
Trace Expression of r-th Root over Finite Field

Gook Hwa Cho, Namhun Koo, Eunhye Ha, and Soonhak Kwon
Email: achimheasal@nate.com, komaton@skku.edu, grace.eh.ha@gmail.com, shkwon@skku.edu

Dept. of Mathematics, Sungkyunkwan University, Suwon, S. Korea

Abstract

Efficient computation of r-th root in Fq has many applications in computational number
theory and many other related areas. We present a new r-th root formula which generalizes
Müller’s result on square root, and which provides a possible improvement of the Cipolla-
Lehmer type algorithms for general case. More precisely, for given r-th power c ∈ Fq,

we show that there exists α ∈ Fqr such that Tr

(
α

(
∑r−1

i=0
qi)−r

r2

)r

= c where Tr(α) =

α+αq +αq2 + · · ·+αqr−1

and α is a root of certain irreducible polynomial of degree r over
Fq.

Keywords : finite field, trace, r-th root, linear recurrence relation, Tonelli-Shanks algo-
rithm, Adleman-Manders-Miller algorithm, Cipolla-Lehmer algorithm

MSC 2010 Codes : 11T06, 11Y16, 68W40

1 Introduction

Let r > 1 be an integer and q be a power of a prime. Finding r-th root (or finding a root
of xr = c) in finite field Fq has many applications in computational number theory and in
many other related topics. Some such examples include point halving and point compression
on elliptic curves [16], where square root computations are needed. Similar applications for
high genus curves require r-th root computation also.

Among several available root extraction methods of the equation xr−c = 0, two algorithms
are applicable for any integer r > 1; the Adleman-Manders-Miller [1] algorithm, a straight-
forward generalization of the Tonelli-Shanks square root algorithm [17, 19] to the case of r-th
roots, and the Cipolla-Lehmer [6, 11] algorithms. Due to the cumbersome extension field
arithmetic needed for the Cipolla-Lehmer algorithm, one usually prefers the Tonelli-Shanks
or the Adleman-Manders-Miller, and other related researches [2, 10, 3] exist to improve the
Tonelli-Shanks.

The efficiency of the Adleman-Manders-Miller algorithm depends on the exponent ν of r
satisfying rν |q − 1 and rν+1 ̸ |q − 1, which makes the worst case complexity of the Adleman-
Manders-Miller O(log r log4 q) [1, 4] while the Cipolla-Lehmer can be executed in O(r log3 q)
[6, 11]. Even in the case of r = 2, it had been observed in [15] that, for a prime p = 9×23354+1,
running the Tonelli-Shanks algorithm using various software such as Magma, Mathematica
and Maple cost roughly 5 minutes, 45 minutes, 390 minutes, respectively while the Cipolla-
Lehmer costs under 1 minute in any of the above softwares. It should be mentioned that such
extreme cases (of p with p− 1 divisible by high powers of 2) do happen in many cryptographic
applications. For example, one of the NIST suggested curve [16] P-224 : y2 = x3 − 3x+ b over
Fp uses a prime p = 2224 − 296 + 1.

1

On the other hand, it is also true that the Adleman-Manders-Miller runs faster than the
Cipolla-Lehmer for small exponents ν. A possible speed-up of the Cipolla-Lehmer comparable
to the Tonelli-Shanks for low exponent ν was first given by Müller [15], where a special type
of Lucas sequence corresponding to f(x) = x2 − Px + 1 was used. The constant term 1 of
f(x) makes the given algorithm runs quite faster compared with the original Cipolla-Lehmer.
A similar result for the case r = 3 was also obtained in [5].

In this paper, we show that the idea in [15] can be generalized to any integer r > 1. More
precisely, for any r-th power c in Fq, we can construct a polynomial f(x) ∈ Fq[x] of degree r

with constant term ±1 such that the irreducibility of f implies that

{
Tr(α

(
∑r−1

i=0
qi)−r

r2)

}r

= c

where f(α) = 0 and Tr(α) = α + αq + αq2 + · · · + αqr−1
. We mention that the case r = 2

(i.e., {Tr(α
q−1
4)}2 = c) is the result in [15] and the case r = 3 (i.e., {Tr(α

q2+q−2
9)}3 = c) is

shown in [5]. Therefore a possible existence of efficient linear recurrence relation computing
Tr(αm) guarantees the existence of efficient r-th root algorithm, where the case r = 2, 3 are
well-known.

The remainder of this paper is organized as follows: In Section 2, we introduce the root
extraction algorithms in Fq. In Section 3, we describe the r-th order linear recurrence sequences.
In Section 4, we propose a new r-th formula which has a possible application when combined
with linear recurrence relations. Finally, in Section 5, we give concluding remarks and future
works.

2 Existing r-th Root Extraction Methods in Fq

In this section, we introduce two standard algorithms for computing r-th root in finite field,
that is, the Adleman-Manders-Miller [1] algorithm and the Cipolla-Lehmer algorithm [6, 11].

2.1 Tonelli-Shanks and Adleman-Manders-Miller algorithm

The Adleman-Manders-Miller algorithm [1] is described in Table 1. Assuming r << log q and
DLP (discrete logarithm problem) is easy in the multiplicative subgroup of order r in F×

q , the

complexity is given as O(νr(q−1) log r log3 q), where νr(q−1) denotes the largest non-negative
integer ν satisfying rν |q − 1. Therefore, when νr(q − 1) is small, the Adleman-Manders-Miller
algorithm has the complexity O(log r log3 q), while has the worst complexity O(log r log4 q)
when νr(q − 1) ≈ log q.

2.2 Cipolla-Lehmer algorithm

The Cipolla-Lehmer algorithm [6, 11] is described in Table 2. Its complexity is O(r log3 q),
which does not depend on ν = νr(q − 1) unlike the case of the Adleman-Manders-Miller.
However, for small ν = νr(q−1), the Adleman-Manders-Miller algorithm performs better than
the Cipolla-Lehmer due to the relatively large constant term in the complexity estimation of
the Cipolla-Lehmer usually omitted in the notation O. Hence the refinements of the Cipolla-
Lehmer is desirable.

Let c ∈ Fq be an r-th power in Fq with q ≡ 1 (mod r). To find an r-th root of c, the Cipolla-
Lehmer algorithm needs an irreducible polynomial f(x) = xr−br−1x

r−1−br−2x
r−2−· · ·−b1x+

(−1)rc with constant term (−1)rc. Letting α ∈ Fqr be a root of f , we get α1+q+q2+···+qr−1
= c

so that α

∑r−1
i=0

qi

r is an r-th root of c. Irreducibility testing of f and the exponentiation α

∑r−1
i=0

qi

r

2

Table 1: Adleman-Manders-Miller r-th root algorithm

Input: An rth power δ in Fq with r|q − 1
Output: An r-th root of δ

Step 1:
Let q − 1 = rst with (r, t) = 1
Compute the least nonnegative integer u such that t|ru− 1
Choose ρ randomly in Fq

Step 2:

a← ρr
s−1t, c← ρt

if a = 1, go to Step 1

Step 3:
b← δru−1, h← 1

Step 4:
for i = 1 to s− 1

d← br
s−1−i

if d = 1, then j ← 0
else then j ← − loga d (compute the discrete logarithm)
b← b(cr)j , h← hcj

c← cr

end for

Step 5:
return δu · h

Table 2: Cipolla-Lehmer r-th root algorithm

Input: An r-th power c in Fq

Output: A r-th root of c

Step 1:
Choose b1, b2, · · · , br−1 randomly in Fq

Step 2:
f(x)← xr − br−1x

r−1 − br−2x
r−2 − · · · − b1x+ (−1)rc

if f is reducible, then go to Step 1

Step 3:

Return x

∑r−1
i=0

qi

r (mod f(x))

(or computing x

∑r−1
i=0

qi

r (mod f(x))) needs many multiplications in Fq, and the number of
such multiplications depends on the coefficients of f . One may choose a low hamming-weight

polynomial (i.e., trinomial) to reduce the cost of computing x

∑r−1
i=0

qi

r (mod f(x)).

3

3 Linear Recurrence Sequences

Let f(x) = xr − br−1x
r−1 − br−2x

r−2 − · · · − b1x− b0 (bi ∈ Fq) be irreducible over Fq. An r-th
order linear recurrence sequence sk corresponding to f(x) is defined as

sk = br−1sk−1 + br−2sk−2 + · · ·+ b0sk−r, k ≥ r.

It is well-known [18, 12] that such sk is completely determined when f and the first r terms
s0, s1, · · · , sr−1 are given. In fact, there is uniquely determined θ ∈ Fqr such that

sk = Tr(θαk), (1)

where α is a root of f(x) and the trace map Tr : Fqr → Fq is defined as Tr(β) = β + βq +

βq2 + · · ·+βqr−1
. We say that sk is the characteristic sequence generated by f(x) if θ = 1, i.e.,

if sk can be expressed as

sk = Tr(αk) = αk + αkq + αkq2 + · · ·+ αkqr−1
. (2)

When it is needed to emphasize that the characteristic sequence sk comes from the polynomial
f , we denote such sk using various notations such as sk(f), sk(b0, · · · , br−1), or sk(α). For
small values of r, the sequence sk can be computed using ”double and add” method.

Example 1:

A. When r = 2 and f(x) = x2 − Px+Q, one has the following Lucas relation [15] :

s2n = s2n − 2Qn, sn+m = snsm −Qmsn−m

The exponentiation Qn gives extra burden to the computation sk, and one can compute the
recurrence relation more efficiently letting Q = 1.

B. When r = 3 and f(x) = x3 − ax2 + bx − c, one has the following relation which can be
found, for example, in the work of Gong and Harn [9] :

s2n = s2n − 2cns−n, sn+m = snsm − cmsn−ms−m + cmsn−2m (3)

As in the case of second order recurrence relation, letting c = 1 makes the computation of the
sequence cost effective.

Note that letting the constant term of f(x) to be ±1 makes it impossible to use the Cipolla-
Lehmer. For example, when r = 2, to apply the Cipolla-Lehmer for the computation of the
roots of x2 − c = 0, one has to use the polynomial x2 − bx+ c not x2 − bx+ 1. However, as is
done by Müller [15] for the quadratic case, an wise choice of f of degree r gives a way to find
the r-th root of c ∈ Fq as will be shown in the next sections.

From now on, we will consider the characteristic sequence sk which comes from the irre-
ducible polynomial f(x) = xr − br−1x

r−1 − br−2x
r−2 − · · · − b1x+ (−1)r.

4 Trace Expression of r-th Root

Our main result is the Theorem 2, and we will discuss the necessary prerequisites first. Let r
be an integer > 1 and let b be in Fq with q ≡ 1 (mod r) such that

f(x) = (x+ (−1)r)r + (−1)r+1(b+ (−1)rr)x (4)

4

is irreducible over Fq. Also we define a polynomial h(x) as

h(x) = xr + (−1)r+1(b+ (−1)rr)(x− 1). (5)

Then one has the following relation

h(1 + (−1)rx) = (−1)rf(x), (6)

because

h(1 + (−1)rx) = (1 + (−1)rx)r + (−1)r+1(b+ (−1)rr)(1 + (−1)rx− 1) (7)

= (−1)r(x+ (−1)r)r + (−1)r+1(b+ (−1)rr)(−1)rx (8)

= (−1)r{(x+ (−1)r)r + (−1)r+1(b+ (−1)rr)x} = (−1)rf(x). (9)

The above equations implies that one has the following when r is even,

f(x) = (x+ 1)r − (b+ r)x, h(x) = xr − (b+ r)x+ (b+ r), h(1 + x) = f(x), (10)

and when r is odd, one has

f(x) = (x− 1)r + (b− r)x, h(x) = xr + (b− r)x− (b− r), h(1− x) = −f(x). (11)

In particular, the irreducibility of f implies the irreducibility of h and vice versa.
Suppose that α is a root of f(x). Since f(0) = (−1)r, we find that the norm of f (i.e., the

product of all the conjugates of α) is

α1+q+q2+···+qr−1
= 1. (12)

A classical result of Hilbert Theorem 90 says that there exists β ∈ Fqr such that βr = α. More
precisely, using the equation (12), one can show that

α(1 + α+ α1+q + · · ·+ α1+q+···+qr−2
)q = 1 + α+ α1+q + · · ·+ α1+q+···+qr−2

. (13)

Therefore letting β = (1 + α+ α1+q + · · ·+ α1+q+···+qr−2
)
1−q
r , from the equation (13), we get

βr = α.

Theorem 1. Assuming f(α) = 0 and q ≡ 1 (mod r), we have

α
1+q+q2+···+qr−1

r = (b+ r)−
q−1
2 if r is even,

α
1+q+q2+···+qr−1

r = 1 if r is odd.

In particular, when r is even and b+ r is a square in Fq, one gets α
1+q+q2+···+qr−1

r = 1.

Proof. Since h(1 + (−1)rα) = f(α) = 0 and h(0) = (−1)r(b+ (−1)rr),

(1 + (−1)rα)
∑r−1

i=0 qi = b+ (−1)rr. (14)

On the other hand, by simplifying the equation (7), we have

h(1 + (−1)rx) = (1 + (−1)rx)r − (b+ (−1)rr)x = (−1)rf(x), (15)

5

which implies
(1 + (−1)rα)r = (b+ (−1)rr)α. (16)

By taking
∑r−1

i=0 qi

r -th power to both sides of the above expression, one has

(1 + (−1)rα)
∑r−1

i=0 qi = (b+ (−1)rr)
∑r−1

i=0
qi

r α

∑r−1
i=0

qi

r . (17)

Comparing two expressions (14) and (17), we get

α

∑r−1
i=0

qi

r = (b+ (−1)rr)−
(
∑r−1

i=0
qi)−r

r = (b+ (−1)rr)−
∑r−1

i=0
(qi−1)

r

= (b+ (−1)rr)−(q−1)

∑r−2
i=0

∑i
j=0 qj

r .

(18)

Since q ≡ 1 (mod r), we have

r−2∑
i=0

i∑
j=0

qj ≡ r(r − 1)

2
(mod r), (19)

which is r
2 (mod r) when r is even, and is 0 (mod r) when r is odd. Noticing b+(−1)rr ∈ Fq,

one has the desired result.

Corollary 1. Assume q ≡ 1 (mod r). If r is even, further assume that b + r is a square in
Fq. Then s

(
∑r−1

i=0
qi)−r

r

(β)r = s∑r−2
i=0 qi(β)

r.

Proof. Letting β

∑r−1
i=0

qi

r = ω with βr = α and using Theorem 1, we have ωr = β
∑r−1

i=0 qi =

α

∑r−1
i=0

qi

r = 1 and ωq = ω. Therefore

s (
∑r−1

i=0
qi)−r

r

(β)r = Tr(β
(
∑r−1

i=0
qi)−r

r)r

= (β
(
∑r−1

i=0
qi)−r

r + βq
(
∑r−1

i=0
qi)−r

r + βq2
(
∑r−1

i=0
qi)−r

r + · · ·+ βqr−1 (
∑r−1

i=0
qi)−r

r)r

= (ωβ−1 + ωqβ−q + ωq2β−q2 + · · ·+ ωqr−1
β−q2)r

= (β(
∑r−1

i=0 qi)−1 + β(
∑r−1

i=0 qi)−q + β(
∑r−1

i=0 qi)−q2 + · · ·+ β(
∑r−1

i=0 qi)−qr−1
)r

= Tr(β
∑r−2

i=0 qi)r = s∑r−2
i=0 qi(β)

r.

(20)

Corollary 2. Assuming the same conditions as in the Corollary 1 and also assuming q ≡ 1
(mod r2), one has s

(
∑r−1

i=0
qi)−r

r2

(α)r = s∑r−2
i=0 qi(β)

r.

Proof.

s (
∑r−1

i=0
qi)−r

r2

(α)r = Tr(α
(
∑r−1

i=0
qi)−r

r2)r = Tr((βr)
(
∑r−1

i=0
qi)−r

r2)r

= Tr(β
(
∑r−1

i=0
qi)−r

r)r = s∑r−2
i=0 qi(β)

r,

(21)

where the last equality comes from the Corollary 1.

6

If b+(−1)rr is an r-th power in Fq, one can explicitly find r-th root of b+(−1)rr as follows.

Corollary 3. Assume that q ≡ 1 (mod r) and b + (−1)rr is an r-th power in Fq, then
s∑r−2

i=0 qi(β)
r = b+ (−1)rr.

Proof. Since α = βr ∈ Fqr , we may rewrite the equation (16) as

(1 + (−1)rα)r = (b+ (−1)rr)βr. (22)

Assume b+ (−1)rr = ur for some u in Fq. Then from (1 + (−1)rα)r = urβr, we get

(1 + (−1)rα) = ω0uβ (23)

for some r-th root of unity ω0 in Fq. Therefore we get

Tr(β
∑r−2

i=0 qi) =
1

ωr−1
0 ur−1

Tr((1 + (−1)rα)
∑r−2

i=0 qi)

=
1

ωr−1
0 ur−1

(b+ (−1)rr)

= ω0u,

(24)

where the first equality comes from ω0u ∈ Fq and the second equality comes from the coefficient
(−1)r+1(b + (−1)rr) of x in h(x) = xr + (−1)r+1(b + (−1)rr)(x − 1). We also have the last
equality because ωr

0 = 1 and b+ (−1)rr = ur. Therefore we get

Tr(β
∑r−2

i=0 qi)r = (ω0u)
r = b+ (−1)rr. (25)

Finally, combining the Corollaries 2 and 3, we have the following theorem.

Theorem 2. Suppose that q ≡ 1 (mod r2) and f(x) = (x + (−1)r)r + (−1)r+1(b + (−1)rr)x
is an irreducible polynomial over Fq with f(α) = 0. Assume b+(−1)rr is an r-th power in Fq.
Then s

(
∑r−1

i=0
qi)−r

r2

(α)r = b+ (−1)rr.

Proof. We have
s

(
∑r−1

i=0
qi)−r

r2

(α)r = s∑r−2
i=0 qi(β)

r = b+ (−1)rr,

where the first equality comes from Corollary 2 and the second equality is Corollary 3.

Now using the polynomial f(x), we can find an r-th root for given r-th power c in Fq. For
given r-th power c ∈ Fq, define b = c − (−1)rr. If f(x) with given coefficient b is irreducible,
then s

(
∑r−1

i=0
qi)−r

r2

(f) is an r-th root of c. That is,

s
(
∑r−1

i=0
qi)−r

r2

(f)r = b+ (−1)rr = c.

If the given f is not irreducible over Fq, then we may twist c by random t ∈ Fq until we get
irreducible f with b = ctr − (−1)rr. Then

s (
∑r−1

i=0
qi)−r

r2

(f)r = b+ (−1)rr = ctr,

7

Table 3: New r-th root algorithm for Fq with q ≡ 1 (mod r2)

Input: An r-th power c in Fq

Output: s satisfying sr = c

Step 1:
t← 1, b← ctr − (−1)rr,
f(x)← (x+ (−1)r)r + (−1)r+1(b+ (−1)rr)x

Step 2:
while f(x) is reducible over Fq

Choose random t ∈ Fq

b← ctr − (−1)rr, f(x)← (x+ (−1)r)r + (−1)r+1(b+ (−1)rr)x
end while

Step 3:
s← s

(
∑r−1

i=0
qi)−r

r2

(f) · t−1

which implies t−1s
(
∑r−1

i=0
qi)−r

r2

(f) is an r-th root of c (See Table 3).

Example 2:

A. r = 2: For given square c ∈ Fq, we have f(x) = (x + 1)2 − (b + 2)x = x2 − bx + 1 with
b = c − 2. If f is irreducible over Fq, one has s q−1

4
(f)2 = b + 2 = c, and such s q−1

4
can be

computed via Lucas sequence sk = bsk−1 − sk−2 (See [15]).

B. r = 3: For given cube c ∈ Fq, we have f(x) = (x− 1)3 + (b− 3)x = x3 − 3x2 + bx− 1 with
b = c+3. If f is irreducible over Fq, one has s q2+q−2

9

(f)3 = b− 3 = c, and such s q2+q−2
9

can be

computed via the third order linear recurrence sequence sk = 3sk−1 − bsk−2 + sk−3 using the
relation in the equation (3) (See [5]).

Our theorem and examples were explained on the assumption of q ≡ 1 (mod r2). However
it should be mentioned that one can find an r-th root of c when q ̸≡ 1 (mod r2) easily. For
example, when r = 2 and q ≡ 3 (mod 4), a square root of a quadratic residue c is given by

c
q+1
4 . Also when r = 3 and q ̸≡ 1 (mod 9), one has the followings. When q ≡ 2 (mod 3), a

cube root of c is given as c
2q−1

3 . When q ≡ 4 (mod 9), a cube root of cubic residue c is given

by c
2q+1

9 . When q ≡ 7 (mod 9), a cube root of cubic residue c is given by c
q+2
9 . Thus the

computational cost of finding cube root of c when q ̸≡ 1 (mod 9) is just one exponentiation in
Fq.

These closed formulas are not obtained by ad-hoc method. In fact, one has the following
simple result of r-th root when q ̸≡ 1 (mod r2).

Proposition 1. Let q be a prime power such that q ≡ 1 (mod r) but q ̸≡ 1 (mod r2). Assume
that gcd(q−1

r , r) = 1. Then, for given r-th power c in Fq, an r-th root of c can be computed
by the cost of one exponentiation in Fq. In particular, if r is a prime, then the condition
gcd(q−1

r , r) = 1 is automatically satisfied so that the cost of finding r-th root of c is just one
exponentiation.

8

Proof. We claim that there is an integer θ depending only on r and q but not on c such that

(A) θ < rq, (B) r2|θ, (C)
(
c

θ
r2

)r
= c (26)

The condition (C) of the above equation says that c
θ
r = c, i.e., c

θ−r
r = 1. Since c is an

r-th power in Fq, this condition can be satisfied if θ ≡ r (mod (q − 1)). Therefore writing
θ = r+k(q−1), the condition (B) says that one should have r+k(q−1) ≡ 0 (mod r2), which
is equivalent to the following equation

1 + k
q − 1

r
≡ 0 (mod r). (27)

Since gcd(q−1
r , r) = 1, the above equation has unique solution k (mod r). Now the condition

(C) is satisfied because θ = kq + r − k ≤ (r − 1)q + 1 < rq. Finally, if r is a prime, then the
assumption q ̸≡ 1 (mod r2) implies gcd(q−1

r , r) = 1.

Example 3:

A. r = 3: When r = 3, the equation (27) becomes 1+k q−1
3 ≡ 0 (mod 3). Therefore depending

on the values of q−1
3 (mod 3), the corresponding k (mod 3) is uniquely determined and they

are (
q − 1

3
, k

)
= (1, 2), (2, 1). (28)

Since q−1
3 ≡ j (mod 3) implies q ≡ 3j + 1 (mod 32), we have the following table of pairs of

q (mod 32) and corresponding θ = kq + 3− k

(q (mod 9), θ) = (4, 2q + 1), (7, q + 2). (29)

That is, when q ≡ 4 (mod 9), the a cube root of c is given as c
2q+1

9 , and when q ≡ 7 (mod 9),

the a cube root of c is given as c
q+2
9 .

B. r = 5: When r = 5, the equation (27) becomes 1+k q−1
5 ≡ 0 (mod 5). Therefore depending

on the values of q−1
5 (mod 5), the corresponding k (mod 5) is uniquely determined and they

are (
q − 1

5
, k

)
= (1, 4), (2, 2), (3, 3), (4, 1). (30)

Since q−1
5 ≡ j (mod 5) implies q ≡ 5j + 1 (mod 52), we have the following table of pairs of

q (mod 52) and corresponding θ = kq + 5− k

(q (mod 25), θ) = (6, 4q + 1), (11, 2q + 3), (16, 3q + 2), (21, q + 4). (31)

For example, when q ≡ 6 (mod 25), the an 5-th root of c is given as c
4q+1
25 , and when q ≡ 11

(mod 25), the an 5-th root of c is given as c
2q+3
25 , etc.

Remarks:

9

1. The reason why we only consider the case r|q − 1 (i.e., q ≡ 1 (mod r)) is as follows. If
r ̸ |q − 1, then one has gcd(r, q − 1) = 1 and there are a, b satisfying ra + (q − 1)b = 1. Thus
for any c ∈ Fq, we have c = cra+(q−1)b = (ca)r. That is, any element c is an r-th powers of ca.

2. For r-th root extraction, considering the cases r = prime is enough for practical purposes.
For example, to find 4-th root of c ∈ Fq, we only have to use square root algorithm twice
instead of using 4-th root algorithm once, and the complexity of two applications of square
root algorithm is lower than that of one application of 4-th root algorithm.

5 Conclusions

Randomly selected monic polynomial over Fq of degree r with nonzero constant term is irre-
ducible with probability 1

r (For an explanation, see [18, 14]). Even if our choice of f in (4) is
not really random, experimental evidence (using software tools such as MAPLE and SAGE)
shows that 1

r of such f is irreducible, which implies that an irreducible f can be found after r
random tries. Irreducibility testings of low degree polynomials are well understood and can be
implemented efficiently, see [7, 18, 12, 14]. Therefore the algorithm in Table 3 is dominated by
the complexity of step 3 which computes s

(
∑r−1

i=0
qi)−r

r2

(f). For r = 2, 3, i.e., for quadratic and

cubic polynomials, the well-known linear recurrence sequences give faster algorithms than pre-
viously proposed Cipolla-Lehmer type algorithms. For r > 3, there are some known recurrence
relations, for example in [8]. However those sequences do not seem to give efficient algorithms
to compute sm(f) and further study is needed.

References

[1] L. Adleman, K. Manders and G. Miller, On taking roots in finite fields, Proc. 18th IEEE
Symposium on Foundations on Computer Science (FOCS), pp. 175-177, 1977

[2] A.O.L. Atkin, Probabilistic primality testing, summary by F. Morain, Inria Research Re-
port 1779, pp.159-163, 1992

[3] D. Bernstein, Faster square root in annoyng finite field, preprint, Available from
http://cr.yp.to/papers/sqroot.pdf, 2001

[4] Z. Cao, Q. Sha, and X. Fan, Adlemen-Manders-Miller root extraction method revisited,
preprint, available from http://arxiv.org/abs/1111.4877, 2011

[5] G.H. Cho, N. Koo, E. Ha, and S. Kwon, New cube root algorithm based on third or-
der linear recurrence relation in finite field, preprint, available from http://eprint.iacr.
org/2013/024.pdf, 2013

[6] M. Cipolla, Un metodo per la risolutione della congruenza di secondo grado, Rendiconto
dell’Accademia Scienze Fisiche e Matematiche, Napoli, Ser.3,Vol. IX, pp. 154-163, 1903

[7] I.B. Damg̊ard and G.S. Frandsen, Efficient algorithm for the gcd and cubic residuosity in
the ring of Eisenstein integers, J. Symbolic Computation, Vol. 39, pp. 643-652, 2005

[8] K.J. Giuliani and G. Gong, A New Algorithm to compute remote terms in special types of
characteristic sequences, Proc. International Conference on Sequences and Their Applica-
tions (SETA), LNCS 4086, pp. 237-247, 2006

10

[9] G. Gong and L. Harn, Public key cryptosystems based on cubic finite field extensions,
IEEE Trans. Information Theory, Vol.45, pp. 2601-2605, 1999

[10] F. Kong, Z. Cai, J. Yu, and D. Li, Improved Generalized Atkin Algorithm for Computing
Square Roots in Finite Fields, Information Processing Letters, Vol. 98, no. 1, pp. 1-5,
2006.

[11] D.H. Lehmer, Computer technology applied to the theory of numbers, Studies in Number
Theory, Englewood Cliffs, NJ: Pretice-Hall, pp. 117-151, 1969

[12] R. Lidl and H. Niederreiter, Finite Fields, Cambridge University Press, 1997

[13] S. Lindhurst, An analysis of Shanks’s algorithm for computing square roots in finite fields,
CRM Proc. and Lecture Notes, vol. 19, pp. 231-242, 1999

[14] A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone, and T. Yaghoobian, Ap-
plications of Finite Fields, Springer, 1992

[15] S. Müller, On the computation of square roots in finite fields, Design, Codes and Cryp-
tography, Vol.31, pp. 301-312, 2004

[16] NIST, Digital Signature Standard, Federal Information Processing Stan-
dard 186-3, National Institute of Standards and Technology, Available from
http://csrc.nist.gov/publications/fips/, 2000

[17] D. Shanks, Five number-theoretic algorithms, Proc. 2nd Manitoba Conf. Number. Math.,
Manitoba, Canada, pp. 51-70, 1972

[18] I. Shparlinski, Finite Fields: Theory and Computation, Springer, 1999

[19] A. Tonelli, Bemerkung über die Auflösung quadratischer Congruenzen, Göttinger
Nachrichten, pp. 344-346, 1891

11

