Trace Expression of r-th Root over Finite Field

Gook Hwa Cho, Namhun Koo, Eunhye Ha, and Soonhak Kwon
Email: achimheasal@nate.com, komaton@skku.edu, grace.eh.ha@gmail.com, shkwon@skku.edu
Dept. of Mathematics, Sungkyunkwan University, Suwon, S. Korea

Abstract

Efficient computation of r-th root in F, has many applications in computational number
theory and many other related areas. We present a new r-th root formula which generalizes
Miiller’s result on square root, and which provides a possible improvement of the Cipolla-
Lehmer type algorithms for general case. More precisely, for given r-th power ¢ € F,,

(Sigab)-r

we show that there exists @ € F,r such that T'r (a =) = ¢ where Tr(a) =

a4+al+a? +---+a? " and a is a root of certain irreducible polynomial of degree r over
F,.
Keywords : finite field, trace, r-th root, linear recurrence relation, Tonelli-Shanks algo-
rithm, Adleman-Manders-Miller algorithm, Cipolla-Lehmer algorithm

MSC 2010 Codes : 11T06, 11Y16, 68W40

1 Introduction

Let 7 > 1 be an integer and ¢ be a power of a prime. Finding r-th root (or finding a root
of 2" = ¢) in finite field F, has many applications in computational number theory and in
many other related topics. Some such examples include point halving and point compression
on elliptic curves [16], where square root computations are needed. Similar applications for
high genus curves require r-th root computation also.

Among several available root extraction methods of the equation " —¢ = 0, two algorithms
are applicable for any integer r > 1; the Adleman-Manders-Miller [1] algorithm, a straight-
forward generalization of the Tonelli-Shanks square root algorithm [17, 19] to the case of r-th
roots, and the Cipolla-Lehmer [6, 11] algorithms. Due to the cumbersome extension field
arithmetic needed for the Cipolla-Lehmer algorithm, one usually prefers the Tonelli-Shanks
or the Adleman-Manders-Miller, and other related researches [2, 10, 3] exist to improve the
Tonelli-Shanks.

The efficiency of the Adleman-Manders-Miller algorithm depends on the exponent v of r
satisfying r”|q¢ — 1 and 7" fq — 1, which makes the worst case complexity of the Adleman-
Manders-Miller O(logrlog* ¢) [1, 4] while the Cipolla-Lehmer can be executed in O(rlog® q)
[6, 11]. Even in the case of r = 2, it had been observed in [15] that, for a prime p = 9x 23354 -1,
running the Tonelli-Shanks algorithm using various software such as Magma, Mathematica
and Maple cost roughly 5 minutes, 45 minutes, 390 minutes, respectively while the Cipolla-
Lehmer costs under 1 minute in any of the above softwares. It should be mentioned that such
extreme cases (of p with p — 1 divisible by high powers of 2) do happen in many cryptographic
applications. For example, one of the NIST suggested curve [16] P-224 : y? = 2% — 32 + b over
F, uses a prime p = 2224 _ 996 4 1.

On the other hand, it is also true that the Adleman-Manders-Miller runs faster than the
Cipolla-Lehmer for small exponents v. A possible speed-up of the Cipolla-Lehmer comparable
to the Tonelli-Shanks for low exponent v was first given by Miiller [15], where a special type
of Lucas sequence corresponding to f(z) = 2 — Pz + 1 was used. The constant term 1 of
f(x) makes the given algorithm runs quite faster compared with the original Cipolla-Lehmer.
A similar result for the case r = 3 was also obtained in [5].

In this paper, we show that the idea in [15] can be generalized to any integer r > 1. More
precisely, for any r-th power ¢ in Fy, we can construct a polynomial f(x) € Fy[z] of degree r

e)"
with constant term £1 such that the irreducibility of f implies that { Tr(« =)} =c

where f(o) = 0 and Tr(a) = a + a4+ a? + -+ a? . We mention that the case r = 2
% +q-2

(i.e., {T?“(ozqfl)}2 = ¢) is the result in [15] and the case r = 3 (i.e., {Tr(a o)}® =¢) is
shown in [5]. Therefore a possible existence of efficient linear recurrence relation computing
Tr(a™) guarantees the existence of efficient r-th root algorithm, where the case r = 2,3 are
well-known.

The remainder of this paper is organized as follows: In Section 2, we introduce the root
extraction algorithms in F,. In Section 3, we describe the r-th order linear recurrence sequences.
In Section 4, we propose a new r-th formula which has a possible application when combined
with linear recurrence relations. Finally, in Section 5, we give concluding remarks and future
works.

2 Existing r-th Root Extraction Methods in F,

In this section, we introduce two standard algorithms for computing r-th root in finite field,
that is, the Adleman-Manders-Miller [1] algorithm and the Cipolla-Lehmer algorithm [6, 11].

2.1 Tonelli-Shanks and Adleman-Manders-Miller algorithm

The Adleman-Manders-Miller algorithm [1] is described in Table 1. Assuming r << log ¢ and
DLP (discrete logarithm problem) is easy in the multiplicative subgroup of order r in F, the
complexity is given as O(v,(q— 1) logrlog? ¢), where v,.(¢— 1) denotes the largest non-negative
integer v satisfying r”|q — 1. Therefore, when v,.(¢ — 1) is small, the Adleman-Manders-Miller
algorithm has the complexity O(logrlog®q), while has the worst complexity O(logrlog? q)

when v,(¢ — 1) =~ logq.

2.2 Cipolla-Lehmer algorithm

The Cipolla-Lehmer algorithm [6, 11] is described in Table 2. Its complexity is O(rlog?q),
which does not depend on v = v,(q — 1) unlike the case of the Adleman-Manders-Miller.
However, for small v = v,.(¢—1), the Adleman-Manders-Miller algorithm performs better than
the Cipolla-Lehmer due to the relatively large constant term in the complexity estimation of
the Cipolla-Lehmer usually omitted in the notation O. Hence the refinements of the Cipolla-
Lehmer is desirable.

Let ¢ € Fy be an r-th power in Fy with ¢ = 1 (mod r). To find an r-th root of ¢, the Cipolla-

Lehmer algorithm needs an irreducible polynomial f(z) = 2" —b, 12" ' —b, 92" 2 —---—bjz+
(—1)"c with constant term (—1)"c. Letting a € Fy be a root of f, we get altata*ttd T = ¢
Tisgd i

so that @+ is an 7-th root of c. Irreducibility testing of f and the exponentiation o™ »

Table 1: Adleman-Manders-Miller r-th root algorithm

Input: An rth power § in F, with r|q —1

Output: An r-th root of ¢

Step 1:

Let ¢ — 1 = r®t with (r,t) =1

Compute the least nonnegative integer u such that ¢|ru — 1
Choose p randomly in F,

Step 2:

a+ p Tt e pt

if a =1, go to Step 1

Step 3:

b+ 61 he1

Step 4:

fori=1tos—1
deb "

if d=1, then j+ 0
else then j < —log, d (compute the discrete logarithm)
b < b(c"), h + hcl
c+c"
end for
Step 5:
return 6 - h

Table 2: Cipolla-Lehmer r-th root algorithm

Input: An r-th power c in I,
Output: A r-th root of ¢

Step 1:

Choose b1, b2, -+ ,b,—1 randomly in F,

Step 2:

f(@) 2" —bpqx" ' — b 92" 2 — . — bz + (—1)"c
if f is reducible, then go to Step 1

Step 3:

r—1 4

>i—q 9
Return = = — (mod f(z))

r—1 4
(or computing x =t (mod f(z))) needs many multiplications in Fy, and the number of
such multiplications depends on the coefficients of f. One may choose a low hamming-weight

r—1 i

7=
polynomial (i.e., trinomial) to reduce the cost of computing z— + (mod f(z)).

3 Linear Recurrence Sequences

Let f(x) =a" —b,_12" ' — b, 92" 2 — .. —byx — by (b; € F,) be irreducible over F,. An r-th
order linear recurrence sequence sy corresponding to f(x) is defined as

Sk =br_18k—1 + br_28p_2+ -+ boSk—_r, k>r.

It is well-known [18, 12] that such s is completely determined when f and the first r terms
50,51, ,5r—1 are given. In fact, there is uniquely determined ¢ € F,~ such that

S = Tr(@ak), (1)

where o is a root of f(x) and the trace map T'r : Fir — F, is defined as Tr(8) = 8 + B9 +

ﬁq2 4+ qufl. We say that si is the characteristic sequence generated by f(x) if § = 1, i.e.,
if s, can be expressed as

sp = Tr(af) = of + o™ + o b (2)

When it is needed to emphasize that the characteristic sequence s, comes from the polynomial
f, we denote such sj using various notations such as sx(f),sk(bo,- - ,br—1), or sg(a). For
small values of r, the sequence s; can be computed using ”double and add” method.

Example 1:
A. When r = 2 and f(z) = 22 — Pz + Q, one has the following Lucas relation [15] :

_ 2 n _ m
Son = S, — 2Q", Sp4+m = SnSm — Q" sn—m

The exponentiation Q" gives extra burden to the computation s, and one can compute the
recurrence relation more efficiently letting @ = 1.

B. When r = 3 and f(x) = 2® — az? + br — ¢, one has the following relation which can be
found, for example, in the work of Gong and Harn [9] :

— 2 n — m m
Son = Sp, — 2¢"5_p, Sn4m = SnSm — € Sp—mS—m + C Sn—2m (3)

As in the case of second order recurrence relation, letting ¢ = 1 makes the computation of the
sequence cost effective.

Note that letting the constant term of f(z) to be =1 makes it impossible to use the Cipolla-
Lehmer. For example, when r = 2, to apply the Cipolla-Lehmer for the computation of the
roots of 22 — ¢ = 0, one has to use the polynomial 22 — bz + ¢ not 2> — bz + 1. However, as is
done by Miiller [15] for the quadratic case, an wise choice of f of degree r gives a way to find
the r-th root of ¢ € F, as will be shown in the next sections.

From now on, we will consider the characteristic sequence s which comes from the irre-
ducible polynomial f(z) = 2" — b,_12" "' — b,_o02" 2 — .- — bz + (—1)".

4 Trace Expression of r-th Root

Our main result is the Theorem 2, and we will discuss the necessary prerequisites first. Let r
be an integer > 1 and let b be in F, with ¢ =1 (mod) such that

f@)=(@+ (=17 + (=) o+ (-1)r)e (4)

is irreducible over F,. Also we define a polynomial h(z) as
h(z) =" + (=1)"" (b + (=1)"r)(z — 1). ()
Then one has the following relation

h(1+ (=1)"z) = (-1)"f(2), (6)
because
h(1+ (=1)"z) = (1+ (1)) + (=)™ 0+ (=1)r) (1 + (=1)"
()" (@ + (=1)")" + (=1 b+ (=1)"r) (-1
(D) {(z+ (1)) + (1) b+ (=1)r)z} = (=1)" f(=). (9)

The above equations implies that one has the following when 7 is even,

SN—
8
\
—_
~
—~
-~
~

~—
3
8
—~~
oo
~—

fey=(x+1)"—b+r)z, h(x)=2"—Ob+r)z+(b+r), h(1+4+z) = f(x), (10)
and when r is odd, one has
f@)=E-1)"+0O-r)z, hlz)=2"+®B-r)xz—(b—1), h(1—x)=—f(x). (11)

In particular, the irreducibility of f implies the irreducibility of h and vice versa.
Suppose that « is a root of f(x). Since f(0) = (—1)", we find that the norm of f (i.e., the
product of all the conjugates of «) is

a1+q+q2+-~-+q“1 - 1. (12)

A classical result of Hilbert Theorem 90 says that there exists 3 € Fgr such that 8" = a. More
precisely, using the equation (12), one can show that
T A L I A A 6 F:)

1:q’ from the equation (13), we get

Therefore letting 8 = (14 o + a't9 ... 4 gltat+07)

8" = a.
Theorem 1. Assuming f(a) =0 and ¢ =1 (mod r), we have
Lt+qt+q® 4o tq" ! =t e
v =({b+r) > if ris even,

1+g+g?+tq" 1

T =1 if ris odd.

2 r—1
. . . . 1tgtqd-tq -
In particular, when r is even and b+ is a square in Fy, one gets « ” =1.

Proof. Since h(1+ (—1)"a) = f(a) =0 and h(0) = (—1)"(b+ (—1)"r),
1+ (1))T 9 = b+ (—1)"r. (14)
On the other hand, by simplifying the equation (7), we have

h(1+ (=1)"z) = (L + (=1)"2)" = (b+ (=1)"r)z = (=1)"f(2), (15)

which implies
1+ (D) = b+ (=1)"r)a (16)
2

By taking ==0- 0 7 _th power to both sides of the above expression, one has

r—1 4 r—1 4
Yic0 1 Xi—g4

1+ (1)) Xm0t = (b+ (1))~ F a5, (17)

Comparing two expressions (14) and (17), we get

=i d (Sizga)-r T @i -1)
a T +(—1)r r = —1)r r
= (b4 (=1)"r)" (b+ (=1)"r)”
POUIED DL (18)
= (b+ (—1)"r) @ D=
Since ¢ = 1 (mod r), we have
r—2 1
-1
Z qj = 7“2) (mod), (19)

=0 j=

which is § (mod 7) when 7 is even, and is 0 (mod 7) when 7 is odd. Noticing b+ (—1)"r € I,
one has the desired result. O

Corollary 1. Assume q =1 (mod r). If r is even, further assume that b+ r is a square in

L (
(=024 a9 T(B)T: Z (B)T

Fy. Then s
. Zingd : : -
Proof. Letting 57 = = w with 87 = a and using Theorem 1, we have w" = f2i=0 9" =
i d
o~ 5 =1 and w? = w. Therefore

, (CIg ah)—r ,
S rtgn . (B) =Tr(B7

<2{;01 a)—r <2;?;g g")—r
+ 51

= (B ik e ot ,361“17@501 aor
q 7 g—4* " g—g?yr (20)
= (WB T HWIBTI+ W BT 4wt BT

(B(Zz 0d") _|_ B Z: 04)—q + B(Z;:ol q")—q* 4+t 5(2?;01 q*)—q
= Tr(BE=0T) = 552 i(B).

r—1

)’!’

O]

Corollary 2. Assuming the same conditions as in the Corollary 1 and also assuming ¢ = 1
(mod 72), one has 8 (=1 g ()" = Syr—2 4 (B)"

T

Proof.
. (CIzg a)-r L (Eis 01#) - ..
S sr-t gy, (@) =Tr(a =) =Tr((8")
2 (21)
(Zisg a)-r .
= Tr(B) = sges (B)
where the last equality comes from the Corollary 1. O

If b+ (—1)"r is an r-th power in [, one can explicitly find r-th root of b+ (—1)"r as follows.

Corollary 3. Assume that ¢ = 1 (mod r) and b+ (—1)"r is an r-th power in F,, then
Szr;(? qi (B)T - b + <_1)TT'.

Proof. Since a = " € F,r, we may rewrite the equation (16) as
1+ (=1)"a)" = b+ (=1)"r)B". (22)
Assume b+ (—1)"r = u” for some u in F,. Then from (1 + (—1)"a)" = u" 3", we get
(14 (-1)"a) = woup (23)

for some 7-th root of unity wp in F,. Therefore we get

Tr(B2i=0 1) = 7«_11 lTr((1+(—1)’“a)Z§;§qi)
wy u'T
1 , 24
= b+ (1)) (24)
wo u

= Wol,

where the first equality comes from wou € F, and the second equality comes from the coefficient
(=)™ (b + (=1)"7) of z in h(z) = 2" + (—=1)"T (b + (=1)"r)(z — 1). We also have the last
equality because wj =1 and b+ (—1)"r = u”. Therefore we get

Tr(BZ=0 7Y = (wou)” = b+ (~1)"r. (25)
O

Finally, combining the Corollaries 2 and 3, we have the following theorem.

Theorem 2. Suppose that ¢ =1 (mod) and f(z) = (z + (=1)")" + (=1)" (b + (=1)"r)x
is an irreducible polynomial over F, with f(a) = 0. Assume b+ (—1)"r is an r-th power in F,.
Then s (gr—1 i, ()" =b+(=1)"r.

Proof. We have
St (@) =852 i (B)" =0+ (=1)n,

T

where the first equality comes from Corollary 2 and the second equality is Corollary 3. O

Now using the polynomial f(z), we can find an 7-th root for given r-th power ¢ in F,. For
given r-th power ¢ € Fy, define b = ¢ — (—1)"r. If f(z) with given coefficient b is irreducible,
then S (21 giy—r (f) is an r-th root of ¢. That is,

T

S (2r=1 giy—r () =b+(-1)'r=c
2

™

If the given f is not irreducible over [y, then we may twist ¢ by random ¢ € F, until we get
irreducible f with b = ¢t” — (—1)"r. Then

Sisrt o () =0+ (1) =ct’,
r2

Table 3: New r-th root algorithm for F, with ¢ = 1 (mod r?)

Input: An r-th power c in F,
Output: s satisfying s" = ¢
Step 1:
t<1,bct"—(—1)r,
f(2) & (@ + (1)) + (=1 b+ (~1)r)a
Step 2:
while f(z) is reducible over Fy
Choose random t € F,
b ct” — (=1)'r, f(z) + (z+(=1)")" + (=) (b+ (-1)"r)z
end while
Step 3:
S <= Srdah—r (f)- t1
2

which implies t*13<zr:()1 Jir—r (f) is an r-th root of ¢ (See Table 3).

Example 2

A. r = 2: For given square ¢ € Fy, we have f(z) = (:U +1)2 - (b+2)x = 22 — bx + 1 with
b=c—2. If fis irreducible over F,, one has sg—1(f)? = b+ 2 = ¢, and such s,1 can be
4 4

computed via Lucas sequence s = bsp_1 — sk—2 (See [15]).

B. r = 3: For given cube ¢ € F,, we have f(z) = (v — 1)3 + (b — 3)x = 2® — 322 + bz — 1 with
b=c+3. If f is irreducible over F,, one has s 2., »(f)> =b—3 = ¢, and such s,2,,_, can be
computed via the third order linear recurrence sgquence Sk = 3Sp_1 — bSp_o + sk_;: using the
relation in the equation (3) (See [5]).

Our theorem and examples were explained on the assumption of ¢ = 1 (mod r?). However
it should be mentioned that one can find an r-th root of ¢ when ¢ # 1 (mod 7?) easily. For
example when r» = 2 and ¢ = 3 (mod 4), a square root of a quadratic residue ¢ is given by

. Also when r = 3 and K ;i_ 1 (mod 9), one has the followings. When ¢ = 2 (mod 3), a
cube root of ¢ is given as ¢, When ¢ =4 (mod 9), a cube root of cubic residue c is given

by ¢ *5= When g = 7 (mod 9), a cube root of cubic residue ¢ is given by ¢'5°. Thus the
computational cost of finding cube root of ¢ when ¢ # 1 (mod 9) is just one exponentiation in
Fy,.

These closed formulas are not obtained by ad-hoc method. In fact, one has the following
simple result of r-th root when ¢ # 1 (mod r?).

Proposition 1. Let q be a prime power such that ¢ =1 (mod r) but ¢ # 1 (mod r?). Assume
that gcd(qr;l,r) = 1. Then, for given r-th power c in Fy, an r-th root of c can be computed
by the cost of one exponentiation in F,. In particular, if v is a prime, then the condition
gcd(%,r) = 1 is automatically satisfied so that the cost of finding r-th root of c¢ is just one
exponentiation.

Proof. We claim that there is an integer 6 depending only on r and ¢ but not on ¢ such that
T
(A)0<rq, (B)rA0, (O) (eF) =c (26)

The condition (C) of the above equation says that cr = c, ie., "7 = 1. Since ¢ is an
r-th power in [, this condition can be satisfied if # = r (mod (¢ — 1)). Therefore writing
0 = r+k(qg—1), the condition (B) says that one should have 7+ k(g —1) = 0 (mod r?), which
is equivalent to the following equation

qg—1
r

1+k

=0 (modr). (27)

Since gcd(%, r) = 1, the above equation has unique solution £ (mod 7). Now the condition
(C) is satisfied because 0 = kqg+1r —k < (r — 1)g+ 1 < rq. Finally, if r is a prime, then the
assumption ¢ Z 1 (mod r?) implies gcd(%,r) =1. O

Example 3:

A. r = 3: When r = 3, the equation (27) becomes l—i—k% =0 (mod 3). Therefore depending
on the values of % (mod 3), the corresponding k (mod 3) is uniquely determined and they
are

<q;1k) = (1,2),(2,1). (28)

Since % = j (mod 3) implies ¢ = 35 + 1 (mod 32), we have the following table of pairs of

q (mod 3%) and corresponding 0 = kq + 3 — k
(¢ (mod 9), 0) = (4,2¢+1),(7,q+2). (29)

That is, when ¢ =4 (mod 9), the a cube root of ¢ is given as c%, and when ¢ =7 (mod 9),
the a cube root of ¢ is given as Pl

B. r = 5: When r = 5, the equation (27) becomes 1+kq;51 =0 (mod 5). Therefore depending
on the values of % (mod 5), the corresponding k& (mod 5) is uniquely determined and they
are

(Clglk> = (1,4),(2,2), (3,3), (4, 1). (30)

Since ‘?—1 = j (mod 5) implies ¢ = 55 + 1 (mod 52), we have the following table of pairs of

q (mod 5%) and corresponding § = kq+5 — k
(¢ (mod 25), 0) = (6,4¢ + 1), (11,2¢ + 3), (16,3q + 2), (21,¢ + 4). (31)

For example, when ¢ = 6 (mod 25), the an 5-th root of ¢ is given as 04(%1, and when ¢ = 11
2
(mod 25), the an 5-th root of ¢ is given as ¢ qz-rtg, ete.

Remarks:

1. The reason why we only consider the case r|¢ — 1 (i.e., ¢ = 1 (mod r)) is as follows. If
r fq — 1, then one has ged(r,q — 1) = 1 and there are a, b satisfying ra + (¢ — 1)b = 1. Thus
for any c € F;, we have ¢ = crot@=Db — (¢2)" That is, any element ¢ is an r-th powers of ¢,

2. For r-th root extraction, considering the cases r = prime is enough for practical purposes.
For example, to find 4-th root of ¢ € F,, we only have to use square root algorithm twice
instead of using 4-th root algorithm once, and the complexity of two applications of square
root algorithm is lower than that of one application of 4-th root algorithm.

5 Conclusions

Randomly selected monic polynomial over I, of degree r with nonzero constant term is irre-
ducible with probability 1 (For an explanation, see [18, 14]). Even if our choice of f in (4) is
not really random, experimental evidence (using software tools such as MAPLE and SAGE)
shows that % of such f is irreducible, which implies that an irreducible f can be found after r
random tries. Irreducibility testings of low degree polynomials are well understood and can be
implemented efficiently, see [7, 18, 12, 14]. Therefore the algorithm in Table 3 is dominated by
the complexity of step 3 which computes 8 (571 gi)—r (f). For r = 2,3, i.e., for quadratic and
2
cubic polynomials, the well-known linear recurrence sequences give faster algorithms than pre-
viously proposed Cipolla-Lehmer type algorithms. For r > 3, there are some known recurrence
relations, for example in [8]. However those sequences do not seem to give efficient algorithms

to compute s,,,(f) and further study is needed.

References

[1] L. Adleman, K. Manders and G. Miller, On taking roots in finite fields, Proc. 18th IEEE
Symposium on Foundations on Computer Science (FOCS), pp. 175-177, 1977

[2] A.O.L. Atkin, Probabilistic primality testing, summary by F. Morain, Inria Research Re-
port 1779, pp.159-163, 1992

[3] D. Bernstein, Faster square root in annoyng finite field, preprint, Awvailable from
http://cr.yp.to/papers/sqroot.pdf, 2001

[4] Z. Cao, Q. Sha, and X. Fan, Adlemen-Manders-Miller root extraction method revisited,
preprint, available from http://arxiv.org/abs/1111.4877, 2011

[5] G.H. Cho, N. Koo, E. Ha, and S. Kwon, New cube root algorithm based on third or-
der linear recurrence relation in finite field, preprint, available from http://eprint.iacr.
org/2013/024.pdf, 2013

[6] M. Cipolla, Un metodo per la risolutione della congruenza di secondo grado, Rendiconto
dell’Accademia Scienze Fisiche e Matematiche, Napoli, Ser.3,Vol. IX, pp. 154-163, 1903

[7] I.B. Damgard and G.S. Frandsen, Efficient algorithm for the ged and cubic residuosity in
the ring of Fisenstein integers, J. Symbolic Computation, Vol. 39, pp. 643-652, 2005

[8] K.J. Giuliani and G. Gong, A New Algorithm to compute remote terms in special types of
characteristic sequences, Proc. International Conference on Sequences and Their Applica-
tions (SETA), LNCS 4086, pp. 237-247, 2006

10

[9]

[10]

G. Gong and L. Harn, Public key cryptosystems based on cubic finite field extensions,
IEEE Trans. Information Theory, Vol.45, pp. 2601-2605, 1999

F. Kong, Z. Cai, J. Yu, and D. Li, Improved Generalized Atkin Algorithm for Computing
Square Roots in Finite Fields, Information Processing Letters, Vol. 98, no. 1, pp. 1-5,
2006.

D.H. Lehmer, Computer technology applied to the theory of numbers, Studies in Number
Theory, Englewood Cliffs, NJ: Pretice-Hall, pp. 117-151, 1969

R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, 1997

S. Lindhurst, An analysis of Shanks’s algorithm for computing square roots in finite fields,
CRM Proc. and Lecture Notes, vol. 19, pp. 231-242, 1999

A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian, Ap-
plications of Finite Fields, Springer, 1992

S. Miiller, On the computation of square roots in finite fields, Design, Codes and Cryp-
tography, Vol.31, pp. 301-312, 2004

NIST, Digital Signature Standard, Federal Information Processing Stan-
dard 186-3, National Institute of Standards and Technology, Awailable from
http://csre.nist.gov/publications/fips/, 2000

D. Shanks, Five number-theoretic algorithms, Proc. 2nd Manitoba Conf. Number. Math.,
Manitoba, Canada, pp. 51-70, 1972

I. Shparlinski, Finite Fields: Theory and Computation, Springer, 1999

A. Tonelli, Bemerkung tiber die Aufiésung quadratischer Congruenzen, Gottinger
Nachrichten, pp. 344-346, 1891

11

