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Abstract

Superpolynomial lower bounds on the average information ratio of linear secret sharing
scheme are presented in this note for the first time. The previously known superpolynomial
lower bounds applied only to the average information ratio of linear schemes in which the
secret is a single field element. The new bounds are obtained by a simple adaptation of the
techniques in those previous works.
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1 Introduction

In a secret sharing scheme, a secret value is distributed into shares among a set of participants
in such a way that only the qualified sets of participants can recover the secret value, while
no information at all on the secret value is provided by the shares from an unqualified set.
The qualifed sets form the access structure of the scheme. Secret sharing was independently
introduced by Shamir [10] and Blakley [4]. The reader is referred to [2] for an up-to-date survey
on this topic.

Even though there exists a secret sharing scheme for every access structure [8], all known
general constructions are impractical because the size of the shares grows exponentially with
the number of participants. The general opinion among the researchers in the area is that
this is unavoidable. Nevertheless, the known lower bounds on the size of the shares are far
from proving this conjecture. Indeed, the best of the known lower bounds is the one given by
Csirmaz [5], who proved that, for every n, there exists an access structure on n participants
requiring shares of size Ω(n/ log n) times the size of the secret.

The information ratio, respectively average information ratio, of a secret sharing scheme is
the ratio between the maximum size, respectively average size, of the shares and the size of the
secret value. Lower bounds on the (average) information ratio provide lower bounds on the size
of the shares. For instance, the lower bound by Csirmaz [5] is a bound on the information ratio.

A secret sharing scheme is linear if the secret and the shares are vectors over some finite
field and the shares are the values of linear maps on the secret and some random vector. In a
linear secret sharing scheme, both the computation of the shares and the reconstruction of the
secret value can be efficiently performed if the size of the shares is polynomial on the number of
participants. In addition, because of their homomorphic properties, linear schemes are specially

1



useful for the applications of secret sharing. Moreover, most of the known construction methods
provide linear secret sharing schemes.

A special class of linear secret sharing schemes, which are called here simple, has been
mainly considered in the literature. While in a linear secret sharing scheme over a finite field F
the secret value is a vector in Fmo for some mo ≥ 1, in a simple linear secret sharing scheme,
the secret value is an element in F (that is, mo = 1). Simple linear secret sharing schemes are
equivalent to the monotone span programs introduced by Karchmer and Wigderson [9]. In some
works, as for instance [2], “linear secret sharing scheme” applies only to the simple ones while
“multi-linear secret sharing scheme” is used when mo > 1.

Differently to the general case, which includes nonlinear schemes, superpolynomial lower
bounds on the size of the shares in linear secret sharing schemes have been presented. By
counting arguments, for most access structures on n participants, the size of the shares in a
linear secret sharing scheme is 2Ω(n), but no explicit families of access structures have been
found in this situation. Nevertheless, families of access structures for which the size of the
shares in a linear scheme is nΩ(logn) have been presented [1, 3, 6, 7]. These are lower bounds on
the information ratio of simple linear secret sharing schemes, which imply lower bounds on the
size of the shares in linear secret sharing schemes [2]. Nevertheless, no superpolynomial lower
bounds on the information ratio of linear secret sharing schemes have been given.

In this note, such lower bounds are presented for the first time. They are obtained by
adapting in a quite simple way the proof in [7] (as presented in [2]) to non-simple linear secret
sharing schemes.

2 Linear Secret Sharing Schemes

We present here some definitions and known results about linear secret sharing schemes and
also the notation that will be used in the proof of the main result. In particular, Proposition 2.1
is one of the main ingredients in that proof.

Consider a set P of participants, together with a special participant po /∈ P called dealer,
and take Q = P ∪ {po}. An access structure Γ on P is a monotone increasing family of subsets
of P , that is, B ∈ Γ if A ⊆ B ⊆ P and A ∈ Γ. The members of the access structure are called
qualified sets. Let F be a finite field, V and (Ep)p∈Q vector spaces over F, and

π : V →
∏
p∈Q

Ep, x 7→ (πp(v))p∈Q,

a linear map such that πp : V → Ep is surjective for every p ∈ Q. For a set A ⊆ Q, we consider
EA =

∏
p∈AEp and the linear map πA : V → EA is given by πA = (πp)p∈A. In addition, we

notate Eo = Ep0 and πo = πpo . The linear map π defines an F-linear secret sharing scheme
with access structure Γ on the set of participants P if the following conditions are satisfied.

1. If A ∈ Γ, then kerπA ⊆ kerπo.

2. If A /∈ Γ, then V = kerπo + kerπA.

Take d = dimV and, for p ∈ Q and A ⊆ Q, take mp = dimEp and mA =
∑

p∈Amp. We
notate m = mQ and mo = mpo . By taking bases of those vector spaces, the linear map π can
be represented by a d×m matrix G such that xG = π(x) for every v ∈ V . The columns of this
matrix are indexed by the elements in K = {1, . . . ,m}, that is G = (Gk)k∈K , and there is a
map ψ : K → Q such that, for every p ∈ Q, the d×mp matrix Gp = (Gk)ψ(k)=p represents the
linear map πp. As before, we notate Go = Gpo and GA = (Gk)ψ(k)∈A for a set A ⊆ Q. Observe
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that GA is a d×mA matrix. The same notation will be used for other matrices whose columns
are indexed by K. The matrix G satisfies the following properties in connection to the access
structure Γ of the linear secret sharing scheme.

1. If A ∈ Γ, then every column of Go is a linear combination of the columns of GA.

2. If A /∈ Γ, then no nonzero linear combination of the columns of Go equals a linear combi-
nation of the columns of GA.

The information ratio and the average information ratio of a linear secret sharing scheme are
defined, respectively, as

σ =
maxp∈P dimEp

dimEo
=

maxp∈P mp

mo
and σ̃ =

1

|P |
·
∑

p∈P dimEp

dimEo
=

mP

|P | ·mo

Proposition 2.1. The following properties hold for every linear secret sharing scheme and for
every A ⊆ P .

1. If A ∈ Γ, then there exists an mo ×m matrix H = (Hk)k∈K such that Ho is the mo ×mo

identity matrix, HPrA = 0, and GH⊤ = 0.

2. If A /∈ Γ, then there exists an mo × d matrix R such that the matrix RG = S = (Sk)k∈K
satisfies that So is the mo ×mo identity matrix and SA = 0.

Proof. The first statement is proved by taking into account that every column of Go is a linear
combination of the columns of GA if A ∈ Γ. If A /∈ Γ, then V = kerπo + kerπA, and hence
there exist mo vectors v1, . . . , vmo ∈ kerπA such that {πo(v1), . . . , πo(vmo)} is a basis of Eo.
Let R′ be the mo × d matrix whose rows are the coordinates of the vectors v1, . . . , vmo . Then
R′M = S′ = (S′

k)k∈K is such that S′
o is invertible and S′

A = 0. Clearly, the proof is concluded
by taking R = (S′

o)
−1R′.

3 The Bound

The main result in this note, Theorem 3.4, is proved in this section by adapting the proof by Gál
and Pudlák [7], as presented in [2], of the same result for simple linear secret sharing schemes.
The adaptation is based on Proposition 2.1 and the following technical result, whose proof is
straightforward.

Lemma 3.1. Let D be an ℓ× t {0, 1}-matrix. Let D̂ be the moℓ×mot matrix that is obtained
from D by replacing every entry equal to 1 with the mo ×mo identity matrix and every entry
equal to 0 with the mo ×mo zero matrix. Then rankF D̂ ≥ mo rankFD for every field F.

Let Γ be an access structure on P . A family C = (Cj0, Cj1)j∈J of pairs of subsets of P
satisfies the unique intersection property for Γ if the following conditions are satisfied.

1. P r (Cj0 ∪ Cj1) /∈ Γ for every j ∈ J .

2. B ∩ Cj0 = ∅ or B ∩ Cj1 = ∅ for every j ∈ J and B ∈ minΓ.

Observe that B ∩ (Cj0 ∪ Cj1) ̸= ∅ if B ∈ minΓ, and hence every minimal qualified set has
nonempty intersection with exactly one of the sets Cj0, Cj1. Let (Bi)i∈I be the family of
minimal qualified subsets of Γ. Consider the matrix D = D(Γ, C) = (Dij)(i,j)∈I×J defined by
Dij = 0 if Bi ∩ Cj0 ̸= ∅ and Dij = 1 if Bi ∩ Cj1 ̸= ∅. The following result is proved in [2, 7].
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Proposition 3.2. For every n, there exists an access structure Γ on n participants that admits
a family C with the unique intersection property such that rankFD(Γ, C) is nΩ(logn) for every
field F.

For mo ≥ 1, consider the block matrix D̂ = D̂(Γ, C,mo) = (D̂ij)(i,j)∈I×J such that D̂ij is

the mo × mo identity matrix if Dij = 1 and D̂ij is the mo × mo zero matrix if Dij = 0. By

Lemma 3.1, rankF D̂ ≥ mo rankFD for every field F.

Proposition 3.3. Let Γ be an access structure on a set of participants P and C a family
satisfying the unique intersection property for Γ. Take D = D(Γ, C). Then, for every finite field
F, the average information ratio of every F-linear secret sharing scheme with access structure Γ
is at least (rankFD)/|P |.

Proof. Put minΓ = (Bi)i∈I and C = (Cj0, Cj1)j∈J . Consider an F-linear secret sharing scheme,
represented by a matrix G. For j ∈ J , take Aj = P r (Cj0 ∪ Cj1). By Proposition 2.1, the
following properties hold.

• For every i ∈ I, there exists a matrix H i = (H i
k)k∈K such that H i

o is the mo×mo identity
matrix, HPrBi = 0, and G(H i)⊤ = 0.

• For every j ∈ J , there exists an mo × d matrix Rj such that the matrix RjG = Sj =
(Sjk)k∈K satisfies that Sjo is the mo ×mo identity matrix and SjAj

= 0.

Then Sj(H i)⊤ = RjG(H i)⊤ = 0, and hence SjP (H
i
P )

⊤ = −Imo for every i ∈ I and j ∈ J ,
where Imo is the mo ×mo identity matrix. For every j ∈ J , consider the matrix T j defined by
T jCj0

= 0 and T jQrCj0
= −SjQrCj0

. Then T jP (H
i
P )

⊤ = 0 if Bj ∩ Cj0 ̸= ∅ and T jP (H
i
P )

⊤ = Imo

if Bj ∩ Cj1 ̸= ∅. We can assume that I = {1, . . . , ℓ} and J = {1, . . . , t}. Consider the block
matrices

T =

 T 1
P
...
T ℓP

 and H =

 H1
P
...
Ht
P


Clearly, TH⊤ = D̂ = D̂(Γ, C,mo). Since T has mP columns, mP ≥ rankF D̂ ≥ mo rankFD and
the proof is concluded.

Finally, the main result is obtained by combining Propositions 3.2 and 3.3.

Theorem 3.4. For every n there exists an access structure on n participants such that, for
every finite field F, the average information rate of every F-linear secret sharing scheme for Γ
is nΩ(logn).
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