Garbled Circuits Checking Garbled Circuits: More Efficient and Secure Two-Party Computation

Payman Mohassel* Ben Riva[†]

June 20, 2013

Abstract

Applying cut-and-choose techniques to Yao's garbled circuit protocol has been a promising approach for designing efficient Two-Party Computation (2PC) with malicious and covert security, as is evident from various optimizations and software implementations in the recent years. We revisit the security and efficiency properties of this popular approach and propose alternative constructions and a new definition that are more suitable for use in practice.

• We design an efficient fully-secure 2PC protocol for two-output functions that only requires O(t|C|) symmetric-key operations (with small constant factors, and ignoring factors that are independent of the circuit in use) in the Random Oracle Model, where |C| is the circuit size and t is a statistical security parameter. This is essentially the *optimal* complexity for protocols based on cut-and-choose, resolving a main question left open by the previous work on the subject.

Our protocol utilizes novel techniques for enforcing *garbler's input consistency* and handling *twooutput functions* that are more efficient than all prior solutions.

Motivated by the goal of eliminating the *all-or-nothing* nature of 2PC with covert security (that privacy and correctness are fully compromised if the adversary is not caught in the challenge phase), we propose a new security definition for 2PC that strengthens the guarantees provided by the standard covert model, and offers a smoother security vs. efficiency tradeoff to protocol designers in choosing the *right deterrence factor*. In our new notion, correctness is always guaranteed, privacy is fully guaranteed with probability (1 – ε), and with probability ε (i.e. the event of undetected cheating), privacy is only "partially compromised" with at most a *single bit* of information leaked, in *case of an abort*.

We present two efficient 2PC constructions achieving our new notion. Both protocols are competitive with the previous covert 2PC protocols based on cut-and-choose.

A distinct feature of the techniques we use in all our constructions is to check consistency of inputs and outputs using new gadgets that are themselves *garbled circuits*, and to verify validity of these gadgets using *multi-stage* cut-and-choose openings.

1 Introduction

Informally, a secure two-party protocol for a known function $f(\cdot, \cdot)$ is a protocol between Alice and Bob with private inputs x and y that satisfies the following two requirements: (1) *Correctness*: If at least one of the players is honest then the result should be the correct output of f(x, y); (2) *Privacy*: No player learns any information about the other player's input, except for the function output.

Security is defined with respect to an adversary, who is *semi-honest* if the corrupted players always follow the protocol, is *malicious* if the players can arbitrarily deviate, and is *covert* in case a cheating player has an incentive not to be caught (or more specifically, any deviation can be detected with a constant probability).

^{*}University of Calgary, Canada.

[†]Tel Aviv University, Israel. Research supported by the Check Point Institute for Information Security and an ISF grant.

A classical solution for the case of semi-honest players (i.e., players who do not deviate from the protocol) is to use a *garbled circuit* and *oblivious transfer* [28, 18]: The resulting protocol is fairly efficient since computing each gate requires a constant number of symmetric-key encryptions. Furthermore, recent results show how to improve both the computation and communication cost of the garbling process (e.g., getting XOR gates for free [14], reducing communication [5, 25], and designing tailored circuits [6]).

The case of malicious players is more complicated and less efficient. A classical solution is to use zeroknowledge proofs to verify that the players follow the protocol. However, the proofs in this case are rather inefficient. [11, 22] show how to garble a circuit in such a way that these proofs can be instantiated more efficiently. Still, these constructions require a constant number of exponentiations per gate, making them inefficient for large circuits.

See Appendix A for other approaches we do not discuss here.

THE CUT-AND-CHOOSE APPROACH. A slightly more explored direction is based on using the cut-and-choose method for checking the garbled circuit. (E.g., see implementations by [25, 26, 15].) Instead of sending only one (and possibly not properly constructed) garbled circuit, Alice sends t garbled circuits. Then, Bob asks her to *open* a constant fraction of them. For those circuits, Alice sends all the randomness she used in the garbling process. Bob can check that the opened circuits were indeed correctly garbled. If that is not the case, Bob knows that Alice has cheated and aborts. Otherwise, Bob evaluates the remaining garbled circuits and computes the majority output. It is shown in [19, 26] that with high probability the majority of the evaluated garbled circuits are properly constructed.

However, the above cut-and-choose of the circuits is not sufficient to obtain a fully-secure 2PC. There are three well-known issues to resolve: (1) *Garbler's input consistency:* Since Bob evaluates many circuits, he needs assurance that Alice uses the same input in all of them. (2) *Evaluator's input consistency:* Alice can use different input labels in the oblivious transfers and in creation of the garbled circuits, in such a way that reveals Bob's input. (E.g., she can use invalid labels for the input bit 0 in the oblivious transfer, but valid ones for 1, causing Bob to abort if his input bit is 0.) (3) *Two-output functions:* There are cases in which the players want to securely compute two different functions f_1 , f_2 where each party only learns his *own* output and is assured he has obtained the correct result.

When addressing these issues, the deciding efficiency factors are both the number and the type of additional cryptographic operations required. By *expensive operations*, we refer to cryptographic primitives that require exponentiations (e.g. oblivious transfer, or public-key encryption), and by *inexpensive operations* we mean the use of primitives that do not require exponentiations (e.g. symmetric-key encryption, commitments, or hashing). To simplify the exposition, from now on we omit small constants and complexities that are independent of the computation size or input length, unless said otherwise.

To address the first issue, i.e. how to make sure Alice is using the same input in all circuits, [20, 17] present two methods that require $O(t^2 \cdot n_1)$ inexpensive cryptographic operations (commitments), where n_1 is the length of Alice's input, and t is the number of circuits we use in the cut-and-choose. ([27] shows how to reduce this asymptotic overhead, but with large constants even for small security parameters.) [20, 19, 26] show alternative methods that require $O(t \cdot n_1)$ expensive cryptographic operations (i.e. exponentiations). These consistencychecking mechanisms can lead to significant overhead. Recall that garbling of a single gate requires a constant number of symmetric encryptions, where the constant is 4 in most implementations. Thus, e.g. for t = 130, the price of checking consistency for a single input bit is roughly equivalent to the price of garbling several tens of additional gates in each circuit in the first method, and even more in the second. Moreover, the first method has a large communication overhead (e.g., for input size $n_1 = 500$ and t = 130, it requires several millions of commitments, with a total communication overhead of hundreds of megabytes).

To address the second issue, i.e. making sure Alice is using the same labels in her OT answers and the garbled circuits, [17] presents a method that requires $O(t \cdot \max(4n_2, 8t))$ expensive cryptographic operations (specifically, oblivious transfers), where n_2 is the length of Bob's input. [19, 26] introduce alternative methods that require $O(t \cdot n_2)$ expensive cryptographic operations.

To address the last issue, of verifying the computation output, [17] proposes to apply a one time MAC to

the output and XOR the result with a random input to hide the outcome (both are done as part of the circuit). However, this solution increases Alice's input with additional $q_1 + 2t$ input bits and increases the circuit size by $O(t \cdot q_1)$ gates, where q_1 is Alice's output length (i.e. overall overhead of $O(t^2 \cdot q_1)$ inexpensive operations). [26] suggests a solution that requires the use of digital signatures and a witness-indistinguishable proof, resulting in a total overhead of $O(t \cdot q_1)$ expensive operations.

In the covert setting [1] the techniques are similar, although the issue of the garbler's input consistency is not always relevant [5, 1].

ALL-OR-NOTHING SECURITY VS. SECURITY WITH INPUT-DEPENDENT ABORT. All the cut-and-choose protocols discussed above provide an *all-or-nothing* guarantee, which means that both correctness and privacy are preserved with the same probability (the probability of getting caught in case of cheating), and are completely compromised if cheating is not detected. For example, in case of a protocol with covert security and deterrence factor of 1/2, there is a 50% chance that the protocol reveals the honest party's input and provides him with an incorrect output. This can become an obstacle to using covert security, in some practical scenarios. For example, the participants of an MPC protocol may not be able to afford the lack of correctness or privacy (even if only with a constant probability), due to the high financial/legal cost, or the loss of reputation.

[20] suggests an alternative to the all-or-nothing approach and designs a secure two-party protocol that always guarantees correctness but may leak one bit of information to a malicious party. While this security guarantee is weaker than the standard definition of security against covert/malicious adversaries, it ensures correctness and "partial privacy" even in case of successful cheating, making it a reasonable relaxation in some scenarios.

The idea behind the protocols of [20] is as follows: Alice garbles a circuit gc_1 and sends it to Bob, along with the labels of Alice's input-wires. They execute a fully-secure oblivious transfer protocol in which Bob learns the labels for his input-wires. Then, they run the same steps in the other direction, where Bob garbles gc_2 and Alice is the receiver. Next, each player evaluates the garbled circuit he or she received, resulting in output-wire label out_i (we require that the output-wire labels are the actual outputs concatenated with random labels). Last, each player computes the *supposed to be* concatenation $out_1 \circ out_2$. (Alice gets out_1 from her evaluation, and can determine the value of out_2 by herself. Bob does the same.) Now they run a protocol for securely testing whether their values $out_1 \circ out_2$ are the same. If they are indeed the same, they output b. Otherwise, they abort.

The resulting protocol is highly efficient, requiring only two garbled circuits and the associated oblivious transfers. (See [7] for an optimized variant of the protocol and its performance.) Since one of the players is honest, the result from his garbled circuit will be correct. Thus, if the honest party does not abort, the output is indeed correct. On the other hand, if one of the players is malicious, he can *always* learn one bit of information by observing whether the honest party aborts or not in the final equality test. We call this scenario *Input-Dependent Abort* (IDA) (following [9]).

1.1 Our Contributions

Given the discussion above, we put forth and answer the following two questions: (1) Can we improve on the efficiency of the existing solutions for checking input-consistency and handling two-output functions, to the extent that they are no longer considered a major computation/communication overhead? (2) Can we design cut-and-choose protocols that do not suffer from the all-or-nothing limitation of standard constructions but that provide better security guarantees than those of 2PC with input-dependent abort?

In the process of answering these questions, we introduce a set of new techniques to enforce consistency of inputs and outputs in garbled circuits. Interestingly, these techniques themselves employ *specially-designed garbled circuits* (gadgets) correctness of which is checked as part of a modified cut-and-choose process containing multiple opening stages.

	P_1 's input	P_2 's input	Two-output Overhead
[17]	inexpensive (t^2n_1)	expensive $(\max(4n_2, 8t))$ + inexpensive $(t \cdot \max(4n_2, 8t))$	inexpensive (t^2q_1)
[19, 26]	$expensive(tn_1)$	expensive (tn_2)	$expensive(tq_1)$
Our protocol	$inexpensive(tn_1)$	$inexpensive(t \cdot max(4n_2, 8t))$	inexpensive (tq_1)

Table 1: Comparison of different fully secure 2PC protocols. n_i is the length of P_i 's input, q_1 is the length of P_1 's output, and t is a statistical security parameter (where t garbled circuits are used in the cut-and-choose). The number of base OTs in the OT extension is omitted as it is independent of the circuit and input sizes.

1.1.1 Fully-Secure 2PC Based on Cut-and-Choose with Small Overheads.

Towards answering the first question, we propose new and efficient solutions for the three problems of (1) Garbler's input consistency (2) Evaluator's input consistency and (3) Handling two-output functions, that asymptotically and concretely improve on all previous solutions.

First, we show how to use garbled XOR-gates to efficiently enforce the garbler's input consistency, while requiring only $O(t \cdot n_1)$ inexpensive operations. This approach asymptotically improves the solutions in [20, 17], and only requires inexpensive operations in contrast to the solution of [26]. Second, we observe that the solution of [17] to the evaluator's input consistency issue can be improved by combining it with the OT extension of [21] and the Free-XOR technique of [14]. The resulting protocol requires only $O(t \cdot \max(4n_2, 8t))$ inexpensive operations. Third, we show how to use garbled *identity-gates* to efficiently solve the two-output function problem, while requiring only $O(t \cdot q_1)$ inexpensive operations, where q_1 is the garbler's output length, improving on the recent construction of [26] which requires the same number of expensive operations. The resulting 2PC protocol is constant round and asymptotically better than all previous constructions based on the cut-and-choose method [20, 17, 19, 26] (except for [27], which is impractical due to large constants). In Table 1, we compare the protocol's complexity with previous constructions. We stress that the efficiency of our protocol relies on the efficient OT extension of [21], which allows one to efficiently extend a small number of OTs to nOTs with the price of only O(n) invocations of a hash function. The protocol of [21] is in the Random Oracle Model (ROM) and our construction inherits the same weakness. (Besides using ROM for the OT-extension of [21], in some of our techniques we show two alternatives: A more efficient instantiation in the ROM, and one without the ROM requirement, which still is more efficient than current techniques.)

We remark that our proposed solutions can be modified to work with any of the existing garbled-circuit optimization techniques of [14, 5, 25, 6, 15].

Furthermore, in Appendix E we describe how to use our techniques to construct a fully-secure 2PC protocol for the case where y is not private, using only a single garbled circuit. This scenario which we call *authenticated computation with private inputs* naturally arises in applications such as anonymous credentials or targeted advertising.

Our main contributions are the new techniques we use for solving the Garbler's input consistency issue and handling two-output functions. Next, to give a flavor of our techniques, we present the ideas behind our solutions.

MULTI-STAGE CUT-AND-CHOOSE AND HANDLING TWO-OUTPUT FUNCTIONS. From now on we denote by P_1 the garbler (Alice), and by P_2 the evaluator (Bob). Note that the main difficulty here is to convince the garbler, P_1 , that the output he receives is correct. (Privacy of the output is easily achieved by xoring the output with a random string.)

A common method for authenticating the output of a garbled circuit is to send the random labels resulted from the evaluation of the garbled circuit. However, when we use the cut-and-choose method, many circuits are being evaluated, and sending the labels for all the garbled circuits can leak secret information (e.g., P_1 can create a single bad circuit that simply outputs P_2 's input, and not get caught with high probability). We can fix this issue by using the same output-wire labels in all the garbled circuits, but then we would lose our authenticity guarantee since P_2 learns all the output-wire labels from the opened circuits and can use that information to tamper with the output of the evaluated circuits.

We propose a workaround that allows us to simultaneously use the same output-wire labels in all circuits, and preserve the authenticity guarantee, in cut-and-choose 2PC. We separate the "cut" step from the "opening" step (this is a recurring idea in all our constructions). After P_1 sends the t garbled circuits, P_2 picks a random subset S which he wants to check and sends it to P_1 . Then, instead of opening the garbled circuits in S, they proceed to the evaluation of the rest of the garbled circuits. I.e., P_1 sends the labels of his input-wires for the garbled circuits not in S; P_2 evaluates all of them and takes the majority; he then commits to the output along with the corresponding output-wire labels. (Note that since the opening step is not performed yet, P_2 cannot guess the unknown output-wire labels and commit to the wrong output). Now, they complete the cut-and-choose and do the opening step: P_1 sends the randomness he used for all the garbled circuits in S, and P_2 verifies that everything was done correctly. If so, P_2 decommits the output and reveals to P_1 the actual output and its output-wire labels. To summarize, since P_1 learns the output only after P_2 has verified the garbled circuits, he cannot cheat in this new cut-and-choose strategy, any differently than he could in regular cut-and-choose. On the other hand, since P_2 is committed to his output before the opening, he cannot change the output after he sees the opened circuits.¹

The above solution can be applied to most previous 2PC protocols based on cut-and-choose to obtain their two-output variants. But, since the circuit checking is done after the circuit evaluation, the above solution falls short when combined with circuit streaming or parallelized garbling techniques [6, 15].

In Appendix C.2 we describe a second variant of this protocol that is compatible with those techniques. The cost of this variant is only additional $t \cdot q_1$ commitments.

XOR-GADGETS AND GARBLER'S INPUT CONSISTENCY. Here, our goal is to make sure P_1 uses the same input in all (or at least most of) the evaluated garbled circuits. Observe that we do not have the same issue with P_2 's input since for each specific input bit, P_2 learns the t corresponding input-wire labels using a single OT. But, since P_1 does not use OT to learn the labels for his input-wires, the same approach does not work here.

First, we augment the circuit C being computed with a small circuit we call an *XOR-gadget*. Say we want to compute the circuit C(x, y) where x is P_1 's input, and y is P_2 's. Instead of working with C, the players work with a circuit that computes $C_1(x, y, r) = (C(x, y), x \oplus r)$, where r is a random input string of length |x| generated by P_1 . Note that x is kept private from P_2 if r is chosen randomly. Denote P_1 's inputs to the t garbled circuits of C_1 by $x_1^1, x_2^1, \ldots, x_t^1$ and $r_1^1, r_2^1, \ldots, r_t^1$. If P_1 is honest, the r_i^1 -s are chosen independently at random while all the x_i^1 -s are equal to x.

Let $C_2(x, r) = x \oplus r$, where x and r are P_1 's inputs of the same length. (Note that y is not an input here.) In addition to P_1 's garbled circuits, P_2 also generates t XOR-gadgets, which are garbled circuits of C_2 . These garbled XOR-gadgets will be evaluated by P_1 and on his own inputs. (For simplicity, we assume for now that P_2 is semi-honest.) Denote P_1 's inputs to these t garbled circuits by $x_1^2, x_2^2, \ldots, x_t^2$ and $r_1^2, r_2^2, \ldots, r_t^2$. If P_1 is honest, then $r_i^1 = r_i^2$ for all i, and all the x_i^2 -s are equal to P_1 's actual input x.

We enforce that x_i^1 -s are the same in the majority of the evaluated circuits, using a combination of *three* different checks: (1) Check that P_1 uses the same value x' for all x_i^2 -s. We can easily enforce this since P_1 learns the input-wire label for each bit using a single OT. (E.g., if the first bit of x' is zero, P_1 will learn t concatenated labels that correspond to the bit zero in the t XOR-gadgets P_2 prepared.) (2) Check that $(x_i^2 + r_i^2) = (x_i^1 + r_i^1)$ in all the evaluated circuits. We enforce this by evaluating the two XOR-gadgets corresponding to the *i*-th garbled circuit (one created by P_1 and one created by P_2), and checking the equality of their outputs (see Section 3 for subtleties that need to be addressed when doing so). (3) Check that $r_i^1 = r_i^2$ in the majority of the evaluated

¹We note that the above solution is not enough. First, the commitment in use must be non-malleable with respect to the garbled circuits being opened. E.g., consider a garbling scheme that outputs also commitments of the possible output-wire labels; P_2 could use one of those commitments as his commitment and later use the information he learned from the opening to decommit successfully. Second, the commitment has to be equivocal to allow us to later simulate P_2 's message. Both requirements can be solved in the plain model by using trapdoor commitments [3] and efficient Zero-Knowledge Proof of Knowledge (ZKPoK), or in the Random Oracle Model, by committing using a hash function. The first solution requires $O(q_1)$ expensive operations while the second requires only one call to the hash function.

circuits. We enforce this as part of the cut-and-choose: When P_1 sends his garbled circuits, he also sends the labels that correspond to all r_i^1 -s. After P_1 learns the labels for r_i^2 -s (from the OTs), they do the opening phase and P_1 opens a subset of the garbled circuits. In addition, for each opened circuit, P_1 reveals the labels of the r_i^2 -s he learned, and P_2 verifies that $r_i^1 = r_i^2$. (Note that once P_1 sends the labels of r_i^1 and the garbled circuit, he cannot change r_i^1 . On the other hand, P_1 cannot fake a valid label for r_i^2 that is different from the one he learned in the OTs.) As a result, P_2 knows that with high probability (in terms of t) $r_i^1 = r_i^2$ in the majority of the evaluated circuits.

It is easy to see that the above three checks imply (with high probability) that x_i^1 -s are the same in the majority of the evaluated circuits. Since P_2 outputs the majority result, this is sufficient for our needs.

Figure 1 shows an example of the above technique for the circuit that computes AND and t = 2.

We stress that the above-mentioned is only part of our techniques, and in particular, does not guarantee protection against a malicious P_2 .

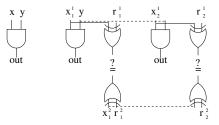


Figure 1: Example of garbling the simple AND circuit on the left that computes the AND between P_1 's bit x and P_2 's bit y. P_1 garbles the upper circuits and P_2 the lower ones. Specifically, P_1 garbles two AND circuits (i.e., t = 2) and two XOR-gates, and P_2 garbles two XOR-gates. P_2 's input is the same for all garbled circuits because of the OT (the top dashed line). Recall that the first input P_1 learns in all of P_2 's XOR-gates is the same since P_1 learns the corresponding input-wire labels from the OT (the lower dashed line). Also, that the equality of r_i^1 and r_i^2 , i = 1, 2, is checked in the cut-and-choose (e.g., by P_1 revealing the labels of r_1^1 and r_1^2 if P_2 picked to check the first set) and hence holds with high probability. Combining these two observations with the fact that P_2 compares the outputs of the XOR-gates, P_2 gets the assurance that $x_1^1 = x_2^1$.

1.1.2 Security with Input-Dependent Abort in Presence of Covert Adversaries.

We propose a new security notion that naturally combines security with input-dependent abort of [9] (alternatively, security with limited leakage of [20, 7]), with security against covert adversaries [1]. The resulting security guarantee, denoted by ϵ -CovIDA, is a *strict strengthening of covert security*: In covert security, with probability ϵ both correctness and privacy are gone! Our definition always guarantees correctness, and with probability ϵ , privacy is only "slightly compromised", i.e. only a *single* bit of information may be leaked in case of an abort.

We stress that simply combining the protocols of [20, 7] with the cut-and-choose method is *not* secure under our definition. Say that instead of garbling a single circuit, each player P_i garbles t circuits gc_1^i, \ldots, gc_t^i and sends them to the other player. Players pick a random value $e \in [t]$, *open* all the circuits $gc_{j\neq e}^i$ (i.e., reveal the randomness used to generate them), and verify that they were constructed properly. This assures that with probability 1 - 1/t, the remaining two circuits (one circuit from each player) is properly constructed. Parties then engage in the dual-execution protocol discussed above using these two garbled circuits. Although this protocol guarantees correctness similar to [20, 7], it does not satisfy our security definition. One problem is that a malicious player can use different inputs for the two evaluated circuits, and learn whether their outputs are the same or not based on the final outcome. This attack is successful even if *all* the circuits are constructed correctly.

We show two constructions that do achieve our definition. Both constructions require a constant number of rounds. In our first construction, each player garbles only $\frac{1}{\epsilon}$ circuits and $\frac{n+2q}{\epsilon}$ additional XOR gates, where n is

the length of the input and q is the length of the output. We emphasize that compared to the protocols of [20, 7], where the adversary can *always* learn one bit of information, our protocol leaks one bit only with probability ϵ .

The first construction is sufficient for large values of ϵ but fails to scale for the smaller ones. For example, if one aims for a probability of leakage of less than 2^{-10} , the first protocol would require the exchange of a thousand garbled circuits. A more desirable goal is a protocol with a cost that grows only logarithmically in $\frac{1}{\epsilon}$. We achieve this in our second protocol.

The costs of both constructions are roughly the costs of running their covert counterparts in both directions. E.g. the second protocol requires $O(2\log(\frac{1}{\epsilon})(|C| + n + q))$ inexpensive operations and $O(\log(\frac{1}{\epsilon})(n + q))$ expensive ones, while the covert protocol of [19] requires $O(\log(\frac{1}{\epsilon})|C|)$ inexpensive operations and $O(\log(\frac{1}{\epsilon})n)$ expensive ones.

DIFFICULTIES AND OUR TECHNIQUES. Both protocols use techniques that are similar to those used in our fully-malicious 2PC protocol. We now briefly discuss the difficulties that arise and how we solve them using those techniques. In our first protocol, each player prepares t garbled circuits and opens all but one of them. The main difficulty is to make sure each player uses the same input in the evaluation of the circuit generated by himself and in the one by his counterpart.

In the second protocol, each player opens a constant fraction of his garbled circuits, and thus, the issue of Garbler's input consistency must also be addressed. Here, however, this issue is relevant for both players. Somewhat surprisingly, we show that our XOR-gadget technique can be used to solve both issues by forcing each player to use the *same* input not only in the garbled circuits generated by himself, but also in the ones generated by his counterpart.

An additional difficulty is in the last step of the protocol, wherein the players need to check the equality of the outputs they receive from each others' evaluation(s). The correctness of this step relies on the authenticity of the outputs (i.e., that forged outputs cannot be used in the equality test). But which output should the players use when they evaluate more than one circuit? Interestingly, this is closely related to the issue we needed to address in standard 2PC for two-output functions: in both cases, a player who evaluates a set of circuits wishes to learn the output along with an unforgeable authentication of that output. We show how the same techniques can be used here as well. See Sections 4.2 and D.2 for the details of the two constructions.

2 Preliminaries

Throughout this work we denote by t a statistical security parameter and by s a computational security parameter. For a fixed circuit in use, we denote by INP_i the set of indexes of P_i 's input-wires to the circuit, by INP the set $INP_1 \cup INP_2$, by OUT_i the set of indexes of P_i 's output-wires, and by OUT the set $OUT_1 \cup OUT_2$. For shortening, we sometimes refer to $|INP_i|$ by n_i , to $|OUT_i|$ by q_i , and set $n = n_1 + n_2$ and $q = q_1 + q_2$.

Denote by Enc(sk, m) the encryption of message m under secret key sk, by PRG(s, l) the *l*-bit string generated by a pseudo-random generator with seed s, and by Com(m, r) the commitment on message m using randomness r. The decommitment of Com(m, r) is m and r. (In some cases we use the abbreviations PRG(s) and Com(m).)

We also use the following notation for the next cryptographic primitives and functionalities.

YAO'S GARBLING. For the sake of simplicity and generality, we do not go into the details of the garbling mechanism and only introduce the notations we need to describe our protocols. We refer the reader to [18, 2] for different approaches to creating the garbled circuits.

Given a garbled circuit gc, we denote by label(gc, j, b) the label of wire j corresponding to bit value b. Also, we denote by Garb(C, r) the (deterministic) garbling of circuit C using randomness r. (In practice, r would be a short seed for a pseudo-random function). For simplicity, we assume that the labels of the circuit's output-wires include also the actual output bits (thus, allowing the evaluator to learn the output).

We require the garbling scheme to be *private* and *authenticated*, meaning that given a garbled circuit and input labels of a specific input, nothing is revealed except for the output of the circuit, and, that the output-wire labels authenticate the actual output (thus, the actual output cannot be forged). Also, we require that given a

garbled circuit and an input label, one can verify whether the input label is a valid input label. (This can be achieved by using *elusive double encryption* [18] or by adding commitments on the possible input-wire labels in a random order and decommitting when a verification is needed.)

BATCH COMMITTING OBLIVIOUS TRANSFER (BCOT). Here, sender S has n sets, each of m pairs of inputs, $\{(x_0^{j,z}, x_1^{j,z})\}_{j=1...n, z=1...m}$, and receiver R has a vector of input bits $\overline{b} = (b_1, \cdots, b_n)$. The receiver R learns the outputs according to his input bits, $x_{b_j}^{j,z}$ for all j and z. In addition, R learns commitments on all the sender's inputs.

[26] shows an implementation of BCOT with a cost of O(mn) expensive operations. Using their construction to implement the seed OTs in the OT-extension of [21] in the Random Oracle Model results in an alternative protocol that requires only O(s) expensive operations and O(nm) inexpensive ones. However, in the latter construction, the commitments on the sender's inputs cannot be opened separately and one needs to decommit all the inputs at once. (We use both instantiations at different places in our protocols.) See Appendix B for more details. We denote the first protocol by BCOT1 and the second by BCOT2.

TWO-STAGE EQUALITY TESTING. In this protocol, player P_1 has input x_1 and player P_2 has input x_2 . They want to test whether $x_1 = x_2$. The functionality is split into two stages in order to emulate a commitment on the inputs before revealing the result (we will use this property in one of our constructions). I.e., in the first stage players submit their inputs and learn nothing, and in the second stage, only if they both ask for the output, they receive the result. This functionality can be realized using ElGamal encryption and ZKPoKs. In Appendix B we formally define this functionality and discuss different realizations.

3 An Efficient 2PC for Two-output Functions with Full Security

In this section, we review the main ideas behind our efficient 2PC protocol with full security against malicious adversaries, considering the case where only P_2 needs to learn the output. In Appendix C.2 we show how to extend the ideas in order to handle two-output functions. A detailed description of the protocol and the proof of its security appear in Appendix C.

Consistency of the evaluator's input is taken care of by combining the technique of [17] with the OTextension of [21] and the Free-XOR technique [14]. In a nutshell, P_2 's input is encoded using max $(4n_2, 8t)$ bits in a way that any leakage of less than t of the bits does not reveal meaningful information about P_2 's input. During the cut-and-choose, P_2 asks P_1 to reveal all his inputs to the OTs. If some of the inputs are not consistent with the one P_2 has learned from the OTs, P_2 aborts. This abort leaks information only in case P_1 guessed successfully more than t bits in P_2 's encoded input. However, this can happen with only a negligible probability given how the encoding is done.

As we discussed in Section 1.1, consistency of the garbler's input is addressed using the XOR-gadgets. In the following we describe the main steps of the protocol with a focus on this component.

Garbling stage and the XOR-gadgets. Say the players want to compute C(x, y), where x is P_1 's input and y is P_2 's input. Based on C, we define the following two circuits: (1) $C_1(x, y, r)$, which computes $(C(x, y), x \oplus r)$ where r is a random input string of length |x| selected by P_1 ; (2) $C_2(x, r)$, which computes $x \oplus r$, where x and r are P_1 's inputs and are of the same length. In both circuits we assume the indexes of the input-wires are the same as in C and we define the function $\alpha(k)$ to be the function that given $k \in INP_1$ returns the index of the input-wire of the random bit that is xored with input-wire k. (For simplicity, we assume the same function is applicable for both C_1 and C_2 .)

 P_1 picks a random string z_i and generates a garbled circuit $gc_i = \text{Garb}(C_1, z_i)$, for $i = 1 \dots t$. In addition, P_2 picks a random string z'_i and generates a garbled circuit $xg_i = \text{Garb}(C_2, z'_i)$, for $i = 1 \dots t$. Both players send the garbled circuits they created to each other. Next, P_1 picks r_j at random for $j \in [t]$ and sends to P_2 the labels that correspond to r_j in gc_j .

OTs for input labels. Parties execute OTs and BCOTs in order for each to learn the input-wire labels for his inputs in the circuits/gadgets created by his counterpart. More specifically, first they run any simulatable OT

protocol with the OT-extension of [21], where P_1 acts as the sender and P_2 acts as the receiver. They use the technique of [17] for protecting against inconsistent inputs as described earlier. P_1 's inputs are the labels of P_2 's input-wires in all gc_j (i.e., the inputs are label $(gc_j, k, 0)$ and label $(gc_j, k, 1)$ for $k \in INP_2$ and $j \in [t]$). P_2 's input is his actual input. (We ignore here the details of encoding P_2 's input.) Second, they execute BCOT2 twice where P_2 acts as the sender and P_1 acts as the receiver: (1) P_2 's inputs are the labels of the input-wires in his XOR-gadget xg_j , and P_1 's inputs are his random input and actual input to the gadget (i.e., P_2 inputs are label $(xg_j, k, 0)$ and label $(xg_j, k, 1)$ while P_1 's inputs are the bits of r_j . Note that in the first BCOT2, P_1 inputs a single bit for each input bit and receives t input-wire labels. That restricts him to use the same input in all the XOR-gadgets.).

(In the detailed protocol, the players execute the OTs before sending the garbled circuits. Still, the intuition is similar.)

We note that P_1 is yet to send the labels for his input wires in the circuits he garbled himself, i.e. gc_i -s.

Cut-and-Choose (first stage). After the OTs/BCOTs, P_1 opens a constant fraction of his garbled circuits/gadgets. In particular, P_1 opens the garbled circuit gc_j for all $j \notin E$, where E is chosen randomly using a joint cointossing protocol. (A joint cointossing protocol is needed for the simulation to work.) Moreover, P_1 reveals the random strings r_j -s he used in the opened circuits (by showing the labels he learned from BCOT2), and all his inputs to the OTs for the opened circuits. P_2 checks the correctness of the opened circuits and verifies that the same r_j was used in both gc_j and xg_j for all $j \notin E$. (He also verifies that the values he has received in the OTs for his inputs are consistent with what P_1 revealed, following the technique of [17].)

Cut-and-Choose (second stage). P_1 evaluates all the XOR-gadgets he received from P_2 , and sends a commitment on all the output-wire labels he obtained to P_2 . P_2 answers with opening *all* the XOR-gadgets xg_j for $j \in E$, and by decommitting all his inputs to BCOT2. P_1 checks that all the XOR-gadgets he received were properly constructed, and that the labels are consistent with the decommitments. If so, P_1 decommits the output-wire labels of the XOR-gadgets to P_2 .

In general, the last step is not sound for all commitments since P_1 can send a commitment for which he does not know the corresponding message and later be able to decommit once P_2 opens the XOR-gadgets (A similar issue was discussed earlier in Footnote 1). There are several ways to overcome this issue. One option is to require P_1 to *prove* that he *knows* how to construct this commitment, or more formally, P_1 commits on the output labels with Com(labels, r) and proves using a ZKPoK that he knows *labels* and r. This step can be implemented efficiently for Pedersen's commitment [23], requiring only a small constant number of exponentiations. (When *labels* is longer than the commitment input length, P_1 picks a random seed *seed*, sends Com(seed, r), $PRG(seed) \oplus labels$ and ZKPoK that he knows *seed* and r.) A more efficient option is to implement Com(labels, r) in the Random Oracle model using $H(key \circ labels \circ r)$, where the commitment key *key* is chosen at random by the receiver (i.e., P_2 in our case). The complexity in this case is only a single call to the random oracle.

Circuit Evaluation. P_1 sends to P_2 the labels of his inputs for the remaining garbled circuits and XOR-gadgets. P_2 uses them to evaluate all his remaining circuits and gadgets. He checks that the output-wires of the XOR-gadgets are the same as the values P_1 sent him. If so, he takes the majority of the outputs to be his output.

Summary. Note that now, with high probability, not only do we know that the majority of the circuits being evaluated are correct, but also that P_1 used the same r_j -s in the XOR-gadget pairs (Check 3 from introduction). Also, recall that in the BCOT for XOR-gadgets created by P_2 , P_1 can learn the labels for exactly one possible value of x. Thus, his x is the same for all the t XOR-gadgets P_2 generated (Check 1). Combined with the fact that P_2 checks equality of the output of the XOR-gadget pairs (Check 2), he is ensured that the same input bits are being used in majority of the gc_j -s. See Figure 1 for a diagram explaining the above intuition.

ADVANTAGES OVER PREVIOUS WORK. The resulting protocol has two main advantages over previous constructions: (1) The BCOT we use requires only $O(t \cdot |\text{INP}_1|)$ inexpensive operations for checking P_1 's input consistency. (When realized for concrete parameters with the OT-extension protocol of [21], the constant is fairly small, about 16 inexpensive operations per input bit per garbled circuit (approximately). This cost is similar to the cost of garbling additional 4 - 6 AND gates, depending on the garbling scheme.) This is in contrast to the previous (efficient) constructions, which require either $O(t^2 \cdot |\text{INP}_1|)$ inexpensive operations [20, 17], or $O(t \cdot |\text{INP}_1|)$ expensive ones [20, 19, 26]. (2) Even if we do not use OT extension (e.g. to avoid making less standard assumptions about the hash function) the overhead of *both* (evaluator and generator) input consistency checks is now reduced to the cost of performing BCOT. (i.e. BCOT1 can be used to solve both the garbler's and the evaluator's input consistency issue.) Previous constructions [17, 19, 26] use different techniques for checking consistency of P_1 's and P_2 's inputs, that are incomparable and with difficulties that look unrelated. Having one concrete primitive to focus on is a cleaner approach for improving efficiency.

4 Security with Input-Dependent Abort in the Presence of Covert Adversaries

4.1 The Model

Following [17, 1, 7], we use the ideal/real paradigm for our security definition.

Real-model execution. The real-model execution of protocol Π takes place between players (P_1, P_2) , at most one of whom is corrupted by a probabilistic polynomial-time machine adversary \mathcal{A} . At the beginning of the execution, each party P_i receives its input x_i . The adversary \mathcal{A} receives an auxiliary information aux and an index that indicates which party it corrupts. For that party, \mathcal{A} receives its input and sends messages on its behalf. Honest parties follow the protocol.

Let $\operatorname{REAL}_{\Pi,\mathcal{A}(aux)}(x_1, x_2)$ be the output vector of the honest party and the adversary \mathcal{A} from the real execution of Π , where aux is an auxiliary information and x_i is player P_i 's input.

Ideal-model execution. Let $f : (\{0, 1\}^*)^2 \to \{0, 1\}^*$ be a two-party functionality. In the ideal-model execution, all the parties interact with a trusted party that evaluates f. As in the real-model execution, the ideal execution begins with each party P_i receiving its input x_i , and \mathcal{A} receives the auxiliary information aux. The ideal execution proceeds as follows:

- Send inputs to trusted party: Each party P_1, P_2 sends x'_i to the trusted party, where $x'_i = x_i$ if P_i is honest and x'_i is an arbitrary value if P_i is controlled by A.
- Abort option: If any x'_i = abort, then the trusted party returns abort to all parties and halts.

Attempted cheat option: If P_i sends cheat_i(ϵ'), then:

- If $\epsilon' > \epsilon$, the trusted party sends corrupted_i to all parties and the adversary \mathcal{A} , and halts.
- Else, with probability $1 \epsilon'$ the trusted party sends corrupted_i to all parties and the adversary A and halts.
- With probability ϵ' ,
 - The trusted party sends undetected and $f(x'_1, x'_2)$ to the adversary \mathcal{A} .
 - A responds with an arbitrary boolean (polynomial) function g.
 - The trusted party computes $g(x'_1, x'_2)$. If the result is 0 then the trusted party sends abort to all parties and the adversary \mathcal{A} and halts. (i.e. \mathcal{A} can learn $g(x'_1, x'_2)$ by observing whether the trusted party aborts or not.)

Otherwise, the trusted party sends $f(x'_1, x'_2)$ to the adversary.

- Second abort option: The adversary sends either abort or continue. In the first case, the trusted party sends abort to all parties. Else, it sends $f(x'_1, x'_2)$.
- **Outputs:** The honest parties output whatever they are sent by the trusted party. A outputs an arbitrary function of its view.

Let $\text{IDEAL}_{f,\mathcal{A}(aux)}^{\epsilon}(x_1, x_2)$ be the output vector of the honest party and the adversary \mathcal{A} from the execution in the ideal model.

Definition 4.1. A two-party protocol Π is secure with input-dependent abort in the presence of covert adversaries with ϵ -deterrent (ϵ -CovIDA) if for any probabilistic polynomial-time adversary A in the real model, there exists a probabilistic polynomial time adversary S in the ideal model such that

$$\left\{ \operatorname{REAL}_{\Pi,\mathcal{A}(aux)}(x_1,x_2) \right\}_{x_1,x_2,aux \in \{0,1\}^*} \stackrel{c}{\approx} \left\{ \operatorname{IDEAL}_{f,\mathcal{S}(aux)}^{\epsilon}(x_1,x_2) \right\}_{x_1,x_2,aux \in \{0,1\}^*}$$

for all $|x_1| = |x_2|$ and aux.

COMPARISON WITH COVERT SECURITY. When we let $\epsilon = 1/t$ for any constant t, the above definition is strictly stronger than the standard definition of security against covert adversaries. In covert security, in case of undetected cheating which happens with probability ϵ , the adversary learns *all* the honest parties' private inputs and is able to change the outcome of computation to *whatever* value it wishes (i.e. no privacy or correctness guarantee). In our definition, however, the adversary can learn at most a single bit of information (from the abort), and under no condition is able to change the output (full correctness).

In the above definition, in contrast to the standard covert security, the adversary can choose the exact probability he gets caught (i.e. $1 - \epsilon'$) as long as this probability is larger than $1 - \epsilon$ (where ϵ is the deterrence factor). Note that letting the adversary choose $1 - \epsilon'$ is not a relaxation in security since the adversary can only increase the probability of itself getting caught. We believe that this variant of the definition where the adversary can choose $\epsilon' > \epsilon$ with which it can get caught is of independent interest. Specifically, it yields an alternative definition for covert security that is more convenient to use in simulation-based proofs. (To obtain this alternative definition for covert security, replace the steps that are done with probability ϵ' with the following: (1) The trusted party sends x'_1, x'_2 to \mathcal{A} ; (2) \mathcal{A} sends the value y to the trusted party, and the trusted party sends it to all parties as their output.)

A REMARK ON ADAPTIVENESS OF LEAKAGE FUNCTION. In the above definition, the leakage function g can be chosen adaptively after seeing $f(x'_1, x'_2)$. Somewhat surprisingly, this does not give any extra power to the adversary compared to the non-adaptive case since even in the non-adaptive case, g can be chosen to be a function that computes $f(x'_1, x'_2)$, emulates the adversary's computation given that value and evaluates the leakage function he would have chosen in the adaptive case.

4.2 An Efficient Protocol with $\frac{2}{\epsilon}$ Circuits

In this section, we review the main steps of our ϵ -CovIDA protocol and highlight the new techniques. A detailed description of the protocol and how to reduce the number of circuits (from linear in $\frac{1}{\epsilon}$ to logarithmic) appear in Appendix D.1.

As discussed in the introduction, in the dual-execution protocol of [20, 7] parties engage in two different executions of the semi-honest Yao's garbled circuit protocol, and then run an equality testing protocol to confirm that the outputs of the two executions are the same before revealing the actual output values. We show how to extend this protocol to work in the presence of covert adversaries using the ideas presented in Section 3. For simplicity of the description, from now on we work with $t = \frac{1}{\epsilon}$ (a statistical security parameter) instead of ϵ since t would be the number of circuits each party garbles.

Dual-execution & cut-and-choose. Our first step is to combine the dual-execution protocol with a standard cut-and-choose protocol for covert players. Each player P_i garbles t circuits gc_1^i, \ldots, gc_t^i and sends them to the other player. Parties pick a random value $e \in [t]$, open all the circuits $gc_{j\neq e}^i$ and verify that they were constructed properly. This assures that with probability 1 - 1/t, the remaining *circuit-pair* (gc_j^1, gc_j^2) is properly constructed. As before, they send the garbler's input-wire labels for the *e*-th circuit, execute OTs for the respective evaluators to learn their input-wire labels, evaluate the circuits, call the Equality Testing functionality and output accordingly.

The above protocol would guarantee correctness similar to the dual-execution protocol, and it would ensure that the evaluated circuits are correct with probability 1 - 1/t. However, the protocol does not satisfy our security definition. One issue is that a malicious player learns the output of the computation even if the other player catches him cheating (as a result of the equality test). We show how this can be avoided by masking the output of the computation with random strings, chosen by the two players, and revealing them at the end of the computation in order to unmask the actual output.

A more subtle attack to address is that a malicious player can learn one bit of information about an honest party's input with probability greater than 1/t (in fact with probability 1): a malicious player can use different inputs in each of the two evaluated circuits, and learn whether their outputs are the same or not based on the final outcome. This attack is successful even if *all* the circuits are constructed correctly. We prevent this attack using the XOR-gadget techniques discussed earlier, along with some enhancements. We discuss the details next:

XOR-gadgets. Define $C(x \circ m_1, y \circ m_2)$ to be the circuit that receives inputs x, y and two masks m_1, m_2 and computes $f(x, y) \oplus m_1 \oplus m_2$. Based on C, let P_1 's input x' be $x \circ m_1$ and P_2 's input y' be $y \circ m_2$, where m_i is a random string of length q (f's output length) selected by P_i . We define the following four circuits:

(1) $C_1(x', y', r_1) = (C(x', y'), x' \oplus r_1)$, where r_1 is a random input string of length |x'| selected by P_1 ; (2) $C_2(x', y', r_2) = (C(x', y'), y' \oplus r_2)$ where r_2 is a random input string of length |y'| selected by P_2 ; (3) $C'_1(y', r_2) = y' \oplus r_2$ evaluated by P_2 on his own inputs; (4) $C'_2(x', r_1) = x' \oplus r_1$ evaluated by P_1 on his own inputs; In all circuits we assume the indexes of the input-wires are the same as in C and we define the function $\alpha(k)$ to be the function that given $k \in INP$ returns the index of the input-wire of the random bit input-wire that is xored with input-wire k. (For simplicity, we assume the same function is applicable for all C_i -s and C'_i -s.)

Instead of garbling C, each player P_i generates and sends t garbled circuits for C_i : gc_1^i, \ldots, gc_t^i and t garbled circuits for C'_i : xg_1^i, \ldots, xg_t^i . After sending the sets of garbled circuits, for each $j \in [t]$, player P_i picks at random a string r_j^i and sends the input-wire labels that correspond to r_j^i in gc_j^i .

OTs for input labels. Then, they execute BCOTs in order to learn the input-wire labels for both their actual inputs and the r_j^i -s in their counterpart's circuits. More specifically, first they use BCOT1 where P_1 acts as the sender and P_2 acts as the receiver. P_1 's inputs are the input-wire labels of P_2 's input-wire k in all gc_j^1 -s and xg_j^1 -s (i.e., the input pairs are $(\text{label}(gc_j^1, k, 0), \text{label}(gc_j^1, k, 1))_{j \in [t]}$ and $\text{label}(xg_1^1, k, 0) \circ \cdots \circ$ $\text{label}(xg_t^1, k, 0), \text{label}(xg_1^1, k, 1) \circ \cdots \circ \text{label}(xg_t^1, k, 1)$ for $k \in \text{INP}_2$). P_2 's input is his actual input. Second, they use BCOT2 with the labels for the rest of the input-wires of xg_j^1 (i.e., $\text{label}(xg_j^1, \alpha(k), 0), \text{label}(xg_j^1, \alpha(k), 1)$ for $k \in \text{INP}_2$ and $j \in [t]$, where P_2 's inputs are the bits of r_j^2). The players run the same protocols in the opposite direction (switching roles). At the end, each player learns the labels for his input-wires of gc_j^{3-i} and of xg_j^{3-i} . But we note that P_i is yet to send the labels for his input wires in the circuits he garbled himself, i.e. gc_j^i and xg_j^i .

Cut-and-Choose Phase (first opening). Next, as before, parties agree on a random $e \in [t]$ (using a joint cointosing protocol), and open the rest of the garbled circuits. In particular, they open the garbled circuit-pairs (gc_j^1, gc_j^2) and the XOR-gadgets (xg_j^1, xg_j^2) for all $j \neq e$. Moreover, for $j \neq e$, they reveal to each other the random strings r_j^i -s they used in the opened circuits (by showing the labels they learned in BCOT2), and then they decommit all the inputs they used as senders in BCOT1 for the opened circuits. The players check the correctness of the circuits and verify that the same r_j^i -s were used in both gc_j^i and xg_j^{3-i} . (Note that at the end of the opening phase, the players know that with 1 - 1/t probability the remaining circuit-pair (gc_e^1, gc_e^2) and the XOR gadget-pair (xg_e^1, xg_e^2) are properly constructed, and, that the inputs r_e^i used by the players in both gc_e^i , and xg_e^{3-i} are the same.)

Evaluation. Each party sends to his counterpart the input-wire labels for his inputs in the unopened circuit-pair. Parties then evaluate the circuit-pair (gc_e^1, gc_e^2) and the XOR-gadgets (xg_e^1, xg_e^2) . (i.e., P_i evaluates gc_e^{3-i} , and xg_e^{3-i} .) P_i sends a commitment (along with a ZKPoK, as in Section 3) on the concatenation of the output labels he obtained after evaluating xg_e^{3-i} to P_{3-i} .

Cut-and-Choose Phase (second opening). P_{3-i} now opens the remaining XOR-gadget xg_e^{3-i} , and decommits all his inputs as a sender to the BCOTs of the XOR-gates (i.e., $label(xg_1^{3-i}, k, 0) \circ \cdots \circ label(xg_t^{3-i}, k, 0)$,

label $(xg_1^{3-i}, k, 1) \circ \cdots \circ$ label $(xg_t^{3-i}, k, 1)$ in BCOT1, and label $(xg_e^{3-i}, \alpha(k), 0)$, label $(xg_e^{3-i}, \alpha(k), 1)$ in BCOT2, both for $k \in INP_i$). (We stress that only the XOR-gates of wires INP_i are opened, and that those were generated using random labels independently of the garbled circuits. The XOR-gadgets of wires INP_{3-i} are checked as part of the previous phase.) P_i verifies that these XOR-gates were generated properly and that the BCOTs inputs were consistent with the XOR-gates. If everything is correct he decommits his commitment, otherwise he outputs \perp and aborts. (Note that P_i reveals his output only *after* he verified that all the XOR-gates P_{3-i} generated were properly constructed. Since the only secrets in these gates are P_i 's inputs, revealing them does not help P_i learn any new information.) P_{3-i} verifies that the decommitted values are valid output-wire labels, and compares the actual output with their output he obtains from evaluation of xg_e^i . If either check fails, P_{3-i} outputs \perp .

Equality-test. If there is no abort, players call the Equality Testing functionality as before. Note that now, with probability 1 - 1/t, not only we know that the circuits being evaluated are correct, but also that the players use the same r_e^i -s in the final XOR gadget-pair. Combined with the fact that the players check equality of the output of the final XOR gadget-pair, they are ensured (with probability 1 - 1/t) that the same input strings are being used in gc_e^1 and gc_e^2 or else, $x \oplus r_e^i$ would be different.

Output Unmasking. If the Equality Testing functionality returns False, the players abort. Otherwise, they unmask the output. (Recall that at this stage, each player knows the value of $C(x', y') = f(x, y) \oplus m_1 \oplus m_2$.) Player P_i sends the value of m_i along with labels that correspond to m_i in gc_e^{3-i} . These labels prove that m_i is indeed the value that P_i have used in the protocol.

Putting things together, correctness is always guaranteed due to the dual execution; full-privacy is guaranteed with probability 1 - 1/t due to the discussion above; and privacy with 1-bit leakage is guaranteed in the case that a cheating adversary is not caught, which only happens with probability 1/t.

Acknowledgements

We would like to thank Ran Canetti, Benny Pinkas and Yehuda Lindell for their comments and helpful discussions. We also thank Yehuda Lindell for referring us to the malleability issue discussed in Footnote 1.

References

- Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols for realistic adversaries. J. Cryptol. 23(2), 281–343 (Apr 2010)
- [2] Bellare, M., Hoang, V.T., Rogaway, P.: Foundations of garbled circuits. pp. 784–796. CCS 2012, ACM (2012)
- [3] Fischlin, M.: Trapdoor Commitment Schemes and Their Applications. Ph.D. Thesis (Doktorarbeit), Department of Mathematics, Goethe-University, Frankfurt, Germany (2001)
- [4] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. pp. 218–229. STOC 1987, ACM (1987)
- [5] Goyal, V., Mohassel, P., Smith, A.: Efficient two party and multi party computation against covert adversaries. pp. 289–306. EUROCRYPT 2008, Springer-Verlag (2008)
- [6] Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. pp. 35–35. Security 2011, USENIX Association (2011)
- [7] Huang, Y., Katz, J., Evans, D.: Quid-pro-quo-tocols: Strengthening semi-honest protocols with dual execution. pp. 272–284. SP 2012, IEEE Computer Society (2012)

- [8] Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. pp. 145–161. CRYPTO 2003, Springer (2003)
- [9] Ishai, Y., Kushilevitz, E., Ostrovsky, R., Prabhakaran, M., Sahai, A.: Efficient non-interactive secure computation. pp. 406–425. EUROCRYPT 2011, Springer-Verlag (2011)
- [10] Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer efficiently. pp. 572– 591. CRYPTO 2008, Springer-Verlag (2008)
- [11] Jarecki, S., Shmatikov, V.: Efficient two-party secure computation on committed inputs. pp. 97–114. EU-ROCRYPT 2007, Springer-Verlag (2007)
- [12] Jawurek, M., Kerschbaum, F., Orlandi, C.: Zero-knowledge using garbled circuits: How to prove nonalgebraic statements efficiently. Cryptology ePrint Archive, Report 2013/073 (2013)
- [13] Kiraz, M.S., Schoenmakers, B.: A protocol issue for the malicious case of Yaos garbled circuit construction. In: In Proceedings of 27th Symposium on Information Theory in the Benelux. pp. 283–290 (2006)
- [14] Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free xor gates and applications. pp. 486–498.
 ICALP 2008, Springer-Verlag (2008)
- [15] Kreuter, B., Shelat, A., Shen, C.H.: Billion-gate secure computation with malicious adversaries. pp. 14–14. Security 2012, USENIX Association (2012)
- [16] Lindell, Y., Oxman, E., Pinkas, B.: The IPS compiler: Optimizations, variants and concrete efficiency. pp. 259–276. CRYPTO 2011, Springer (2011)
- [17] Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. pp. 52–78. EUROCRYPT 2007, Springer-Verlag (2007)
- [18] Lindell, Y., Pinkas, B.: A proof of security of Yao's protocol for two-party computation. J. Cryptol. 22(2), 161–188 (Apr 2009)
- [19] Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. pp. 329–346. TCC 2011, Springer-Verlag (2011)
- [20] Mohassel, P., Franklin, M.: Efficiency tradeoffs for malicious two-party computation. pp. 458–473. PKC 2006, Springer-Verlag (2006)
- [21] Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. pp. 681–700. CRYPTO 2012, Springer (2012)
- [22] Nielsen, J.B., Orlandi, C.: Lego for two-party secure computation. pp. 368–386. TCC 2009, Springer-Verlag (2009)
- [23] Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. pp. 129–140. CRYPTO 1991, Springer-Verlag (1992)
- [24] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. pp. 554–571. CRYPTO 2008, Springer-Verlag (2008)
- [25] Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. pp. 250–267. ASIACRYPT 2009, Springer-Verlag (2009)
- [26] Shelat, A., Shen, C.H.: Two-output secure computation with malicious adversaries. pp. 386–405. EURO-CRYPT 2011, Springer-Verlag (2011)

- [27] Woodruff, D.P.: Revisiting the efficiency of malicious two-party computation. pp. 79–96. EUROCRYPT 2007, Springer-Verlag (2007)
- [28] Yao, A.C.C.: How to generate and exchange secrets. pp. 162–167. SFCS 1986, IEEE Computer Society (1986)

A Other Related Work

[10, 16] show how to use semi-honest secure two-party, and honest-majority multi-party protocols to achieve security against malicious players. Although this approach is asymptotically efficient, the constant factors seem to be large and we are not aware of any working implementation that evaluates its efficiency in practice. [21] constructs a protocol in the Random Oracle Model, based on OT extension [8] and the classic GMW protocol [4]. However, this protocol requires a number of rounds that depends on the depth of the circuit. Still, for some computations [21] shows better performance than the previous cut-and-choose based protocols.

[9] considers non-interactive secure computation protocols. Their first construction, which is asymptotically very efficient, achieves similar guarantees to the protocol of [7] (though, in a single round of interaction). Combining that protocol with the cut-and-choose method can result in constructions that achieve similar guarantees to our ϵ -CovIDA protocols. However, it is not clear what would the efficiency of these protocols in practice be.

B Preliminaries

Here we describe the functionalities and previous techniques we need in our constructions.

B.1 Oblivious Transfer (OT)

In this protocol, sender S has two inputs $x_0, x_1 \in \{0, 1\}^l$ and receiver R has input bit b. At the end of the protocol, R should learn x_b and S should learn nothing.

[24] shows an efficient construction of fully-secure universally-composable OT based on a variety of standard assumptions. When instantiated based on the DDH assumption, the protocol requires O(1) exponentiations, O(l) inexpensive operations and a constant number of rounds.

[8] presents how to extend O(s) OTs of length s strings to any number n of semi-honest OTs of length l strings, using only additional $O(n \cdot l)$ inexpensive operations. [21] extends their results to *fully-secure* OTs in the (amortized) price of only a (small) constant number of inexpensive operations per OT.² Note that the construction of [8] is secure assuming the hash function in use is *correlation-robust*, whereas the construction of [21] is in the Random Oracle Model.

Throughout this work we assume that the strings we transfer in the OT protocols are shorter than the output length of the hash function in use, which allows us to omit the factor l from the complexities. (Specifically, we say that the amortized cost per OT when we use the OT extension protocol of [21] is a constant number of hashes.) When we concatenate several strings in one OT, we count the cost for each one separately.

In our protocols we are interested in large batches of OTs. Specifically, we say that in the batch OT protocol, sender S has n sets, each of m pairs of inputs $\{(x_0^{j,z}, x_1^{j,z})\}_{j=1...n,z=1...m}$, and receiver R has a vector of input bits $\overline{b} = (b_1, \dots, b_n)$. R learns the outputs according to his input bits, i.e., $x_{b_j}^{j,z}$ for all j and z. (See the left side of Figure 2 for an example.) We denote by BOT the batch OT protocol that uses the OT-extension of [21] and the OT of [24] for the seed OTs. The cost of this protocol is O(s) expensive operations and O(nm) inexpensive ones.

²[8] also presents how to extend fully-secure OTs. However, their construction has an overhead of O(t) inexpensive operations per OT.

B.2 Committing Oblivious Transfer (COT)

Committing OT [13] is a variant of OT in which at the end of the protocol, the receiver R learns also commitments on all the sender's inputs. This additional property allows S to "decommit" his inputs later independently of R's inputs. See Figure 2 for an example of a batch version of COT.

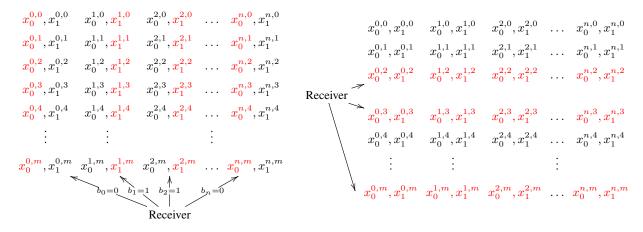


Figure 2: Batch COT Example. On the left is the OTs stage in which the receiver inputs his input bits b_i and learns the red elements. (The commitments are omitted.) On the right is the second stage in which the receiver asks for all the elements in the selected rows to be decommitted, and once the sender reveals their inputs, the receiver can check if those are the right inputs using the commitments he received in the beginning.

[26] shows an efficient implementation of COT under the DDH assumption. Implementing a batch COT based on their protocol requires O(mn) exponentiations. We denote this protocol by BCOT1. We observe that in the same protocol, the receiver is also committed to his inputs, and therefore, once it is combined with the OT-extension of [21] (i.e. using COT of [26] as the seed OTs in the construction of [21]), the sender who plays the role of the OT receiver in the protocol of [21] is committed to all his inputs in the larger protocol as well. The disadvantage of this combined protocol is that in order to "decommit" his inputs, the sender has to decommit *all* of them together, and not just a subset of them. (This happens since for decommitting his inputs, the sender has to reveal his inputs to the seed OTs, and knowing them reveals all his COT inputs.) Still, this combination provides a batch COT protocol with the cost of O(s) expensive operations and O(nm) inexpensive ones. We denote this protocol by BCOT2.

B.3 The Technique of [17]

[17] shows how to use OT in a black-box way to solve the issue of the Evaluator's input consistency. We give here a brief description of their technique.

We start with some intuition of the construction. Say the receiver input bit is b and the sender's inputs are x_0, x_1 . Let $d = x_0 \oplus x_1$. Instead of running one OT with their actual inputs, the players execute k OTs, where in the *i*-th OT, the receiver uses the bit b_i and the sender uses the inputs $r_i, r_i \oplus d$. The b_i -s are chosen such that their xor equals b and r_i are chosen such that their xor equals x_0 . Therefore, after executing the k OTs, the receiver can xor the outputs he learned to get the actual output x_b . On the other hand, if after the execution of the OTs, the receiver asks the sender to reveal to him his inputs x_0, x_1 , the sender sends him these values along with all the r_i -s as a proof (or the "decommitment"). The sender checks that these values are consistent with the outputs he received from the OTs. If the sender tries to cheat on x_0, x_1 , he will be caught with probability that depends on k. Furthermore, the amount of information that the sender will learn about the receiver's input is negligible in k. (See [17] for complete details.) However, note that we increased the inputs by a factor of k, which is of course undesirable. In order to reduce this overhead, when we have more than one OT we can "share" the random bits among many input bits.

We now describe the more efficient construction in more detail (see [17] for concrete analysis of the parameters): For simplicity, let's assume m = 1. The extension to larger m is straightforward. In the first stage, the parties do the following: The sender picks at random 4n strings $r_1, \ldots r_{4n}$ and a random string d, all of length l. The receiver picks at random n random strings $z_1, \ldots z_n$ of length 4n and sends them to the sender. Then, he picks at random a string b' of length 4n such that for each input bit $b_i, < b', z_i >= b_i$, where $< \cdot, \cdot >$ is the inner product operator. They execute an OT 4n times, where the sender's input pairs are $(r_j, r_j \oplus d)$ and the receiver's input is b'_j for $j = 1, \ldots, 4n$. The receiver stores all the answers he received from the OT, and, for each i, the receiver computes the xor of the answers of the indecies in the set $\{j \mid \text{the } j\text{-th bit of } z_i \text{ is } 1\}$. These are his outputs from protocol.

In the second stage, the sender sends all the pairs $(r_j, r_j \oplus d)$ and d (to "decommit"). The receiver compares these strings with the ones he received earlier and verifies that the xor of each pair is d. If there is a problem, he outputs \perp . This completes the description.

(The above description is an adaptation of the technique of [17] with the Free-XOR technique of [14], although the original protocol is the same but with garbled gates that compute the xor of the strings.)

For statistical security parameter t, max(4n, 8t) inputs are needed in order to obtain a negligible probability of failure against the selective-OT attack [17]. When implemented with BOT, the overall cost is O(s) expensive operations and $O(\max(4n, 8t)m)$ inexpensive ones. For computations with large enough input (e.g. $n \ge 260$ for t = 130), this is rather efficient. However, for computations with short inputs, we can take the simpler approach of using z_i -s with Hamming Weight t, such that $\langle z_i, z_j \rangle = 0$ for all $i \neq j$, and using nt inputs in total.

B.4 Two-Stage Equality Testing

In this protocol, player P_1 has input x_1 and player P_2 has input x_2 , and they want to test whether $x_1 = x_2$. We define the functionality \mathcal{F}_{2SET}^l to be:

First Stage		
Inputs: P_1 inputs x_1 and P_2 inputs x_2 (both of length l).		
Outputs: Both players receive Inputs Accepted.		
Second Stage		
Inputs: Both players input Reveal.		
Outputs: Both players obtain $(x_1 = x_2)$.		

Figure 3:
$$\mathcal{F}_{2SET}^{l}$$

A possible implementation of this functionality can be done using ElGamal encryption and efficient ZKPoKs for proving knowledge of discrete log and the exponents of a DH-tuple. (We require that both players prove that they know their inputs so it can be extracted by the simulator.) In the first stage, they compute the value of $(x_1x_2^{-1})^{r_1r_2}$ encrypted under a shared ElGamal secret key, where r_i is P_i 's private input, chosen at random. In the second stage, they decrypt the result (along with ZKPoK for proving correctness of the decryption). If the result is 1, they output True, and False otherwise (details are omitted).

In case the input size is larger than the encryption message length l, the players can do one of the following: (1) Execute the first stage of the protocol $O(|x_i|/l)$ times with different parts of the inputs, and multiply the resulting encryptions to get one encryption. (The second stage is done on that last encryption.) (2) Jointly pick a random key k, and use $H(k \circ x_i)$ as their inputs to the protocol, where H is modeled as a random oracle. The simulator could record all the calls to the random oracle and "invert" $H(k \circ x_i)$ for retrieving the input x_i . The advantage of this option is that only one invocation of the above protocol is needed in this case.

C Detailed Construction and Proof of Our Fully-secure 2PC Construction

Figure 4 presents our protocol in detail. A simple example of the XOR-gadgets technique is given in Figure 1.

Before we prove security, we need to discuss the cut-and-choose step and its simulatability in more depth. Recall that in the cut-and-choose phase, we need to choose a random subset of [t] of size $t \cdot c$, where c is the constant fraction of the sets we use for evaluation. In particular, this step needs to be performed in a fashion that is simulatable in the proof. We note that a similar issue exists in previous 2PC constructions as well. In [17], this is resolved by generating a random bit for each set and decide whether to open or evaluate the set based on the bit. As shown in [17], this approach is efficiently simulatable but does not yield a previously agreed-on fraction c (e.g. c = 3/5 for better security). To the best of our knowledge, the remaining 2PC protocols do not specify the exact procedure with which the random subset is chosen.

For the sake of completeness, we propose one such procedure that is also efficiently simulatable. The intuition is simple. In each iteration $1 \le j \le t \cdot c$, one element is sampled uniformly at random from the previously unchosen elements in [t]. It is easy to confirm that this yields a uniformly random subset of size $t \cdot c$. The element to be chosen is decided using a uniformly random integer $1 \le v < (t - j + 1)$ generated by both parties using the following coin-tossing protocol:

- Parties initialize a boolean string ρ of length t to be all zeros.
- For $j = 1, ..., (t \cdot c)$, each player P_i picks a random value $v_j^i \in [1..(t j + 1)]$.
- P_2 sends a commitment $Com(v_1^2 \circ v_2^2 \circ \cdots \circ v_{t\cdot c}^2)$.
- P_1 sends his values $v_1^1, \ldots, v_{t \cdot c}^1$.
- P_2 decommits and reveal $v_1^2, \ldots, v_{t \cdot c}^2$.
- For $j = 1, ..., (t \cdot c)$, let $v = ((v_j^1 + v_j^2) \mod (t j + 1)) + 1$ and let k be the v-th zero bit of ρ . Set $\rho_k = 1$.
- Let the set E be $\{j | \rho_j = 1\}$. E would be the set of indexes of the circuits that the players evaluate. (i.e. they open all sets with indexes not in E).

C.1 Proof Sketch of Security of Protocol of Figure 4

We consider the two possible corruption scenarios separately.

 P_1 IS CORRUPTED. We describe a simulator S that runs A internally and interacts with the trusted party that computes f. S does the following: It emulates an honest P_2 with random input until the end of stage Inputequality Check (see Figure 4). S extracts (as done in [26]) A's input to the BCOT2 (used for P_1 to learn the input-wire labels of his input). Denote by x' this input. If the emulation of P_2 until the end of the protocol does not lead to an abort, S calls the trusted party with x' and outputs whatever A does.

From the cut-and-choose we know that with probability 1 - neg(t) (see [17, 26]), at least for half of $j \in E$ it holds that: 1) r_j are the same for both gc_j, xg_j ; 2) gc_j is properly constructed. Denote the by $E_g \subset E$ the indexes for which the two properties hold.

Denote by x_j the input P_1 used for circuit gc_j . Observe that if all the XOR-gadgets that P_1 generated are correct, and P_1 uses the same r_j for gc_j, xg_j , then if he uses even a single $x_i \neq x'$ then P_2 catches him (since P_1 learns only the labels for x' in xg_j for all $j \in E_g$). Therefore, from the cut-and-choose, P_2 is assured with probability 1 - neg(t) that P_1 used the same input for at least half of the sets, and for the same sets he garbled the circuit properly. Thus, the majority of the outputs are correct (and use x' as P_1 's input) with probability 1 - neg(t).

Garbling:

Let $C_1, C_2, \alpha(\cdot)$ as defined in Section 3.

```
For j = 1, ..., t, player P_1 picks random strings z_i (of length s) and r_i (of length |INP_1|), and computes the set S_j containing:
```

- 1. A garbled circuit $gc_i = \mathsf{Garb}(C_1, z_i)$.
- 2. The input-wire labels corresponding to r_j in gc_j .

For j = 1, ..., t, player P_2 picks at random a string z'_i and computes XOR-gadget $xg_j = \text{Garb}(C_2, z'_i)$, each includes $|\text{INP}_1|$ XOR-gates.

Oblivious Transfer:

They execute the combination of [17] and BOT where P_1 is the sender: P_1 's input is $|INP_2|$ sets of t pairs $(label(gc_j, k, 0), label(gc_j, k, 1))$ for $k \in INP_2$ and $j \in [t]$, and P_2 uses his actual input bits. (Recall that the players use different inputs when applying the technique of [17]. To simplify the description here, we just refer to the actual inputs they use.) They execute BCOT2 twice where P_2 is the sender: (We separate the two for simplifying the description. However, both protocols can be executed together to reduce the number of seed OTs.) In the first, P_1 inputs the bits of r_j and P_2 inputs the pairs ($label(xg^j, \alpha(k), 0), label(xg_j, \alpha(k), 1)$) for $k \in INP_1$ and $j \in [t]$. In the second, P_1 inputs his actual input bits and P_2 inputs the pairs ($label(xg_1, k, 0) \circ label(xg_2, k, 0) \circ \cdots \circ label(xg_t, k, 0), label(xg_1, k, 1) \circ label(xg_t, k, 1)$) for $k \in INP_1$. (Note that in the last BCOT, P_1 gets the labels for all t circuits together. Because of that, he cannot use inconsistent inputs for P_2 's XOR-gadgets.)

Cut-and-choose:

 P_1 sends the sets S_1, \ldots, S_t and P_2 sends the XOR-gadgets xg_0, xg_1, \ldots, xg_t . They pick a random $E \subset [t]$ of size $t \cdot c$ in the following way:

- 1. They initialize a boolean string ρ of length t to be all zeros.
- 2. For $j = 1, \ldots, (t \cdot c)$, each player P_i picks a random value $v_i^i \in [1..(t j + 1)]$.
- 3. P_2 sends a commitment $Com(v_1^2 \circ v_2^2 \circ \cdots \circ v_{t \cdot c}^2)$.
- 4. P_1 sends his values $v_1^1, \ldots, v_{t \cdot c}^1$.
- 5. P_2 decommits and reveal $v_1^2, \ldots, v_{t \cdot c}^2$.
- 6. For $j = 1, \ldots, (t \cdot c)$, let $v = ((v_1^1 + v_i^2) \mod (t j + 1)) + 1$ and let k be the v-th zero bit of ρ . Set $\rho_k = 1$.
- 7. Let the set E be $\{j | \rho_j = 1\}$. E would be the set of indexes in which the players will evaluate (and open all sets with indexes not in E).

Checking Opened Circuits:

For all $j \notin E$, P_1 sends: 1) z_j ; 2) The labels he learned from BCOT2 for r_j .

For the opened sets, P_2 verifies that the circuits and gadgets were constructed properly, and that P_1 used the same r_j for xg_j and gc_j . Then, P_1 reveals all the inputs he used for the BOT in the opened sets and P_2 verifies that all the values are consistent with the opened circuits and with the values he received in the BOT.

Input-equality check:

- 1. P_1 evaluates the remaining XOR-gadgets he has. He sends a commitment *com* on all the output-wire labels he got from the XOR-gadgets (or on a random value if there was a problem in the evaluation) along with a ZKPoK that he knows the decommitment of *com*. (If the ZKPoK is invalid, P_2 aborts.)^{*a*}
- 2. P_2 opens all his XOR-gadgets in the set E (by sending z'_i -s), and decommits all his inputs to BCOT2. P_1 verifies that the XOR-gadgets were constructed properly and consistent with the BCOT2 inputs. (If not, he aborts.)
- 3. P_1 decommits *com* and reveals the output-wire labels he got from the XOR-gadgets. P_2 verifies that all labels are valid ones (i.e., generated by him).
- 4. P_1 sends the input-wire labels for his input in S_j where $j \in E$. If some of them are invalid, P_2 aborts.
- 5. P_2 evaluates the XOR-gadgets in the sets S_j , $j \in E$ and compares the results to the outputs sent by P_1 . If the outputs are not the same, P_2 aborts.

Evaluation: P_2 evaluates all the garbled circuits gc_j where $j \in E$. He takes the majority to be his output.

^{*a*}Recall that if the length of the concatenated labels is too long, P_1 can instead commit on a short seed as described in Section 3.

Figure 4: A Fully-secure 2PC Protocol.

We now need to argue that P_1 's view in the ideal and real executions are indistinguishable.³ Except for the OT messages which are indistinguishable by the security of the OTs, the above simulated execution is distributed as the real one, except for two cases: (1) When P_1 successfully cheats (and then P_2 's output in the real execution would be different than in the ideal model). However, in order to cheat successfully P_1 must cheat in the majority of the evaluated sets, and as discussed above this happens with 1 - neg(t) probability. (Indeed, P_1 can cheat also by guessing the output-wire labels of P_2 's XOR-gadgets, but that can work with probability 2^{-s} if the labels are of length s.) (2) When P_1 cheats in the OTs for P_2 to learn his inputs, in a way that is distinguishable from the simulated execution (since the simulator picks random inputs). However, by the analysis of [17], this can only happen with probability neg(t) as well.

 P_2 IS CORRUPTED. The simulator S does the following:

- Picks at random a subset E and a random permutation of it $\pi(E)$.
- Emulates an honest P_1 until the end of stage Oblivious Transfer (See Figure 4). Learns P_2 's inputs to the BOT as done by the simulator of [24].
- Calls the trusted party with P_2 's input and receives the output.
- Constructs the sets such that for $j \in E$, gc_j outputs the constant *output*, and for $j \notin E$, gc_j is a legal garbling.
- Emulates P_1 in the Cut-and-choose stage, until step 5. Learns P_2 's v_i^2 -s.
- Rewinds to step 4 and picks v_j^1 -s such that $\pi(E)_j = v_j^1 + v_j^2$.
- Emulates P_1 with a random input until the end.

Recall that if P_2 creates illegal XOR-gadgets, then P_1 always catches him since they always open all those gadgets and their corresponding OTs.

The only parts in which the simulation is different than the execution in the real model is where the simulator constructs the *fake* garbled circuits. However, this difference is indistinguishable by the results of [18, 2]. (This can be done, e.g., by setting the output gates to be constant gates of the output *output*. Then, by the security of the garbling scheme, this change is indistinguishable.) Also, the OT messages are indeed for different inputs, but the security of the OT implies that this difference is indistinguishable.

C.2 Handling Two-Output functions

As discussed in Section 1.1, we have two (related) solutions for handling two-output functions. Here we describe the second one which allows circuit streaming and computation in parallel (e.g., as done in [15]).

We augment the garbling stage as follows. Let OUT_1 be the set of P_1 's output wires. For each $k \in OUT_1$, P_1 picks two random strings $w_{k,0}, w_{k,1}$. In addition to the garbled circuits, P_1 garbles $t \cdot |OUT_1|$ identity-gates. The garbled identity-gate $ig_{j,k}$ for garbled circuit gc_j and output-wire k is the garbled version of an AND gate that receives the same input twice and has the output-wire labels $w_{k,0}, w_{k,1}$. (In practice, only two encryptions are needed: $Enc(label(gc_j, k, 0), w_{k,0})$ and $Enc(label(gc_j, k, 1), w_{k,1})$.) P_1 does not send those garbled identity-gates.

Now, the players execute the protocol from above. They follow the protocol upto the input equality check stage. Then, P_1 decommits the garbled identity-gates *only* for the circuits being evaluated. P_2 uses the outputwire labels from the evaluation stage to evaluate the identity-gates, takes the majority (taking into account the output-wire labels of P_1 's output) and sends a commitment on the output-wire labels for $k \in OUT_1$ to P_1 . P_1 decommits all the remaining garbled identity-gates, and P_2 verifies they were constructed properly (or otherwise

³Since we have two different security parameters, t and s, the executions are actually (s, t)-indistinguishable [19].

aborts). Note that for the opened sets, P_2 has both labels, so essentially he concludes, again from the cut-andchoose, that the identity-gates are correct for the majority of the circuits. If everything was correct, P_2 decommits his commitment and P_1 checks that the labels are legal output labels.

As discussed in Section 3, sending a commitment on the output labels does not suffice. Also, since in the simulation of P_2 the simulator has to commit and later decommit to output labels he never saw, the commitment has to be equivocal. For that, we can either use Pedersen's commitment as a trapdoor commitment [3] and require P_2 to prove that he knows the decommitment (See appendix D.1 for more references on how to instantiate such commitments), which requires $O(q_1)$ expensive operations, or, in the Random Oracle model, to commit using one call to the hash function (that is modeled as the random oracle) without additional ZKPoKs.

The above protocol provides authenticity of the output. In case privacy of the output is also needed, one can modify the circuit being evaluated in the standard way of XORing the output with a random string.

D More on Our ϵ -CovIDA Constructions

D.1 Detailed Construction and Proof of the Protocol from Section 4.2

Before we present the detailed construction (Figure 5), we note that a few interesting issues arise in the simulationbased proof of the protocol that do not exist in the previous standard 2PC constructions. For example, in the simulation-based proofs of previous 2PC constructions, the random challenge is used for checking only one player, the garbler. However, here we use the same challenge for checking both players. This prevents us from using regular commitments everywhere and constructing the simulation using the standard *commit, decommit and rewind* operations. Roughly speaking, the challenge is to construct two different simulators (for the two corruption cases) that can open the coin-toss to any challenge value.

To overcome these issues we use *trapdoor commitments* in some steps of the protocol (i.e. when P_1 commits to his coins and when he commits to his garbled sets). These special commitments have the property that given a trapdoor, a commitment can be decommitted to any message, or more formally, let $Com_{ck}(m, r)$ be a commitment on message m using randomness r and commitment key ck. Then a party who knows the trapdoor ct can successfully decommit $Com_{ck}(m, r)$ to whatever message m' it wants. Such commitments can be constructed efficiently from a variety of assumptions such as DDH and RSA (e.g. See [3]). The intuition is that each player generates a pair of a public key/trapdoor to a trapdoor commitment scheme, and proves using a zero-knowledge proof of knowledge protocol (ZKPoK) that he knows the trapdoor. Each player then uses the other player's public key to commit to his values. In the simulation, the simulator can extract the trapdoor and open the commitment to an appropriate value of its choice.

One option is to use DDH based trapdoor commitment and standard ZKPoK of discrete-log (see [3]). Then, the overhead introduced here is only a (small) constant number of exponentiations.

Figure 5 presents our protocol in detail.

D.1.1 Proof Sketch of Security of Protocol of Figure 5

Let \mathcal{A} be an adversary controlling P_1 in the execution of the protocol in the \mathcal{F}_{2SET}^l -hybrid world. We describe a simulator \mathcal{S} that runs \mathcal{A} internally and interacts with the trusted party that computes f. \mathcal{S} does the following:

- 1. Invokes \mathcal{A} and emulates honest P_2 with random inputs y, m_2 until the end of the stage "Committing to the sets and inputs". During the execution it extracts the Z_j^1 and $H(S_j^1)$ from the ZKPoK and records \mathcal{A} 's inputs to BCOT1 and BCOT2 (as done in [26]). Also, it extracts the trapdoor ct_1 from \mathcal{A} .
- 2. Checks if some of the sets are problematic, which means that Z_j^1 is not consistent with $H(S_j^1)$ or some of P_1 's inputs to the BCOTs (either for the BCOTs for P_2 to learn his input, or for P_1 to learn the inputs of r_j).

If more than one set is incorrect,

We describe P_1 's actions in the protocol. The protocol is symmetric, hence the same steps take place for P_2 as well. Garbling:

Let $C_1, C_2, C'_1, C'_2, \alpha(\cdot)$ as defined in Section 4.2, where P_1 's input is $x' = x \circ m_1$ and P_2 's is $y' = y \circ m_2$ and m_1, m_2 are chosen at random.

For j = 1, ..., t, player P_1 picks a random string Z_j^1 and uses it as a key for a PRF to generate $z_j^1, z_j^{1'}$ (of length s) and r_j^1 (of length $|\text{INP}_1|$). Then P_1 computes the set S_j^1 containing:

- 1. Garbled circuits $gc_i^1 = \operatorname{Garb}(C_1, z_i^1)$ and $xg_i^1 = \operatorname{Garb}(C'_1, z_i^{1'})$.
- 2. The input-wire labels corresponding to r_i^1 in gc_i^1 .

Oblivious Transfer:

Players execute two batch committing-OT where P_1 is the sender, with all the input-wire labels for gc_j^1 and xg_j^1 . More specifically, in the first execution, BCOT1 is used. P_1 's input is $|INP_2|$ sets of t+1 pairs, i.e. ($\mathsf{label}(gc_j^1, k, 0), \mathsf{label}(gc_j^1, k, 1)$) for $k \in INP_2$ and $j \in [t]$, and ($\mathsf{label}(xg_1^1, k, 0) \circ \cdots \circ \mathsf{label}(xg_t^1, k, 0), \mathsf{label}(xg_1^1, k, 1) \circ \cdots \circ \mathsf{label}(xg_t^1, k, 0)$) for $k \in INP_2$, and P_2 uses his actual input bits. In the second execution, using BCOT2, P_1 inputs one set of $|INP_2| \cdot t$ pairs ($\mathsf{label}(xg_j^1, \alpha(k), 0), \mathsf{label}(xg_j^1, \alpha(k), 1)$) for $k \in INP_2$, $j \in [t]$, and P_2 inputs the bits of his inputs r_j^2 .

We note that P_1 is yet to send the labels for his input wires in gc_j^1 .

Committing to the sets and inputs:

- 1. P_1 generates a key pair (ck_1, ct_1) for a trapdoor commitment where ct_1 is the trapdoor and ck_1 is the public key. He sends ck_1 to P_2 and proves to him, using ZKPoK, that he knows the corresponding trapdoor. $(P_2$ does the same with ck_2, ct_2 .)
- For j = 1,..., t, P₁ sends the commitments Com(Z¹_j), Com_{ck2}(H(S¹_j)) along with ZKPoK that he knows the corresponding messages Z¹_j and H(S¹_j).

Cut-and-choose:

They pick a random $e \in [t]$ in the following way (this part is done only once):

- 1. They both toss t coins.
- 2. P_1 sends a commitment on his coins $Com_{ck_2}(coins_1)$.
- 3. P_2 sends his coins $coins_2$.
- 4. P_1 opens the decommitment and they both set $coins = coins_1 \oplus coins_2$.
- 5. They use *coins* to pick (uniform) $e \in [t]$.

 P_1 sends the t sets S_i^1 to P_2 , and decommits their $Com_{ck_2}(H(S_i^1))$.

Checking Opened Circuits:

For $(S_j^1, S_j^2)_{j \neq e}$, the players send to each other: 1) Z_j^i and a decommitment of $Com(Z_j^1)$, 2) The labels they have learned from BCOT2 for r_j^i . For the opened sets, each player verifies that everything was generated properly from Z_j^i , and that the other player used the same r_j^i for gc_j^i and xg_j^{3-i} . Then, each player decommits all the inputs he has used as the sender in BCOT1 for all the opened sets and the other player verifies that all these values are consistent with the opened circuits. (I.e., P_1 decommits his inputs in BCOT1 for $gc_{j\neq e}^1$.) If some of the sets were not constructed properly, the players abort outputting \bot .

Evaluation and Input-equality check:

Each player sends his input-wire labels for the e-th circuit and they evaluate the circuits and the XOR-gadgets.

 P_1 sends to P_2 a commitment on the concatenation of the labels he obtained from evaluation of xg_e^2 (or to a random string if there was a problem with the XOR-gates evaluation) along with a ZKPoK that he knows the decommitment. Next, P_2 sends the randomness he used for garbling the XOR-gadget xg_e^2 , and decommits all his inputs as the sender to BCOT2, including the ones of xg_j^2 , and his inputs (label($xg_1^1, k, 0$) $\circ \cdots \circ$ label($xg_t^1, k, 0$), label($xg_1^1, k, 1$) $\circ \cdots \circ$ label($xg_t^1, k, 0$)) for $k \in$ INP₂ to BCOT1. P_1 verifies that the XOR-gadget was constructed properly and consistently with the BCOT2 inputs (otherwise, outputs \perp) and decommits his commitment to P_2 .

 P_2 checks that the output-wire labels he received are valid (i.e. generated by him for these gates) and compares them with the output-wire labels he got from his evaluation of the corresponding XOR-gates. If there is a problem, he outputs \perp . (Recall that the same process goes in both directions, one for P_1 's inputs and one for P_2 's inputs.)

Equality-Testing:

They call the Equality Testing functionality with the output bits of $f(x, y) \oplus m_1 \oplus m_2$ of the *e*-th garbled circuits (including the labels as described earlier). If the answer is False, they abort.

Output Unmasking:

 P_1 sends m_1 and the labels that correspond to m_1 in gc_e^2 and P_2 verifies that the labels indeed correspond to m_1 . (P_1 does the same with m_2 and aborts if there is a problem.) Then, P_1 computes his output by XORing the output of gc_e^2 with $m_1 \oplus m_2$.

Figure 5: 1/t-CovIDA Protocol.

- Sends cheat₁(1) to the trusted party (and since 1 > 1/t, the trusted party would send corrupted₁).
- Emulates honest P_2 until the end of the protocol. (Note that P_2 will abort.)

If all are correct,

- Calls the trusted party with A's input x (learned from BCOT1) and receives the output.
- Continues the protocol emulating honest P₂, but replaces P₂'s garbled circuit gc_e² with one that always outputs output ⊕ m₁ ⊕ m₂ (for fixed output, m₁, m₂) with labels that are consistent with previous steps. S computes the hash of P₂'s sets after this replacement and uses ct₁ to decommit successfully.
- Proceeds with the protocol emulating honest P_2 . If \mathcal{A} 's input to the "Equality-Testing" is the right output of gc_e^2 and the corresponding labels in gc_e^1 , the simulator returns True. Else, it returns False.
- Proceeds with emulating honest P_2 , revealing m_2 at the end. Sends abort if A aborts or sends invalid labels for m_1 .

Otherwise (i.e. if exactly one set is incorrect),

- Sends to the trusted party $cheat_1(1/t)$.
- If the trusted party returns $corrupted_1$, S picks random $coins_2$ such that P_1 will be caught later in the opening stage ($coins_1$ can be learned by rewinding A). Emulates honest P_2 until the end. (Note that P_2 will abort.)
- If the trusted party returns undetected and the output,
 - Picks random $coins_2$ such that P_1 will not be caught in the opening stage.
 - Continues the protocol emulating honest P_2 , but replaces P_2 's garbled circuit gc_e^2 with one that always outputs $output \oplus m_1 \oplus m_2$ (for fixed $output, m_1, m_2$) with labels that are consistent with previous steps. S computes the hash of P_2 's sets after this replacement and uses ct_1 to decommit successfully.
 - Let P_1 's input to the "Equality-Testing" be w_1 . S sends to the trusted party the function g that has hardcoded the circuit gc_e^1 , the input labels that A used in the BCOT1 for P_2 's inputs of gc_e^1 , the labels that A sent for his inputs, the value m_2 , the output-wire labels of gc_e^2 , and w_1 . The function evaluates the circuit with the real P_2 's input, using the corresponding input-wire labels, determines what string w_2 would honest P_2 in our protocol be using after obtaining the output of the evaluation, compares it with w_1 and outputs 1 if they are equal and 0 otherwise. If the trusted party sends abort, S sends False to A and emulates P_2 aborting. If the trusted party did not abort, S sends True to A and proceeds emulating honest P_2 revealing m_2 . S sends abort if A aborts or sends invalid labels for m_1 .

When the e-th set is correct, the adversary cannot change his input since it is checked by the XOR-gadgets (since we know that the r_e^1 is the same for both evaluations), and he cannot reveal successfully at the end m'_1 that is different than m_1 because the corresponding labels are random. When the e-th set is incorrect, the adversary can indeed use different inputs for both evaluations or incorrect garbled circuit gc_e^1 . The output he gets from the evaluation of gc_e^2 looks for him the same as the output in the real execution, and the only information he gets about the output of gc_e^1 is from the result of the Equality-Testing. However, since the simulator computes this output with the assistance of the trusted party (by evaluating gc_e^1 with the actual P_2 's input), the result of the Equality-Testing looks the same as in the real execution.

Inspecting the simulation shows that the only parts that are different than the real execution are (1) Where the simulator sends a fake garbled circuit with a fixed output. However, [18, 2] show that the two views are indistinguishable (under minor changes to the circuit in use); (2) P_2 's inputs to the BCOTs. However, these are indistinguishable by the security of the BCOTs.

The simulation for the case where A controls P_2 is the same, except that for changing the coins S now needs to utilize the trapdoor ct_2 .

D.2 Reducing the Number of Circuits

A shortcoming of the previous protocol is that the probability of leakage decreases slowly with the number of circuits t. In particular, aiming for a probability of leakage of 1/1000 would require the exchange of a thousand garbled circuits which is not practical. A more desirable goal is to make the leakage probability exponentially small in t while the protocol cost still grows linearly in t.

The standard solution for reducing the probability of cheating in cut-and-choose protocols is to issue t garbled circuits, open a constant fraction of them (e.g. half) and verify that they were constructed properly, and evaluate the rest. Using this method (ignoring the challenges in enforcing consistency of inputs and the OTs) we have that the majority of the evaluated circuits are correct, and thus the majority output is the correct output with all but negligible probability in t. (See [26] for a concrete analysis.)

However, if we try to combine this approach and dual execution, it is not clear how to perform the equality testing at the end, since now each player evaluates multiple circuits with different output-wire labels, some of which may encode the wrong result.

To overcome this issue we need a solution that ensures that the output labels are (1) the same for all the evaluated circuits and (2) unpredictable (i.e. hard to guess when not learned through evaluation), as is the case with output-wire labels in the standard garbled circuits. One possibility is to embed a carefully designed *one-time MAC* in the circuits being garbled and evaluated. The overhead of this solution, however, is too high to be of practical interest. Next we discuss an alternative and very efficient solution based on *identity-gates* and a *two-stage opening*.

An efficient solution via identity-gates. For each $k \in OUT$, each player P_i picks two random strings $w_{k,0}^i, w_{k,1}^i$. Note that these random strings are the same for all t circuits. In addition to the garbled circuits and XOR-gadgets, for each set it also garbles |OUT| *identity-gates*. The garbled identity-gate $ig_{j,k}^i$ for garbled circuit gc_j^i and output-wire k is the encryptions $Enc(label(gc_j^i, k, 0), w_{k,0}^i)$ and $Enc(label(gc_j^i, k, 1), w_{k,1}^i)$. The players do not send those garbled identity-gates as part of the sets, but only send one commitment per set, committing to all the garbled-identity gates for that set.

Now, the players execute the protocol from Section 4.2, but open only a constant fraction of the sets (without opening the commitments on the identity-gates). Then, each player decommits the garbled identity-gates for the circuit-pairs being evaluated. Each player uses the output-wire labels from the circuit evaluations to evaluate the identity-gates, and then takes the majority to be his input to the Equality Testing functionality (or a random string if there is no majority). However, if the identity-gates were invalid, this step might reveal information. Thus, the players run only the first stage of the Equality Testing functionality (and essentially commit to their inputs). Then each player decommits all the remaining garbled identity-gates he generated and opens them, while the other player verifies they were constructed properly (or otherwise aborts). If everything was correct, they execute the second stage of the Equality Testing functionality and proceed accordingly.

The resulting protocol adds only $O(t \cdot |OUT|)$ inexpensive operations since for each output-wire the players compute t garbled identity-gates.

In addition to the above modifications, we require player P_i to pick a random Z'_i in the beginning of the protocol, and use it as a PRF key for generating the strings $w_{k,0}^i$, $w_{k,1}^i$ and the randomness used for committing on the identity-gates. Each player commits on his Z'_i and proves, using ZKPoK, that he knows it. (This allows the simulator to extract Z'_i and check if the commitments are consistent with the set of garbled circuits and the BCOTs.) When the players decommit all the garbled identity-gates, they also decommit Z'_i and verify that the all commitments and identity-gates were generated correctly using this value.

The last modification is regarding the coin-tossing step. We replace the coin-tossing step of the protocol from Figure 5 with the one from Figure 4, and change it to use trapdoor commitments for the same reason explained in Appendix D.1. Specifically, the coin-tossing protocol we use is:

- Parties initialize a boolean string ρ of length t to be all zeros.
- For $j = 1, ..., (t \cdot c)$, each player P_i picks a random value $v_j^i \in [1..(t j + 1)]$.

- P_1 sends a commitment $\mathsf{Com}_{ck_2}(v_1^1 \circ v_2^1 \circ \cdots \circ v_{t\cdot c}^1)$.
- P_2 sends his values $v_1^2, \ldots, v_{t \cdot c}^2$.
- P_1 decommits and reveal $v_1^1, \ldots, v_{t \cdot c}^1$.
- For $j = 1, ..., (t \cdot c)$, let $v = ((v_j^1 + v_j^2) \mod (t j + 1)) + 1$ and let k be the v-th zero bit of ρ . Set $\rho_k = 1$.
- Let the set E be $\{j | \rho_j = 1\}$. E would be the set of indexes in which the players will evaluate (and open all sets with indexes not in E).

Proof Sketch of Security. The simulation is very similar to the one from Appendix D.1 except for some small changes.

Let \mathcal{A} be an adversary controlling P_1 in the execution of the protocol in the \mathcal{F}_{2SET}^l -hybrid world. \mathcal{S} does the following:

- 1. Invokes \mathcal{A} and emulates honest P_2 with random inputs y, m_2 until the end of the stage "Committing to the sets and inputs". Extracts Z'_1, Z^1_j and $H(S^1_j)$ from the ZKPoK and records \mathcal{A} 's inputs to BCOTs. Also, it extracts the trapdoor ct_1 .
- 2. Checks if some of the sets are problematic, which means that if given Z'_1, Z^1_j is not consistent with $H(S^1_j)$ or some of P_1 's inputs to the BCOTs, or with the commitment on the identity-gates, then the set j is problematic. Let $\mathcal{B} = \{j | \text{set } j \text{ is problematic}\}$.

If all are correct,

- Calls the trusted party with A's input x (learned from the BCOT1) and receives the output.
- Continues the protocol emulating honest P₂, but replaces P₂'s garbled circuit gc²_e with one that always outputs output ⊕ m₁ ⊕ m₂ (for fixed output, m₁, m₂) with labels that are consistent with previous steps. S computes the hash of P₂'s sets after this replacement and uses ct₁ to decommit successfully.
- Proceeds with the protocol emulating honest P_2 . If \mathcal{A} 's input to the "Equality-Testing" is the right output of gc_e^2 and the corresponding labels in gc_e^1 , the simulator returns True. Else, it returns False.
- Proceeds with emulating honest P_2 , revealing m_2 at the end. Sends abort if A aborts or sends invalid labels for m_1 .

If more than |E| of the sets are incorrect ($|E| < |\mathcal{B}|$),

- Sends cheat₁(1) to the trusted party (and since 1 > 1/t, the trusted party would send corrupted₁).
- Emulates honest P_2 until the end of the protocol. (Note that P_2 will abort.)

If less than |E| of the sets are incorrect $(|\mathcal{B}| \leq |E|)$,

• Set
$$\epsilon' = \frac{\begin{pmatrix} t - |\mathcal{B}| \\ t - |E| \end{pmatrix}}{\begin{pmatrix} t \\ t - |E| \end{pmatrix}}$$
. (This is the probability of not being caught for the given set of problematic sets.)

• Sends to the trusted party $cheat_1(\epsilon')$.

• If the trusted party returns corrupted₁, S makes sure that the subset E will be chosen such that P_1 will be caught later. Emulates honest P_2 until the end. (Note that P_2 will abort.)

We now describe how E is chosen. Let ρ be a binary string of length t, and let c be the constant fraction of sets we evaluate (i.e., c = |E|/t). S chooses ρ using the following strategy: Pick at random a binary string $\rho_{\mathcal{B}}$ of length $|\mathcal{B}|$ that has at least one zero element. Pick at random a binary string $\rho_{\rm G}$ of length $t - |\mathcal{B}|$ that has exactly $t \cdot c - {\rm HW}(\rho_{\mathcal{B}})$ non-zero elements. Choose ρ such that $\rho: \mathcal{B} = \rho_{\mathcal{B}}$ and $\rho: [t] - \mathcal{B} = \rho_{G}$, where x: S denotes the substring of x containing all indexes in set S.

Set E to be the set of indexes $\{i | \rho_i = 1\}$. Note that E is uniform over all the challenges that reveal problematic sets.

Let $\pi(E)$ be a random permutation of the indexes in E. In order to decide on E, for each round j in the protocol from above, S does the following:

- Receives P_1 's commitment.
- Sends random v_j²-s and receives P₁'s v₁¹,..., v_{t⋅c}¹.
 Rewinds A and sends him v_j² = π(E)_j v_j¹ mod (t j + 1)) + 1 for j = 1,...t ⋅ c.
- If the trusted party returns undetected and the output,
 - Makes sure that all the malicious set/inputs are in E, and also, replaces P_2 's garbled circuits in the set E with ones that always output a fake output $z \oplus m_1 \oplus m_2$. (Here we use the same process for picking E as before, but instead we take $\rho_{\mathcal{B}}$ to be all ones.) S computes the hash of P_2 's sets after this replacement and uses ct_1 to decommit successfully.
 - If $|\mathcal{B}| < |E|/2$, S sends to the trusted party the function g that always returns 1, proceeds with the protocol emulating honest P_2 . If \mathcal{A} 's input to the "Equality-Testing" is the right output of P_2 's circuits and the corresponding labels, the simulator returns True. Else, it returns False. (Note that since the majority of the sets are good, S can extract the output labels from P_1 's sets.)
 - If $|E|/2 \leq |B|$, let \mathcal{A} 's input to the "Equality-Testing" be w_1 . \mathcal{S} sends to the trusted party the function g that has hardcoded the circuit gc_e^1 for all $e \in E$, the input labels that \mathcal{A} used in BCOT1 for P_2 's inputs of gc_e^1 , the labels that \mathcal{A} sent for his inputs, the value m_2 , the outputwire labels of gc_e^2 , and w_1 . The function evaluates the garbled circuits with the real P_2 's input, using the corresponding input-wire labels, computes what string w_2 would have honest P_2 in our protocol be using after he gets the outputs of these evaluations, compares it with w_1 and outputs 1 if they are equal and 0 otherwise. If the trusted party sends abort, S sends False to Aand emulates P_2 aborting. If the trusted party does not abort, S sends True to A and proceeds emulating honest P_2 revealing m_2 . S sends abort if A aborts or sends invalid labels for m_1 .

The rest of the proof is as in Appendix D.1.

Е Authenticated Computation with Private Input

In some cases, only one of the players' inputs should remain private. E.g., in anonymous credential protocols, if checking credentials can be done publicly then the only secret input to the protocol is the actual user's credentials. Other applications can be targeted-advertising, where only the client's preferences are secret, and any Zero-Knowledge Proof, in which only the prover's input (the witness) is private.⁴

Say P_1 's input x should remain private, but the function in use f is known to both players and P_2 's input y can be revealed at the end of the protocol. The players wish to compute f(x, y) while maintaining correctness

⁴We have learned that a result similar to ours was independently obtained by [12].

and privacy of x even in the case one of the players is malicious. Indeed, realizing this functionality can be done using any fully-secure 2PC. However, there is no natural way to take advantage of the fact that y can be revealed at the end of the protocol. (Note that we require that both inputs are independent of each other, as required implicitly by the standard 2PC security notion.)

A very efficient protocol for the above functionality, using the ideas presented earlier for handling two-output functions, is the following:

- P_2 picks a short seed z for a pseudo-random function (PRF), and generates $gc = \text{Garb}(C_f, z)$. (Recall that the output-wire labels include random strings and the actual bits.)
- P_1 and P_2 execute |x| (fully-secure) OTs for P_1 to learn the labels that correspond to his input-wires. All the randomness P_2 uses in the OTs is derived from the PRF used with the seed z.
- P_2 sends gc along with the labels that correspond to his input-wires (for y).
- P_1 evaluates gc and gets the actual output bits (denote by b_1, b_2, \ldots, b_q) and their random labels (denote by l_1, l_2, \ldots, l_q).
- P_1 sends a commitment $Com(b_1 \circ \cdots \circ b_q \circ l_1 \circ \cdots \circ l_q)$ and a ZKPoK that he knows its decommitment.
- P_2 sends z.
- P_1 verifies that gc was garbled correctly and the OTs were consistent with gc. (This is done by emulating honest P_2 with the seed z.)
- If everything was properly constructed, P_1 decommits his commitment, P_2 checks that all labels l_i -s are indeed correct output-wire labels, and if so, they both output the b_i -s.

The above protocol requires only *a single* garbled circuit and a small constant number of rounds. When $Com(\cdot)$ is implemented by a Random Oracle, only a single hash is needed for the commitment. Alternatively, a trapdoor commitment with ZKPoKs can be used with the cost of O(q) expensive operations.