
Garbled Circuits Checking Garbled Circuits:
More Efficient and Secure Two-Party Computation

Payman Mohassel∗ Ben Riva†

June 20, 2013

Abstract

Applying cut-and-choose techniques to Yao’s garbled circuit protocol has been a promising approach
for designing efficient Two-Party Computation (2PC) with malicious and covert security, as is evident from
various optimizations and software implementations in the recent years. We revisit the security and efficiency
properties of this popular approach and propose alternative constructions and a new definition that are more
suitable for use in practice.

• We design an efficient fully-secure 2PC protocol for two-output functions that only requires O(t|C|)
symmetric-key operations (with small constant factors, and ignoring factors that are independent of the
circuit in use) in the Random Oracle Model, where |C| is the circuit size and t is a statistical security
parameter. This is essentially the optimal complexity for protocols based on cut-and-choose, resolving
a main question left open by the previous work on the subject.
Our protocol utilizes novel techniques for enforcing garbler’s input consistency and handling two-
output functions that are more efficient than all prior solutions.

• Motivated by the goal of eliminating the all-or-nothing nature of 2PC with covert security (that privacy
and correctness are fully compromised if the adversary is not caught in the challenge phase), we pro-
pose a new security definition for 2PC that strengthens the guarantees provided by the standard covert
model, and offers a smoother security vs. efficiency tradeoff to protocol designers in choosing the right
deterrence factor. In our new notion, correctness is always guaranteed, privacy is fully guaranteed
with probability (1 − ε), and with probability ε (i.e. the event of undetected cheating), privacy is only
“partially compromised” with at most a single bit of information leaked, in case of an abort.
We present two efficient 2PC constructions achieving our new notion. Both protocols are competitive
with the previous covert 2PC protocols based on cut-and-choose.

A distinct feature of the techniques we use in all our constructions is to check consistency of inputs and
outputs using new gadgets that are themselves garbled circuits, and to verify validity of these gadgets using
multi-stage cut-and-choose openings.

1 Introduction

Informally, a secure two-party protocol for a known function f(·, ·) is a protocol between Alice and Bob with
private inputs x and y that satisfies the following two requirements: (1) Correctness: If at least one of the players
is honest then the result should be the correct output of f(x, y); (2) Privacy: No player learns any information
about the other player’s input, except for the function output.

Security is defined with respect to an adversary, who is semi-honest if the corrupted players always follow
the protocol, is malicious if the players can arbitrarily deviate, and is covert in case a cheating player has an
incentive not to be caught (or more specifically, any deviation can be detected with a constant probability).
∗University of Calgary, Canada.
†Tel Aviv University, Israel. Research supported by the Check Point Institute for Information Security and an ISF grant.

1

A classical solution for the case of semi-honest players (i.e., players who do not deviate from the protocol) is
to use a garbled circuit and oblivious transfer [28, 18]: The resulting protocol is fairly efficient since computing
each gate requires a constant number of symmetric-key encryptions. Furthermore, recent results show how to
improve both the computation and communication cost of the garbling process (e.g., getting XOR gates for free
[14], reducing communication [5, 25], and designing tailored circuits [6]).

The case of malicious players is more complicated and less efficient. A classical solution is to use zero-
knowledge proofs to verify that the players follow the protocol. However, the proofs in this case are rather
inefficient. [11, 22] show how to garble a circuit in such a way that these proofs can be instantiated more effi-
ciently. Still, these constructions require a constant number of exponentiations per gate, making them inefficient
for large circuits.

See Appendix A for other approaches we do not discuss here.

THE CUT-AND-CHOOSE APPROACH. A slightly more explored direction is based on using the cut-and-choose
method for checking the garbled circuit. (E.g., see implementations by [25, 26, 15].) Instead of sending only
one (and possibly not properly constructed) garbled circuit, Alice sends t garbled circuits. Then, Bob asks her
to open a constant fraction of them. For those circuits, Alice sends all the randomness she used in the garbling
process. Bob can check that the opened circuits were indeed correctly garbled. If that is not the case, Bob knows
that Alice has cheated and aborts. Otherwise, Bob evaluates the remaining garbled circuits and computes the
majority output. It is shown in [19, 26] that with high probability the majority of the evaluated garbled circuits
are properly constructed.

However, the above cut-and-choose of the circuits is not sufficient to obtain a fully-secure 2PC. There are
three well-known issues to resolve: (1) Garbler’s input consistency: Since Bob evaluates many circuits, he
needs assurance that Alice uses the same input in all of them. (2) Evaluator’s input consistency: Alice can use
different input labels in the oblivious transfers and in creation of the garbled circuits, in such a way that reveals
Bob’s input. (E.g., she can use invalid labels for the input bit 0 in the oblivious transfer, but valid ones for 1,
causing Bob to abort if his input bit is 0.) (3) Two-output functions: There are cases in which the players want
to securely compute two different functions f1, f2 where each party only learns his own output and is assured he
has obtained the correct result.

When addressing these issues, the deciding efficiency factors are both the number and the type of additional
cryptographic operations required. By expensive operations, we refer to cryptographic primitives that require
exponentiations (e.g. oblivious transfer, or public-key encryption), and by inexpensive operations we mean the
use of primitives that do not require exponentiations (e.g. symmetric-key encryption, commitments, or hashing).
To simplify the exposition, from now on we omit small constants and complexities that are independent of the
computation size or input length, unless said otherwise.

To address the first issue, i.e. how to make sure Alice is using the same input in all circuits, [20, 17] present
two methods that requireO(t2 ·n1) inexpensive cryptographic operations (commitments), where n1 is the length
of Alice’s input, and t is the number of circuits we use in the cut-and-choose. ([27] shows how to reduce this
asymptotic overhead, but with large constants even for small security parameters.) [20, 19, 26] show alternative
methods that require O(t · n1) expensive cryptographic operations (i.e. exponentiations). These consistency-
checking mechanisms can lead to significant overhead. Recall that garbling of a single gate requires a constant
number of symmetric encryptions, where the constant is 4 in most implementations. Thus, e.g. for t = 130,
the price of checking consistency for a single input bit is roughly equivalent to the price of garbling several tens
of additional gates in each circuit in the first method, and even more in the second. Moreover, the first method
has a large communication overhead (e.g., for input size n1 = 500 and t = 130, it requires several millions of
commitments, with a total communication overhead of hundreds of megabytes).

To address the second issue, i.e. making sure Alice is using the same labels in her OT answers and the
garbled circuits, [17] presents a method that requires O(t · max(4n2, 8t)) expensive cryptographic operations
(specifically, oblivious transfers), where n2 is the length of Bob’s input. [19, 26] introduce alternative methods
that require O(t · n2) expensive cryptographic operations.

To address the last issue, of verifying the computation output, [17] proposes to apply a one time MAC to

2

the output and XOR the result with a random input to hide the outcome (both are done as part of the circuit).
However, this solution increases Alice’s input with additional q1 + 2t input bits and increases the circuit size by
O(t ·q1) gates, where q1 is Alice’s output length (i.e. overall overhead ofO(t2 ·q1) inexpensive operations). [26]
suggests a solution that requires the use of digital signatures and a witness-indistinguishable proof, resulting in
a total overhead of O(t · q1) expensive operations.

In the covert setting [1] the techniques are similar, although the issue of the garbler’s input consistency is not
always relevant [5, 1].

ALL-OR-NOTHING SECURITY VS. SECURITY WITH INPUT-DEPENDENT ABORT. All the cut-and-choose
protocols discussed above provide an all-or-nothing guarantee, which means that both correctness and privacy
are preserved with the same probability (the probability of getting caught in case of cheating), and are completely
compromised if cheating is not detected. For example, in case of a protocol with covert security and deterrence
factor of 1/2, there is a 50% chance that the protocol reveals the honest party’s input and provides him with an
incorrect output. This can become an obstacle to using covert security, in some practical scenarios. For example,
the participants of an MPC protocol may not be able to afford the lack of correctness or privacy (even if only
with a constant probability), due to the high financial/legal cost, or the loss of reputation.

[20] suggests an alternative to the all-or-nothing approach and designs a secure two-party protocol that
always guarantees correctness but may leak one bit of information to a malicious party. While this security
guarantee is weaker than the standard definition of security against covert/malicious adversaries, it ensures cor-
rectness and ”partial privacy” even in case of successful cheating, making it a reasonable relaxation in some
scenarios.

The idea behind the protocols of [20] is as follows: Alice garbles a circuit gc1 and sends it to Bob, along with
the labels of Alice’s input-wires. They execute a fully-secure oblivious transfer protocol in which Bob learns
the labels for his input-wires. Then, they run the same steps in the other direction, where Bob garbles gc2 and
Alice is the receiver. Next, each player evaluates the garbled circuit he or she received, resulting in output-wire
label outi (we require that the output-wire labels are the actual outputs concatenated with random labels). Last,
each player computes the supposed to be concatenation out1 ◦ out2. (Alice gets out1 from her evaluation, and
can determine the value of out2 by herself. Bob does the same.) Now they run a protocol for securely testing
whether their values out1 ◦ out2 are the same. If they are indeed the same, they output b. Otherwise, they abort.

The resulting protocol is highly efficient, requiring only two garbled circuits and the associated oblivious
transfers. (See [7] for an optimized variant of the protocol and its performance.) Since one of the players is
honest, the result from his garbled circuit will be correct. Thus, if the honest party does not abort, the output is
indeed correct. On the other hand, if one of the players is malicious, he can always learn one bit of information by
observing whether the honest party aborts or not in the final equality test. We call this scenario Input-Dependent
Abort (IDA) (following [9]).

1.1 Our Contributions

Given the discussion above, we put forth and answer the following two questions: (1) Can we improve on the
efficiency of the existing solutions for checking input-consistency and handling two-output functions, to the
extent that they are no longer considered a major computation/communication overhead? (2) Can we design
cut-and-choose protocols that do not suffer from the all-or-nothing limitation of standard constructions but that
provide better security guarantees than those of 2PC with input-dependent abort?

In the process of answering these questions, we introduce a set of new techniques to enforce consistency of
inputs and outputs in garbled circuits. Interestingly, these techniques themselves employ specially-designed gar-
bled circuits (gadgets) correctness of which is checked as part of a modified cut-and-choose process containing
multiple opening stages.

3

P1’s input P2’s input Two-output Overhead

[17] inexpensive(t2n1)
expensive(max(4n2, 8t))+

inexpensive(t ·max(4n2, 8t))
inexpensive(t2q1)

[19, 26] expensive(tn1) expensive(tn2) expensive(tq1)
Our protocol inexpensive(tn1) inexpensive(t ·max(4n2, 8t)) inexpensive(tq1)

Table 1: Comparison of different fully secure 2PC protocols. ni is the length of Pi’s input, q1 is the length of
P1’s output, and t is a statistical security parameter (where t garbled circuits are used in the cut-and-choose).
The number of base OTs in the OT extension is omitted as it is independent of the circuit and input sizes.

1.1.1 Fully-Secure 2PC Based on Cut-and-Choose with Small Overheads.

Towards answering the first question, we propose new and efficient solutions for the three problems of (1) Gar-
bler’s input consistency (2) Evaluator’s input consistency and (3) Handling two-output functions, that asymptot-
ically and concretely improve on all previous solutions.

First, we show how to use garbled XOR-gates to efficiently enforce the garbler’s input consistency, while
requiring only O(t · n1) inexpensive operations. This approach asymptotically improves the solutions in [20,
17], and only requires inexpensive operations in contrast to the solution of [26]. Second, we observe that
the solution of [17] to the evaluator’s input consistency issue can be improved by combining it with the OT
extension of [21] and the Free-XOR technique of [14]. The resulting protocol requires only O(t ·max(4n2, 8t))
inexpensive operations. Third, we show how to use garbled identity-gates to efficiently solve the two-output
function problem, while requiring only O(t · q1) inexpensive operations, where q1 is the garbler’s output length,
improving on the recent construction of [26] which requires the same number of expensive operations. The
resulting 2PC protocol is constant round and asymptotically better than all previous constructions based on the
cut-and-choose method [20, 17, 19, 26] (except for [27], which is impractical due to large constants). In Table 1,
we compare the protocol’s complexity with previous constructions. We stress that the efficiency of our protocol
relies on the efficient OT extension of [21], which allows one to efficiently extend a small number of OTs to n
OTs with the price of only O(n) invocations of a hash function. The protocol of [21] is in the Random Oracle
Model (ROM) and our construction inherits the same weakness. (Besides using ROM for the OT-extension of
[21], in some of our techniques we show two alternatives: A more efficient instantiation in the ROM, and one
without the ROM requirement, which still is more efficient than current techniques.)

We remark that our proposed solutions can be modified to work with any of the existing garbled-circuit
optimization techniques of [14, 5, 25, 6, 15].

Furthermore, in Appendix E we describe how to use our techniques to construct a fully-secure 2PC protocol
for the case where y is not private, using only a single garbled circuit. This scenario which we call authenti-
cated computation with private inputs naturally arises in applications such as anonymous credentials or targeted
advertising.

Our main contributions are the new techniques we use for solving the Garbler’s input consistency issue
and handling two-output functions. Next, to give a flavor of our techniques, we present the ideas behind our
solutions.

MULTI-STAGE CUT-AND-CHOOSE AND HANDLING TWO-OUTPUT FUNCTIONS. From now on we denote by
P1 the garbler (Alice), and by P2 the evaluator (Bob). Note that the main difficulty here is to convince the
garbler, P1, that the output he receives is correct. (Privacy of the output is easily achieved by xoring the output
with a random string.)

A common method for authenticating the output of a garbled circuit is to send the random labels resulted
from the evaluation of the garbled circuit. However, when we use the cut-and-choose method, many circuits
are being evaluated, and sending the labels for all the garbled circuits can leak secret information (e.g., P1 can
create a single bad circuit that simply outputs P2’s input, and not get caught with high probability). We can fix
this issue by using the same output-wire labels in all the garbled circuits, but then we would lose our authenticity

4

guarantee since P2 learns all the output-wire labels from the opened circuits and can use that information to
tamper with the output of the evaluated circuits.

We propose a workaround that allows us to simultaneously use the same output-wire labels in all circuits,
and preserve the authenticity guarantee, in cut-and-choose 2PC. We separate the “cut” step from the “opening”
step (this is a recurring idea in all our constructions). After P1 sends the t garbled circuits, P2 picks a random
subset S which he wants to check and sends it to P1. Then, instead of opening the garbled circuits in S, they
proceed to the evaluation of the rest of the garbled circuits. I.e., P1 sends the labels of his input-wires for the
garbled circuits not in S; P2 evaluates all of them and takes the majority; he then commits to the output along
with the corresponding output-wire labels. (Note that since the opening step is not performed yet, P2 cannot
guess the unknown output-wire labels and commit to the wrong output). Now, they complete the cut-and-choose
and do the opening step: P1 sends the randomness he used for all the garbled circuits in S, and P2 verifies
that everything was done correctly. If so, P2 decommits the output and reveals to P1 the actual output and its
output-wire labels. To summarize, since P1 learns the output only after P2 has verified the garbled circuits, he
cannot cheat in this new cut-and-choose strategy, any differently than he could in regular cut-and-choose. On
the other hand, since P2 is committed to his output before the opening, he cannot change the output after he sees
the opened circuits.1

The above solution can be applied to most previous 2PC protocols based on cut-and-choose to obtain their
two-output variants. But, since the circuit checking is done after the circuit evaluation, the above solution falls
short when combined with circuit streaming or parallelized garbling techniques [6, 15].

In Appendix C.2 we describe a second variant of this protocol that is compatible with those techniques. The
cost of this variant is only additional t · q1 commitments.

XOR-GADGETS AND GARBLER’S INPUT CONSISTENCY. Here, our goal is to make sure P1 uses the same
input in all (or at least most of) the evaluated garbled circuits. Observe that we do not have the same issue with
P2’s input since for each specific input bit, P2 learns the t corresponding input-wire labels using a single OT.
But, since P1 does not use OT to learn the labels for his input-wires, the same approach does not work here.

First, we augment the circuit C being computed with a small circuit we call an XOR-gadget. Say we want
to compute the circuit C(x, y) where x is P1’s input, and y is P2’s. Instead of working with C, the players
work with a circuit that computes C1(x, y, r) = (C(x, y), x⊕ r), where r is a random input string of length |x|
generated by P1. Note that x is kept private from P2 if r is chosen randomly. Denote P1’s inputs to the t garbled
circuits of C1 by x1

1, x
1
2, . . . , x

1
t and r1

1, r
1
2, . . . , r

1
t . If P1 is honest, the r1

i -s are chosen independently at random
while all the x1

i -s are equal to x.
Let C2(x, r) = x ⊕ r, where x and r are P1’s inputs of the same length. (Note that y is not an input here.)

In addition to P1’s garbled circuits, P2 also generates t XOR-gadgets, which are garbled circuits of C2. These
garbled XOR-gadgets will be evaluated by P1 and on his own inputs. (For simplicity, we assume for now that
P2 is semi-honest.) Denote P1’s inputs to these t garbled circuits by x2

1, x
2
2, . . . , x

2
t and r2

1, r
2
2, . . . , r

2
t . If P1 is

honest, then r1
i = r2

i for all i, and all the x2
i -s are equal to P1’s actual input x.

We enforce that x1
i -s are the same in the majority of the evaluated circuits, using a combination of three

different checks: (1) Check that P1 uses the same value x′ for all x2
i -s. We can easily enforce this since P1 learns

the input-wire label for each bit using a single OT. (E.g., if the first bit of x′ is zero, P1 will learn t concatenated
labels that correspond to the bit zero in the t XOR-gadgets P2 prepared.) (2) Check that (x2

i +r2
i) = (x1

i +r1
i) in

all the evaluated circuits. We enforce this by evaluating the two XOR-gadgets corresponding to the i-th garbled
circuit (one created by P1 and one created by P2), and checking the equality of their outputs (see Section 3 for
subtleties that need to be addressed when doing so). (3) Check that r1

i = r2
i in the majority of the evaluated

1We note that the above solution is not enough. First, the commitment in use must be non-malleable with respect to the garbled
circuits being opened. E.g., consider a garbling scheme that outputs also commitments of the possible output-wire labels; P2 could
use one of those commitments as his commitment and later use the information he learned from the opening to decommit successfully.
Second, the commitment has to be equivocal to allow us to later simulate P2’s message. Both requirements can be solved in the plain
model by using trapdoor commitments [3] and efficient Zero-Knowledge Proof of Knowledge (ZKPoK), or in the Random Oracle Model,
by committing using a hash function. The first solution requires O(q1) expensive operations while the second requires only one call to
the hash function.

5

circuits. We enforce this as part of the cut-and-choose: When P1 sends his garbled circuits, he also sends the
labels that correspond to all r1

i -s. After P1 learns the labels for r2
i -s (from the OTs), they do the opening phase

and P1 opens a subset of the garbled circuits. In addition, for each opened circuit, P1 reveals the labels of the
r2
i -s he learned, and P2 verifies that r1

i = r2
i . (Note that once P1 sends the labels of r1

i and the garbled circuit,
he cannot change r1

i . On the other hand, P1 cannot fake a valid label for r2
i that is different from the one he

learned in the OTs.) As a result, P2 knows that with high probability (in terms of t) r1
i = r2

i in the majority of
the evaluated circuits.

It is easy to see that the above three checks imply (with high probability) that x1
i -s are the same in the

majority of the evaluated circuits. Since P2 outputs the majority result, this is sufficient for our needs.
Figure 1 shows an example of the above technique for the circuit that computes AND and t = 2.
We stress that the above-mentioned is only part of our techniques, and in particular, does not guarantee

protection against a malicious P2.

=
?

=
?

yx

r 2

2

yx1

1
x1

2
r 1

2

x2

1
r 2

1

r 1

1

outoutout

Figure 1: Example of garbling the simple AND circuit on the left that computes the AND between P1’s bit x
and P2’s bit y. P1 garbles the upper circuits and P2 the lower ones. Specifically, P1 garbles two AND circuits
(i.e., t = 2) and two XOR-gates, and P2 garbles two XOR-gates. P2’s input is the same for all garbled circuits
because of the OT (the top dashed line). Recall that the first input P1 learns in all of P2’s XOR-gates is the same
since P1 learns the corresponding input-wire labels from the OT (the lower dashed line). Also, that the equality
of r1

i and r2
i , i = 1, 2, is checked in the cut-and-choose (e.g., by P1 revealing the labels of r1

1 and r2
1 if P2 picked

to check the first set) and hence holds with high probability. Combining these two observations with the fact that
P2 compares the outputs of the XOR-gates, P2 gets the assurance that x1

1 = x1
2.

1.1.2 Security with Input-Dependent Abort in Presence of Covert Adversaries.

We propose a new security notion that naturally combines security with input-dependent abort of [9] (alter-
natively, security with limited leakage of [20, 7]), with security against covert adversaries [1]. The resulting
security guarantee, denoted by ε-CovIDA, is a strict strengthening of covert security: In covert security, with
probability ε both correctness and privacy are gone! Our definition always guarantees correctness, and with
probability ε, privacy is only “slightly compromised”, i.e. only a single bit of information may be leaked in case
of an abort.

We stress that simply combining the protocols of [20, 7] with the cut-and-choose method is not secure under
our definition. Say that instead of garbling a single circuit, each player Pi garbles t circuits gci1, . . . , gc

i
t and

sends them to the other player. Players pick a random value e ∈ [t], open all the circuits gcij 6=e (i.e., reveal
the randomness used to generate them), and verify that they were constructed properly. This assures that with
probability 1 − 1/t, the remaining two circuits (one circuit from each player) is properly constructed. Parties
then engage in the dual-execution protocol discussed above using these two garbled circuits. Although this
protocol guarantees correctness similar to [20, 7], it does not satisfy our security definition. One problem is that
a malicious player can use different inputs for the two evaluated circuits, and learn whether their outputs are the
same or not based on the final outcome. This attack is successful even if all the circuits are constructed correctly.

We show two constructions that do achieve our definition. Both constructions require a constant number of
rounds. In our first construction, each player garbles only 1

ε circuits and n+2q
ε additional XOR gates, where n is

6

the length of the input and q is the length of the output. We emphasize that compared to the protocols of [20, 7],
where the adversary can always learn one bit of information, our protocol leaks one bit only with probability ε.

The first construction is sufficient for large values of ε but fails to scale for the smaller ones. For example,
if one aims for a probability of leakage of less than 2−10, the first protocol would require the exchange of a
thousand garbled circuits. A more desirable goal is a protocol with a cost that grows only logarithmically in 1

ε .
We achieve this in our second protocol.

The costs of both constructions are roughly the costs of running their covert counterparts in both directions.
E.g. the second protocol requires O(2 log(1

ε)(|C| + n + q)) inexpensive operations and O(log(1
ε)(n + q))

expensive ones, while the covert protocol of [19] requiresO(log(1
ε)|C|) inexpensive operations andO(log(1

ε)n)
expensive ones.
DIFFICULTIES AND OUR TECHNIQUES. Both protocols use techniques that are similar to those used in our
fully-malicious 2PC protocol. We now briefly discuss the difficulties that arise and how we solve them using
those techniques. In our first protocol, each player prepares t garbled circuits and opens all but one of them.
The main difficulty is to make sure each player uses the same input in the evaluation of the circuit generated by
himself and in the one by his counterpart.

In the second protocol, each player opens a constant fraction of his garbled circuits, and thus, the issue
of Garbler’s input consistency must also be addressed. Here, however, this issue is relevant for both players.
Somewhat surprisingly, we show that our XOR-gadget technique can be used to solve both issues by forcing
each player to use the same input not only in the garbled circuits generated by himself, but also in the ones
generated by his counterpart.

An additional difficulty is in the last step of the protocol, wherein the players need to check the equality of
the outputs they receive from each others’ evaluation(s). The correctness of this step relies on the authenticity of
the outputs (i.e., that forged outputs cannot be used in the equality test). But which output should the players use
when they evaluate more than one circuit? Interestingly, this is closely related to the issue we needed to address
in standard 2PC for two-output functions: in both cases, a player who evaluates a set of circuits wishes to learn
the output along with an unforgeable authentication of that output. We show how the same techniques can be
used here as well. See Sections 4.2 and D.2 for the details of the two constructions.

2 Preliminaries

Throughout this work we denote by t a statistical security parameter and by s a computational security parameter.
For a fixed circuit in use, we denote by INPi the set of indexes of Pi’s input-wires to the circuit, by INP the
set INP1 ∪ INP2, by OUTi the set of indexes of Pi’s output-wires, and by OUT the set OUT1 ∪ OUT2. For
shortening, we sometimes refer to |INPi| by ni, to |OUTi| by qi, and set n = n1 + n2 and q = q1 + q2.

Denote by Enc(sk,m) the encryption of message m under secret key sk, by PRG(s, l) the l-bit string
generated by a pseudo-random generator with seed s, and by Com(m, r) the commitment on message m using
randomness r. The decommitment of Com(m, r) is m and r. (In some cases we use the abbreviations PRG(s)
and Com(m).)

We also use the following notation for the next cryptographic primitives and functionalities.
YAO’S GARBLING. For the sake of simplicity and generality, we do not go into the details of the garbling
mechanism and only introduce the notations we need to describe our protocols. We refer the reader to [18, 2] for
different approaches to creating the garbled circuits.

Given a garbled circuit gc, we denote by label(gc, j, b) the label of wire j corresponding to bit value b. Also,
we denote by Garb(C, r) the (deterministic) garbling of circuit C using randomness r. (In practice, r would be a
short seed for a pseudo-random function). For simplicity, we assume that the labels of the circuit’s output-wires
include also the actual output bits (thus, allowing the evaluator to learn the output).

We require the garbling scheme to be private and authenticated, meaning that given a garbled circuit and
input labels of a specific input, nothing is revealed except for the output of the circuit, and, that the output-wire
labels authenticate the actual output (thus, the actual output cannot be forged). Also, we require that given a

7

garbled circuit and an input label, one can verify whether the input label is a valid input label. (This can be
achieved by using elusive double encryption [18] or by adding commitments on the possible input-wire labels in
a random order and decommitting when a verification is needed.)

BATCH COMMITTING OBLIVIOUS TRANSFER (BCOT). Here, sender S has n sets, each of m pairs of inputs,
{(xj,z0 , xj,z1)}j=1...n,z=1...m, and receiver R has a vector of input bits b̄ = (b1, · · · , bn). The receiver R learns the
outputs according to his input bits, xj,zbj for all j and z. In addition, R learns commitments on all the sender’s
inputs.

[26] shows an implementation of BCOT with a cost ofO(mn) expensive operations. Using their construction
to implement the seed OTs in the OT-extension of [21] in the Random Oracle Model results in an alternative
protocol that requires only O(s) expensive operations and O(nm) inexpensive ones. However, in the latter
construction, the commitments on the sender’s inputs cannot be opened separately and one needs to decommit
all the inputs at once. (We use both instantiations at different places in our protocols.) See Appendix B for more
details. We denote the first protocol by BCOT1 and the second by BCOT2.

TWO-STAGE EQUALITY TESTING. In this protocol, player P1 has input x1 and player P2 has input x2. They
want to test whether x1 = x2. The functionality is split into two stages in order to emulate a commitment on the
inputs before revealing the result (we will use this property in one of our constructions). I.e., in the first stage
players submit their inputs and learn nothing, and in the second stage, only if they both ask for the output, they
receive the result. This functionality can be realized using ElGamal encryption and ZKPoKs. In Appendix B we
formally define this functionality and discuss different realizations.

3 An Efficient 2PC for Two-output Functions with Full Security

In this section, we review the main ideas behind our efficient 2PC protocol with full security against malicious
adversaries, considering the case where only P2 needs to learn the output. In Appendix C.2 we show how to
extend the ideas in order to handle two-output functions. A detailed description of the protocol and the proof of
its security appear in Appendix C.

Consistency of the evaluator’s input is taken care of by combining the technique of [17] with the OT-
extension of [21] and the Free-XOR technique [14]. In a nutshell, P2’s input is encoded using max(4n2, 8t)
bits in a way that any leakage of less than t of the bits does not reveal meaningful information about P2’s input.
During the cut-and-choose, P2 asks P1 to reveal all his inputs to the OTs. If some of the inputs are not consistent
with the one P2 has learned from the OTs, P2 aborts. This abort leaks information only in case P1 guessed
successfully more than t bits in P2’s encoded input. However, this can happen with only a negligible probability
given how the encoding is done.

As we discussed in Section 1.1, consistency of the garbler’s input is addressed using the XOR-gadgets. In
the following we describe the main steps of the protocol with a focus on this component.
Garbling stage and the XOR-gadgets. Say the players want to compute C(x, y), where x is P1’s input and y is
P2’s input. Based on C, we define the following two circuits: (1) C1(x, y, r), which computes (C(x, y), x⊕ r)
where r is a random input string of length |x| selected by P1; (2) C2(x, r), which computes x⊕ r, where x and
r are P1’s inputs and are of the same length. In both circuits we assume the indexes of the input-wires are the
same as in C and we define the function α(k) to be the function that given k ∈ INP1 returns the index of the
input-wire of the random bit that is xored with input-wire k. (For simplicity, we assume the same function is
applicable for both C1 and C2.)

P1 picks a random string zi and generates a garbled circuit gci = Garb(C1, zi), for i = 1 . . . t. In addition,
P2 picks a random string z′i and generates a garbled circuit xgi = Garb(C2, z

′
i), for i = 1 . . . t. Both players

send the garbled circuits they created to each other. Next, P1 picks rj at random for j ∈ [t] and sends to P2 the
labels that correspond to rj in gcj .
OTs for input labels. Parties execute OTs and BCOTs in order for each to learn the input-wire labels for his
inputs in the circuits/gadgets created by his counterpart. More specifically, first they run any simulatable OT

8

protocol with the OT-extension of [21], where P1 acts as the sender and P2 acts as the receiver. They use the
technique of [17] for protecting against inconsistent inputs as described earlier. P1’s inputs are the labels of
P2’s input-wires in all gcj (i.e., the inputs are label(gcj , k, 0) and label(gcj , k, 1) for k ∈ INP2 and j ∈ [t]).
P2’s input is his actual input. (We ignore here the details of encoding P2’s input.) Second, they execute BCOT2
twice where P2 acts as the sender and P1 acts as the receiver: (1) P2’s inputs are the labels of the input-
wires in his XOR-gadget xgj , and P1’s inputs are his random input and actual input to the gadget (i.e., P2

inputs are label(xgj , k, 0) and label(xgj , k, 1) while P1’s inputs are his actual input bits, and (2) P2’s inputs are
label(xgj , α(k), 0) and label(xgj , α(k), 1) while P1’s inputs are the bits of rj . Note that in the first BCOT2, P1

inputs a single bit for each input bit and receives t input-wire labels. That restricts him to use the same input in
all the XOR-gadgets.).

(In the detailed protocol, the players execute the OTs before sending the garbled circuits. Still, the intuition
is similar.)

We note that P1 is yet to send the labels for his input wires in the circuits he garbled himself, i.e. gci-s.
Cut-and-Choose (first stage). After the OTs/BCOTs, P1 opens a constant fraction of his garbled circuits/gadgets.
In particular, P1 opens the garbled circuit gcj for all j /∈ E, where E is chosen randomly using a joint coin-
tossing protocol. (A joint coin-tossing protocol is needed for the simulation to work.) Moreover, P1 reveals the
random strings rj-s he used in the opened circuits (by showing the labels he learned from BCOT2), and all his
inputs to the OTs for the opened circuits. P2 checks the correctness of the opened circuits and verifies that the
same rj was used in both gcj and xgj for all j /∈ E. (He also verifies that the values he has received in the OTs
for his inputs are consistent with what P1 revealed, following the technique of [17].)
Cut-and-Choose (second stage). P1 evaluates all the XOR-gadgets he received from P2, and sends a com-
mitment on all the output-wire labels he obtained to P2. P2 answers with opening all the XOR-gadgets xgj
for j ∈ E, and by decommitting all his inputs to BCOT2. P1 checks that all the XOR-gadgets he received
were properly constructed, and that the labels are consistent with the decommitments. If so, P1 decommits the
output-wire labels of the XOR-gadgets to P2.

In general, the last step is not sound for all commitments since P1 can send a commitment for which he
does not know the corresponding message and later be able to decommit once P2 opens the XOR-gadgets
(A similar issue was discussed earlier in Footnote 1). There are several ways to overcome this issue. One
option is to require P1 to prove that he knows how to construct this commitment, or more formally, P1 commits
on the output labels with Com(labels, r) and proves using a ZKPoK that he knows labels and r. This step
can be implemented efficiently for Pedersen’s commitment [23], requiring only a small constant number of
exponentiations. (When labels is longer than the commitment input length, P1 picks a random seed seed,
sends Com(seed, r),PRG(seed)⊕ labels and ZKPoK that he knows seed and r.) A more efficient option is to
implement Com(labels, r) in the Random Oracle model using H(key ◦ labels ◦ r), where the commitment key
key is chosen at random by the receiver (i.e., P2 in our case). The complexity in this case is only a single call to
the random oracle.
Circuit Evaluation. P1 sends to P2 the labels of his inputs for the remaining garbled circuits and XOR-gadgets.
P2 uses them to evaluate all his remaining circuits and gadgets. He checks that the output-wires of the XOR-
gadgets are the same as the values P1 sent him. If so, he takes the majority of the outputs to be his output.
Summary. Note that now, with high probability, not only do we know that the majority of the circuits being
evaluated are correct, but also that P1 used the same rj-s in the XOR-gadget pairs (Check 3 from introduction).
Also, recall that in the BCOT for XOR-gadgets created by P2, P1 can learn the labels for exactly one possible
value of x. Thus, his x is the same for all the t XOR-gadgets P2 generated (Check 1). Combined with the fact
that P2 checks equality of the output of the XOR-gadget pairs (Check 2), he is ensured that the same input bits
are being used in majority of the gcj-s. See Figure 1 for a diagram explaining the above intuition.

ADVANTAGES OVER PREVIOUS WORK. The resulting protocol has two main advantages over previous con-
structions: (1) The BCOT we use requires only O(t · |INP1|) inexpensive operations for checking P1’s input
consistency. (When realized for concrete parameters with the OT-extension protocol of [21], the constant is
fairly small, about 16 inexpensive operations per input bit per garbled circuit (approximately). This cost is sim-

9

ilar to the cost of garbling additional 4 − 6 AND gates, depending on the garbling scheme.) This is in contrast
to the previous (efficient) constructions, which require either O(t2 · |INP1|) inexpensive operations [20, 17], or
O(t · |INP1|) expensive ones [20, 19, 26]. (2) Even if we do not use OT extension (e.g. to avoid making less
standard assumptions about the hash function) the overhead of both (evaluator and generator) input consistency
checks is now reduced to the cost of performing BCOT. (i.e. BCOT1 can be used to solve both the garbler’s and
the evaluator’s input consistency issue.) Previous constructions [17, 19, 26] use different techniques for checking
consistency of P1’s and P2’s inputs, that are incomparable and with difficulties that look unrelated. Having one
concrete primitive to focus on is a cleaner approach for improving efficiency.

4 Security with Input-Dependent Abort in the Presence of Covert Adversaries

4.1 The Model

Following [17, 1, 7], we use the ideal/real paradigm for our security definition.
Real-model execution. The real-model execution of protocol Π takes place between players (P1, P2), at most
one of whom is corrupted by a probabilistic polynomial-time machine adversary A. At the beginning of the
execution, each party Pi receives its input xi. The adversary A receives an auxiliary information aux and an
index that indicates which party it corrupts. For that party,A receives its input and sends messages on its behalf.
Honest parties follow the protocol.

Let REALΠ,A(aux)(x1, x2) be the output vector of the honest party and the adversary A from the real execu-
tion of Π, where aux is an auxiliary information and xi is player Pi’s input.
Ideal-model execution. Let f : ({0, 1}∗)2 → {0, 1}∗ be a two-party functionality. In the ideal-model execution,
all the parties interact with a trusted party that evaluates f . As in the real-model execution, the ideal execution
begins with each party Pi receiving its input xi, and A receives the auxiliary information aux. The ideal
execution proceeds as follows:

Send inputs to trusted party: Each party P1, P2 sends x′i to the trusted party, where x′i = xi if Pi is honest
and x′i is an arbitrary value if Pi is controlled by A.

Abort option: If any x′i = abort, then the trusted party returns abort to all parties and halts.

Attempted cheat option: If Pi sends cheati(ε′), then:

• If ε′ > ε, the trusted party sends corruptedi to all parties and the adversary A, and halts.

• Else, with probability 1− ε′ the trusted party sends corruptedi to all parties and the adversaryA and
halts.

• With probability ε′,

– The trusted party sends undetected and f(x′1, x
′
2) to the adversary A.

– A responds with an arbitrary boolean (polynomial) function g.
– The trusted party computes g(x′1, x

′
2). If the result is 0 then the trusted party sends abort to

all parties and the adversary A and halts. (i.e. A can learn g(x′1, x
′
2) by observing whether the

trusted party aborts or not.)

Otherwise, the trusted party sends f(x′1, x
′
2) to the adversary.

Second abort option: The adversary sends either abort or continue. In the first case, the trusted party sends
abort to all parties. Else, it sends f(x′1, x

′
2).

Outputs: The honest parties output whatever they are sent by the trusted party. A outputs an arbitrary function
of its view.

10

Let IDEALεf,A(aux)(x1, x2) be the output vector of the honest party and the adversary A from the execution
in the ideal model.

Definition 4.1. A two-party protocol Π is secure with input-dependent abort in the presence of covert adversaries
with ε-deterrent (ε-CovIDA) if for any probabilistic polynomial-time adversary A in the real model, there exists
a probabilistic polynomial time adversary S in the ideal model such that{

REALΠ,A(aux)(x1, x2)

}
x1,x2,aux∈{0,1}∗

c
≈

{
IDEALεf,S(aux)(x1, x2)

}
x1,x2,aux∈{0,1}∗

for all |x1| = |x2| and aux.

COMPARISON WITH COVERT SECURITY. When we let ε = 1/t for any constant t, the above definition is
strictly stronger than the standard definition of security against covert adversaries. In covert security, in case of
undetected cheating which happens with probability ε, the adversary learns all the honest parties’ private inputs
and is able to change the outcome of computation to whatever value it wishes (i.e. no privacy or correctness
guarantee). In our definition, however, the adversary can learn at most a single bit of information (from the
abort), and under no condition is able to change the output (full correctness).

In the above definition, in contrast to the standard covert security, the adversary can choose the exact prob-
ability he gets caught (i.e. 1 − ε′) as long as this probability is larger than 1 − ε (where ε is the deterrence
factor). Note that letting the adversary choose 1− ε′ is not a relaxation in security since the adversary can only
increase the probability of itself getting caught. We believe that this variant of the definition where the adversary
can choose ε′ > ε with which it can get caught is of independent interest. Specifically, it yields an alternative
definition for covert security that is more convenient to use in simulation-based proofs. (To obtain this alterna-
tive definition for covert security, replace the steps that are done with probability ε′ with the following: (1) The
trusted party sends x′1, x

′
2 to A; (2) A sends the value y to the trusted party, and the trusted party sends it to all

parties as their output.)
A REMARK ON ADAPTIVENESS OF LEAKAGE FUNCTION. In the above definition, the leakage function g
can be chosen adaptively after seeing f(x′1, x

′
2). Somewhat surprisingly, this does not give any extra power to

the adversary compared to the non-adaptive case since even in the non-adaptive case, g can be chosen to be
a function that computes f(x′1, x

′
2), emulates the adversary’s computation given that value and evaluates the

leakage function he would have chosen in the adaptive case.

4.2 An Efficient Protocol with 2
ε

Circuits

In this section, we review the main steps of our ε-CovIDA protocol and highlight the new techniques. A detailed
description of the protocol and how to reduce the number of circuits (from linear in 1

ε to logarithmic) appear in
Appendix D.1.

As discussed in the introduction, in the dual-execution protocol of [20, 7] parties engage in two different
executions of the semi-honest Yao’s garbled circuit protocol, and then run an equality testing protocol to confirm
that the outputs of the two executions are the same before revealing the actual output values. We show how to
extend this protocol to work in the presence of covert adversaries using the ideas presented in Section 3. For
simplicity of the description, from now on we work with t = 1

ε (a statistical security parameter) instead of ε
since t would be the number of circuits each party garbles.
Dual-execution & cut-and-choose. Our first step is to combine the dual-execution protocol with a standard
cut-and-choose protocol for covert players. Each player Pi garbles t circuits gci1, . . . , gc

i
t and sends them to the

other player. Parties pick a random value e ∈ [t], open all the circuits gcij 6=e and verify that they were con-
structed properly. This assures that with probability 1 − 1/t, the remaining circuit-pair (gc1

j , gc
2
j) is properly

constructed. As before, they send the garbler’s input-wire labels for the e-th circuit, execute OTs for the respec-
tive evaluators to learn their input-wire labels, evaluate the circuits, call the Equality Testing functionality and
output accordingly.

11

The above protocol would guarantee correctness similar to the dual-execution protocol, and it would ensure
that the evaluated circuits are correct with probability 1 − 1/t. However, the protocol does not satisfy our
security definition. One issue is that a malicious player learns the output of the computation even if the other
player catches him cheating (as a result of the equality test). We show how this can be avoided by masking the
output of the computation with random strings, chosen by the two players, and revealing them at the end of the
computation in order to unmask the actual output.

A more subtle attack to address is that a malicious player can learn one bit of information about an honest
party’s input with probability greater than 1/t (in fact with probability 1): a malicious player can use different
inputs in each of the two evaluated circuits, and learn whether their outputs are the same or not based on the final
outcome. This attack is successful even if all the circuits are constructed correctly. We prevent this attack using
the XOR-gadget techniques discussed earlier, along with some enhancements. We discuss the details next:
XOR-gadgets. Define C(x ◦m1, y ◦m2) to be the circuit that receives inputs x, y and two masks m1,m2 and
computes f(x, y)⊕m1 ⊕m2. Based on C, let P1’s input x′ be x ◦m1 and P2’s input y′ be y ◦m2, where mi is
a random string of length q (f ’s output length) selected by Pi. We define the following four circuits:

(1) C1(x′, y′, r1) = (C(x′, y′), x′ ⊕ r1), where r1 is a random input string of length |x′| selected by P1;
(2) C2(x′, y′, r2) = (C(x′, y′), y′ ⊕ r2) where r2 is a random input string of length |y′| selected by P2; (3)
C ′1(y′, r2) = y′ ⊕ r2 evaluated by P2 on his own inputs; (4) C ′2(x′, r1) = x′ ⊕ r1 evaluated by P1 on his own
inputs; In all circuits we assume the indexes of the input-wires are the same as in C and we define the function
α(k) to be the function that given k ∈ INP returns the index of the input-wire of the random bit input-wire that
is xored with input-wire k. (For simplicity, we assume the same function is applicable for all Ci-s and C ′i-s.)

Instead of garbling C, each player Pi generates and sends t garbled circuits for Ci: gci1, . . . , gc
i
t and t

garbled circuits for C ′i: xg
i
1, . . . , xg

i
t. After sending the sets of garbled circuits, for each j ∈ [t], player Pi picks

at random a string rij and sends the input-wire labels that correspond to rij in gcij .
OTs for input labels. Then, they execute BCOTs in order to learn the input-wire labels for both their ac-
tual inputs and the rij-s in their counterpart’s circuits. More specifically, first they use BCOT1 where P1

acts as the sender and P2 acts as the receiver. P1’s inputs are the input-wire labels of P2’s input-wire k in
all gc1

j -s and xg1
j -s (i.e., the input pairs are

(
label(gc1

j , k, 0), label(gc1
j , k, 1)

)
j∈[t]

and label(xg1
1, k, 0) ◦ · · · ◦

label(xg1
t , k, 0), label(xg1

1, k, 1) ◦ · · · ◦ label(xg1
t , k, 1) for k ∈ INP2). P2’s input is his actual input. Second,

they use BCOT2 with the labels for the rest of the input-wires of xg1
j (i.e., label(xg1

j , α(k), 0),label(xg1
j , α(k), 1)

for k ∈ INP2 and j ∈ [t], where P2’s inputs are the bits of r2
j). The players run the same protocols in the op-

posite direction (switching roles). At the end, each player learns the labels for his input-wires of gc3−i
j and of

xg3−i
j . But we note that Pi is yet to send the labels for his input wires in the circuits he garbled himself, i.e. gcij

and xgij .
Cut-and-Choose Phase (first opening). Next, as before, parties agree on a random e ∈ [t] (using a joint coin-
tossing protocol), and open the rest of the garbled circuits. In particular, they open the garbled circuit-pairs
(gc1

j , gc
2
j) and the XOR-gadgets (xg1

j , xg
2
j) for all j 6= e. Moreover, for j 6= e, they reveal to each other the

random strings rij-s they used in the opened circuits (by showing the labels they learned in BCOT2), and then
they decommit all the inputs they used as senders in BCOT1 for the opened circuits. The players check the
correctness of the circuits and verify that the same rij-s were used in both gcij and xg3−i

j . (Note that at the end
of the opening phase, the players know that with 1 − 1/t probability the remaining circuit-pair (gc1

e, gc
2
e) and

the XOR gadget-pair (xg1
e , xg

2
e) are properly constructed, and, that the inputs rie used by the players in both gcie,

and xg3−i
e are the same.)

Evaluation. Each party sends to his counterpart the input-wire labels for his inputs in the unopened circuit-pair.
Parties then evaluate the circuit-pair (gc1

e, gc
2
e) and the XOR-gadgets (xg1

e , xg
2
e). (i.e., Pi evaluates gc3−i

e , and
xg3−i

e .) Pi sends a commitment (along with a ZKPoK, as in Section 3) on the concatenation of the output labels
he obtained after evaluating xg3−i

e to P3−i.
Cut-and-Choose Phase (second opening). P3−i now opens the remaining XOR-gadget xg3−i

e , and decommits
all his inputs as a sender to the BCOTs of the XOR-gates (i.e., label(xg3−i

1 , k, 0) ◦ · · · ◦ label(xg3−i
t , k, 0),

12

label(xg3−i
1 , k, 1)◦· · ·◦label(xg3−i

t , k, 1) in BCOT1, and label(xg3−i
e , α(k), 0), label(xg3−i

e , α(k), 1) in BCOT2,
both for k ∈ INPi). (We stress that only the XOR-gates of wires INPi are opened, and that those were generated
using random labels independently of the garbled circuits. The XOR-gadgets of wires INP3−i are checked as
part of the previous phase.) Pi verifies that these XOR-gates were generated properly and that the BCOTs
inputs were consistent with the XOR-gates. If everything is correct he decommits his commitment, otherwise
he outputs ⊥ and aborts. (Note that Pi reveals his output only after he verified that all the XOR-gates P3−i
generated were properly constructed. Since the only secrets in these gates are Pi’s inputs, revealing them does
not help Pi learn any new information.) P3−i verifies that the decommitted values are valid output-wire labels,
and compares the actual output with their output he obtains from evaluation of xgie. If either check fails, P3−i
outputs ⊥.
Equality-test. If there is no abort, players call the Equality Testing functionality as before. Note that now, with
probability 1− 1/t, not only we know that the circuits being evaluated are correct, but also that the players use
the same rie-s in the final XOR gadget-pair. Combined with the fact that the players check equality of the output
of the final XOR gadget-pair, they are ensured (with probability 1 − 1/t) that the same input strings are being
used in gc1

e and gc2
e or else, x⊕ rie would be different.

Output Unmasking. If the Equality Testing functionality returns False, the players abort. Otherwise, they
unmask the output. (Recall that at this stage, each player knows the value of C(x′, y′) = f(x, y) ⊕m1 ⊕m2.)
Player Pi sends the value of mi along with labels that correspond to mi in gc3−i

e . These labels prove that mi is
indeed the value that Pi have used in the protocol.

Putting things together, correctness is always guaranteed due to the dual execution; full-privacy is guaranteed
with probability 1 − 1/t due to the discussion above; and privacy with 1-bit leakage is guaranteed in the case
that a cheating adversary is not caught, which only happens with probability 1/t.

Acknowledgements

We would like to thank Ran Canetti, Benny Pinkas and Yehuda Lindell for their comments and helpful discus-
sions. We also thank Yehuda Lindell for referring us to the malleability issue discussed in Footnote 1.

References

[1] Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols for realistic adversaries. J.
Cryptol. 23(2), 281–343 (Apr 2010)

[2] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. pp. 784–796. CCS 2012, ACM
(2012)

[3] Fischlin, M.: Trapdoor Commitment Schemes and Their Applications. Ph.D. Thesis (Doktorarbeit), De-
partment of Mathematics, Goethe-University, Frankfurt, Germany (2001)

[4] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. pp. 218–229. STOC 1987, ACM
(1987)

[5] Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computation against covert adver-
saries. pp. 289–306. EUROCRYPT 2008, Springer-Verlag (2008)

[6] Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. pp.
35–35. Security 2011, USENIX Association (2011)

[7] Huang, Y., Katz, J., Evans, D.: Quid-pro-quo-tocols: Strengthening semi-honest protocols with dual exe-
cution. pp. 272–284. SP 2012, IEEE Computer Society (2012)

13

[8] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. pp. 145–161.
CRYPTO 2003, Springer (2003)

[9] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient non-interactive secure com-
putation. pp. 406–425. EUROCRYPT 2011, Springer-Verlag (2011)

[10] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer — efficiently. pp. 572–
591. CRYPTO 2008, Springer-Verlag (2008)

[11] Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on committed inputs. pp. 97–114. EU-
ROCRYPT 2007, Springer-Verlag (2007)

[12] Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits: How to prove non-
algebraic statements efficiently. Cryptology ePrint Archive, Report 2013/073 (2013)

[13] Kiraz, M.S., Schoenmakers, B.: A protocol issue for the malicious case of Yaos garbled circuit construc-
tion. In: In Proceedings of 27th Symposium on Information Theory in the Benelux. pp. 283–290 (2006)

[14] Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free xor gates and applications. pp. 486–498.
ICALP 2008, Springer-Verlag (2008)

[15] Kreuter, B., Shelat, A., Shen, C.H.: Billion-gate secure computation with malicious adversaries. pp. 14–14.
Security 2012, USENIX Association (2012)

[16] Lindell, Y., Oxman, E., Pinkas, B.: The IPS compiler: Optimizations, variants and concrete efficiency. pp.
259–276. CRYPTO 2011, Springer (2011)

[17] Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious
adversaries. pp. 52–78. EUROCRYPT 2007, Springer-Verlag (2007)

[18] Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptol. 22(2),
161–188 (Apr 2009)

[19] Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. pp. 329–346.
TCC 2011, Springer-Verlag (2011)

[20] Mohassel, P., Franklin, M.: Efficiency tradeoffs for malicious two-party computation. pp. 458–473. PKC
2006, Springer-Verlag (2006)

[21] Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party
computation. pp. 681–700. CRYPTO 2012, Springer (2012)

[22] Nielsen, J.B., Orlandi, C.: Lego for two-party secure computation. pp. 368–386. TCC 2009, Springer-
Verlag (2009)

[23] Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. pp. 129–140.
CRYPTO 1991, Springer-Verlag (1992)

[24] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer.
pp. 554–571. CRYPTO 2008, Springer-Verlag (2008)

[25] Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. pp.
250–267. ASIACRYPT 2009, Springer-Verlag (2009)

[26] Shelat, A., Shen, C.H.: Two-output secure computation with malicious adversaries. pp. 386–405. EURO-
CRYPT 2011, Springer-Verlag (2011)

14

[27] Woodruff, D.P.: Revisiting the efficiency of malicious two-party computation. pp. 79–96. EUROCRYPT
2007, Springer-Verlag (2007)

[28] Yao, A.C.C.: How to generate and exchange secrets. pp. 162–167. SFCS 1986, IEEE Computer Society
(1986)

A Other Related Work

[10, 16] show how to use semi-honest secure two-party, and honest-majority multi-party protocols to achieve
security against malicious players. Although this approach is asymptotically efficient, the constant factors seem
to be large and we are not aware of any working implementation that evaluates its efficiency in practice. [21]
constructs a protocol in the Random Oracle Model, based on OT extension [8] and the classic GMW protocol
[4]. However, this protocol requires a number of rounds that depends on the depth of the circuit. Still, for some
computations [21] shows better performance than the previous cut-and-choose based protocols.

[9] considers non-interactive secure computation protocols. Their first construction, which is asymptotically
very efficient, achieves similar guarantees to the protocol of [7] (though, in a single round of interaction). Com-
bining that protocol with the cut-and-choose method can result in constructions that achieve similar guarantees
to our ε-CovIDA protocols. However, it is not clear what would the efficiency of these protocols in practice be.

B Preliminaries

Here we describe the functionalities and previous techniques we need in our constructions.

B.1 Oblivious Transfer (OT)

In this protocol, sender S has two inputs x0, x1 ∈ {0, 1}l and receiver R has input bit b. At the end of the
protocol, R should learn xb and S should learn nothing.

[24] shows an efficient construction of fully-secure universally-composable OT based on a variety of standard
assumptions. When instantiated based on the DDH assumption, the protocol requiresO(1) exponentiations,O(l)
inexpensive operations and a constant number of rounds.

[8] presents how to extend O(s) OTs of length s strings to any number n of semi-honest OTs of length
l strings, using only additional O(n · l) inexpensive operations. [21] extends their results to fully-secure OTs
in the (amortized) price of only a (small) constant number of inexpensive operations per OT.2 Note that the
construction of [8] is secure assuming the hash function in use is correlation-robust, whereas the construction of
[21] is in the Random Oracle Model.

Throughout this work we assume that the strings we transfer in the OT protocols are shorter than the output
length of the hash function in use, which allows us to omit the factor l from the complexities. (Specifically,
we say that the amortized cost per OT when we use the OT extension protocol of [21] is a constant number of
hashes.) When we concatenate several strings in one OT, we count the cost for each one separately.

In our protocols we are interested in large batches of OTs. Specifically, we say that in the batch OT protocol,
sender S has n sets, each of m pairs of inputs {(xj,z0 , xj,z1)}j=1...n,z=1...m, and receiver R has a vector of input
bits b̄ = (b1, · · · , bn). R learns the outputs according to his input bits, i.e., xj,zbj for all j and z. (See the left side
of Figure 2 for an example.) We denote by BOT the batch OT protocol that uses the OT-extension of [21] and
the OT of [24] for the seed OTs. The cost of this protocol is O(s) expensive operations and O(nm) inexpensive
ones.

2[8] also presents how to extend fully-secure OTs. However, their construction has an overhead of O(t) inexpensive operations per
OT.

15

B.2 Committing Oblivious Transfer (COT)

Committing OT [13] is a variant of OT in which at the end of the protocol, the receiver R learns also commit-
ments on all the sender’s inputs. This additional property allows S to “decommit” his inputs later independently
of R’s inputs. See Figure 2 for an example of a batch version of COT.

x0,00 , x0,01 x1,00 , x1,01 x2,00 , x2,01 . . . xn,0
0 , xn,0

1

x0,10 , x0,11 x1,10 , x1,11 x2,10 , x2,11 . . . xn,1
0 , xn,1

1

x0,20 , x0,21 x1,20 , x1,21 x2,20 , x2,21 . . . xn,2
0 , xn,2

1

x0,30 , x0,31 x1,30 , x1,31 x2,30 , x2,31 . . . xn,3
0 , xn,3

1

x0,40 , x0,41 x1,40 , x1,41 x2,40 , x2,41 . . . xn,4
0 , xn,4

1

...
...

...

x0,m0 , x0,m1 x1,m0 , x1,m1 x2,m0 , x2,m1 . . . xn,m
0 , xn,m

1

Receiver

b0=0

ii
b1=1

bb
b2=1

OO
bn=0

88

x0,00 , x0,01 x1,00 , x1,01 x2,00 , x2,01 . . . xn,0
0 , xn,0

1

x0,10 , x0,11 x1,10 , x1,11 x2,10 , x2,11 . . . xn,1
0 , xn,1

1

x0,20 , x0,21 x1,20 , x1,21 x2,20 , x2,21 . . . xn,2
0 , xn,2

1

Receiver
**

44

��

x0,30 , x0,31 x1,30 , x1,31 x2,30 , x2,31 . . . xn,3
0 , xn,3

1

x0,40 , x0,41 x1,40 , x1,41 x2,40 , x2,41 . . . xn,4
0 , xn,4

1

...
...

...

x0,m0 , x0,m1 x1,m0 , x1,m1 x2,m0 , x2,m1 . . . xn,m
0 , xn,m

1

Figure 2: Batch COT Example. On the left is the OTs stage in which the receiver inputs his input bits bi and
learns the red elements. (The commitments are omitted.) On the right is the second stage in which the receiver
asks for all the elements in the selected rows to be decommitted, and once the sender reveals their inputs, the
receiver can check if those are the right inputs using the commitments he received in the beginning.

[26] shows an efficient implementation of COT under the DDH assumption. Implementing a batch COT
based on their protocol requires O(mn) exponentiations. We denote this protocol by BCOT1. We observe that
in the same protocol, the receiver is also committed to his inputs, and therefore, once it is combined with the
OT-extension of [21] (i.e. using COT of [26] as the seed OTs in the construction of [21]), the sender who plays
the role of the OT receiver in the protocol of [21] is committed to all his inputs in the larger protocol as well. The
disadvantage of this combined protocol is that in order to “decommit” his inputs, the sender has to decommit
all of them together, and not just a subset of them. (This happens since for decommitting his inputs, the sender
has to reveal his inputs to the seed OTs, and knowing them reveals all his COT inputs.) Still, this combination
provides a batch COT protocol with the cost of O(s) expensive operations and O(nm) inexpensive ones. We
denote this protocol by BCOT2.

B.3 The Technique of [17]

[17] shows how to use OT in a black-box way to solve the issue of the Evaluator’s input consistency. We give
here a brief description of their technique.

We start with some intuition of the construction. Say the receiver input bit is b and the sender’s inputs are
x0, x1. Let d = x0 ⊕ x1. Instead of running one OT with their actual inputs, the players execute k OTs, where
in the i-th OT, the receiver uses the bit bi and the sender uses the inputs ri, ri ⊕ d. The bi-s are chosen such
that their xor equals b and ri are chosen such that their xor equals x0. Therefore, after executing the k OTs, the
receiver can xor the outputs he learned to get the actual output xb. On the other hand, if after the execution of
the OTs, the receiver asks the sender to reveal to him his inputs x0, x1, the sender sends him these values along
with all the ri-s as a proof (or the “decommitment”). The sender checks that these values are consistent with
the outputs he received from the OTs. If the sender tries to cheat on x0, x1, he will be caught with probability
that depends on k. Furthermore, the amount of information that the sender will learn about the receiver’s input
is negligible in k. (See [17] for complete details.) However, note that we increased the inputs by a factor of
k, which is of course undesirable. In order to reduce this overhead, when we have more than one OT we can
“share” the random bits among many input bits.

16

We now describe the more efficient construction in more detail (see [17] for concrete analysis of the param-
eters): For simplicity, let’s assume m = 1. The extension to larger m is straightforward. In the first stage, the
parties do the following: The sender picks at random 4n strings r1, . . . r4n and a random string d, all of length
l. The receiver picks at random n random strings z1, . . . zn of length 4n and sends them to the sender. Then,
he picks at random a string b′ of length 4n such that for each input bit bi, < b′, zi >= bi, where < ·, · > is the
inner product operator. They execute an OT 4n times, where the sender’s input pairs are (rj , rj ⊕ d) and the
receiver’s input is b′j for j = 1, . . . , 4n. The receiver stores all the answers he received from the OT, and, for
each i, the receiver computes the xor of the answers of the indecies in the set {j| the j-th bit of zi is 1}. These
are his outputs from protocol.

In the second stage, the sender sends all the pairs (rj , rj ⊕ d) and d (to “decommit”). The receiver compares
these strings with the ones he received earlier and verifies that the xor of each pair is d. If there is a problem, he
outputs ⊥. This completes the description.

(The above description is an adaptation of the technique of [17] with the Free-XOR technique of [14],
although the original protocol is the same but with garbled gates that compute the xor of the strings.)

For statistical security parameter t, max(4n, 8t) inputs are needed in order to obtain a negligible probability
of failure against the selective-OT attack [17]. When implemented with BOT, the overall cost is O(s) expensive
operations and O(max(4n, 8t)m) inexpensive ones. For computations with large enough input (e.g. n ≥ 260
for t = 130), this is rather efficient. However, for computations with short inputs, we can take the simpler
approach of using zi-s with Hamming Weight t, such that < zi, zj >= 0 for all i 6= j, and using nt inputs in
total.

B.4 Two-Stage Equality Testing

In this protocol, player P1 has input x1 and player P2 has input x2, and they want to test whether x1 = x2. We
define the functionality F l2SET to be:

First Stage

Inputs: P1 inputs x1 and P2 inputs x2 (both of length l).

Outputs: Both players receive Inputs Accepted.

Second Stage

Inputs: Both players input Reveal.

Outputs: Both players obtain (x1 = x2).

Figure 3: F l2SET .

A possible implementation of this functionality can be done using ElGamal encryption and efficient ZKPoKs
for proving knowledge of discrete log and the exponents of a DH-tuple. (We require that both players prove that
they know their inputs so it can be extracted by the simulator.) In the first stage, they compute the value of
(x1x

−1
2)r1r2 encrypted under a shared ElGamal secret key, where ri is Pi’s private input, chosen at random. In

the second stage, they decrypt the result (along with ZKPoK for proving correctness of the decryption). If the
result is 1, they output True, and False otherwise (details are omitted).

In case the input size is larger than the encryption message length l, the players can do one of the following:
(1) Execute the first stage of the protocol O(|xi|/l) times with different parts of the inputs, and multiply the
resulting encryptions to get one encryption. (The second stage is done on that last encryption.) (2) Jointly pick
a random key k, and use H(k ◦ xi) as their inputs to the protocol, where H is modeled as a random oracle. The
simulator could record all the calls to the random oracle and “invert” H(k ◦ xi) for retrieving the input xi. The
advantage of this option is that only one invocation of the above protocol is needed in this case.

17

C Detailed Construction and Proof of Our Fully-secure 2PC Construction

Figure 4 presents our protocol in detail. A simple example of the XOR-gadgets technique is given in Figure 1.
Before we prove security, we need to discuss the cut-and-choose step and its simulatability in more depth.

Recall that in the cut-and-choose phase, we need to choose a random subset of [t] of size t · c, where c is the
constant fraction of the sets we use for evaluation. In particular, this step needs to be performed in a fashion that
is simulatable in the proof. We note that a similar issue exists in previous 2PC constructions as well. In [17], this
is resolved by generating a random bit for each set and decide whether to open or evaluate the set based on the
bit. As shown in [17], this approach is efficiently simulatable but does not yield a previously agreed-on fraction
c (e.g. c = 3/5 for better security). To the best of our knowledge, the remaining 2PC protocols do not specify
the exact procedure with which the random subset is chosen.

For the sake of completeness, we propose one such procedure that is also efficiently simulatable. The
intuition is simple. In each iteration 1 ≤ j ≤ t · c, one element is sampled uniformly at random from the
previously unchosen elements in [t]. It is easy to confirm that this yields a uniformly random subset of size t · c.
The element to be chosen is decided using a uniformly random integer 1 ≤ v < (t − j + 1) generated by both
parties using the following coin-tossing protocol:

• Parties initialize a boolean string ρ of length t to be all zeros.

• For j = 1, . . . , (t · c), each player Pi picks a random value vij ∈ [1..(t− j + 1)].

• P2 sends a commitment Com(v2
1 ◦ v2

2 ◦ · · · ◦ v2
t·c).

• P1 sends his values v1
1, . . . , v

1
t·c.

• P2 decommits and reveal v2
1, . . . , v

2
t·c.

• For j = 1, . . . , (t · c), let v = ((v1
j + v2

j) mod (t − j + 1)) + 1 and let k be the v-th zero bit of ρ. Set
ρk = 1.

• Let the set E be {j|ρj = 1}. E would be the set of indexes of the circuits that the players evaluate. (i.e.
they open all sets with indexes not in E).

C.1 Proof Sketch of Security of Protocol of Figure 4

We consider the two possible corruption scenarios separately.

P1 IS CORRUPTED. We describe a simulator S that runs A internally and interacts with the trusted party that
computes f . S does the following: It emulates an honest P2 with random input until the end of stage Input-
equality Check (see Figure 4). S extracts (as done in [26]) A’s input to the BCOT2 (used for P1 to learn the
input-wire labels of his input). Denote by x′ this input. If the emulation of P2 until the end of the protocol does
not lead to an abort, S calls the trusted party with x′ and outputs whatever A does.

From the cut-and-choose we know that with probability 1− neg(t) (see [17, 26]), at least for half of j ∈ E
it holds that: 1) rj are the same for both gcj , xgj ; 2) gcj is properly constructed. Denote the by Eg ⊂ E the
indexes for which the two properties hold.

Denote by xj the input P1 used for circuit gcj . Observe that if all the XOR-gadgets that P1 generated are
correct, and P1 uses the same rj for gcj , xgj , then if he uses even a single xi 6= x′ then P2 catches him (since
P1 learns only the labels for x′ in xgj for all j ∈ Eg). Therefore, from the cut-and-choose, P2 is assured with
probability 1 − neg(t) that P1 used the same input for at least half of the sets, and for the same sets he garbled
the circuit properly. Thus, the majority of the outputs are correct (and use x′ as P1’s input) with probability
1− neg(t).

18

Garbling:
Let C1, C2, α(·) as defined in Section 3.
For j = 1, . . . , t, player P1 picks random strings zi (of length s) and ri (of length |INP1|), and computes the set Sj containing:

1. A garbled circuit gci = Garb(C1, zi).

2. The input-wire labels corresponding to rj in gcj .

For j = 1, . . . , t, player P2 picks at random a string z′i and computes XOR-gadget xgj = Garb(C2, z
′
i), each includes |INP1|

XOR-gates.

Oblivious Transfer:
They execute the combination of [17] and BOT where P1 is the sender: P1’s input is |INP2| sets of t pairs(
label(gcj , k, 0), label(gcj , k, 1)

)
for k ∈ INP2 and j ∈ [t], and P2 uses his actual input bits. (Recall that the players use

different inputs when applying the technique of [17]. To simplify the description here, we just refer to the actual inputs they use.)
They execute BCOT2 twice where P2 is the sender: (We separate the two for simplifying the description. However, both proto-
cols can be executed together to reduce the number of seed OTs.) In the first, P1 inputs the bits of rj and P2 inputs the pairs
(label(xgj , α(k), 0), label(xgj , α(k), 1)) for k ∈ INP1 and j ∈ [t]. In the second, P1 inputs his actual input bits and P2 inputs
the pairs (label(xg1, k, 0) ◦ label(xg2, k, 0) ◦ · · · ◦ label(xgt, k, 0), label(xg1, k, 1) ◦ label(xg2, k, 1) ◦ · · · ◦ label(xgt, k, 1)) for
k ∈ INP1. (Note that in the last BCOT, P1 gets the labels for all t circuits together. Because of that, he cannot use inconsistent
inputs for P2’s XOR-gadgets.)

Cut-and-choose:
P1 sends the sets S1, . . . , St and P2 sends the XOR-gadgets xg0, xg1, . . . , xgt.
They pick a random E ⊂ [t] of size t · c in the following way:

1. They initialize a boolean string ρ of length t to be all zeros.

2. For j = 1, . . . , (t · c), each player Pi picks a random value vij ∈ [1..(t− j + 1)].

3. P2 sends a commitment Com(v21 ◦ v22 ◦ · · · ◦ v2t·c).
4. P1 sends his values v11 , . . . , v1t·c.

5. P2 decommits and reveal v21 , . . . , v2t·c.

6. For j = 1, . . . , (t · c), let v = ((v1j + v2j) mod (t− j + 1)) + 1 and let k be the v-th zero bit of ρ. Set ρk = 1.

7. Let the set E be {j|ρj = 1}. E would be the set of indexes in which the players will evaluate (and open all sets with indexes
not in E).

Checking Opened Circuits:
For all j /∈ E, P1 sends: 1) zj ; 2) The labels he learned from BCOT2 for rj .
For the opened sets, P2 verifies that the circuits and gadgets were constructed properly, and that P1 used the same rj for xgj and
gcj . Then, P1 reveals all the inputs he used for the BOT in the opened sets and P2 verifies that all the values are consistent with the
opened circuits and with the values he received in the BOT.

Input-equality check:

1. P1 evaluates the remaining XOR-gadgets he has. He sends a commitment com on all the output-wire labels he got from
the XOR-gadgets (or on a random value if there was a problem in the evaluation) along with a ZKPoK that he knows the
decommitment of com. (If the ZKPoK is invalid, P2 aborts.)a

2. P2 opens all his XOR-gadgets in the set E (by sending z′i-s), and decommits all his inputs to BCOT2. P1 verifies that the
XOR-gadgets were constructed properly and consistent with the BCOT2 inputs. (If not, he aborts.)

3. P1 decommits com and reveals the output-wire labels he got from the XOR-gadgets. P2 verifies that all labels are valid ones
(i.e., generated by him).

4. P1 sends the input-wire labels for his input in Sj where j ∈ E. If some of them are invalid, P2 aborts.

5. P2 evaluates the XOR-gadgets in the sets Sj , j ∈ E and compares the results to the outputs sent by P1. If the outputs are
not the same, P2 aborts.

Evaluation: P2 evaluates all the garbled circuits gcj where j ∈ E. He takes the majority to be his output.

aRecall that if the length of the concatenated labels is too long, P1 can instead commit on a short seed as described in Section 3.

Figure 4: A Fully-secure 2PC Protocol.

19

We now need to argue that P1’s view in the ideal and real executions are indistinguishable.3 Except for the
OT messages which are indistinguishable by the security of the OTs, the above simulated execution is distributed
as the real one, except for two cases: (1) When P1 successfully cheats (and then P2’s output in the real execution
would be different than in the ideal model). However, in order to cheat successfully P1 must cheat in the majority
of the evaluated sets, and as discussed above this happens with 1−neg(t) probability. (Indeed, P1 can cheat also
by guessing the output-wire labels of P2’s XOR-gadgets, but that can work with probability 2−s if the labels are
of length s.) (2) When P1 cheats in the OTs for P2 to learn his inputs, in a way that is distinguishable from the
simulated execution (since the simulator picks random inputs). However, by the analysis of [17], this can only
happen with probability neg(t) as well.

P2 IS CORRUPTED. The simulator S does the following:

• Picks at random a subset E and a random permutation of it π(E).

• Emulates an honest P1 until the end of stage Oblivious Transfer (See Figure 4). Learns P2’s inputs to the
BOT as done by the simulator of [24].

• Calls the trusted party with P2’s input and receives the output output.

• Constructs the sets such that for j ∈ E, gcj outputs the constant output, and for j /∈ E, gcj is a legal
garbling.

• Emulates P1 in the Cut-and-choose stage, until step 5. Learns P2’s v2
j -s.

• Rewinds to step 4 and picks v1
j -s such that π(E)j = v1

j + v2
j .

• Emulates P1 with a random input until the end.

Recall that if P2 creates illegal XOR-gadgets, then P1 always catches him since they always open all those
gadgets and their corresponding OTs.

The only parts in which the simulation is different than the execution in the real model is where the simulator
constructs the fake garbled circuits. However, this difference is indistinguishable by the results of [18, 2]. (This
can be done, e.g., by setting the output gates to be constant gates of the output output. Then, by the security of
the garbling scheme, this change is indistinguishable.) Also, the OT messages are indeed for different inputs,
but the security of the OT implies that this difference is indistinguishable.

C.2 Handling Two-Output functions

As discussed in Section 1.1, we have two (related) solutions for handling two-output functions. Here we describe
the second one which allows circuit streaming and computation in parallel (e.g., as done in [15]).

We augment the garbling stage as follows. Let OUT1 be the set of P1’s output wires. For each k ∈ OUT1,
P1 picks two random strings wk,0, wk,1. In addition to the garbled circuits, P1 garbles t · |OUT1| identity-gates.
The garbled identity-gate igj,k for garbled circuit gcj and output-wire k is the garbled version of an AND gate
that receives the same input twice and has the output-wire labels wk,0, wk,1. (In practice, only two encryptions
are needed: Enc(label(gcj , k, 0), wk,0) and Enc(label(gcj , k, 1), wk,1).) P1 does not send those garbled identity-
gates, but only sends t commitments, one for each circuit committing to all its garbled identity-gates.

Now, the players execute the protocol from above. They follow the protocol upto the input equality check
stage. Then, P1 decommits the garbled identity-gates only for the circuits being evaluated. P2 uses the output-
wire labels from the evaluation stage to evaluate the identity-gates, takes the majority (taking into account the
output-wire labels of P1’s output) and sends a commitment on the output-wire labels for k ∈ OUT1 to P1. P1

decommits all the remaining garbled identity-gates, and P2 verifies they were constructed properly (or otherwise
3Since we have two different security parameters, t and s, the executions are actually (s, t)-indistinguishable [19].

20

aborts). Note that for the opened sets, P2 has both labels, so essentially he concludes, again from the cut-and-
choose, that the identity-gates are correct for the majority of the circuits. If everything was correct, P2 decommits
his commitment and P1 checks that the labels are legal output labels.

As discussed in Section 3, sending a commitment on the output labels does not suffice. Also, since in the
simulation of P2 the simulator has to commit and later decommit to output labels he never saw, the commitment
has to be equivocal. For that, we can either use Pedersen’s commitment as a trapdoor commitment [3] and require
P2 to prove that he knows the decommitment (See appendix D.1 for more references on how to instantiate such
commitments) , which requires O(q1) expensive operations, or, in the Random Oracle model, to commit using
one call to the hash function (that is modeled as the random oracle) without additional ZKPoKs.

The above protocol provides authenticity of the output. In case privacy of the output is also needed, one can
modify the circuit being evaluated in the standard way of XORing the output with a random string.

D More on Our ε-CovIDA Constructions

D.1 Detailed Construction and Proof of the Protocol from Section 4.2

Before we present the detailed construction (Figure 5), we note that a few interesting issues arise in the simulation-
based proof of the protocol that do not exist in the previous standard 2PC constructions. For example, in the
simulation-based proofs of previous 2PC constructions, the random challenge is used for checking only one
player, the garbler. However, here we use the same challenge for checking both players. This prevents us from
using regular commitments everywhere and constructing the simulation using the standard commit, decommit
and rewind operations. Roughly speaking, the challenge is to construct two different simulators (for the two
corruption cases) that can open the coin-toss to any challenge value.

To overcome these issues we use trapdoor commitments in some steps of the protocol (i.e. when P1 com-
mits to his coins and when he commits to his garbled sets). These special commitments have the property that
given a trapdoor, a commitment can be decommitted to any message, or more formally, let Comck(m, r) be a
commitment on message m using randomness r and commitment key ck. Then a party who knows the trap-
door ct can successfully decommit Comck(m, r) to whatever message m′ it wants. Such commitments can be
constructed efficiently from a variety of assumptions such as DDH and RSA (e.g. See [3]). The intuition is
that each player generates a pair of a public key/trapdoor to a trapdoor commitment scheme, and proves using
a zero-knowledge proof of knowledge protocol (ZKPoK) that he knows the trapdoor. Each player then uses the
other player’s public key to commit to his values. In the simulation, the simulator can extract the trapdoor and
open the commitment to an appropriate value of its choice.

One option is to use DDH based trapdoor commitment and standard ZKPoK of discrete-log (see [3]). Then,
the overhead introduced here is only a (small) constant number of exponentiations.

Figure 5 presents our protocol in detail.

D.1.1 Proof Sketch of Security of Protocol of Figure 5

Let A be an adversary controlling P1 in the execution of the protocol in the F l2SET -hybrid world. We describe
a simulator S that runs A internally and interacts with the trusted party that computes f . S does the following:

1. Invokes A and emulates honest P2 with random inputs y,m2 until the end of the stage “Committing to
the sets and inputs”. During the execution it extracts the Z1

j and H(S1
j) from the ZKPoK and records A’s

inputs to BCOT1 and BCOT2 (as done in [26]). Also, it extracts the trapdoor ct1 from A.

2. Checks if some of the sets are problematic, which means that Z1
j is not consistent with H(S1

j) or some of
P1’s inputs to the BCOTs (either for the BCOTs for P2 to learn his input, or for P1 to learn the inputs of
rj).

If more than one set is incorrect,

21

We describe P1’s actions in the protocol. The protocol is symmetric, hence the same steps take place for P2 as well.
Garbling:
Let C1, C2, C

′
1, C

′
2, α(·) as defined in Section 4.2, where P1’s input is x′ = x ◦m1 and P2’s is y′ = y ◦m2 and m1,m2 are chosen

at random.
For j = 1, . . . , t, player P1 picks a random string Z1

j and uses it as a key for a PRF to generate z1j , z
1′
j (of length s) and r1j (of length

|INP1|). Then P1 computes the set S1
j containing:

1. Garbled circuits gc1j = Garb(C1, z
1
j) and xg1j = Garb(C′1, z

1′
j).

2. The input-wire labels corresponding to r1j in gc1j .

Oblivious Transfer:
Players execute two batch committing-OT where P1 is the sender, with all the input-wire labels for gc1j and xg1j . More specifically, in
the first execution, BCOT1 is used. P1’s input is |INP2| sets of t+1 pairs, i.e.

(
label(gc1j , k, 0), label(gc

1
j , k, 1)

)
for k ∈ INP2 and

j ∈ [t], and
(
label(xg11 , k, 0)◦ · · · ◦ label(xg1t , k, 0), label(xg11 , k, 1)◦ · · · ◦ label(xg1t , k, 0)

)
for k ∈ INP2, and P2 uses his actual

input bits. In the second execution, using BCOT2, P1 inputs one set of |INP2| · t pairs (label(xg1j , α(k), 0), label(xg
1
j , α(k), 1))

for k ∈ INP2, j ∈ [t], and P2 inputs the bits of his inputs r2j .
We note that P1 is yet to send the labels for his input wires in gc1j .

Committing to the sets and inputs:

1. P1 generates a key pair (ck1, ct1) for a trapdoor commitment where ct1 is the trapdoor and ck1 is the public key. He sends
ck1 to P2 and proves to him, using ZKPoK, that he knows the corresponding trapdoor. (P2 does the same with ck2, ct2.)

2. For j = 1, . . . , t, P1 sends the commitments Com(Z1
j),Comck2(H(S1

j)) along with ZKPoK that he knows the correspond-
ing messages Z1

j and H(S1
j).

Cut-and-choose:
They pick a random e ∈ [t] in the following way (this part is done only once):

1. They both toss t coins.

2. P1 sends a commitment on his coins Comck2(coins1).

3. P2 sends his coins coins2.

4. P1 opens the decommitment and they both set coins = coins1 ⊕ coins2.

5. They use coins to pick (uniform) e ∈ [t].

P1 sends the t sets S1
j to P2, and decommits their Comck2(H(S1

j)).

Checking Opened Circuits:
For (S1

j , S
2
j)j 6=e, the players send to each other: 1) Zi

j and a decommitment of Com(Z1
j) , 2) The labels they have learned from

BCOT2 for rij . For the opened sets, each player verifies that everything was generated properly from Zi
j , and that the other player

used the same rij for gcij and xg3−i
j . Then, each player decommits all the inputs he has used as the sender in BCOT1 for all the

opened sets and the other player verifies that all these values are consistent with the opened circuits. (I.e., P1 decommits his inputs
in BCOT1 for gc1j 6=e.) If some of the sets were not constructed properly, the players abort outputting ⊥.

Evaluation and Input-equality check:
Each player sends his input-wire labels for the e-th circuit and they evaluate the circuits and the XOR-gadgets.
P1 sends to P2 a commitment on the concatenation of the labels he obtained from evaluation of xg2e (or to a random string if there was
a problem with the XOR-gates evaluation) along with a ZKPoK that he knows the decommitment. Next, P2 sends the randomness
he used for garbling the XOR-gadget xg2e , and decommits all his inputs as the sender to BCOT2, including the ones of xg2j , and his
inputs

(
label(xg11 , k, 0) ◦ · · · ◦ label(xg1t , k, 0), label(xg11 , k, 1) ◦ · · · ◦ label(xg1t , k, 0)

)
for k ∈ INP2 to BCOT1. P1 verifies

that the XOR-gadget was constructed properly and consistently with the BCOT2 inputs (otherwise, outputs ⊥) and decommits his
commitment to P2.
P2 checks that the output-wire labels he received are valid (i.e. generated by him for these gates) and compares them with the
output-wire labels he got from his evaluation of the corresponding XOR-gates. If there is a problem, he outputs ⊥.
(Recall that the same process goes in both directions, one for P1’s inputs and one for P2’s inputs.)

Equality-Testing:
They call the Equality Testing functionality with the output bits of f(x, y) ⊕m1 ⊕m2 of the e-th garbled circuits (including the
labels as described earlier). If the answer is False, they abort.

Output Unmasking:
P1 sends m1 and the labels that correspond to m1 in gc2e and P2 verifies that the labels indeed correspond to m1. (P1 does the same
with m2 and aborts if there is a problem.) Then, P1 computes his output by XORing the output of gc2e with m1 ⊕m2.

Figure 5: 1/t-CovIDA Protocol.

22

• Sends cheat1(1) to the trusted party (and since 1 > 1/t, the trusted party would send corrupted1).
• Emulates honest P2 until the end of the protocol. (Note that P2 will abort.)

If all are correct,

• Calls the trusted party with A’s input x (learned from BCOT1) and receives the output output.
• Continues the protocol emulating honest P2, but replaces P2’s garbled circuit gc2

e with one that
always outputs output ⊕m1 ⊕m2 (for fixed output,m1,m2) with labels that are consistent with
previous steps. S computes the hash of P2’s sets after this replacement and uses ct1 to decommit
successfully.
• Proceeds with the protocol emulating honest P2. If A’s input to the “Equality-Testing” is the right

output of gc2
e and the corresponding labels in gc1

e, the simulator returns True. Else, it returns False.
• Proceeds with emulating honest P2, revealingm2 at the end. Sends abort ifA aborts or sends invalid

labels for m1.

Otherwise (i.e. if exactly one set is incorrect),

• Sends to the trusted party cheat1(1/t).
• If the trusted party returns corrupted1, S picks random coins2 such that P1 will be caught later in

the opening stage (coins1 can be learned by rewinding A). Emulates honest P2 until the end. (Note
that P2 will abort.)
• If the trusted party returns undetected and the output output,

– Picks random coins2 such that P1 will not be caught in the opening stage.
– Continues the protocol emulating honest P2, but replaces P2’s garbled circuit gc2

e with one that
always outputs output ⊕ m1 ⊕ m2 (for fixed output,m1,m2) with labels that are consistent
with previous steps. S computes the hash of P2’s sets after this replacement and uses ct1 to
decommit successfully.

– Let P1’s input to the “Equality-Testing” be w1. S sends to the trusted party the function g that
has hardcoded the circuit gc1

e, the input labels that A used in the BCOT1 for P2’s inputs of gc1
e,

the labels that A sent for his inputs, the value m2, the output-wire labels of gc2
e, and w1. The

function evaluates the circuit with the real P2’s input, using the corresponding input-wire labels,
determines what string w2 would honest P2 in our protocol be using after obtaining the output
of the evaluation, compares it with w1 and outputs 1 if they are equal and 0 otherwise. If the
trusted party sends abort, S sends False to A and emulates P2 aborting. If the trusted party did
not abort, S sends True to A and proceeds emulating honest P2 revealing m2. S sends abort if
A aborts or sends invalid labels for m1.

When the e-th set is correct, the adversary cannot change his input since it is checked by the XOR-gadgets
(since we know that the r1

e is the same for both evaluations), and he cannot reveal successfully at the endm′1 that
is different than m1 because the corresponding labels are random. When the e-th set is incorrect, the adversary
can indeed use different inputs for both evaluations or incorrect garbled circuit gc1

e. The output he gets from the
evaluation of gc2

e looks for him the same as the output in the real execution, and the only information he gets
about the output of gc1

e is from the result of the Equality-Testing. However, since the simulator computes this
output with the assistance of the trusted party (by evaluating gc1

e with the actual P2’s input), the result of the
Equality-Testing looks the same as in the real execution.

Inspecting the simulation shows that the only parts that are different than the real execution are (1) Where
the simulator sends a fake garbled circuit with a fixed output. However, [18, 2] show that the two views are
indistinguishable (under minor changes to the circuit in use); (2) P2’s inputs to the BCOTs. However, these are
indistinguishable by the security of the BCOTs.

The simulation for the case whereA controls P2 is the same, except that for changing the coins S now needs
to utilize the trapdoor ct2.

23

D.2 Reducing the Number of Circuits

A shortcoming of the previous protocol is that the probability of leakage decreases slowly with the number of
circuits t. In particular, aiming for a probability of leakage of 1/1000 would require the exchange of a thousand
garbled circuits which is not practical. A more desirable goal is to make the leakage probability exponentially
small in t while the protocol cost still grows linearly in t.

The standard solution for reducing the probability of cheating in cut-and-choose protocols is to issue t
garbled circuits, open a constant fraction of them (e.g. half) and verify that they were constructed properly, and
evaluate the rest. Using this method (ignoring the challenges in enforcing consistency of inputs and the OTs) we
have that the majority of the evaluated circuits are correct, and thus the majority output is the correct output with
all but negligible probability in t. (See [26] for a concrete analysis.)

However, if we try to combine this approach and dual execution, it is not clear how to perform the equality
testing at the end, since now each player evaluates multiple circuits with different output-wire labels, some of
which may encode the wrong result.

To overcome this issue we need a solution that ensures that the output labels are (1) the same for all the
evaluated circuits and (2) unpredictable (i.e. hard to guess when not learned through evaluation), as is the case
with output-wire labels in the standard garbled circuits. One possibility is to embed a carefully designed one-
time MAC in the circuits being garbled and evaluated. The overhead of this solution, however, is too high to
be of practical interest. Next we discuss an alternative and very efficient solution based on identity-gates and a
two-stage opening.
An efficient solution via identity-gates. For each k ∈ OUT, each player Pi picks two random strings
wik,0, w

i
k,1. Note that these random strings are the same for all t circuits. In addition to the garbled circuits

and XOR-gadgets, for each set it also garbles |OUT| identity-gates. The garbled identity-gate igij,k for gar-
bled circuit gcij and output-wire k is the encryptions Enc(label(gcij , k, 0), wik,0) and Enc(label(gcij , k, 1), wik,1).
The players do not send those garbled identity-gates as part of the sets, but only send one commitment per set,
committing to all the garbled-identity gates for that set.

Now, the players execute the protocol from Section 4.2, but open only a constant fraction of the sets (without
opening the commitments on the identity-gates). Then, each player decommits the garbled identity-gates for the
circuit-pairs being evaluated. Each player uses the output-wire labels from the circuit evaluations to evaluate
the identity-gates, and then takes the majority to be his input to the Equality Testing functionality (or a random
string if there is no majority). However, if the identity-gates were invalid, this step might reveal information.
Thus, the players run only the first stage of the Equality Testing functionality (and essentially commit to their
inputs). Then each player decommits all the remaining garbled identity-gates he generated and opens them,
while the other player verifies they were constructed properly (or otherwise aborts). If everything was correct,
they execute the second stage of the Equality Testing functionality and proceed accordingly.

The resulting protocol adds only O(t · |OUT|) inexpensive operations since for each output-wire the players
compute t garbled identity-gates.

In addition to the above modifications, we require player Pi to pick a random Z ′i in the beginning of the
protocol, and use it as a PRF key for generating the strings wik,0, w

i
k,1 and the randomness used for committing

on the identity-gates. Each player commits on his Z ′i and proves, using ZKPoK, that he knows it. (This allows
the simulator to extract Z ′i and check if the commitments are consistent with the set of garbled circuits and the
BCOTs.) When the players decommit all the garbled identity-gates, they also decommit Z ′i and verify that the
all commitments and identity-gates were generated correctly using this value.

The last modification is regarding the coin-tossing step. We replace the coin-tossing step of the protocol from
Figure 5 with the one from Figure 4, and change it to use trapdoor commitments for the same reason explained
in Appendix D.1. Specifically, the coin-tossing protocol we use is:

• Parties initialize a boolean string ρ of length t to be all zeros.

• For j = 1, . . . , (t · c), each player Pi picks a random value vij ∈ [1..(t− j + 1)].

24

• P1 sends a commitment Comck2(v1
1 ◦ v1

2 ◦ · · · ◦ v1
t·c).

• P2 sends his values v2
1, . . . , v

2
t·c.

• P1 decommits and reveal v1
1, . . . , v

1
t·c.

• For j = 1, . . . , (t · c), let v = ((v1
j + v2

j) mod (t − j + 1)) + 1 and let k be the v-th zero bit of ρ. Set
ρk = 1.

• Let the set E be {j|ρj = 1}. E would be the set of indexes in which the players will evaluate (and open
all sets with indexes not in E).

Proof Sketch of Security. The simulation is very similar to the one from Appendix D.1 except for some small
changes.

Let A be an adversary controlling P1 in the execution of the protocol in the F l2SET -hybrid world. S does
the following:

1. InvokesA and emulates honest P2 with random inputs y,m2 until the end of the stage “Committing to the
sets and inputs”. Extracts Z ′1, Z

1
j and H(S1

j) from the ZKPoK and records A’s inputs to BCOTs. Also, it
extracts the trapdoor ct1.

2. Checks if some of the sets are problematic, which means that if given Z ′1, Z1
j is not consistent with H(S1

j)
or some of P1’s inputs to the BCOTs, or with the commitment on the identity-gates, then the set j is
problematic. Let B = {j|set j is problematic}.
If all are correct,

• Calls the trusted party with A’s input x (learned from the BCOT1) and receives the output output.

• Continues the protocol emulating honest P2, but replaces P2’s garbled circuit gc2
e with one that

always outputs output ⊕m1 ⊕m2 (for fixed output,m1,m2) with labels that are consistent with
previous steps. S computes the hash of P2’s sets after this replacement and uses ct1 to decommit
successfully.

• Proceeds with the protocol emulating honest P2. If A’s input to the “Equality-Testing” is the right
output of gc2

e and the corresponding labels in gc1
e, the simulator returns True. Else, it returns False.

• Proceeds with emulating honest P2, revealingm2 at the end. Sends abort ifA aborts or sends invalid
labels for m1.

If more than |E| of the sets are incorrect (|E| < |B|),

• Sends cheat1(1) to the trusted party (and since 1 > 1/t, the trusted party would send corrupted1).

• Emulates honest P2 until the end of the protocol. (Note that P2 will abort.)

If less than |E| of the sets are incorrect (|B| ≤ |E|),

• Set ε′ =

 t− |B|
t− |E|

 t
t− |E|

 . (This is the probability of not being caught for the given set of problematic

sets.)

• Sends to the trusted party cheat1(ε′).

25

• If the trusted party returns corrupted1, S makes sure that the subset E will be chosen such that P1

will be caught later. Emulates honest P2 until the end. (Note that P2 will abort.)
We now describe how E is chosen. Let ρ be a binary string of length t, and let c be the constant
fraction of sets we evaluate (i.e., c = |E|/t). S chooses ρ using the following strategy: Pick at
random a binary string ρB of length |B| that has at least one zero element. Pick at random a binary
string ρG of length t − |B| that has exactly t · c − HW(ρB) non-zero elements. Choose ρ such that
ρ : B = ρB and ρ : [t] − B = ρG, where x : S denotes the substring of x containing all indexes in
set S.
Set E to be the set of indexes {i|ρi = 1}. Note that E is uniform over all the challenges that reveal
problematic sets.
Let π(E) be a random permutation of the indexes in E. In order to decide on E, for each round j in
the protocol from above, S does the following:

– Receives P1’s commitment.
– Sends random v2

j -s and receives P1’s v1
1, . . . , v

1
t·c.

– Rewinds A and sends him v2
j = π(E)j − v1

j mod (t− j + 1)) + 1 for j = 1, . . . t · c.
• If the trusted party returns undetected and the output output,

– Makes sure that all the malicious set/inputs are in E, and also, replaces P2’s garbled circuits
in the set E with ones that always output a fake output z ⊕m1 ⊕m2. (Here we use the same
process for picking E as before, but instead we take ρB to be all ones.) S computes the hash of
P2’s sets after this replacement and uses ct1 to decommit successfully.

– If |B| < |E|/2, S sends to the trusted party the function g that always returns 1, proceeds with
the protocol emulating honest P2. If A’s input to the “Equality-Testing” is the right output of
P2’s circuits and the corresponding labels, the simulator returns True. Else, it returns False.
(Note that since the majority of the sets are good, S can extract the output labels from P1’s
sets.)

– If |E|/2 ≤ |B|, let A’s input to the “Equality-Testing” be w1. S sends to the trusted party
the function g that has hardcoded the circuit gc1

e for all e ∈ E, the input labels that A used in
BCOT1 for P2’s inputs of gc1

e, the labels that A sent for his inputs, the value m2, the output-
wire labels of gc2

e, and w1. The function evaluates the garbled circuits with the real P2’s input,
using the corresponding input-wire labels, computes what string w2 would have honest P2 in
our protocol be using after he gets the outputs of these evaluations, compares it with w1 and
outputs 1 if they are equal and 0 otherwise. If the trusted party sends abort, S sends False to A
and emulates P2 aborting. If the trusted party does not abort, S sends True to A and proceeds
emulating honest P2 revealing m2. S sends abort if A aborts or sends invalid labels for m1.

The rest of the proof is as in Appendix D.1.

E Authenticated Computation with Private Input

In some cases, only one of the players’ inputs should remain private. E.g., in anonymous credential protocols, if
checking credentials can be done publicly then the only secret input to the protocol is the actual user’s credentials.
Other applications can be targeted-advertising, where only the client’s preferences are secret, and any Zero-
Knowledge Proof, in which only the prover’s input (the witness) is private.4

Say P1’s input x should remain private, but the function in use f is known to both players and P2’s input y
can be revealed at the end of the protocol. The players wish to compute f(x, y) while maintaining correctness

4We have learned that a result similar to ours was independently obtained by [12].

26

and privacy of x even in the case one of the players is malicious. Indeed, realizing this functionality can be done
using any fully-secure 2PC. However, there is no natural way to take advantage of the fact that y can be revealed
at the end of the protocol. (Note that we require that both inputs are independent of each other, as required
implicitly by the standard 2PC security notion.)

A very efficient protocol for the above functionality, using the ideas presented earlier for handling two-output
functions, is the following:

• P2 picks a short seed z for a pseudo-random function (PRF), and generates gc = Garb(Cf , z). (Recall
that the output-wire labels include random strings and the actual bits.)

• P1 and P2 execute |x| (fully-secure) OTs for P1 to learn the labels that correspond to his input-wires. All
the randomness P2 uses in the OTs is derived from the PRF used with the seed z.

• P2 sends gc along with the labels that correspond to his input-wires (for y).

• P1 evaluates gc and gets the actual output bits (denote by b1, b2, . . . , bq) and their random labels (denote
by l1, l2, . . . , lq).

• P1 sends a commitment Com(b1 ◦ · · · ◦ bq ◦ l1 ◦ · · · ◦ lq) and a ZKPoK that he knows its decommitment.

• P2 sends z.

• P1 verifies that gc was garbled correctly and the OTs were consistent with gc. (This is done by emulating
honest P2 with the seed z.)

• If everything was properly constructed, P1 decommits his commitment, P2 checks that all labels li-s are
indeed correct output-wire labels, and if so, they both output the bi-s.

The above protocol requires only a single garbled circuit and a small constant number of rounds. When Com(·)
is implemented by a Random Oracle, only a single hash is needed for the commitment. Alternatively, a trapdoor
commitment with ZKPoKs can be used with the cost of O(q) expensive operations.

27

	Introduction
	Our Contributions
	Fully-Secure 2PC Based on Cut-and-Choose with Small Overheads.
	Security with Input-Dependent Abort in Presence of Covert Adversaries.

	Preliminaries
	An Efficient 2PC for Two-output Functions with Full Security
	Security with Input-Dependent Abort in the Presence of Covert Adversaries
	The Model
	An Efficient Protocol with 2 Circuits

	Other Related Work
	Preliminaries
	Oblivious Transfer (OT)
	Committing Oblivious Transfer (COT)
	The Technique of LindellP07
	Two-Stage Equality Testing

	Detailed Construction and Proof of Our Fully-secure 2PC Construction
	Proof Sketch of Security of Protocol of Figure 4
	Handling Two-Output functions

	More on Our -CovIDA Constructions
	Detailed Construction and Proof of the Protocol from Section 4.2
	Proof Sketch of Security of Protocol of Figure 5

	Reducing the Number of Circuits

	Authenticated Computation with Private Input

