mod (l − i) and s =∑l−1
i=1 ui(l − i)!.

3. Compute

y =
(C1 − z)/r − r̄

h
,

and reject the ciphertext if y is not a (ldn/le)-bit integer.

12

4. Compute y′ = CS−1q,|y|(y). q = r mod n and |y′| = |y|.

5. Compute m̃ = PCA−1(y′, r, s).

6. Compute m′ = m̃⊕G(r) and RBS = Msbldn/le−n(r). Check wether

Lsbldn/le−n(m′) ?
= RBS (6)

holds and reject if not. If it holds output

m = Msbldn/le−n(m′), (7)

else output ⊥.

Theorem 2. Let TDF be a one-way trapdoor function, then the PKE[TDF] defined above is CCA2-secure.
The proof of Theorem2 is similar to the proof of Theorem1 which is omitted.

References

[1] T. Berger, P. Cayrel, P. Gaborit and A. Otmani. Reducing key length of the mceliece cryptosystem. In
AFRICACRYPT 2009, LNCS, Vol. 5580. pp.77-97, 2009.

[2] D. Bernstein, T. Lange and C. Peters. Attacking and defending the mceliece cryptosystem. In
PQCrypto 2008, LNCS, Vol.5299. pp.31-46, 2008.

[3] D. Bernstein, T. Lange, C. Peters and H. van Tilborg. Explicit bounds for generic decoding algorithms
for code-based cryptography. In WCC 2009, pp.168-180, 2009.

[4] P. L. Cayrel, G. Hoffmann, E. Persichetti. Efficient Implementation of a CCA2-Secure Variant of
McEliece Using Generalized Srivastava Codes. In PKC 2012, LNCS, Vol. 7293, pp 138-155, 2012.

[5] R. Dowsley, J. Müller-Quade, A. C. A. Nascimento. A CCA2 Secure Public Key Encryption Scheme
Based on the McEliece Assumptions in the Standard Model. In CT-RSA 2009, LNCS, Vol. 5473, pp.
240251.

[6] N. Döttling, R. Dowsley, J. M. Quade and A. C. A. Nascimento. A CCA2 Secure Variant of the
McEliece Cryptosystem. IEEE, Transactions on Information Theory, Vol. 58(10), pp.6672-6680, 2012.

[7] J.-C. Faugère, A. Otmani, L. Perret, J.-P. Tillich. Algebraic Cryptanalysis of McEliece Variants with
Compact Keys. In EUROCRYPT 2010, pp. 279-298, 2010.

[8] J.-C. Faugère, V. Gauthier, A. Otmani, L. Perret, J.-P. Tillich. A Distinguisher for High Rate McEliece
Cryptosystems. IEEE Information Theory Workshop (ITW), pp. 282286, 2011.

[9] M. Finiasz and N. Sendrier. Security bounds for the design of code-based cryptosystems. In ASI-
ACRYPT 2009, LNCS, Vol.5912, pp. 88-105, 2009.

[10] D.-M. Freeman, O. Goldreich, E. Kiltz, A. Rosen, G. Segev, More Constructions of Lossy and
Correlation-Secure Trapdoor Functions. In PKC 2010, LNCS, Vol.6056, pp.279295, 2010.

[11] E. Kiltz, P. Mohassel, and A. O’Neill. Adaptive trapdoor functions and chosen-ciphertext security. In
EUROCRYPT 2010, LNCS, Vol. 6110 pp. 673692, 2010.

13

[12] K. Kobara and H. Imai. Semantically Secure McEliece Public-Key Cryptosystems Conversions for
McEliece PKC. In PKC 2001, LNCS, Vol.1992, pp. 19-35, 2001.

[13] R. Lu, X. Lin, X. Liang and X. Shen. An efficient and provably secure public key encryption scheme
based on coding theory. In Security Comm. Networks,Vol.4 (19), pp. 1440-1447, 2011.

[14] R. McEliece. A public-key cryptosystem based on algebraic number theory. Technical report, Jet
Propulsion Laboratory. DSN Progress Report pp. 42-44, 1978.

[15] R. Misoczki and P. Barreto. Compact mceliece keys from goppa codes. In SAC’2009, LNCS, Vol.5867.
pp.376-392, 2009.

[16] S. Myers and A. Shelat. Bit encryption is complete. In FOCS 2009, pp. 607616. IEEE Computer
Society Press, 2009.

[17] H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Probl. Control and Inform.
Theory, Vol.15, pp.1934, 1986.

[18] R. Nojima, H. Imai, K. Kobara and K. Morozov. Semantic Security for the McEliece Cryptosystem
without Random Oracles. Designs, Codes and Cryptography, Vol. 49, No. 1-3, pp. 289-305, 2008.

[19] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In STOC 2008, pp. 187-196,
2008.

[20] E. Persichetti. On a CCA2-secure variant of McEliece in the standard model. Cryptology ePrint
Archive: Report 2012/268. http://eprint.iacr.org/2012/268.pdf

[21] K. Preetha Mathew, S. Vasant, S. Venkatesan and C. Pandu Rangan. An Efficient IND-CCA2 Se-
cure Variant of the Niederreiter Encryption Scheme in the Standard Model. In ACISP 2012, LNCS,
Vol.7372, pp. 166179, 2012.

[22] C. Rackoff and D. Simon. Noninteractive Zero-knowledge Proof of Knowledge and Chosen Ciphertext
Attack. In CRYPTO 91, LNCS, Vol. 576, pp. 433-444, 1992.

[23] A. Rosen and G. Segev. Chosen-Ciphertext Security via Correlated Products. In TCC 2009, LNCS,
Vol. 5444, pp. 419-436, 2009.

[24] N. Sendrier. The tightness of security reductions in code-based cryptography. In IEEE, Information
Theory Workshop (ITW), pp.415-419, 2011.

14

http://eprint.iacr.org/2012/268.pdf

	Introduction
	Related work
	Motivation
	Our Contributions

	Preliminary
	Notation
	Definitions
	The McEliece PKE scheme

	The proposed cryptosystem
	PCA encoding algorithm
	The proposed scheme
	Performance analysis

	General construction from TDFs

