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Abstract

Efficient computation of r-th root in F, has many applications in computational number
theory and many other related areas. We present a new r-th root formula which generalizes
Miiller’s result on square root, and which provides a possible improvement of the Cipolla-
Lehmer type algorithms for general case. More precisely, for given r-th power ¢ € F,,

(Sigab)-r

we show that there exists @ € F,r such that T'r (a = ) = ¢ where Tr(a) =

a4+al+a? +---+a? " and a is a root of certain irreducible polynomial of degree r over
F,.
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1 Introduction

Let 7 > 1 be an integer and ¢ be a power of a prime. Finding r-th root (or finding a root
of 2" = ¢) in finite field F, has many applications in computational number theory and in
many other related topics. Some such examples include point halving and point compression
on elliptic curves [16], where square root computations are needed. Similar applications for
high genus curves require r-th root computation also.

Among several available root extraction methods of the equation " —¢ = 0, two algorithms
are applicable for any integer r > 1; the Adleman-Manders-Miller [1] algorithm, a straight-
forward generalization of the Tonelli-Shanks square root algorithm [17, 19] to the case of r-th
roots, and the Cipolla-Lehmer [6, 11] algorithms. Due to the cumbersome extension field
arithmetic needed for the Cipolla-Lehmer algorithm, one usually prefers the Tonelli-Shanks
or the Adleman-Manders-Miller, and other related researches [2, 10, 3] exist to improve the
Tonelli-Shanks.

The efficiency of the Adleman-Manders-Miller algorithm depends on the exponent v of r
satisfying r”|q¢ — 1 and 7" fq — 1, which makes the worst case complexity of the Adleman-
Manders-Miller O(logrlog* ¢) [1, 4] while the Cipolla-Lehmer can be executed in O(rlog® q)
[6, 11]. Even in the case of r = 2, it had been observed in [15] that, for a prime p = 9x 23354 -1,
running the Tonelli-Shanks algorithm using various software such as Magma, Mathematica
and Maple cost roughly 5 minutes, 45 minutes, 390 minutes, respectively while the Cipolla-
Lehmer costs under 1 minute in any of the above softwares. It should be mentioned that such
extreme cases (of p with p — 1 divisible by high powers of 2) do happen in many cryptographic
applications. For example, one of the NIST suggested curve [16] P-224 : y? = 2% — 32 + b over
F, uses a prime p = 2224 _ 996 4 1.



On the other hand, it is also true that the Adleman-Manders-Miller runs faster than the
Cipolla-Lehmer for small exponents v. A possible speed-up of the Cipolla-Lehmer comparable
to the Tonelli-Shanks for low exponent v was first given by Miiller [15], where a special type
of Lucas sequence corresponding to f(z) = 2 — Pz + 1 was used. The constant term 1 of
f(x) makes the given algorithm runs quite faster compared with the original Cipolla-Lehmer.
A similar result for the case r = 3 was also obtained in [5].

In this paper, we show that the idea in [15] can be generalized to any integer r > 1. More
precisely, for any r-th power ¢ in Fy, we can construct a polynomial f(x) € Fy[z] of degree r

e )"
with constant term £1 such that the irreducibility of f implies that { Tr(« = )} =c

where f(o) = 0 and Tr(a) = a + a4+ a? + -+ a? . We mention that the case r = 2
% +q-2

(i.e., {T?“(ozqfl)}2 = ¢) is the result in [15] and the case r = 3 (i.e., {Tr(a o )}® =¢) is
shown in [5]. Therefore a possible existence of efficient linear recurrence relation computing
Tr(a™) guarantees the existence of efficient r-th root algorithm, where the case r = 2,3 are
well-known.

The remainder of this paper is organized as follows: In Section 2, we introduce the root
extraction algorithms in F,. In Section 3, we describe the r-th order linear recurrence sequences.
In Section 4, we propose a new r-th formula which has a possible application when combined
with linear recurrence relations. Finally, in Section 5, we give concluding remarks and future
works.

2 Existing r-th Root Extraction Methods in F,

In this section, we introduce two standard algorithms for computing r-th root in finite field,
that is, the Adleman-Manders-Miller [1] algorithm and the Cipolla-Lehmer algorithm [6, 11].

2.1 Tonelli-Shanks and Adleman-Manders-Miller algorithm

The Adleman-Manders-Miller algorithm [1] is described in Table 1. Assuming r << log ¢ and
DLP (discrete logarithm problem) is easy in the multiplicative subgroup of order r in F, the
complexity is given as O(v,(q— 1) logrlog? ¢), where v,.(¢— 1) denotes the largest non-negative
integer v satisfying r”|q — 1. Therefore, when v,.(¢ — 1) is small, the Adleman-Manders-Miller
algorithm has the complexity O(logrlog®q), while has the worst complexity O(logrlog? q)

when v,(¢ — 1) =~ logq.

2.2 Cipolla-Lehmer algorithm

The Cipolla-Lehmer algorithm [6, 11] is described in Table 2. Its complexity is O(rlog?q),
which does not depend on v = v,(q — 1) unlike the case of the Adleman-Manders-Miller.
However, for small v = v,.(¢—1), the Adleman-Manders-Miller algorithm performs better than
the Cipolla-Lehmer due to the relatively large constant term in the complexity estimation of
the Cipolla-Lehmer usually omitted in the notation O. Hence the refinements of the Cipolla-
Lehmer is desirable.

Let ¢ € Fy be an r-th power in Fy with ¢ = 1 (mod r). To find an r-th root of ¢, the Cipolla-

Lehmer algorithm needs an irreducible polynomial f(z) = 2" —b, 12" ' —b, 92" 2 —---—bjz+
(—1)"c with constant term (—1)"c. Letting a € Fy be a root of f, we get altata*ttd T = ¢
Tisgd i

so that @+ is an 7-th root of c. Irreducibility testing of f and the exponentiation o™ »



Table 1: Adleman-Manders-Miller r-th root algorithm

Input: An rth power § in F, with r|q —1

Output: An r-th root of ¢

Step 1:

Let ¢ — 1 = r®t with (r,t) =1

Compute the least nonnegative integer u such that ¢|ru — 1
Choose p randomly in F,

Step 2:

a+ p Tt e pt

if a =1, go to Step 1

Step 3:

b+ 61 he1

Step 4:

fori=1tos—1
deb "

if d=1, then j+ 0
else then j < —log, d (compute the discrete logarithm)
b < b(c"), h + hcl
c+c"
end for
Step 5:
return 6 - h

Table 2: Cipolla-Lehmer r-th root algorithm

Input: An r-th power c in I,
Output: A r-th root of ¢

Step 1:

Choose b1, b2, -+ ,b,—1 randomly in F,

Step 2:

f(@) 2" —bpqx" ' — b 92" 2 — . — bz + (—1)"c
if f is reducible, then go to Step 1

Step 3:

r—1 4

>i—q 9
Return = = — (mod f(z))

r—1 4
(or computing x =t (mod f(z))) needs many multiplications in Fy, and the number of
such multiplications depends on the coefficients of f. One may choose a low hamming-weight

r—1 i

7=
polynomial (i.e., trinomial) to reduce the cost of computing z— +  (mod f(z)).



3 Linear Recurrence Sequences

Let f(x) =a" —b,_12" ' — b, 92" 2 — .. —byx — by (b; € F,) be irreducible over F,. An r-th
order linear recurrence sequence sy corresponding to f(x) is defined as

Sk =br_18k—1 + br_28p_2+ -+ boSk—_r, k>r.

It is well-known [18, 12] that such s is completely determined when f and the first r terms
50,51, ,5r—1 are given. In fact, there is uniquely determined ¢ € F,~ such that

S = Tr(@ak), (1)

where o is a root of f(x) and the trace map T'r : Fir — F, is defined as Tr(8) = 8 + B9 +

ﬁq2 4+ qufl. We say that si is the characteristic sequence generated by f(x) if § = 1, i.e.,
if s, can be expressed as

sp = Tr(af) = of + o™ + o b (2)

When it is needed to emphasize that the characteristic sequence s, comes from the polynomial
f, we denote such sj using various notations such as sx(f),sk(bo,- - ,br—1), or sg(a). For
small values of r, the sequence s; can be computed using ”double and add” method.

Example 1:
A. When r = 2 and f(z) = 22 — Pz + Q, one has the following Lucas relation [15] :

_ 2 n _ m
Son = S, — 2Q", Sp4+m = SnSm — Q" sn—m

The exponentiation Q" gives extra burden to the computation s, and one can compute the
recurrence relation more efficiently letting @ = 1.

B. When r = 3 and f(x) = 2® — az? + br — ¢, one has the following relation which can be
found, for example, in the work of Gong and Harn [9] :

— 2 n — m m
Son = Sp, — 2¢"5_p, Sn4m = SnSm — € Sp—mS—m + C Sn—2m (3)

As in the case of second order recurrence relation, letting ¢ = 1 makes the computation of the
sequence cost effective.

Note that letting the constant term of f(z) to be =1 makes it impossible to use the Cipolla-
Lehmer. For example, when r = 2, to apply the Cipolla-Lehmer for the computation of the
roots of 22 — ¢ = 0, one has to use the polynomial 22 — bz + ¢ not 2> — bz + 1. However, as is
done by Miiller [15] for the quadratic case, an wise choice of f of degree r gives a way to find
the r-th root of ¢ € F, as will be shown in the next sections.

From now on, we will consider the characteristic sequence s which comes from the irre-
ducible polynomial f(z) = 2" — b,_12" "' — b,_o02" 2 — .- — bz + (—1)".

4 Trace Expression of r-th Root

Our main result is the Theorem 2, and we will discuss the necessary prerequisites first. Let r
be an integer > 1 and let b be in F, with ¢ =1 (mod ) such that

f@)=(@+ (=17 + (=) o+ (-1)r)e (4)



is irreducible over F,. Also we define a polynomial h(z) as
h(z) =" + (=1)"" (b + (=1)"r)(z — 1). ()
Then one has the following relation

h(1+ (=1)"z) = (-1)"f(2), (6)
because
h(1+ (=1)"z) = (1+ (1)) + (=)™ 0+ (=1)r) (1 + (=1)"
()" (@ + (=1)")" + (=1 b+ (=1)"r) (-1
(D) {(z+ (1)) + (1) b+ (=1)r)z} = (=1)" f(=). (9)

The above equations implies that one has the following when 7 is even,
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fey=(x+1)"—b+r)z, h(x)=2"—Ob+r)z+(b+r), h(1+4+z) = f(x), (10)
and when r is odd, one has
f@)=E-1)"+0O-r)z, hlz)=2"+®B-r)xz—(b—1), h(1—x)=—f(x). (11)

In particular, the irreducibility of f implies the irreducibility of h and vice versa.
Suppose that « is a root of f(x). Since f(0) = (—1)", we find that the norm of f (i.e., the
product of all the conjugates of «) is

a1+q+q2+-~-+q“1 - 1. (12)

A classical result of Hilbert Theorem 90 says that there exists 3 € Fgr such that 8" = a. More
precisely, using the equation (12), one can show that
T A L I A A 6 F:)

1:q’ from the equation (13), we get

Therefore letting 8 = (14 o + a't9 ... 4 gltat+07)

8" = a.
Theorem 1. Assuming f(a) =0 and ¢ =1 (mod r), we have
Lt+qt+q® 4o tq" ! =t e
v =({b+r) > if ris even,

1+g+g?+tq" 1

T =1 if ris odd.

2 r—1
. . . . 1tgtqd-tq -
In particular, when r is even and b+ is a square in Fy, one gets « ” =1.

Proof. Since h(1+ (—1)"a) = f(a) =0 and h(0) = (—1)"(b+ (—1)"r),
1+ (1) )T 9 = b+ (—1)"r. (14)
On the other hand, by simplifying the equation (7), we have

h(1+ (=1)"z) = (L + (=1)"2)" = (b+ (=1)"r)z = (=1)"f(2), (15)



which implies
1+ (D) = b+ (=1)"r)a (16)
2

By taking ==0- 0 7 _th power to both sides of the above expression, one has

r—1 4 r—1 4
Yic0 1 Xi—g4

1+ (1)) Xm0t = (b+ (1))~ F a5, (17)

Comparing two expressions (14) and (17), we get

=i d (Sizga)-r T @i -1)
a T +(—1)r r = —1)r r
= (b4 (=1)"r)" (b+ (=1)"r)”
POUIED DL (18)
= (b+ (—1)"r) @ D=
Since ¢ = 1 (mod r), we have
r—2 1
-1
Z qj = 7“2) (mod ), (19)

=0 j=

which is § (mod 7) when 7 is even, and is 0 (mod 7) when 7 is odd. Noticing b+ (—1)"r € I,
one has the desired result. O

Corollary 1. Assume q =1 (mod r). If r is even, further assume that b+ r is a square in

L (
(=024 a9 T(B)T: Z (B)T

Fy. Then s
. Zingd : : -
Proof. Letting 57 = = w with 87 = a and using Theorem 1, we have w" = f2i=0 9" =
i d
o~ 5 =1 and w? = w. Therefore

, (CIg ah)—r ,
S rtgn . (B) =Tr(B7

<2{;01 a)—r <2;?;g g")—r
+ 51

= (B ik e ot ,361“17@501 aor
q 7 g—4* " g—g?yr (20)
= (WB T HWIBTI+ W BT 4wt BT

(B(Zz 0d") _|_ B Z: 04)—q + B(Z;:ol q")—q* 4+t 5(2?;01 q*)—q
= Tr(BE=0T) = 552 i(B).

r—1

)’!’

O]

Corollary 2. Assuming the same conditions as in the Corollary 1 and also assuming ¢ = 1
(mod 72), one has 8 (=1 g ()" = Syr—2 4 (B)"

T

Proof.
. (CIzg a)-r L (Eis 01#) - ..
S sr-t gy, (@) =Tr(a =) =Tr((8")
2 (21)
(Zisg a)-r .
= Tr(B ) = sges (B)
where the last equality comes from the Corollary 1. O



If b+ (—1)"r is an r-th power in [, one can explicitly find r-th root of b+ (—1)"r as follows.

Corollary 3. Assume that ¢ = 1 (mod r) and b+ (—1)"r is an r-th power in F,, then
Szr;(? qi (B)T - b + <_1)TT'.

Proof. Since a = " € F,r, we may rewrite the equation (16) as
1+ (=1)"a)" = b+ (=1)"r)B". (22)
Assume b+ (—1)"r = u” for some u in F,. Then from (1 + (—1)"a)" = u" 3", we get
(14 (-1)"a) = woup (23)

for some 7-th root of unity wp in F,. Therefore we get

Tr(B2i=0 1) = 7«_11 lTr((1+(—1)’“a)Z§;§qi)
wy u'T
1 , 24
= b+ (1)) (24)
wo u

= Wol,

where the first equality comes from wou € F, and the second equality comes from the coefficient
(=)™ (b + (=1)"7) of z in h(z) = 2" + (—=1)"T (b + (=1)"r)(z — 1). We also have the last
equality because wj =1 and b+ (—1)"r = u”. Therefore we get

Tr(BZ=0 7Y = (wou)” = b+ (~1)"r. (25)
O

Finally, combining the Corollaries 2 and 3, we have the following theorem.

Theorem 2. Suppose that ¢ =1 (mod ) and f(z) = (z + (=1)")" + (=1)" (b + (=1)"r)x
is an irreducible polynomial over F, with f(a) = 0. Assume b+ (—1)"r is an r-th power in F,.
Then s (gr—1 i, ()" =b+(=1)"r.

Proof. We have
St (@) =852 i (B)" =0+ (=1)n,

T

where the first equality comes from Corollary 2 and the second equality is Corollary 3. O

Now using the polynomial f(z), we can find an 7-th root for given r-th power ¢ in F,. For
given r-th power ¢ € Fy, define b = ¢ — (—1)"r. If f(z) with given coefficient b is irreducible,
then S (21 giy—r (f) is an r-th root of ¢. That is,

T

S (2r=1 giy—r () =b+(-1)'r=c
2

™

If the given f is not irreducible over [y, then we may twist ¢ by random ¢ € F, until we get
irreducible f with b = ¢t” — (—1)"r. Then

Sisrt o () =0+ (1) =ct’,
r2



Table 3: New r-th root algorithm for F, with ¢ = 1 (mod r?)

Input: An r-th power c in F,
Output: s satisfying s" = ¢
Step 1:
t<1,bct"—(—1)r,
f(2) & (@ + (1)) + (=1 b+ (~1)r)a
Step 2:
while f(z) is reducible over Fy
Choose random t € F,
b ct” — (=1)'r, f(z) + (z+(=1)")" + (=) (b+ (-1)"r)z
end while
Step 3:
S <= Srdah—r (f)- t1
2

which implies t*13<zr:()1 Jir—r (f) is an r-th root of ¢ (See Table 3).

Example 2

A. r = 2: For given square ¢ € Fy, we have f(z) = (:U +1)2 - (b+2)x = 22 — bx + 1 with
b=c—2. If fis irreducible over F,, one has sg—1(f)? = b+ 2 = ¢, and such s,1 can be
4 4

computed via Lucas sequence s = bsp_1 — sk—2 (See [15]).

B. r = 3: For given cube ¢ € F,, we have f(z) = (v — 1)3 + (b — 3)x = 2® — 322 + bz — 1 with
b=c+3. If f is irreducible over F,, one has s 2., »(f)> =b—3 = ¢, and such s,2,,_, can be
computed via the third order linear recurrence sgquence Sk = 3Sp_1 — bSp_o + sk_;: using the
relation in the equation (3) (See [5]).

Our theorem and examples were explained on the assumption of ¢ = 1 (mod r?). However
it should be mentioned that one can find an r-th root of ¢ when ¢ # 1 (mod 7?) easily. For
example when r» = 2 and ¢ = 3 (mod 4), a square root of a quadratic residue ¢ is given by

. Also when r = 3 and K ;i_ 1 (mod 9), one has the followings. When ¢ = 2 (mod 3), a
cube root of ¢ is given as ¢, When ¢ =4 (mod 9), a cube root of cubic residue c is given

by ¢ *5= When g = 7 (mod 9), a cube root of cubic residue ¢ is given by ¢'5°. Thus the
computational cost of finding cube root of ¢ when ¢ # 1 (mod 9) is just one exponentiation in
Fy,.

These closed formulas are not obtained by ad-hoc method. In fact, one has the following
simple result of r-th root when ¢ # 1 (mod r?).

Proposition 1. Let q be a prime power such that ¢ =1 (mod r) but ¢ # 1 (mod r?). Assume
that gcd(qr;l,r) = 1. Then, for given r-th power c in Fy, an r-th root of c can be computed
by the cost of one exponentiation in F,. In particular, if v is a prime, then the condition
gcd(%,r) = 1 is automatically satisfied so that the cost of finding r-th root of c¢ is just one
exponentiation.



Proof. We claim that there is an integer 6 depending only on r and ¢ but not on ¢ such that
T
(A)0<rq,  (B)rA0, (O) (eF) =c (26)

The condition (C) of the above equation says that cr = c, ie., "7 = 1. Since ¢ is an
r-th power in [, this condition can be satisfied if # = r (mod (¢ — 1)). Therefore writing
0 = r+k(qg—1), the condition (B) says that one should have 7+ k(g —1) = 0 (mod r?), which
is equivalent to the following equation

qg—1
r

1+k

=0 (modr). (27)

Since gcd(%, r) = 1, the above equation has unique solution £ (mod 7). Now the condition
(C) is satisfied because 0 = kqg+1r —k < (r — 1)g+ 1 < rq. Finally, if r is a prime, then the
assumption ¢ Z 1 (mod r?) implies gcd(%,r) =1. O

Example 3:

A. r = 3: When r = 3, the equation (27) becomes l—i—k% =0 (mod 3). Therefore depending
on the values of % (mod 3), the corresponding k (mod 3) is uniquely determined and they
are

<q;1k) = (1,2),(2,1). (28)

Since % = j (mod 3) implies ¢ = 35 + 1 (mod 32), we have the following table of pairs of

q (mod 3%) and corresponding 0 = kq + 3 — k
(¢ (mod 9), 0) = (4,2¢+1),(7,q+2). (29)

That is, when ¢ =4 (mod 9), the a cube root of ¢ is given as c%, and when ¢ =7 (mod 9),
the a cube root of ¢ is given as Pl

B. r = 5: When r = 5, the equation (27) becomes 1+kq;51 =0 (mod 5). Therefore depending
on the values of % (mod 5), the corresponding k& (mod 5) is uniquely determined and they
are

(Clglk> = (1,4),(2,2), (3,3), (4, 1). (30)

Since ‘?—1 = j (mod 5) implies ¢ = 55 + 1 (mod 52), we have the following table of pairs of

q (mod 5%) and corresponding § = kq+5 — k
(¢ (mod 25), 0) = (6,4¢ + 1), (11,2¢ + 3), (16,3q + 2), (21,¢ + 4). (31)

For example, when ¢ = 6 (mod 25), the an 5-th root of ¢ is given as 04(%1, and when ¢ = 11
2
(mod 25), the an 5-th root of ¢ is given as ¢ qz-rtg, ete.

Remarks:



1. The reason why we only consider the case r|¢ — 1 (i.e., ¢ = 1 (mod r)) is as follows. If
r fq — 1, then one has ged(r,q — 1) = 1 and there are a, b satisfying ra + (¢ — 1)b = 1. Thus
for any c € F;, we have ¢ = crot@=Db — (¢2)" That is, any element ¢ is an r-th powers of ¢,

2. For r-th root extraction, considering the cases r = prime is enough for practical purposes.
For example, to find 4-th root of ¢ € F,, we only have to use square root algorithm twice
instead of using 4-th root algorithm once, and the complexity of two applications of square
root algorithm is lower than that of one application of 4-th root algorithm.

5 Conclusions

Randomly selected monic polynomial over I, of degree r with nonzero constant term is irre-
ducible with probability 1 (For an explanation, see [18, 14]). Even if our choice of f in (4) is
not really random, experimental evidence (using software tools such as MAPLE and SAGE)
shows that % of such f is irreducible, which implies that an irreducible f can be found after r
random tries. Irreducibility testings of low degree polynomials are well understood and can be
implemented efficiently, see [7, 18, 12, 14]. Therefore the algorithm in Table 3 is dominated by
the complexity of step 3 which computes 8 (571 gi)—r (f). For r = 2,3, i.e., for quadratic and
2
cubic polynomials, the well-known linear recurrence sequences give faster algorithms than pre-
viously proposed Cipolla-Lehmer type algorithms. For r > 3, there are some known recurrence
relations, for example in [8]. However those sequences do not seem to give efficient algorithms

to compute s,,,(f) and further study is needed.
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