
Some Complexity Results and Bit Unpredictable for Short Vector

Problem

Cheng Kuan

Abstract

In this paper, we prove that finding the approximate shortest vector with length in
[λ1, γλ1] could be reduced to GapSVP. We also prove that shortest vector problem could
also be reduced to GapSVP with a small gap. As the complexity of uSVP is not very clear,
we improve crurrent complexity results[19] of uSVP, proving uSVP could be reduced from
SVP deterministically. What’s more, we prove that the search version of uSVP could be
reduced to decisional version of uSVP with almost the same gap.

At last, based on the results above, we prove a bit-unpredictable property of SVP.

1 Introduction

Lattice is a wonderful mathematical structure. It is a set of all integer combinations of
linearly independent base vector b1, b2, . . . , bn in Rm. Ajtai discovered that some lattice problems
exhibit a wort-case to average-case connection[1]. Cryptosystems could be constructed based
on the worst-case hardness of some classic lattice problems. Ajtai-Dwork cryptosystem[2] was
the first cryptosystem based on the worst-case hardness of the approximate “unique” Shortest
Vector Problem uSVPO(n8). Researchers have improved this cryptosystem so that it could be
based on worst-case uSVPO(n2). Later than that, Regev built a different cryptosystem based on
worst-case uSVPO(n1.5)[4]. GapSVP is also important in constructing cryptographic primitives.
One-way functions could be based on the worst-case hardness of GapSVP, such as the earliest
one made by Ajtai[1]. As time went by, cryptosystems based on the hardness of GapSVP came
out. Regev[5] built the first cryptosystem based on GapSVP, assuming approximating GapSVP
was hard even by quantum algorithms. After that Peikert[10] constructed a cryptosystem
based on the hardness of GapSVP under classical reductions. From those works, we can see the
complexity of uSVP and GapSVP are the hardness foundation of current lattice cryptosystems
and one-way functions. Among all the lattice problems, shortest vector problem is NP-hard
under random reduction which is proved by Micciancio[24]. It could be randomly reduced from
a special version of CVP which is NP-hard under deterministic reduction. This work could be
regarded as the fundamental complexity result of lattice problems as SVP is the core problem
in lattice. Nowadays, algorithms designed to solve SVP still has exponential complexity. Ajtai,
Kumar and Sivakumar[6] gave a randomized algorithm running in time (and space) 2O(n),
typically referred to as the AKS Sieve. Sieve algorithm has been improved recently by Nguyen
and Vidick[15], but it still has single exponential time complexity. The deterministic algorithm
known with lowest time complexity, Õ(22n), is discovered by Micciancio[23]. Its complexity is
even lower than the best sieve algorithm (not heuristic). But the experimental facts still show
that sieve algorithm runs faster practically. High time complexity shows that lattice problem
is indeed hard in practice. However Although SVP is NP-hard, the complexity of uSVP and
GapSVP are still not very explicit. Lyubashevsky and Micciancio[17] proved the reduction
from BDD1/2γ to uSVPγ , uSVPγ to GapSVPγ and GapSVPγ to BDD 1

γ

√
n/ logn

, which shows

the relationship between uSVP and GapSVP. But their relationship with SVP are not very
clear.

1

Kumar and Sivakumar[22] first studied how to make short vector unique using randomized
method in polynomial time. Their work proved that short vector could be made unique using
randomized method. They constructed a procedure to knock out some of the short vectors
so that only one short vector will be left at last probabilistically. Some interesting properties
of short vectors are also given in their work. However, the short vector given out by their
procedure may not be the shortest one in the original lattice. Indeed, with high probability
the short vector left is not the shortest one, because there are so many short vectors. The one
left could be any short vector shorter than

√
2 times of the length of the shortest vector. As a

result, their procedure do not reveal an reduction from SVP to uSVP. Aggarwal and Dubey[19]
found a deterministic method to make the shortest vector unique, a deterministic reduction
from SVP to uSVP, using basis transformation which could distinguish vectors with the same
length. This is the first deterministic reduction. However, although the shortest vector could be
made unique, the gap between λ1 and λ2 is very small. Our work is also based on this matrix
transformation method, enlarging the gap for a little bit. And it is still an interesting question
whether there exists a better method to make the gap even larger.

Bit security is an important topic in cryptology. Hard problems always have hard bits, such
as the discrete log problem which is analyzed by Peralta[14]. He proved the last bit unpredictable
and next-bit unpredictability property of discrete log. The major method used by Peralta is to
recover the bits of discrete log bit by bit using oracle. As lattice problems have been more and
more important in cryptology, it is of theoretical and practical interest to identify the hard bits
of short vectors. Theoretically, it is just interesting to see that getting those hard bits is just
as hard as the whole problem. Practically, those hard bits could be used to generate pseudo
random numbers. Hard bits of lattice problem are rarely studied before. In lattice, vector could
be represented in at least two forms. In one form, it is just represented as a vector. In the
other form, it is represented as a vector of coefficients. For example, if u is the shortest vector
of L(B), it could be represent as u or c where u = Bc. c seems to be better than u as it is an
integer vector and could reveal the relationship of the shortest vector and its basis. Vectors are
stored in computer as strings of binary bits. While it seems difficult to identify which bits in u
are difficult, we find it is easy to identify some hard bits in c. There are n bit of c are difficult
where n is the dimension of B. Not only SVP has this kind of property, it seems that uSVP
and many other problem also has this kind of property. As the bit unpredictable property is
revealed, the next interesting question is whether we could use this kind of property to make
pseudo random number generator. It is still an open problem.

In the book “Complexity of Lattice Problems, A Cryptographic Perspective”[24] written by
Micciancio, GapSVPγ with γ <

√
2 is NP-hard under random reduction. The major method

is called embedding, finding a special lattice in sphere packing and embedding it to the original
lattice basis so that BinCVP is reduced to SVP by constructing a new basis. However, it is
still a challenge to find a deterministic reduction. Though it is not easy to find a deterministic
method, there are still some interesting work to do. One work is to make it clear the relationship
of Approximating SVP and GapSVP. It is a search version to decision version reduction and
the focus is on how much the gap is changed. We studied the problem, giving some interesting
results.

Our contribution. In section 3 of this paper, we proves that finding the approximate shortest
vector with length in [λ1, γλ1] could be reduced to GapSVPγ̃ with a small gap.

In section 4, we directly reduce SVP to GapSVP using deterministic method. The gap of
GapSVP is still very small.

In section 5, we proved SVP could be reduced to uSVP. Our result is slightly better than
[19]. We also proved that the search version of uSVP could be reduced to its decision version,
with almost the same gap.

In section 6, we proved a bit-unpredictable property of SVP. Some bits of coefficients of the
shortest vector are hard to obtain.

2

2 Preliminaries

.

2.1 Basic Notations

The sets of real numbers and integers are denoted by R and Z respectively. Vectors are
represented as lower-case letters, e.g. x. Matrix and basis are denoted by upper-case letters,
e.g. B. L(B) denote the lattice generated by basis B. For a vector x, the ith coordinate is
denoted by xi. The inner product between x,y ∈ Rn is x · y = 〈x,y〉 =

∑n
i=1 xiyi.

The lp norm of x is ‖x‖p = (
∑n

i=1 |xi|p)
1/p for any p ∈ [1,∞) and the l∞ norm is ‖x‖∞ =

max1≤i≤n |xi|. We omit the subscript when p = 2.

2.2 Definitions and Useful Lemmas

Given a base of n-dimensional space, a Lattice could be formulated by linear combination
of base vectors using integer coefficients.

Definition 1 (Lattice). Given n linearly independent vectors b1,b2, . . . ,bn ∈ Rm, the lattice
generated by them is defined as

L(b1,b2, . . . ,bn) = {
n∑
i=1

xibi|xi ∈ Z}.

We refer to b1, . . . ,bn as a basis of the lattice. Equivalently, if we define B as the m × n
matrix whose columns are b1,b2, . . . ,bn, then the lattice generated by B is

L(B) = L(b1,b2, . . . ,bn) = {Bx|x ∈ Zn}.

Definition 2 (Span). The span of a lattice L(B) is the linear space spanned by its vectors,

span(L(B)) = span(B) = {By|y ∈ Rn}.

Definition 3 (Shortest Vector Problem (SVP)). Given a basis B ∈ Rm×n, find a nonzero lattice
vector Bx(with x ∈ Zn \ {0}) such that

‖Bx‖ ≤ ‖By‖

for any other y ∈ Zn \ {0}.

Always, researchers use λi (also λi(B) with respect to basis B) to denote the ith shortest
vector in a lattice. Pay attention that λ0 is 0, and λ1 is the shortest vector. I also use Λ to
denote a lattice.

GapSVP is defined as the following.

Definition 4 (GapSVPγ). The input consists of B ∈ Zm×n and r ∈ Q.

• In YES instances, λ1(L(B)) ≤ r.

• In NO instances, λ1(L(B)) > γ · r.

Now I give the definition of the problem finding the approximate shortest vector problem of
a lattice.

Definition 5 (SVPγ). Given lattice L(B) where basis B ∈ Rm×n, find the vector v such that
‖v‖ ∈ [λ1(B), γλ1(B)).

3

Definition 6 (Unique Shortest Vector Problem(uSVPγ)). Given a lattice B such that λ2(B) >
γλ1(B), find a nonzero vector v ∈ L(B) of length λ1(B).

In the following passage, without loss of generality, assume that the input basis B is full
rank and is an integer matrix.

The LLL basis reduction algorithm[16], on input a lattice basis, outputs a basis for the same

lattice such that ‖b∗i+1‖2 ≥
√
3
2 ‖b

∗
i ‖2 for all i. It runs in polynomial time. A useful facts implied

by LLL algorithm is the following lemma, proposed in [19].

Lemma 1. For a LLL reduced basis B = [b1,b2, . . . ,bn], if u =
∑

i αibi is a shortest vector,
then |αi| < 23n/2 for all i ∈ [n].

In the following passage, we will improve this lemma, to make the upper bound smaller.

3 The Reduction from SVPγ to GapSVPγ̃

In this section, the first result of this paper is given.

3.1 The Capability of GapSVP Oracle

Lemma 2. Given Lattice Basis B ∈ Zn×n, using GapSVPγ oracle, a range (α, γα], α ∈ R,
could be found such that λ1(B) ∈ (α, γα].

Proof. We propose an algorithm just like binary search to prove this lemma.
First, pick a real number α0 such that α0 ≥

√
n det (B)1/n ≥ λ1. Run GapSVPγ oracle on

input instance 〈B,α0〉. If it returns “yes”, then set α1 = α0/2. And the range of λ1 reduces to
(0, γα0]. It’s impossible for the oracle to return “no” at this step.

Each time we got αi, i ≥ 0, we do the following operations. Check the result of GapSVPγ
oracle on input instance 〈B,αi〉. If it returns “yes”, then set αi+1 = αi/2. The range of λ1
reduces to (0, γαi]. We redo this step until the oracle returns “no”.

Once the oracle returns “no”, the situation needs to be discussed. We enter the second part
of our algorithm. Here, we just consider situation of the most difficult input instance, because
other input instance will lead us to get a even smaller range of λ1.

To be more precisely, assume the oracle returns “no” on input 〈B,αk+1〉. The range of λ1
is (αk+1, γαk]. Two situations are here.

• λ1 is in (αk, γαk].

• λ1 is in (αk+1, αk].

No matter in which situation, next step, we will set αk+2 = (αk+1 + αk)/2. On input
〈B,αk+2〉, if the oracle returns “no”, then the range reduces to (αk+2, γαk]. If the oracle
returns “Yes”, then the range reduces to (αk+1, γαk+2].

Then at each of the following step (considering the k̃th step), we set αk̃ = (a+b/γ)/2, where
(a, b] denotes the range we got of λ1 at hand. Run GapSVP oracle on 〈B,αk̃〉. No matter what

the result is, the range reduces. Renew the value of a, b. Do the k̃ + 1th step the same way as
we do the k̃th until, b < γa. Let α = a. Finally, we got that λ1(B) ∈ [α, γα].

λ1 ≤ 2p(m), where m is the length of input. As a result, the proposed algorithm could be
done in polynomial time of input length. This algorithm directly proves the lemma.

4

3.2 The Reduction

We give the following theorem to reduce the approximation version of SVP to GapSVP. The
method is just adapted from the proof reducing uSVP to GapSVP in [17].

Theorem 1. For any given γ ≥ 1, Approximate SVPγ ≤p GapSVPγ̃ , γ̃ = γ
1

n(n+log2(γn))(n−1) .

Proof. Given the input instance B = [b1, . . . ,bn] which is the basis of a lattice. Now I will
show the algorithm to compute a vector v such that ‖v‖ ≤ γλ1(B).

The main idea is to obtain lower rank sublattice of L(B) such that the approximate shortest
vector are still in the sublattice.

As L(B) is n dimensional lattice, we only need to lower the rank by n− 1 times.
To be more precisely, for the given lattice basis L(B), we find a serial of sublattices with

rank decreased gradually. Assume that the serial of sublattices are denoted by B1, . . . , Bn,
where B1 = B and rank(Bi)− 1 = rank(Bi+1).

We use the following method to lower the rank by 1.
Now I describe how to obtain Bi+1 from Bi.
Given basis Bi, applying the method proposed in lemma 2, we could found the range r =

[α, γ̃α] where λ1(Bi) is in.
Generate three sublattices of B̃0 = Bi. They are B̂0 = [2b1,b2, . . . ,bk], B̂c = [b1 +

cb2, 2b2,b3, . . . ,bk], c = 1, 2. It could be found that the shortest vector of B̃0 is in one of the
three generated sublattices. Apply the method proposed in lemma 2, we could find the range
containing the length of shortest vector for each of the three sublattice. Assume the three ranges
we got are rj , j = 0, 1, 2. At least one sublattices has rj intersecting r. Set B̃1 to be B̂j if rj
intersects r. If more than one sublattice has rj intersecting r, set B̃1 to be arbitrarily one of
them. We do this for t times to get a serial of sublattices, where

L(B̃0) ⊃ L(B̃1) ⊃ · · · ⊃ L(B̃t)

.
Here, t > n(n+ log2(γn)).
It could be concluded that λ1(B̃t) ≤ γ̃tλ1(B̃0). Also we know that det(B̃t) ≥ 2t det(B̃0),

because each time we select a sublattice the value of the determinant at least doubles. Assume
D to be the dual of B̃t. det(D) ≤ 1/(2t det(B̃0)). Applying the LLL algorithm we can find a
vector u ∈ L(D) such that

‖u‖ ≤ 2n
√
n det(D)1/n ≤

√
n2n

2t/n det(B̃0)1/n
.

Suppose the shortest vector of L(B̃0) is ũ0. According to Minkowski’s bound, we have
‖ũ0‖ ≤

√
n det(B̃0)

1/n. Consequently, the shortest vector of B̃t (suppose to be ũt) meet the
following bound.

‖ũt‖ ≤ γ̃t
√
n det(B̃0)

1/n

Using Cauchy-Schwarz inequality,

|〈ũt, u〉| ≤ ‖ũt‖ · ‖u‖ ≤ γ̃tn2n−t/n < 1.

We know ũt ∈ L(B̃t), u ∈ L(D). It means that 〈ũt,u〉 is an integer. This concludes that
|〈ũt,u〉| = 0. Taking the sublattice of B̃t orthogonal to u, we get a lower rank sublattice
L(Bi+1) ⊂ L(Bi) such that λ1(Bi+1) ≤ γ̃tλ1(Bi).

Finally, after lowering rank for n− 1 times, we could finally got L(Bn) such that its rank is
1 which mean its shortest vector could be found trivially. Also we have

λ1(Bn) ≤ γ̃(n−1)tλ1(B).

5

We know γ̃ = γ
1

n(n+log2(γn))(n−1) . As a result, the final conclusion is

λ1(Bn) ≤ γλ1(B).

This completes our proof.

4 The Reduction from SVP to GapSVP

This proof also uses the method adapted from the method in [17]. We just make a little
adjustment.

Theorem 2. SVP could be cook-reduced to GapSVPγ, where γ =
√

1 + 1
λ1(L(B))2

.

Proof. Given the input instance B = [b1, . . . ,bn] which is the basis of a lattice. The following
algorithm computes the shortest vector of L(B), saying v, using GapSVP oracle.

The main idea is to obtain a lower rank sublattice of L(B) such that the shortest vector are
still in the sublattice.

As L(B) is n dimensional lattice, we need to lower the rank by n− 1 times.
To be more precisely, for the given lattice basis L(B), we find a serial of sublattices with

rank decreased gradually. Assume that the serial of sublattices are denoted by B1, . . . , Bn,
where B1 = B and rank(Bi)− 1 = rank(Bi+1).

We use the following method to lower the rank by 1. The method describes how to obtain
Bi+1 from Bi.

Given basis Bi, applying the method proposed in lemma 2, we could found the range r =
(α, γα] which λ1(Bi) is in.

Generate three sublattices of B̃0 = Bi. They are B̂0 = [2b1,b2, . . . ,bk], B̂c = [b1 +
cb2, 2b2,b3, . . . ,bk], c = 1, 2. It could be found that the shortest vector of B̃0 is in at least one
of the three generated sublattices. Apply the method proposed in lemma 2, we could find the
range containing the length of shortest vector for each of the three sublattice. Assume the three
ranges we got are rj , j = 0, 1, 2. At least one of them contain λ1(B). Assume λ1(B) is in ri,
corresponding to L(B̂i). If L(B̂j) do not have the shortest vector of L(B), then λ1 /∈ rj . This
is because, according to lemma 2, if λ1 ∈ rj , rj will not contain λ1(B̂j), as the gap of the oracle

is
√

1 + 1
λ1(L(B))2

and λ1(B̂j)
2 ≥ λ1(B)2 + 1.

sup{x|x ∈ rj} < γλ1(B) ≤ λ1(B̂j)

As a result, we could find the sublattice L(B̂i) which contains the shortest vector. Set
B̃1 = B̂i. We do this for t times to get a serial of sublattices, where

L(B̃0) ⊃ L(B̃1) ⊃ · · · ⊃ L(B̃t)

.
Here, t > n(n+ log2 n).
It could be concluded that λ1(B̃t) = λ1(B0). Also we know that det(B̃t) ≥ 2t det(B̃0),

because each time we select a sublattice the value of the determinant at least doubles. Assume
D to be the dual of B̃t. det(D) ≤ 1/(2t det(B̃0)). Applying the LLL algorithm we can find a
vector u ∈ L(D) such that

‖u‖ ≤ 2n
√
n det(D)1/n ≤

√
n2n

2t/n det(B̃0)1/n
.

According to Minkowski’s bound,

‖v‖ ≤
√
n det(B̃0)

1/n

6

Using Cauchy-Schwarz inequality,

|〈v,u〉| ≤ ‖v‖ · ‖u‖ < 1.

As |〈v,u〉| is an integer, |〈v,u〉| = 0. Taking the sublattice of B̃t orthogonal to u, we get a
lower rank sublattice L(Bi+1) ⊂ L(Bi) such that λ1(Bi+1) = λ1(B).

Finally, after lowering rank for n− 1 times, we could finally got L(Bn) such that its rank is
1 which mean the shortest vector could be found trivially.

5 Complexity Results of Unique Shortest Vector Problem

5.1 Reduction from SVP to uSVP

In [19], it is proved that SVP ≤p uSVPγ , γ =
√

1 + 1

c·24n2λ21
. This could be improved.

Lemma 3. For basis B = [b1,b2, . . . ,bn], it could be reduced to B′ using slide reduction[21]

such that, if u =
∑

i αib
′
i is a shortest vector, then |αi| < cn(32)n−i · (rk(1 + ε))

pk
k−1 ,where rk

denotes the hermite constant, k is the block size (O(log n/(log log n))) and p = n/k.
If using LLL reduction the corresponding conclusion is ∀i ∈ [n], |αi| < 2n/2(32)n−i.

Proof. This could be done according to the slide reduction method proposed in [21]. Here I
will explain why this basis reduction will meet the proposed property. The reduction method
proposed in [21] require the dimension to be n = pk, here I made a little adjustment so that n
could be any positive integer.

A basis B of an n-dimensional lattice L where n = kp + q is slide reduced with a factor
ε ≥ 0 if it is size-reduced and satisfies the following two conditions.

• ∀i ∈ [0, p− 1], the block B[ik+1,ik+k] is HKZ-reduced.

• ∀i ∈ [0, p− 1], the block B[ik+2,ik+k+1] is (1 + ε)-DSVP-reduced. (If q = 0, i ∈ [0, p− 2].)

As a result, we have ‖b∗ik+1‖ ≤ (rk(1 + ε))
k
k−1 ‖b∗ik+k+1‖.

This induces ‖b∗1‖ ≤ (rk(1 + ε))
ik
k−1 ‖b∗ik+1‖ ⇒ ‖b∗1‖ ≤ (rk(1 + ε))

pk
k−1 ‖b∗pk+1‖.

According to [21] B′ is LLL-reduced. We have

‖b∗1‖ ≤ (rk(1 + ε))
pk
k−1 ‖b∗pk+1‖ ≤ (

√
4

3
(1 + ε))q−1(rk(1 + ε))

pk
k−1 ‖b∗n‖

‖b1‖ = ‖b∗1‖ ≥ ‖u‖ ≥ |αn|‖b∗n‖ ≥ ((

√
4

3
(1 + ε))q−1(rk(1 + ε))

pk
k−1)−1|αn|‖b∗1‖

This implies |αn| ≤ (
√

4
3(1 + ε))q−1(rk(1 + ε))

pk
k−1 . q < k = O(log n/ log log n), so (

√
4
3(1 +

ε))q−1 is a linear polynomial of n.
Suppose the lemma holds for αi, ∀i > n−l. According to Gram-Schmidt orthogonal method,

we have the following.

‖b∗1‖ ≥ ‖u‖ ≥ |αn−l + (

n∑
j=n−l+1

µj,n−lαj)|‖b∗n−l‖

≥ {(rk(1 + ε))
b(n−l−1)/kc

k−1 (

√
4

3
(1 + ε))(n−l−1) mod k}−1

· |αn−l + (

n∑
j=n−l+1

µj,n−lαj)|‖b∗1‖

(1)

7

√
4
3(1 + ε))(n−l−1) mod k is also a linear polynomial of n. Suppose it is less than c2n. We

also knows that ∀1 ≤ j < i ≤ n, |µi,j | ≤ 1/2.

|αn−l| ≤ c2n(rk(1 + ε))
b(n−l−1)/kc

k−1 + (

n∑
j=n−l+1

|µj,n−lαj |)

≤ c2n(rk(1 + ε))
b(n−l−1)/kc

k−1 + 1/2
n∑

j=n−l+1

|αj |
(2)

c2n(rk(1 + ε))
b(n−l−1)/kc

k−1 + 1/2

n∑
j=n−l+1

|αj | ≤ c3n(rk(1 + ε))
pk
k−1 (

3

2
)n−l

As a result, we could conclude that ∀i, |αi| < cn(32)n−i · (rk(1 + ε))
pk
k−1 .

Using similar methods, we could get the corresponding conclusion for LLL, ∀i ∈ [n], |αi| <
2n/2(32)n−i.

Theorem 3. If the shortest vector u of the input lattice L(B) could be denoted as u =
∑

i αibi,

knowing |αi| < ti, then SVP ≤p uSVPγ, γ =
√

1 + 1
c(
∏n
i=1 ti)

2λ1(L(B))2
.

Proof. Suppose mj =
∏j
i=1 ti. Denote m0 = 1.

Consider the following matrix.

B′ =



mnb1 mnb2 . . . mnbn−1 mnbn
1

m1

. . .
mn−2

mn−1


I will prove that, L(B′) has a unique shortest vector corresponding to one of the shortest

vector of L(B).

∀x ∈ Zn, ‖B′x‖2 = m2
n‖Bx‖2 +

n∑
i=1

(mi−1xi)
2 < m2

n(‖Bx‖2 + 1)

If ‖Bx‖ = ‖By‖ = λ1(B), then ∃k, ∀i, k < i ≤ n, xi = yi, |xk| > |yk|. We could see
‖B′x‖ > ‖B′y‖. The reason follows.

It is easy to see that (xkmk−1)
2 − (ykmk−1)

2 ≥ m2
k−1 = (tk−1mk−2)

2 ≥ (|yk−1|mk−2)
2 +

m2
k−2 ≥

∑k−1
j=1(|yj |mj−1)

2 +m2
0 >

∑k−1
j=1(|yj |mj−1)

2. So we have that |xi| = |yi|.
According to [?], when two shortest vectors, say Bx and By, have the same parity vector (

for Bx the parity vector is p(x) = [x1 mod 2, . . . ,xn mod 2]), then Bx = By. This implies if
‖Bx‖ = ‖By‖ = λ1,∀i ∈ [n], |xi| = |yi|, then ∀i ∈ [n], xi = yi.

As a result, we could see that there is only one unique shortest vector for L(B′).

λ22(B
′)− λ21(B′) ≥ 1. So the gap is

√
1 + 1

c(
∏n
i=1 ti)

2λ1(L(B))2

Theorem 4. SVP could be reduced to uSVPγ with

γ =

√
1 +

1

c1(c2n)2n(3/2)(n−1)n(rk(1 + ε))2n
pk
k−1λ1(L(B))2

,

for some constant c1, c2. rk is the kth hermite constant. k is the block size (O(log n/(log log n)))
and p = n/k.

8

If using LLL reduction, we could get that SVP ≤p uSVPγ , γ =
√

1 + 1

c2n2 (3
2
)(n−1)nλ21

.

Proof. The theorem follows immediately from lemma 4 and theorem 5.

5.2 Search versus Decision

We will show that the search version uSVP could be reduced to decision version uSVP
maintaining almost the same gap.

In order to do this reduction, we adapted the methods of Kannan[20] and the methods of
Hu and Pan[18].

Both of the two methods aimed to reduce SVP to decisional SVP. However, the parameters
in their methods are very large. If just apply their methods to do the reduction we cannot get
results better than [19]. we come up with the following method.

Lemma 4. Given the value of an integer r, knowing r = mpn+1 +
∑n

i=1 αipi, where pi|pi+1,
αi < bpi+1

pi
c, αi (i ∈ [n]) and m could be computed. Here, m ≥ 0, ∀i, pi > 0, αi ≥ 0.

Proof. First, we compute rn = r mod pn+1,m = r/pn+1. Once we have ri, we compute
ri−1 = ri mod pi, αi = ri/pi. In this way, we could compute αi, (i ∈ [n]) one by one.

Lemma 5. Using duSVP oracle, the exact length of the shortest vector of the given input lattice
could be found.

Proof. This could be done using binary search.
According to Minkowski’s bound, we have the following bound for shortest vector u of input

lattice L(B).
‖u‖ ≤

√
n det(B)1/n

First we just take 〈B, d〉, where d =
√
n det(B)1/n, as the input for duSVP oracle. Set the

original range of λ1(B) to be [a, b] = [0, d] (means a = 0, b = d =
√
n det(B)1/n). We do the

following iteration.
For each time run the duSVP oracle on 〈B, d〉, d = (a + b)/2. If it returns “Yes”, then the

range of λ1(B) is set to be [a, b] = [a, d], else set the range to be [a, b] = [d, b]. Finally, the
length of λ1(B) could be settled in polynomial time of the input length.

Theorem 5.
search-uSVPγ ≤p decision-uSVPγ

√
1−ε

Proof. According to lemma 4, we could assume that we have the oracle O which could output
the length of the unique shortest vector given any input lattice basis with gap γ′.

Now, given the input lattice basis B, we construct the following new lattice.

B′ = LLL(B)

B′′ =



mnb
′
1 mnb

′
2 . . . mnb

′
n−1 mnb

′
n

1
m1

. . .
mn−2

mn−1


ti = 2n/2(32)n−i, mi =

∏i
j=1 tj . We already know that if u =

∑n
i=1 αib

′
i then αi < ti.

Assume m0 = 1.

9

IfB′′x is the shortest vector of L(B′′) then, B′x is the shortest vector of L(B′). If not, assume
B′y is the shortest vector of L(B′). That is ‖B′y‖ < ‖B′x‖. It means ‖B′x‖2 − ‖B′y‖2 ≥ 1.
Consider the vector B′′y in L(B′′). ‖B′′y‖2 = m2

n‖B′y‖2 +
∑n

i=1(yimi−1)
2 < m2

n‖B′x‖2 <
‖B′′x‖2. This contradicts B′′x is the shortest vector of L(B′′).

We could also know that L(B′′) has a unique shortest vector. If not, assume that B′′x,B′′y
are two shortest vector B′′x 6= ±B′′y. ‖B′′x‖2 = m2

n‖B′x‖ +
∑n

i=1(ximi−1)
2. It should be

‖B′′x‖ = ‖B′′y‖. So we have ‖B′x‖ = ‖B′y‖. It means both B′x and B′y are the shortest
vector of L(B′). This is impossible, as L(B′) a unique shortest vector.

Suppose B′′x is the shortest vector of L(B′′). Using our oracle, we could get λ1(B
′′).

According the above lemma, we could get |xi|, i = 1, . . . , n.
Now we compute the sign for each xi.
Construct the following basis.

B̃ =

(
m1x1b

′
1 m1x2b

′
2 . . . m1xn−1b

′
n−1 m1xnb

′
n

1 −1

)
Assume that x1 > 0, x2 6= 0. Now we compute the sign of x2. It is easy to see that B̃ has

unique shortest vector.
Run O on B̃. We get λ1(B̃). According to lemma 3 and 4, we could get λ1(B̃) mod m1. If

it is 0, we know x2 is positive, else it is negative. In this way, all the sign of xi could be got. So
we could get the shortest vector of B.

Next we analysis the gap that O need.
Denote the gap between λ1 and λ2 of L(B′′) to be γ′′.
If γ′ < γ′′, we could run O on B′′.

γ′′ =

√
(λ′′2)2

(λ′′1)2
>

√
λ22

λ21 + 1
= γ

√
λ21

λ21 + 1

Set γ′ = γ

√
λ21
λ21+1

= γ
√

1− 1
λ21+1

= γ
√

1− ε.
We also use oracle O in the step computing the sign of xi. In the same way it could be

proved that γ′ = γ
√

1− ε is a suitable gap in this step.
As a result,

search-uSVPγ ≤p decision-uSVPγ
√
1−ε.

The proof is complete.

6 Bit Unpredictable Property of SVP

In this section, we propose an interesting bit unpredictable property of SVP.

Theorem 6. For lattice L(B), an oracle O could compute the last significant bit of c1, where
u =

∑n
i=1 cibi is the unique shortest vector, λ2 > γλ1. u could be found in polynomial time.

Proof. The proof includes two major parts. In the first part, we will compute |ci|, i = 1, . . . , n.
In the second part, we will compute the sign for each coefficient.

For the first part, compute the LLL reduced basis B′ of B. According to lemma 3, we know
that if u =

∑n
i=1 cib

′
i is the shortest vector then |ci| < αi = 2

n
2 (32)n−i < 2

n
2 (32)n = α. Construct

the following basis as B̂0.

B̂0 =
(

b̃1 b̃2 . . . b̃n−1 b̃n
)

= 2α2
(

b′1 b′2 . . . b′n−1 b′n
)

The shortest vector of L(B̂0) is ũ =
∑n

i=1 cib̃i.

10

Now we compute |c1|.
Run our oracle O on B̂0. The output is o. Construct B̂1 to be 2b̃1 e b̃2 . . . b̃n−1 b̃n

1
α

 .

e = ob̃1

Run O on this basis. We could get the second last bit of c1. Denote the jth last bit of ci to
be ci,j . After we get c1,j , we turn B̂j to be the following. 2jb̃1 e b̃2 . . . b̃n−1 b̃n

1
α

 .

Here,
e = e + c1,j · 2j−1b̃1.

Suppose e = kj b̃, k > 0 at this step.
Run O on this basis. We could get c1,j+1. In this way, we could at last get |c1| as |ci| <

αi = 2
n
2 (32)n−i.

Here we have to explain why the above steps are all right.
If e = 0, then it is trivial. We will show the situation that e 6= 0.
After we have got c1,j ,

‖B̂jx‖2 = ‖2jb̃1x1 + ex2 +
n∑
i=2

b̃ixi+1‖2 + x21 + (αx2)
2.

Assume B̂jx is the shortest vector, shorter than û = B̂jc
′ which is a vector in L(B̂j).

‖û‖2 = ‖2jb̃1c
′
1 + ec′2 +

n∑
i=2

b̃ici‖2 + (c′1)
2 + (αc′2)

2 = ũ2 + (c′1)
2 + (αc′2)

2

Here,
2jb̃1c

′
1 + e2c

′
2 = c1b̃1, c

′
1c
′
2 >= 0

If c1 ≥ 0 then c′2 = 1, else c′2 = −1.

n∑
i=1

b̃ici = 2jb̃1c
′
1 + ec′2 +

n∑
i=2

b̃ici.

As a result, |c′1| ≤ |c1|, c1,j+1 is the last bit of c′1.
There should be

‖
n∑
i=1

b̃ici‖ = ‖2jb̃1c
′
1 + ec′2 +

n∑
i=2

b̃ici‖ ≥ ‖2jb̃1x1 + ex2 +
n∑
i=2

b̃ixi+1‖.

If not,

‖2jb̃1x1+ex2+
n∑
i=2

b̃ixi+1‖2 > ‖2jb̃1c
′
1+ec′2+

n∑
i=2

b̃ici‖2+4α4 > ‖
n∑
i=1

b̃ici‖2+(c′1)
2+(αc′2)

2 = ‖û‖2.

Then B̂jx is not the shortest. As ũ is the shortest vector of B̂0, (2jb̃1x1 +ex2 +
∑n

i=2 b̃ixi+1) =
±
∑n

i=1 b̃ici. Without loss of generality, assume (2jb̃1x1 + ex2 +
∑n

i=2 b̃ixi+1) =
∑n

i=1 b̃ici.
This implies xi+1 = ci, i = 2, . . . , n and 2jx1 + kjx2 = c1.

11

There also should be (αx2)
2 ≤ (αc′2)

2. If not, (αx2)
2 ≥ (αc′2)

2 + α2 > (αc′2)
2 + (c′1)

2. This
implies B̂jx is not the shortest. x2 could not be 0, because if it is 0,

2jb̃1c
′
1 + ec′2 +

n∑
i=2

b̃ici 6= 2jb̃1x1 + ex2 +
n∑
i=2

b̃ixi+1

so B̂jx could not be the shortest. This proves ‖(αx2)‖ = ‖(αc′2)‖, x2 = ±1.
At last, there should be |c′1| = |x1|. This is because 2jb̃1c

′
1 + e = b̃1c1 = 2jb̃1x1 + ex2.

2jc′1 +kj = c1 = 2jx1 +kjx2. Suppose x2 = 1. x1 = c′1. If x2 = −1, we could get that x1 should
be −c′1 − 2kj . |c′1| < | − c′1 − 2kj |, so x2 = 1, x1 = c′1.

Based on the above proof, we know ‖û‖ = ‖B̂jx‖, û = ±B̂jx which is the shortest vector.
This proves our operations are all right.

Using the same method we could get each |ci|, i = 1, . . . , n.
Now we do the second part of our proof. We need to know the sign for each ci. Assume c1

is positive and c2 6= 0. Set B to be the following.

B =
(

2|c2|b̃2 |c1|b̃1 − |c2|b̃2 |c3|b̃3 . . . |cn|b̃n
)
.

Run O on B.
As L(B) has a unique shortest vector ũ = c1b̃1 +

∑n
i=2 pi|ci|b̃i, pi ∈ {1,−1}. If p2 = 1,

the only possible situation for Bx = ũ is that x2 = 1, x1 = 1. If p2 = −1, the only possible
situation for Bx = ũ is that x2 = 1, x1 = 0. Finally, it is easy to see that, if it returns 0, then
we know c2 is negative. If it returns 1, we know c2 is positive.

In the same way, we could compute the sign of each ci. At last, we could get all ci. As a
result, we get the shortest vector of the input lattice.

According to last section and paper 6, we have the following lemma.

Lemma 6. Given lattice L(B), there is a polynomial time algorithm which could turn B to B′

which has the following property.

• L(B′) has a unique shortest vector u = B′x.

• Bx is a shortest vector of L(B).

Theorem 7. For a given lattice L(B), an oracle O could compute the last significant bit of c1,
where u =

∑n
i=1 cibi is the shortest vector. u could be found in polynomial time.

Proof. According to the lemma 5, L(B) could be turned to L(B′) which has a unique shortest
vector. Applying the algorithm in the theorem 8, the shortest vector B′x of L(B′) could be
found. As a result, the shortest vector Bx of L(B) could be found.

References

[1] M. Ajtai. Generating hard instances of lattice problems. STOC, 1996, 99-108.

[2] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equiva-
lence. STOC, 1997.

[3] M. Ajtai. The Shortest vector problem in l2 is NP-hard for randomized reductions. STOC,
1998, 10-19.

12

[4] O. Regev. New lattice-based cryptographic constructions. J. ACM 51(2004).

[5] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J.
ACM, 2009.

[6] M. Ajtai, R. Kumar and D. Sivakumar. A sieve algorithm for the shortest vector lattice
vector problem. STOC, 1998, 266-275.

[7] D. Micciancio. Efficient reductions among lattice problems. SODA, 2008, 84-93.

[8] D. Micciancio. The shortest vector problem is NP-hard to approximate within some con-
stant. SIAM journal on Computing, 2001, 30(6), 2008-2035.

[9] D. Micciancio and O. Regev. Lattice-based cryptography. In Post Quantum Cryptography,
pages 147-191. Springer, February 2009.

[10] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. STOC,
2009.

[11] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinator-
ica, 1986.

[12] W.Banaszczyk. New bounds in some transference theorems in the geometry of numbers.
Mathematische Annalen, 1993.

[13] D. Micciancio, Chris Peikert. Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller.
2011.

[14] René Peralta. Simultaneous Security of Bits in the Discrete Log. Springer-verlag, 1998.

[15] P. Nguyen and T. Vidick. Sieve algorithms for the shortest vector problem are practical.
J. of Mathe-matical Cryptology, 2(2):181-207, jul 2008.

[16] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261:513-534, 1982.

[17] Vadim Lyubashevsky, Daniele Micciancio. On Bounded Distance Decoding, Unique Short-
est Vectors, and the Minimum Distance Problem. 2009.

[18] Gengran Hu, Yanbin Pan. A New Reduction from Search SVP to Optimization SVP. 2012.

[19] Divesh Aggarwal, Chandan Dubey. Improved Hardness Results for Unique Shortest Vector
Problem. 2011.

[20] Ravi Kannan. Minkowski’s Convex Body Theorem and Integer Programming. 1987.

[21] Nicolas Gama, Phong Q. Nguyen. Finding Short Lattice Vectors within Mordell’s inequal-
ity. 2008.

[22] R Kumar, D Sivakumar. A note on the shortest lattice vector problem. 1999.

[23] Daniele Micciancio, Panagiotis Voulgaris. A Deterministic Single Exponential Time Algo-
rithm for Most Lattice Problems based on Voronoi Cell Computations. STOC, 2010.

[24] S. Goldwasser and D. Micciancio. Complexity of lattice problems. Springer, 2002.

13

