
Cryptanalysis of the Dragonfly Key Exchange
Protocol

Dylan Clarke, Feng Hao∗
School of Computing Science

Newcastle University
{dylan.clarke, feng.hao}@ncl.ac.uk

February 5, 2013

Abstract

Dragonfly is a password authenticated key exchange protocol that has
been submitted to the Internet Engineering Task Force as a candidate
standard for general internet use. We analyzed the security of this protocol
and devised an attack that is capable of extracting both the session key
and password from an honest party. This attack was then implemented
and experiments were performed to determine the time-scale required to
successfully complete the attack.

1 Introduction
Dragonfly is a password authenticated key exchange protocol specified by Dan
Harkins for exchanging session keys with mutual authentication within mesh
networks [1]. Recently, Harkins submitted a variant of the protocol to the
Internet Engineering Task Force (IETF) as a candidate standard for general
Internet use1. We observe that both variants are essentially the same protocol,
though some implementation details are different.

It is claimed that the Dragonfly protocol is resistant to active attacks, passive
attacks, and off-line dictionary attacks [1, 2]. However, as acknowledged by the
author [1], no security proofs are given to support the claim. The lack of security
proofs has raised some concerns among members on the IETF mailing list2.
However, to our best knowledge, no one has presented concrete attacks.

In this paper, we examine the security properties of the Dragonfly protocol.
Contrary to the author’s claims, we show that both variants are subject to an
off-line dictionary attack. In this paper, we will base our analysis upon the

∗Supported by EPSRC First Grant RES/0550/7300
1https://datatracker.ietf.org/doc/draft-irtf-cfrg-dragonfly/history/
2http://comments.gmane.org/gmane.ietf.irtf.cfrg/1786

1

original protocol specification as defined in a peer-reviewed paper [1]. However,
the attack we will present is trivially applicable to the variant specified in [2].
(According to the Dragonfly author, the current Internet draft, which expires
on April 15, 2013 [2], will be changed soon in light of our reported attack.)

2 The Dragonfly Protocol
Dragonfly is based on discrete logarithm cryptography. This means that an
implementation of Dragonfly can either use operations on a finite field or an
elliptic curve. No assumptions are made about the underlying group, other
than that the computation of discrete logarithms is sufficiently computationally
difficult for the level of security required. In each case, there are two operations
that can be performed: an element operation that takes an input of two elements
and outputs a third element, and a scalar operation that takes an input of an
element and a scalar and outputs an element.

We take the finite field as an example. Let us define p a large prime. We
denote a finite cyclic group Q, which is a subgroup of Z∗p of prime order q.
Hence, q | p − 1. We denote the element operation A.B for elements A and B,
and the scalar operation Ab for element A and scalar b. These notations are in
line with those commonly used when working over a finite field.

The Dragonfly protocol works as follows (also see [1]):

• Alice, Bob have a shared password from which each can deterministically
generate a password element PεQ. The algorithms to map an arbitrary
password to an element in Q are specified in [1] and [2]. However, the
details are not relevant to our attack, so they are omitted here.

• Alice randomly chooses two scalars rA,mA from 1 to q, calculates the
scalar sA = rA + mA mod q and the element EA = P−mA mod p and
sends sA, EA to Bob.

• Bob randomly chooses two scalars rB ,mB from 1 to q, calculates the scalar
sB = rB+mB mod q and EB = P−mB mod p and sends sB , EB to Alice.

• Alice calculates the shared secret ss = (P sBEB)rA = P rArB mod p

• Bob calculates the shared secret ss = (P sAEA)rB = P rArB mod p

• Alice sends A = H(ss|EA|sA|EB |sB) to Bob where H is a predefined
cryptographic hash function

• Bob sends B = H(ss|EB |sB |EA|sA) to Alice

• Alice and Bob check that the hashes are correct and if they are then they
create a shared key K = H(ss|EA · EB |(sA + sB)mod q)

This is illustrated in Figure 1.

2

Figure 1: The Dragonfly Protocol
Alice Bob
PεQ PεQ

1. rA,mAε{1, . . . , q} rB ,mBε{1, . . . , q}
2. sA = rA +mA sB = rB +mB

3. EA = P−mA sA, EA−−−−−→
EB = P−mB

4. sB , EB←−−−−−
5. ss = (P sBEB)rA A = H(ss|EA|sA|EB |sB)

−−−−−−−−−−−−−−−−−−−→
Verify A

= P rBrA ss = (P sAEA)rB

6. Verify B B = H(ss|EB |sB |EA|sA)
←−−−−−−−−−−−−−−−−−−−

= P rArB

7. Compute the shared key: K = H(ss|EA · EB |(sA + sB)mod q)

3 A Small Subgroup Attack on Dragonfly

3.1 Attack Methodology
It is claimed in [1] that the Dragonfly protocol is resistant to offline dictionary
attacks. However, no security proofs are given. Instead, the author provides
a heuristic security analysis as follows. It is assumed that an active attacker
would select an arbitrary value for mB and compute EB = GmB where G is the
group generator for Q. Then, the attacker would receive a hash value for which
the only unknown input to the hash function is z where P = Gz. Therefore, for
an offline dictionary attack to be successful, the attacker would have to be able
to compute z for a random element in Q, which contradicts the assumption that
discrete logarithms are hard to compute.

We point out that computing EB = GmB is not the best option available
to an active attacker. Instead, the attacker can use the following method, sum-
marized in Figure 2. First, the attacker computes EB = Sn where Sn is the
generator of a small subgroup of Z∗p of order n. Then, the shared secret com-
puted by Alice is ss = (P sB ·Sn)rA = P sBrA ·SrA

n , and this is the only unknown
value on which the hash sent by Alice is dependent.

The attacker then uses Algorithm 1: 1) to obtain the victim’s password
element P ; 2) to forge a valid response B to bypass authentication (so the
victim is unaware that the password has been compromised); 3) to compromise
the secrecy of communication by deriving the session key K.

This attack will be feasible as Sn generates a small subgroup and the pass-
word space is sufficiently small to permit dictionary attacks. In Algorithm 1
(line 5), following A = A′, we will have ss = ss′ because the hash is assumed to
be a random oracle and is collision resistant. Thus, we obtain:

P sBrASrA
n = (P ′sAEA)sB ·Rx (1)

where Rx is a (yet unknown) small subgroup element.

3

Figure 2: Small Subgroup Attack
Alice Bob (Attacker)
PεQ

1. rA,mAε{1, . . . , q} sBε{1, . . . , q}
2. sA = rA +mA EB = Sn

3. EA = P−mA sA, EA−−−−−→
4. sB , EB←−−−−−
5. ss = (P sBEB)rA A = H(ss|EA|sA|EB |sB)

−−−−−−−−−−−−−−−−−−−→
(P,B,K)←

= P sBrASrA
n OfflineSearch(A, sB , EB)

6. Verify B B = H(ss|EB |sB |EA|sA)
←−−−−−−−−−−−−−−−−−−−

7. Compute the shared key K = H(ss|EA · EB |(sA + sB)mod q)

Algorithm 1 OfflineSearch algorithm
Input: A, sB, EB

Output: P , B, K

1: for each P’ in dictionary do
2: for each Rx in the subgroup do
3: ss′ := (P ′sAEA)sB ·Rx

4: A′ := H(ss′|EA|sA|EB |sB)
5: if A = A′ then
6: P = P ′

7: B = H(ss′|EB |sB |EA|sA)
8: K = H(ss′|EA · EB |(sA + sB)mod q)
9: Return {P,B,K}

10: end if
11: end for
12: end for

4

After re-arranging the terms, we obtain:

P sBrA

(P ′sAEA)sB
=

Rx

SrA
n

(2)

Notice that the term on the left is an element in a subgroup of prime order
q while the term on the right is an element in a small subgroup of order n.
Since q 6= n, the equality holds only when both sides are identity elements in
Z∗p : i.e., 1. Therefore, (P ′sAEA)sB = P rAsB , from which the only possible value
for p′ is p′ = p. After successfully obtaining the victim’s password, the attacker
is able to easily forge a valid response and send it back to Alice, so Alice is
unaware that her password has been compromised. Finally, the attacker can
derive the shared session key and engage with Alice in the subsequent secret
communication based on that session key.

3.2 Attack Implementation
We implemented an attack simulation in Java. The simulation consisted of
three components: the password chooser that randomly chose a dictionary of
password elements, the honest party who randomly chose one of these elements
as a password and performed the Dragonfly protocol in an honest manner, and
the dishonest party who performed the dictionary attack against the honest
party.

We ran the Dragonfly protocol in a 160-bit subgroup of a 1024-bit finite
group. The group parameters are specified in Appendix A. They are originally
from the standard NIST cryptographic toolkit3. However, the NIST toolkit
does not publish the small subgroups. Hence, we began by using a brute force
method to determine the prime factors of p− 1 (where p is the prime modulus
of the 1024 bit group). In the experiment, we only searched for prime factors of
size less than 32 bits. We have found the following prime factors: 2, 3, 13, 23
and 463907. Accordingly, we calculated generators for each of the correspond-
ing small subgroups (see Appendix B) and performed a set of experiments to
determine the time to complete an offline dictionary attack for each subgroup.

Each set of experiments involved mounting the attack with dictionaries of
1000, 10000 and 100000 random password elements. The different dictionary
sizes allowed us to measure how an increase in dictionary size would affect the
time taken to complete the attack. In all cases, the time measured was the time
to try every possible password, rather than the time until the correct password
was discovered. Each experiment was performed 30 times.

3.3 Results
We note that only one possible password was identified in every experiment and
this was the password chosen by the honest party. The times taken to check
all possible passwords with a subgroup of size 463907 as dictionary size varies

3http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/DSA2_All.pdf

5

Table 1: Experiments for a Subgroup of Size 463907
Dictionary Size Mean Time to Try All Passwords (ms) Std Dev

1000 16894592 146428
10000 169475627 4527601
100000 1693389098 72654423

Table 2: Experiments with a Dictionary Size of 1000
Subgroup Size Mean Time to Try All Passwords (ms) Std Dev

2 5653 52
3 5655 71
13 6319 82
23 7700 188

463907 16894592 146428

are shown in Table 1. This illustrates that there is a fairly linear relationship
between dictionary size and the time taken to try all passwords, and also that
the attack is still feasible for a relatively large dictionary size. The times taken
to check all possible passwords with a dictionary size of 1000 as the subgroup
size varies are shown in Table 2. In all cases the experiments were run under
Windows 7 on a 2.9GHz PC with 4GB of memory.

We note that some of the times measured are sufficiently large that Alice
may terminate the protocol due to the large time taken for the attacker to
respond. However, there are also three mitigating factors to consider: 1) We
have measured the mean time to try all passwords, in practice we would expect
the attacker to find the correct password without having to try all possibilities;
2) An attacker is likely to have the resources to distribute the calculations over
several high performance machines, reducing the calculation time significantly;
3) Even if the protocol is terminated, the attacker will have discovered the
password and may be able to make use of it in another run of the protocol.

4 Discussion

4.1 Preventing Small Subgroup Attacks on the Dragonfly
Protocol

Small subgroup attacks can be prevented by checking that the received element
E (more specifically, EA for Bob and EB for Alice) is a member of the group
being used by the cryptographic scheme. This can be achieved by checking that
E is member of the supergroup, that E is not the identity element and that
Eq is equal to the identity element. The importance of this check – known as
the public key validation – in key exchange protocols has been highlighted by
Menezes and Ustagolu [4].

6

Table 3: Consequence of attack if public key validation is missing
Consequence of small subgroup attack Dragonfly SPEKE
Success in guessing the password offline Yes No

Success in impersonation Yes Yes
Success in eavesdropping secure communication Yes Yes

However, to validate a public key will require a full exponentiation over the
finite group, which will significantly decrease the protocol efficiency and make
it less appealing than its competitors. For this reason, it remains debatable
within the cryptographic community if the public key validation is indispensable.
Nonetheless, at least for the case of the Dragonfly protocol, we have shown that
the omission of public key validation renders the protocol completely insecure.

4.2 Comparison between Dragonfly and SPEKE
We observe that the Dragonfly protocol is very similar to SPEKE [3] with two
minor changes. First, it drops the constraint in [3] that p must be a safe prime
(i.e., p = 2 · q + 1). Thus, it looks much more efficient than SPEKE since it
can accommodate a short exponent, say a value of 160 bits instead of 1023 bits.
(Given a fixed modulus p, the cost of exponentiation is linear to the bit-length
of the exponent.) However, despite being efficient, the protocol is insecure for
the attack we have demonstrated. If we add the cost of public key validation,
Dragonfly will have no performance advantage over SPEKE.

Second, instead of sending just one single element by each participant as in
SPEKE, Dragonfly adds an extra scalar in the flow. This slight change makes
the protocol more complex than the original SPEKE. However, the rationale for
this change is not explained in [1] or [2]. We observe that this extra complexity
not only reduces the communication efficiency as the message size gets bigger,
but also degrades security. To see this, let us assume there is no public key
validation in both Dragonfly and SPEKE (so we can remove the effect of the first
change, and only focus on studying the effect of the second change). Without
the public key validation in SPEKE, an active attacker can confine the session
key to an element in a small subgroup [3]. By brute force, the attacker can
obtain the session key, thus defeating authentication and confidentiality in the
secure communication. However, the attacker is unable to obtain the password.
By contrast, in the case of Dragonfly, an active attacker is able to additionally
obtain the victim’s password (see Table 3). This observation serves to help
better understand the underlying structural design of Dragonfly.

5 Conclusion
We have shown that the Dragonfly protocol is vulnerable to a small subgroup
based offline dictionary attack. This attack can be prevented by adding a public

7

key validation, which will however decrease the protocol efficiency. In the past
three decades, many key exchange protocols have omitted public key validation,
but are consequently found vulnerable to small subgroup confinement attacks
despite the gained efficiency. Dragonfly is yet another example of this attack –
but will not be the last.

Acknowledgment
We thank Professor Peter Ryan for first introducing us to analyzing the drag-
onfly protocol, and Dan Harkins for providing useful feedback.

References
[1] D. Harkins. Simultaneous authentication of equals: A secure, password-

based key exchange for mesh networks. In Sensor Technologies and Ap-
plications, 2008. SENSORCOMM ’08. Second International Conference on,
pages 839 –844, aug. 2008.

[2] Dan Harkins. Dragonfly key exchange - internet research task force internet
draft. http://tools.ietf.org/html/draft-irtf-cfrg-dragonfly-00
accessed Jan 2013, 2012.

[3] David P. Jablon. Strong password-only authenticated key exchange. ACM
Computer Communications Review, 26:5–26, 1996.

[4] Alfred Menezes and Berkant Ustaoglu. On the importance of public-key
validation in the mqv and hmqv key agreement protocols. In Proceedings of
the 7th international conference on Cryptology in India, INDOCRYPT’06,
pages 133–147, Berlin, Heidelberg, 2006. Springer-Verlag.

A Group Parameters
The group parameters are taken from the NIST cryptographic toolkit using a
1024 bit modulus, and are shown in Table 4.

B Subgroup Generators
The subgroup generators shown in Table 5 are for subgroups of the multiplicative
group with prime modulus defined in Appendix A. We only list subgroup sizes
of up to 32 bits.

8

Table 4: Group Parameters
Parameter Value (Base 16)

Prime Modulus E0A67 598CD 1B763 BC98C 8ABB3 33E5D DA0CD
3AA0E 5E1FB 5BA8A 7B4EA BC10B A338F AE06D
D4B90 FDA70 D7CF0 CB0C6 38BE3 341BE C0AF8
A7330 A3307 DED22 99A0E E606D F0351 77A23
9C34A 912C2 02AA5 F83B9 C4A7C F0235 B5316
BFC6E FB9A2 48411 258B3 0B839 AF172 440F3
25630 56CB6 7A861 158DD D90E6 A894C 72A5B
BEF9E 286C6 B

Generator D29D5 121B0 423C2 769AB 21843 E5A32 40FF1
9CACC 79226 4E3BB 6BE4F 78EDD 1B15C 4DFF7
F1D90 5431F 0AB16 790E1 F773B 5CE01 C804E
50906 6A991 9F519 5F4AB C5818 9FD9F F9873
89CB5 BEDF2 1B4DA B4F8B 76A05 5FFE2 77098
8FE2E C2DE1 1AD92 219F0 B3518 69AC2 4DA3D
7BA87 011A7 01CE8 EE7BF E4948 6ED45 27B71
86CA4 610A7 5

Subgroup Order E9505 11EAB 424B9 A19A2 AEB4E 159B7 844C5
89C4F

9

Table 5: Subgroup Generators
Subgroup Size Generator (Base 16)

2 E0A67 598CD 1B763 BC98C 8ABB3 33E5D DA0CD
3AA0E 5E1FB 5BA8A 7B4CA BC10B A338F AE06D
D4B90 FDA70 D7CF0 CB0E6 38BC3 341BE C0AF8
A7330 A3307 DED22 99A0E E606D F0351 77A23
9C34A 912C2 02AA5 F83B9 C4A7C F0235 B5316
BFC6E FB9A2 48411 258B3 0B839 AF172 440F3
25630 56CB6 7A861 158DD D90E6 A894C 72A5B
BEF9E 286C6 A

3 C644F AEA25 8D199 FA294 8F762 9C61F A38C5
FD02C 0629A AF401 B8F1C 11777 F1596 E8176
9FD81 DD69D E8A7A 58FF3 AF656 1947C 5317F
FEC4E 3E396 C7229 978AD B14AA 96FB0 2D014
4A3B0 433BC D1C73 32DC2 5B3DB DAF68 E3622
0F311 5913D DC408 1E601 96196 E7405 53FBD
94083 128F5 34300 FA399 E71E8 B83C4 9590B
21C8E D2F4C 0

13 6F165 E1313 45256 75B6F 6C0FF 1BAAD 32513
77F34 AAB82 EDA7C E4D7C 85B50 10F81 22412
3FDFF F6CFB 8AFE78 3685FC 67D8D E91F0 CC70D
B8340 DFE93 98295 D616B 4FE47 39C62 19D12
688A3 12CBE ECB53 F00E9 6B1FF 9B7DD 8308C
20CEA 82B7F 6FB98 B2D7E 9F581 D01B3 C94C1
074E5 8AED3 A1267 1C8EA AF994 C5742 24EC0
6A914 6E19

23 47DEC 28EB6 0A9BE 720D1 AD4E7 016AE DC162
27C88 755A7 E5259 A5B8E D02CF 76CB7 609CD
4869A 65BD7 5640D 36A30 BB1A4 63A34 A5B8D
5EB0E 29D83 2ADEA DF9D5 8ADF0 A0AA4 715F9
C6C62 0321F 47F0C E1C66 D3A65 66E66 818E5
552C6 0D8F9 EEF36 9144E F07E2 AED12 383D6
9D27D 6C898 0C6E2 D7700 7AD90 45A2D 55E54
DA1B9 05FC7 4

463907 16561 8E5D1 ED397 D8C7A 1D7A7 CB5DB 035DC
93586 DD6B6 B2670 D5FAE 4065E 6F7D7 B326C
902C5 EFC20 B3066 E462B 6D02F 46DEE 94DF5
545BA BB12E 63388 183D7 129F6 EE229 C6EDD
C6784 B8CC1 6315E 0BF9B 57D57 2EE63 5CE44
63601 48AA8 48BCC 8BFE4 F4C50 1C030 75E36
67AF3 3FD39 540AC 94DF6 F4CEA 7337C A7B60
2C057 9E849

10

