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Abstra
t

We introdu
e a variant of the Universal Composability framework (UC; Canetti,

FOCS 2001) that uses symboli
 
ryptography. Two salient properties of the UC

framework are se
ure 
omposition and the possibility of easily de�ning se
urity by

giving an ideal fun
tionality as spe
i�
ation. These advantages are now also available

in a symboli
 modeling of 
ryptography, allowing for a modular analysis of 
omplex

proto
ols.

We furthermore introdu
e a new te
hnique for modular design of proto
ols that

uses UC but avoids the need for powerful 
ryptographi
 primitives that often 
omes

with UC proto
ols; this �virtual primitives� approa
h is unique to the symboli


setting and has no 
ounterpart in the original 
omputational UC framework.

Contents

1 Introdu
tion 2

2 Review of the applied pi 
al
ulus 5

2.1 Synta
ti
 sugar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Additional 
on
epts used in this work . . . . . . . . . . . . . . . . . . . . 10

3 Useful properties of the pi 
al
ulus 14

3.1 Relating events and observational equivalen
e . . . . . . . . . . . . . . . . 24

3.2 Unpredi
tability of non
es . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Symboli
 UC 32

5 Composition 36

6 Property preservation 60

7 Relation to Delaune-Kremer-Pereira 62

8 Example: Se
ure 
hannels 65

8.1 Key ex
hange using NSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.2 Se
ure 
hannel from key ex
hange. . . . . . . . . . . . . . . . . . . . . . . 68

8.3 Generating many keys from one . . . . . . . . . . . . . . . . . . . . . . . . 74

1



9 Virtual primitives 78

9.1 Realizing 
ommitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9.1.1 A note on adaptive 
orruption . . . . . . . . . . . . . . . . . . . . 86

9.2 Removing the virtual primitives . . . . . . . . . . . . . . . . . . . . . . . . 87

9.3 On removing the CRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A Limits for 
omposition and property preservation 95

Referen
es 99

Symbol index 103

Index 105

1 Introdu
tion

In the analysis of 
ryptographi
 proto
ols, symboli
 analysis te
hniques (going ba
k to

Dolev and Yao [DY81℄) have shown to be very fruitful. Symboli
 te
hniques allow for

mu
h better automation than te
hniques working in the 
omputational model (wherein

messages are bitstrings and adversaries are runtime-limited 
omputations). In a symboli


model of 
ryptography, messages are typi
ally modeled as terms in a 
ertain algebra, and

the 
apa
ities of the adversary are des
ribed by, e.g., 
ertain dedu
tion rules over these

terms.

In this work, we show how to apply the idea of Universal Composability (UC) [Can01℄

to the setting of symboli
 
ryptography. (The independently developed Rea
tive Simu-

latability [BPW07℄ has the same idea. For simpli
ity, we only refer to UC in the following.)

The Universal Composability framework is a framework for spe
ifying se
urity properties

of 
ryptographi
 proto
ols that has the following two salient properties:

• Spe
ifying se
urity properties via fun
tionalities. In the UC framework, the se
urity

goals of a proto
ol are spe
i�ed by des
ribing a so-
alled ideal fun
tionality whi
h

is a hypotheti
al entity whi
h, by 
onstru
tion, a
hieves all the desired se
urity

goals. For example, if we wish to ask whether a proto
ol is a se
ure 
ommuni
ation

proto
ol, we simply spe
ify the se
ure 
hannel fun
tionality. This very simple

fun
tionality just takes a message from Ali
e, informs the adversary that Ali
e sent

a message, and gives that message to Bob. From the des
ription of the fun
tionality,

it is then obvious what properties we a
hieve: The adversary learns nothing ex
ept

that a message is delivered (se
re
y). The message Bob re
eives is the same as the

one that Ali
e sent (integrity).

Given the des
ription of an ideal fun
tionality, we then 
all a proto
ol se
ure if it

�UC-emulates� that fun
tionality. UC-emulation essentially means that the proto-


ol is as se
ure as the fun
tionality, i.e., that any se
urity property satis�ed by the

fun
tionality (se
re
y and integrity in our example) is also satis�ed by the proto
ol.
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Using ideal fun
tionalities to des
ribe what se
urity a proto
ol a
hieves is often

simpler than expli
itly des
ribing all required properties one by one. For example,

the se
urity of the Dire
t Anonymous Attestation proto
ol [BCC04℄ is only spe
i�ed

by an ideal fun
tionality.

Another view on this de�nition is one of se
urity preserving re�nement. The fun
-

tionality is an abstra
t spe
i�
ation, and the proto
ol is a re�nement that preserves

se
urity.

1

Note that the fa
t that UC-emulation preserves se
urity 
an be formalized: For a


ertain 
lass of se
urity properties we have that if the fun
tionality has this property,

so has any proto
ol that UC-emulates that fun
tionality. (See Se
tion 6).

• Composition and modular design and analysis. Se
urity in the UC framework im-

plies se
ure 
omposition. That is, assume a se
ure proto
ol ρ that uses an ideal

fun
tionality F as a building blo
k (e.g., ρ uses a se
ure 
hannel F). Then, if

another proto
ol π UC emulates F (i.e., π is a message transmission proto
ol), we


an repla
e F by π in ρ and again get a se
ure proto
ol.

This 
omposition operation enables the modular design and analysis of a proto
ol.

For example, in Se
tion 8, we show that a variant of the Needham-S
hroeder-Lowe

proto
ol NSL [Low95℄ UC-emulates the key ex
hange fun
tionality FKE whi
h gives

a se
ure key to two parties. Another proto
ol SC UC-emulates the se
ure 
hannel

fun
tionality FSC . And �nally, assume we had some 
omplex proto
ol X imple-

menting some 
omplex fun
tionality FX (think, e.g., of some large e-
ommer
e

appli
ation), and that X uses se
ure 
hannels. Then we 
an plug X, NSL, and

SC together, and get a proto
ol X∗
that still UC-emulates FX . (And due to the


omposition theorem, we do not need to verify the 
omposed proto
ol anew.) In


ontrast, without the 
omposition theorem, we would have had to analyze X∗
in

one go; that analysis being mu
h more 
omplex be
ause the implementation of the

se
ure 
hannel would be intermixed with the 
omplex proto
ol X.

The 
omposition theorem also has the impli
ation that a proto
ol will keep its se
u-

rity when run in other, as yet unknown, 
ontexts. This is a very important property,

be
ause on the Internet, a proto
ol will hardly run alone. (Cryptographers often


all se
urity de�nitions that do not have this property �stand-alone models�.)

The UC framework has been de�ned in the 
ontext of 
omputational 
ryptography.

However, its two salient properties, se
urity spe
i�
ation via fun
tionalities and se
ure


omposition, are as useful in a 
ontext where 
ryptography is modeled symboli
ally.

In parti
ular, even though 
omputer veri�
ation in the symboli
 setting s
ales mu
h

better than the usually manual veri�
ation in the 
omputational setting, most analysis

1

Many other re�nement notions do not preserve, e.g., anonymity. For example, imagine a proto
ol

where user Ali
e sends A or B over the network (
hosen non-deterministi
ally). And Bob sends A or B.

Then the adversary 
annot distinguish Ali
e and Bob. A re�nement might be that Ali
e sends A and

Bob sends B. Obviously, the anonymity of Ali
e and Bob is now violated.
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te
hniques still 
annot deal with arbitrarily 
omplex proto
ols.

2

So being able to design

and verify a proto
ol modularly will allow us to analyze more 
omplex proto
ols.

Our 
ontribution. In this work, we show that the ideas of the UC framework 
arry

over to the symboli
 setting. We show that the 
omposition theorem and the fa
t that

se
urity properties 
arry over still hold in the symboli
 UC framework. (Con
urrent 
om-

position turns out to be non-trivial be
ause we need to en
ode a spe
ial variant of pro
ess

repli
ation in the applied pi 
al
ulus that provides session ids to repli
ated pro
esses.)

We present an example analysis of a key ex
hange using the Needham-S
hroeder-Lowe

proto
ol, and how to use it in a se
ure 
hannel proto
ol via 
omposition.

We show that impossibilities from the 
omputational UC framework unfortunately

still apply in the symboli
 setting; in parti
ular, implementing a 
ommitment fun
tion-

ality without any trusted setup is impossible. On the positive side, we show that this

impossibility 
an be 
ir
umvented to a large part by a tri
k that we 
all �virtual primi-

tives�; here we perform the proof of se
urity under the assumption that the 
ryptographi


primitives have some exoti
 features, but in the end 
on
lude se
urity for the original 
ryp-

tographi
 primitives without these exoti
 features. This �virtual primitives�-approa
h is

unique to the symboli
 setting, to the best of our knowledge no 
orresponding te
hnique

exists in the 
omputational world.

We also show how to use Proverif as a helping tool for performing the observational

equivalen
e proofs when showing se
urity in our framework. For this we develop a set of

lemmas that help in rewriting pro
esses and allows us to use Proverif as a tool even for

observational equivalen
e proofs that do not involve so-
alled bipro
esses and are thus

out of the s
ope of Proverif. (See Se
tion 8.) We believe that this set of lemmas is useful

also in other settings than that of our work.

Prior work. The problem of transporting the ideas of the UC framework into the

symboli
 setting has already been ta
kled by Delaune, Kremer, and Pereira [DKP09℄.

They do, however, di�er from the original UC framework (and from our work) in one


ru
ial point: In the original framework, the existen
e of a so-
alled simulator is required

that makes two di�erent proto
ol exe
utions � the �real and ideal exe
ution� � indis-

tinguishable (this will be
ome 
learer later). Instead of indistinguishability, [DKP09℄

use an observational preorder. That is, everything that 
an happen in the real world


an non-deterministi
ally be mat
hed by the ideal world, but not ne
essarily vi
e-versa.

This was due to 
ertain problems in 
onstru
ting simulators when using observational

equivalen
e instead. However, we show that using an observational preorder limits the

strength of the se
urity de�nition 
onsiderably. For example, if a fun
tionality guarantees

anonymity (e.g., an anonymous broad
ast), a proto
ol that emulates that fun
tionality

will not ne
essarily satisfy anonymity. On the other hand, we show that using observa-

tional equivalen
e instead of an observational preorder gives a stronger de�nition that

does, e.g., preserve anonymity properties. Furthermore, we show that, when designing

2

Veri�
ation by type 
he
king (e.g., [BBF

+
11℄) being a notable ex
eption; this approa
h usually s
ales

very well. But annotating a proto
ol with types suitable for veri�
ation 
an be daunting.
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the fun
tionality a

ording to a simple guideline, the problems with observational equiv-

alen
e that [DKP09℄ observed vanish. (However, there are 
hallenges when dealing with


on
urrent 
omposition that apply only in our setting, and not when using the weaker

de�nition based on observational preorders.) We explain the issues related to [DKP09℄

in more detail in Se
tion 7.

On the 
omputational side, relevant prior work is of 
ourse the UC framework

[Can01℄ itself. Other models based on the same ideas are Rea
tive Simulatability

(RSIM) [BPW07℄, SPPC [DKMR05℄, IITM [Küs06℄, Task-PIOA [CCK

+
06a, CCK

+
06b℄,

and GNUC [HS11℄. Some of our results are adaptations of existing 
omputational sound-

ness results: the impossibility of 
ommitments [CF01℄ in Se
tion 9.3 and the joint state

te
hnique [CR03℄ in Se
tion 8. Finally, the symboli
 setting is not the �rst example of

the fa
t that the UC framework 
an easily adapted to other settings to get di�erent

or stronger se
urity guarantees, e.g., GUC (UC with shared fun
tionalities) [CDPW07℄,

quantum-UC [Unr10, Unr11℄, UC with lo
al adversaries [CV12℄, UC/
 (in
oer
ibility)

[UMQ10℄, UC with everlasting se
urity [MQU07℄. Furthermore, links between UC and

symboli
 models o

urred where UC-like models were used to establish 
omputational

soundness results [BPW03, CH11℄. Furthermore, [PS04, BS05℄ present UC proto
ol


onstru
tions where impossibilities are 
ir
umvented by giving the simulator additional

power (namely superpolynomial-time 
omputation); this shows some parallels to our

�virtual primitives�-approa
h, see the dis
ussion on page 80.

Outlook. Further resear
h might ta
kle the following points:

• Using our framework for analyzing the se
urity of existing proto
ols. A parti
u-

lar interesting 
andidate is the Dire
t Anonymous Attestation proto
ol [BCC04℄

be
ause its se
urity is already formulated in a UC model.

• Although we partially used Proverif for some of the proof steps, the analysis of our

example proto
ols still used a lot of manual work. Can the veri�
ation of symboli


UC se
urity be automated?

• There are extensions of the UC framework. For example [UMQ10℄ provides an ex-

tension that 
aptures in
oer
ibility. That model 
ould be translated to the symboli


setting and used for the analysis of voting proto
ols.

• In 
ombination with 
omputational soundness results (these are results that show

that symboli
 se
urity in 
ertain 
ases implies 
omputational se
urity), the virtual

primitives approa
h 
ould be a viable new te
hnique for showing 
omputational

se
urity: Design the proto
ol symboli
ally modularly using virtual primitives, and

then 
arry the se
urity over to the 
omputational setting.

2 Review of the applied pi 
al
ulus

In this se
tion we review the variant of the applied pi 
al
ulus from [BAF08℄ that we use

in our paper. Below (Se
tion 2.2) we list some non-standard de�nitions that we will use,
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readers familiar with the applied pi 
al
ulus 
an dire
tly skip to that se
tion.

The pro
ess 
al
ulus presented in [BAF08℄ is a 
ombination of the original applied pi


al
ulus [AF01℄ and one of its diale
ts [Bla04℄.

We have a set of terms that is built upon three basi
 sets. The in�nite set of names N ,

the in�nite set of variables V and the set of fun
tion symbols (
alled the signature Σ).
Names des
ribe all kinds of atomi
 data, i.e. are used as non
es or to represent messages.

We distinguish two 
ategories of fun
tion symbols: 
onstru
tors, whi
h are used to 
on-

stru
t terms of higher order, and destru
tors. Let T (Σ) be the set of terms built from

names in N , variables in V and 
onstru
tors in Σ.
A substitution is a fun
tion from variables to terms σ : V → T (Σ). For a term T Tσ

denotes the substitution of every variable x in T by σ(x ) (all variables are repla
ed at

on
e). We write {M1/x1 , . . . ,Mn/xn} for a substitution σ s. t. σ(xi ) = Mi and σ(x ) = x

for all x ∈ V \ {x1 , . . . , xn}.
Sometimes it is desirable to 
onsider two terms, that were 
onstru
ted di�erently,

equivalent. Therefore we have a �nite set E of equations (M ,N ) (for M = N ) where

M and N are terms that 
ontain only variables and 
onstru
tors. E is 
alled equational

theory.

The equivalen
e relation =E on terms is de�ned as the re�exive, transitive and sym-

metri
 
losure of E 
losed under the appli
ation of substitutions

3

and 
ontexts (i.e. for

all terms M , N and T M =E N ⇒ T{M /x} =E T{N /x}).
To de�ne the semanti
s of a destru
tor d we introdu
e a �nite set R of rewrite rules

d(M1 , . . . ,Mn) →P M where M and Mi , i ∈ {1, . . . , n} are terms that 
ontain only

variables and 
onstru
tors and the variables in M must be a subset of the variables used

in M1 , . . . ,Mn , and P is a predi
ate on n-tuples of terms invariant under =E
4

. (We write

→ instead of →P when P (. . . ) = true always.) Analogous to [BAF08℄ we introdu
e the

rewrite rule f(x1 , . . . , xn) → f(x1 , . . . , xn) for ea
h 
onstru
tor f ∈ Σ.(Destru
tors with

onditional rewrite rules have been introdu
ed in Proverif 1.87, see also [CB13℄. None

of our results need this additional generality. However, we explain in Se
tion 9.1.1 why

su
h destru
tors 
an be useful in some 
ases.)

D ⇓ M denotes the evaluation of D to M where D is a destru
tor term, i.e., a term

or the appli
ation of a fun
tion to destru
tor terms. For all terms M we de�ne M ⇓ M

(i.e. when evaluating a term we obtain the term itself). If we have D = g(D1 , . . . ,Dn) for
a fun
tion g whereDi are destru
tor terms we de�ne g(D1 , . . . ,Dn) ⇓ Mσ for substitution
σ i� there is a rewrite rule g(M1 , . . . ,Mn) →P M and terms N1 , . . . ,Nn s.t. Di ⇓ Ni ,

Ni =E Miσ, and P (N1, . . . , Nn) = true.

De�nition 2.1 (Symboli
 model) By symboli
 model, denoted M = (Σ,E,R), we
refer to the entity of a signature Σ, a �nite set of equations E and a �nite set of rewrite

3

I.e., for every substitution σ and M =E N we have Mσ =E Nσ.
4

I.e., �Invariant under =E� means that if Ni =E N ′

i for i = 1, . . . , n, then P (N1, . . . , Nn) =
P (N ′

1, . . . , N
′

n).
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P ::= 0

P |Q

!P

M (x ).P

M 〈N 〉.P

let x = D in P else Q

νa.P

Figure 1: Syntax of pro
esses in the applied pi 
al
ulus

rules R.
Note that the in�nite set of names and in�nite set of variables are not expli
itly part

of the symboli
 model sin
e they are not spe
i�
 for any 
on
rete model in our setting.

We refer to them globally as N and V respe
tively.

Ex
ept for Se
tion 9, it will be 
lear from the 
ontext whi
h symboli
 model we use.

In Se
tion 9 we fo
us on the relation between di�erent symboli
 models. Only then we

will introdu
e a notation that expli
itly states the symboli
 model underlying a property,

e.g., observational equivalen
e of two pro
esses.

We 
an des
ribe pro
esses in our pro
ess 
al
ulus using the indu
tively de�ned gram-

mar from Figure 1. For a better understanding of the syntax we anti
ipate the following

se
tion about its semanti
s and give a qui
k overview of the intuition 
onne
ted to the

syntax. The 0-pro
ess simply does nothing and terminates (and is therefore often omit-

ted). Two pro
esses, P and Q, 
an be exe
uted in parallel (denoted P |Q) They may

intera
t with ea
h other or with the environment independently of ea
h other. A repli-


ation (!P ) behaves as an in�nite number of 
opies (instan
es) of P running in parallel.

The s
ope of a name n may be restri
ted to a pro
ess P (νn.P ). M (x ).P allows P to

re
eive a message (a term) T on a 
hannel identi�ed by the term M . The variable x is

used in P as a referen
e to the input. The 
ounterpart of M (x ) is M 〈T 〉.P whi
h sends

a message (a term) T on M and then behaves like P .
In let x = D in P else Q the symbol D stands for a term or a destru
tor term. If we

have D ⇓ M for a term M the pro
ess behaves like P{M /x} otherwise it behaves like Q.
Ex
ept for the let-statement and parallel exe
ution, pro
esses do have the stru
ture

statement.P and we say for P (or any part of P ) that it is under the statement (e.g. we

say that �P is under a bang� in !P or that P is under an input in c(x ).νn.P ). We say

that P is under a let if P o

urs in one of the two bran
hes of a let.

An o

urren
e of a name n in a pro
ess is bound if it is under a νn. An o

urren
e of

a variable x is bound if it is under a M (x ) or in the P -bran
h of a let x = D in P else Q.
bn(P ) resp. bv(P ) denotes the set of names resp. variables with bound o

urren
es in P .
If an o

urren
e is not bound, it is 
alled free and fn(P ), fv(P ) denote the 
orresponding
sets for names resp. variables. A pro
ess is 
losed if it has no free variables.
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PAR-0 P ≡ P | 0
PAR-A P | (Q | R) ≡ (P | Q) | R
PAR-C P | Q ≡ Q | P
NEW-C νu.νv .P ≡ νv .νu.P
NEW-PAR u 6∈ fn(P ) ⇒

P | νu.Q ≡ νu.(P | Q)

Figure 2: Rules for stru
tural equivalen
e

REPL !P → P |!P
COMM C 〈T 〉.P | C ′(x ).Q

→ P | Q{T/x} if C =E C ′

LET-THEN let x = D in P else Q
→ P{M /x} if D ⇓ M

LET-ELSE let x = D in P else Q
→ Q if ∄M s.t. D ⇓ M

Figure 3: Rules for internal redu
tion

A 
ontext C is a pro
ess where exa
tly one o

urren
e of 0 is repla
ed with �. C[P ]
denotes the pro
ess resulting from the repla
ement of � with P in C. An evaluation


ontext is a 
losed 
ontext C built from �, C|P , P |C, and νa.C. We 
all an o

urren
e of

a term or pro
ess within a pro
ess unprote
ted if it is only below parallel 
ompositions

(|) and restri
tions (ν).

De�nition 2.2 (Stru
tural equivalen
e (≡)) Stru
tural equivalen
e, denoted ≡, is
the smallest equivalen
e relation on pro
esses that is 
losed under α-
onversion5 on names

and variables, appli
ation of evaluation 
ontexts and the rules from Figure 2.

6

De�nition 2.3 (Internal redu
tion (→)) Internal redu
tion, denoted →, is the

smallest relation on 
losed pro
esses 
losed under stru
tural equivalen
e and appli
ation

of evaluation 
ontexts su
h that the rules from Figure 3 hold for any 
losed pro
esses P
and Q. →∗

denotes the re�exive, transitive 
losure of →.

5

An α-
onversion is a renaming pro
ess that doesn't 
hange the meaning of a term. E.g. renam-

ing b to c in νa.νb.net〈a〉.net〈b〉 is a valid α-
onversion (and thus we have that νa.νb.net〈a〉.net〈b〉 ≡
νa.νc.net〈a〉.net〈c〉), renaming b to a is not.

6

We di�er from [BAF08℄ by de�ning ≡ also for non-
losed pro
esses. But on 
losed pro
esses, our

de�nition 
oin
ides with that from [BAF08℄.
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A 
losed pro
ess P emits on M (denoted P ↓M ) if P ≡ C[M ′〈N 〉.Q] for some eval-

uation 
ontext C that does not bind fn(M ) and M =E M ′
.

7

Analogously it reads on

M (denoted P ↑M ) if P ≡ C[M ′(N ).Q]. We say that P 
ommuni
ates on M (denoted

P lM ) if P ↓M or P ↑M .

De�nition 2.4 A simulation R is a relation on 
losed pro
esses su
h that (P,Q) ∈ R
implies

(i) if P ↓M then for some Q′
we have that Q→∗ Q′

and Q′ ↓M

(ii) if P → P ′
then for some Q′

we have that Q→∗ Q′
and (P ′, Q′) ∈ R

(iii) (C[P ], C[Q]) ∈ R for all evaluation 
ontexts C.

A relation R is a bisimulation if both R and R−1
are a simulation.

Observational equivalen
e (≈) is the largest bisimulation.

It is easy to 
he
k that the transitive hull of ≈ satis�es the 
onditions (i), (ii) and (iii)

from above. Hen
e ≈ 
ontains its own transitive hull and thus is indeed an equivalen
e

relation.

Substitutions on pro
esses work like substitutions on terms but must additionally

respe
t the s
opes of names and variables (bound or free). Sin
e renaming of bound

names and variables doesn't 
hange the stru
tural equivalen
e 
lass of a pro
ess we

assume w.l.o.g. from now on that for Pσ we have σ(x ) = x for all x ∈ bv(P ) and σ(x )
does not 
ontain names n ∈ bn(P ) for all x ∈ fv(P ).

2.1 Synta
ti
 sugar

We introdu
e if D = D ′
then P else Q as synta
ti
 sugar for

let x = equals(D ,D ′) in P else Q where x must not o

ur in P or Q and D ,D ′

are destru
tor terms. Note that we assume the existen
e of an equals destru
tor

with the rewrite rule equals(x , x ) → x throughout this paper (see De�nition 2.5 (iii)).

Furthermore, we write C().P for C(x).P where x is a fresh variable, and C〈〉.P for

C〈empty〉 assuming a nullary 
onstru
tor empty (see De�nition 2.5 (i)).

Later, when dealing with Proverif pro
esses, e.g., in De�nition 8.3, we use the Proverif

syntax for pattern mat
hing in inputs and lets: E.g., (let (=n, x ) = D in P else Q)
exe
utes P{T/x} if D ⇓ (n,T ) (i.e., D has to evaluate to a pair with n beeing the �rst

value while x is used as a referen
e for the arbitrary se
ond value T ) and Q otherwise.

Inputs of type C ((x,_)) expe
t a pair as input where the �rst value is referen
ed by x

while the se
ond value is dropped (i.e., when re
eiving an input (T ,T ′) on C , C ((x ,_)).P

ontinues to run as P{T/x}. For more details see the Proverif manual [Bla12b℄ We stress

7

It is indeed intentional that the de�nition requires C not to bind fn(M) (as opposed to fn(M ′)) even
though we 
onsider the pro
ess C[M ′〈N 〉.Q]. This way the de�nition is equivalent to the following: P ↓M
i� P ≡E C[M〈N〉.Q] for some evaluation 
ontext C not binding fn(M), and some pro
ess Q [Bla12a℄.

Here ≡E is stru
tural equivalen
e modulo repla
ing terms by equivalent ones, see De�nition 2.6.
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that these 
onstru
tions are just synta
ti
 sugar and 
an be repla
ed by statements

a

oding to the grammar of the pi 
al
ulus we des
ribed above.

2.2 Additional 
on
epts used in this work

In this se
tion, we des
ribe several nonstandard 
on
epts related to the applied pi 
al
ulus

that we use in this work.

Mis
ellaneous. A 
ontext always 
ontains a single o

urren
e of the hole. Sometimes

we need a 
ontext whi
h may or may not 
ontain a hole: A 0-1-
ontext is de�ned like a


ontext, ex
ept that there may be zero or one o

urren
es of the hole.

We refer to o

urren
es of terms that identify 
hannels in a pro
ess as 
hannel iden-

ti�ers. E.g., in M 〈T 〉 M is a 
hannel identi�er and T is not � even if M and T were the

same term (be
ause M and T are di�erent o

urren
es).

We allow destru
tors with 
onditional rewrite rules following [CB13℄, see page 6. None

of our results a
tually requires these 
onditional destru
tors, though. The reader may

safely assume the usual, un
onditional de�nition of 
onstru
tors.

Natural symboli
 models. A number of lemmas in this paper only hold when the

symboli
 model we use satis�es 
ertain natural 
onditions. Instead of stating these

expli
itly ea
h time, we 
olle
t all these 
onditions in the following de�nition:

De�nition 2.5 (Natural symboli
 model) We say a symboli
 model is natural if it

satis�es the following 
onditions:

(i) there is a 
onstru
tor empty/0 ∈ Σ,
(ii) a 
onstru
tor for pairings, denoted (�,�), is part of the signature Σ,
(iii) there is a destru
tor equals/2 ∈ Σ with rewrite rule equals(x , x ) → x and no further

rewrite rules that 
ontain equals ,

(iv) there are destru
tors fst/1, snd/1 ∈ Σ with rewrite rules fst((x , y)) → x and

snd((x , y)) → y,

(v) for all terms T , T1 with fst(T ) ⇓ T1 there exists a term T2 with snd(T ) ⇓ T2 and

furthermore (T1,T2) =E T for all su
h T2 and vi
e versa,

(vi) for arbitrary terms T1,T2,T
′
1,T

′
2 we require that (T1,T2) =E (T ′

1,T
′
2) entails

T1 =E T ′
1 and T2 =E T ′

2,

(vii) for any destru
tor term D and any name n 6∈ fn(D) we require that D ⇓ T for a

term T entails the existen
e of a term T ′
with D ⇓ T ′

, n 6∈ fn(T ′) and T =E T ′
,

(viii) there are terms T, T ′
with T 6=E T

′
.

In the following, we will always assume that the symboli
 model is natural in the

sense of De�nition 2.5.

Equivalen
e of pro
esses modulo rewriting. Stru
tural equivalen
e ≡ does not

allow us to repla
e a term M by another term M ′ =E M . In some pla
es, we will

10



therefore need to apply =E to pro
esses, and we will also use an extension ≡E of ≡ that

allows us to repla
e terms:

De�nition 2.6 We extend =E to destru
tor terms and pro
esses as follows:

Given two destru
tor terms D,D′
, we have D =E D

′
i� D 
an be rewritten into D′

by

repla
ing subterms by =E-equivalent subterms. (But repla
ing destru
tors is not allowed.

E.g., if d is a destru
tor and f, g are 
onstru
tors, and f(x) =E g(x) is in the equational

theory, we have d(f(a)) =E d(g(a)) but not f(d(a)) =E g(d(a)). Formally, =E is the

smallest equivalen
e relation on destru
tor terms su
h that D{M/x} =E D{M ′/x} for

destru
tor terms D and terms M =E M
′
.

Given two pro
esses P,P ′
, we have P =E P ′

i� P 
an be rewritten into P ′
by α-


onversion and by repla
ing terms and destru
tor terms by =E-equivalent ones. Formally,

=E is the smallest equivalen
e relation 
losed under α-renaming su
h that P{M/x} =E

P{M ′/x} for pro
esses P and terms M =E M
′
.

Given two pro
esses P,P ′
, we have P ≡E P

′
i� P 
an be rewritten into P ′

by =E and

≡. Formally, ≡E := (=E ∪ ≡)∗.

Full observational equivalen
e. A substitution σ is a 
losing substitution if Pσ is


losed. We 
all two (not ne
essarily 
losed) pro
esses P and Q fully observationally

equivalent (denoted P ∼∼∼ Q) i� Pσ ≈ Qσ for all 
losing substitutions σ (where we

impli
itly assume that the bound names in P,Q are renamed so that they are distin
t

from the free names of σ). Sin
e ≈ is 
losed under ≡ it follows in a straightforward way

that

∼∼∼ is 
losed under ≡.
The motivation behind the de�nition of

∼∼∼ is the following lemma whi
h allows us to

repla
e fully observationally equivalent subpro
esses by ea
h other.

Lemma 2.7 Let P and Q be pro
esses and P ∼∼∼ Q. Then C[P ] ∼∼∼ C[Q] for every 
on-

text C.

To show this lemma, we �rst prove the following lemma:

Lemma 2.8 Let P and Q be 
losed pro
esses. We have P ≈ Q ⇒ !P ≈ !Q .

Proof. We de�ne a relationR := ≈ ∪ {(νn.(IP |!P ), νn .(IQ |!Q)) : IP , IQ 
losed pro
esses

with IP ≈ IQ and n a ve
tor of names } 
losed under stru
tural equivalen
e. Intuitively,

IP and IQ represent the running instan
es of P resp. Q. For (A,B) ∈ R we show the

three points of observational equivalen
e.

If (A,B) ∈ ≈ there is nothing to show. Otherwise (A,B) = (νn.(IP |!P ), νn .(IQ |!Q)).

• If νn.(IP |!P ) ↓M we have νn.IP ↓M and, sin
e IQ ≈ IQ , νn.IQ ↓M . Therefore

νn.(IQ |!Q) ↓M .

• For internal redu
tions → in νn.(IP |!P ) we distinguish two 
ases:

11



� A new instan
e of P spawns, i.e., νn.(IP |!P ) → νn.(IP |P |!P ). We de�ne

IP ′ := IP |P and IQ ′
analogously. Then there is a 
orresponding internal

redu
tion (following the REPL rule) for the Q-side νn.(IQ |!Q) → νn.(IQ ′|!Q)
and therefore (νn.(IP ′|!P ), νn .(IQ ′|!Q) ∈ R (note that IP ′ ≈ IQ ′

sin
e IP ≈
IQ and P ≈ Q).

� The redu
tion → only a�e
ts !P stru
turally. That is, we basi
ally have

νn.(IP |!P ) → νn.(IP ′|!P ). Sin
e IP ≈ IQ we �nd IQ ′
s.t. IQ →∗ IQ ′

and

IP ′ ≈ IQ ′
. Hen
e (νn.(IP ′|!P ), νn .(IQ ′|!Q)) ∈ R.

• For any evaluation 
ontext C we have C[νn.(IP |!P )] ≡ νn ′.(C′[IP ]|!P ) where C′

is C with all restri
tions moved into n ′
. Analogously we have C[νn.(IQ |!Q)] ≡

νn ′.(C′[IQ ]|!Q) with the same C′
, n ′

. Sin
e C′
is an evaluation 
ontext, C′[IP ] ≈

C′[IQ ]. Altogether we have (νn ′.(C′[IP ]|!P ), νn ′.(C′[IQ ]|!Q)) ∈ R.

This 
on
ludes our proof sin
e the de�nition of R is symmetri
. �

We 
an now show Lemma 2.7:

Proof of Lemma 2.7. First 
onsider the 
ase that C is an evaluation 
ontext whi
h is

allowed to have free variables here. For all 
losing substitutions σ we have Pσ ≈ Qσ and

hen
e Cσ[Pσ] ≈ Cσ[Qσ]. Therefore C[P ]σ ≈ C[Q ]σ whi
h entails C[P ] ∼∼∼ C[Q ].
To expand the proof from evaluation 
ontexts to general 
ontexts C we show the

following properties for

∼∼∼ from whi
h the Lemma immediately follows by indu
tion:

1. If P ∼∼∼ Q then M〈T 〉.P ∼∼∼M〈T 〉.Q for arbitrary terms M and T :

Let σ be a 
losing substitution for M〈T 〉.P and M〈T 〉.Q . We de�ne the relation

R := ≈ ∪ {(C[(M 〈T 〉.P)σ], C[(M 〈T 〉.Q)σ]) : C 
losed evaluation 
ontext} 
losed

under stru
tural equivalen
e. We show that R satis�es the three points of obser-

vational equivalen
e. Let (A,B) ∈ R. For (A,B) ∈ ≈ there is nothing to do.

Otherwise (A,B) = (C[(M 〈T 〉.P)σ], C[(M 〈T 〉.Q)σ]) for some 
losed evaluation


ontext C.

• A ↓N : If C[0] ↓N obviously B ↓N as well. Otherwise (M 〈T 〉.P)σ ↓N where

the free names of N are not bound by C whi
h requires N =E M and hen
e

leads to (M 〈T 〉.Q)σ ↓N⇒ B ↓N .

• For internal redu
tions in A we distinguish two 
ases:

� → is the COMM redu
tion C[(M 〈T 〉.P)σ] → C′[Pσ] (up to stru
tural

equivalen
e). In the same way we 
an redu
e C[(M 〈T 〉.Q)σ] → C′[Qσ].
Sin
e Pσ ≈ Qσ and C′

is 
losed we have (C′[Pσ], C′[Qσ]) ∈≈⊆ R .

� The redu
tion → a�e
ts (M 〈T 〉.P)σ only stru
turally. That is, we basi-


ally have C[0] → C′[0]. In this 
ase we apply the same redu
tion in e�e
t

to B and have (C′[(M 〈T 〉.P)σ], C′[(M 〈T 〉.Q)σ]) ∈ R.

• Obviously, R is 
losed under the appli
ation of 
losed evaluation 
ontexts.

This 
on
ludes our proof sin
e the de�nition of R is symmetri
.
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2. If P ∼∼∼ Q then M (x ).P ∼∼∼ M (x ).Q for an arbitrary term M :

We prove this statement analogously to the previous one: It only di�ers in the

dire
tion of message �ow on M . In the 
orresponding bran
h of the proof an input

of N on M results in P{N /x} resp. Q{N /x} (note that C is 
losed and hen
e N

is 
losed). Sin
e we have Pσ ≈ Qσ in parti
ular for every 
losing σ with σ(x ) = N

we have that P{N /x} ∼∼∼ Q{N /x} holds.

3. If P ∼∼∼ Q then !P ∼∼∼ !Q:
A 
losing substitution σ with Pσ ≈ Qσ but !Pσ 6≈ !Qσ 
ontradi
ts Lemma 2.8.

4. If P1
∼∼∼ Q1 and P2

∼∼∼ Q2 then (let x = D in P1 else P2) ∼∼∼ (let x =
D in Q1 else Q2) for an arbitrary destru
tor term D:

Again, the 
omplete proof is analogous to the one in 
ase 2. Hen
e we only

dis
uss the redu
tion of the let-statement here: For all 
losing substitutions σ
for let x = D in P1 else P2 and let x = D in Q1 else Q2 we have that Dσ is


losed. If we have Dσ ⇓ M for a (
losed!) term M the let-statement redu
es

to P1{M /x}σ ≈ Q1{M /x}σ (note that σ(x ) = x sin
e x is a bound variable)

whi
h holds sin
e P1
∼∼∼ Q1. Otherwise it redu
es to P2σ ≈ Q2σ whi
h holds sin
e

P2
∼∼∼ Q2. �

Produ
t pro
esses. In order to argue about 
on
urrent 
omposition, as a te
hni
al

tool, we will need an extension of the applied pi 
al
ulus that supports in�nite parallel


ompositions of pro
esses whi
h are tagged with distin
t terms.

Intuitively, the indexed repli
ation

∏
x∈S P stands for P{s1/x}|P{s2/x}| . . . when

S = {s1, s2, . . . }. (Like !P stands for P |P | . . . .) We 
all pro
esses from this extended


al
ulus produ
t pro
esses. Note that our main de�nitions and results are still stated

with respe
t to the original 
al
ulus from [BAF08℄; we only use produ
t pro
esses in

some spe
i�
 situations.

De�nition 2.9 (Produ
t pro
esses) Produ
t pro
esses are de�ned by the grammar

in Figure 1 with the additional 
onstru
t

∏
x∈S P where x is a variable, S a (possibly

in�nite) set of terms, and P a produ
t pro
ess. (We 
all

∏
x∈S P an indexed repli
ation.)

(Note that we 
onsider

∏
x∈S to be a binder. I.e., in

∏
x∈S P , we 
onsider x a bound

variable.)

Stru
tural equivalen
e (≡) on produ
t pro
esses is de�ned using the same rules as on

pro
esses (see Figure 2).

The redu
tion relation → on produ
t pro
esses is de�ned using the same rules as on

pro
esses (see Figure 3), with the following additional rule (IREPL): If M ∈ S, then∏
x∈S P →

(∏
x∈S′ P

)
| P{M/x} with S′ := S \ {M ′ : M =E M ′}. (Essentially S is

treated as a set of session ids whi
h 
ontains ea
h sid at most on
e modulo =E.)

Observational equivalen
e (≈) on produ
t pro
esses is de�ned like observational equiv-

alen
e on pro
esses (De�nition 2.4). In parti
ular, as in De�nition 2.4, in rule (iii) we

quantify over evaluation 
ontexts that do not 
ontain indexed repli
ations.
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Noti
e that pro
esses are also produ
t pro
esses, and that on pro
esses, the new

de�nitions of ≡, →, and ≈ from De�nition 2.9 
oin
ide with the original de�nitions.

3 Useful properties of the pi 
al
ulus

In this se
tion, we introdu
e a number of useful lemmas for the applied pi 
al
ulus.

These lemmas are useful to derive observational equivalen
es of pro
esses by step by step

rewriting (and for using Proverif as a tool in deriving equivalen
es that Proverif 
annot

handle). We believe that they may be useful in other similar situations, too.

Lemma 3.1 For natural symboli
 models, the following hold:

(i) If n /∈ fn(M), then n 6=E M .

(ii) n 6=E m for names n 6= m.

(iii) (n,M ′) 6=E M for all terms M,M ′
and names n 6∈ fn(M).

Proof. We show (i):

Fix a term M with n /∈ fn(M). Assume for 
ontradi
tion n =E M . Fix a renaming

α su
h that α(n) =: n∗ 6= n and α(m) = m for all m ∈ fn(M). (This is possible sin
e

n /∈ fn(M).) Hen
e n =E M = Mα =E nα = n∗ (sin
e the rules de�ning =E are


losed under renaming). Thus n =E n
∗ 6= n. Intuitively, this means that all names are

equivalent under =E.

By De�nition 2.5 (viii) (natural symboli
 model) there are terms T, T with T 6=E T
′
.

Sin
e the equations in E 
ontain by de�nition only variables and 
onstru
tors, all rules

de�ning =E are 
losed under substitutions of names by terms. Hen
e n =E n∗ implies

T =E T
′
.

We have a 
ontradi
tion, hen
e (i) follows.

(ii) follows from (i) with M := m.

We show (iii):

Assume (n,M ′) =E M towards 
ontradi
tion. Sin
eM does not 
ontain n,M =Mσ
for σ := (n 7→ n′, n′ 7→ n) and any n′ /∈ fn(M). Then (n′,M ′σ) = (n,M ′)σ =E Mσ =
M =E (n,M ′). (Here we use that =E is 
losed under renaming whi
h follows from the

fa
t that equations and redu
tion rules in the symboli
 model do not 
ontain names.)

By De�nition 2.5 (vi) (natural symboli
 model), this implies n′ =E n whi
h 
ontradi
ts

(ii). Thus, the assumption that (n,M ′) =E M was wrong. (iii) follows. �

Lemma 3.2 Let P,P ′
be pro
esses. Let D,D′

be destru
tor terms. Let M,M ′
be terms.

(i) If a /∈ fn(P ), then P ∼∼∼ νa.P .
(ii) If a /∈ fn(M), then νa.M(x).P ∼∼∼M(x).νa.P .
(iii) Assume P is 
losed and that P does not 
ontain unprote
ted inputs or outputs.

Assume P → P ′
, and that for all P ′′

with P → P ′′
we have P ′ ≈ P ′′

. Then

P ≈ P ′
.
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(iv) If M,M ′
are terms with M =E M

′
, then P{M/x} ∼∼∼ P{M ′/x}.

(v) If for all substitutions σ that 
lose D,M we have Dσ ⇓ Mσ, and for all M ′
with

Dσ ⇓M ′σ we have Mσ =E M
′σ, then (let x = D in P else P ′) ∼∼∼ P{M/x}.

(vi) If D is 
losed and there is no M with D ⇓M , then (let x = D in P else P ′) ∼∼∼ P ′
.

(vii) If for all substitution σ that 
lose D,D′
there exist M,M ′

with Dσ ⇓ Mσ, D′σ ⇓
M ′σ and Mσ =E M

′σ then (if D = D′
then P else P ′) ∼∼∼ P

(viii) We have !P ≈ P |!P .
(ix)

∏
x∈SID P ≈

∏
x∈SID\{t1,...,tn}

P |P{ t1
x }| . . . |P{

tn
x } for t1, . . . , tn ∈ SID .

Proof. We show (i): Let R := {(Q, νa.Q) : Q a 
losed pro
ess, a /∈ fn(Q) a name} up to

stru
tural equivalen
e. It is easy to see that R is a bisimulation. Thus Q ≈ νa.Q for

any 
losed pro
ess. This implies that Pσ ≈ νa.(Pσ) ≡ (νa.P )σ for any 
losing σ. Hen
e
P ∼∼∼ νa.P .

We show (ii): Let R := {(E[νa.M(x).Q], E[M(x).νa.Q])}∪≈ up to stru
tural equiv-

alen
e where E ranges over all evaluation 
ontexts, Q over 
losed pro
esses, a over names,

and M over terms with a /∈ fn(M). One 
an 
he
k that R satis�es the 
onditions for

a bisimulation. To show νa.M(x).P ∼∼∼ M(x).νa.P , �x a 
losing substitution σ. Then(
(νa.M(x).P )σ, (M(x).νa.P )σ

)
∈ R, thus (νa.M(x).P )σ ≈ (M(x).νa.P )σ. Sin
e this

holds for any 
losing σ, we have νa.M(x).P ∼∼∼M(x).νa.P and (ii) follows.

We show (iii): Let R := {(E[P ], E[P ′]) : E evaluation 
ontext}∪≈. (Here P,P ′
refer

to the pro
esses from the statement of the lemma.) We 
he
k that R is a bisimulation. In

all the following 
ases, if A ≈ B, the statement is immediate. Thus we assume A ≡ E[P ],
B ≡ E[P ′] in ea
h 
ase.

• If (A,B) ∈ R and A ↓M then there exists a B′
with B →∗ B′

and B′ ↓M : If

A ≈ B, then this is immediate. Thus assume A ≡ E[P ], B ≡ E[P ′]. Sin
e P does

not 
ontain unprote
ted outputs, we have that the output on M is in E. Hen
e

B ≡ E[P ′] ↓M .

• If (A,B) ∈ R and B ↓M then there exists an A′
with A →∗ A′

and A′ ↓M : If

A ≈ B, then this is immediate. Thus assume A ≡ E[P ], B ≡ E[P ′]. Sin
e P → P ′

we have A→ A′ := E[P ′] ≡ B. Sin
e B ↓M , also A′ ↓M .

• If (A,B) ∈ R and A→ A′
then there exists a B′

with B →∗ B′
and (A′, B′) ∈ R: If

A ≈ B, then this is immediate. Thus assume A ≡ E[P ], B ≡ E[P ′]. Sin
e P does

not 
ontain unprote
ted inputs or outputs, A′ ≡ E′[P ] for some evaluation 
ontext

E or A′ ≡ E[P ′′] for some P ′′
with P → P ′′

. In the �rst 
ase, B → B′ := E′[P ′] and
hen
e (A′, B′) ∈ R. In the se
ond 
ase, P ′′ ≈ P ′

and thus A′ ≈ E[P ′] ≡ B =: B′
.

Thus B →∗ B′
and (A′, B′) ∈ R.

• If (A,B) ∈ R and B → B′
then there exists a A′

with A→∗ A′
and (A′, B′) ∈ R: If

A ≈ B, then this is immediate. Thus assume A ≡ E[P ], B ≡ E[P ′]. Sin
e P → P ′
,

we have A → A′′ := E[P ′] ≡ B. Sin
e B → B′
, we have A → A′′ → A′ := B′

.

Hen
e A→∗ A′
and (A′, B′) ∈ R.
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• R is 
losed under appli
ation of evaluation 
ontexts by 
onstru
tion.

We show (iv): Let (A,B) ∈ R i� A results from B by repla
ing terms M by terms

M ′
with M =E M

′
. It is easy to 
he
k that R is a bisimulation. Fix a pro
ess P , terms

M,M ′
with M =E M ′

, and σ a substitution mapping variables to ground terms that


loses P{M/x} and P{M ′/x}. Then P{M/x}σ results from P{M ′/x}σ by repla
ing

some o

urren
es of M ′σ by Mσ. Sin
e M =E M ′
, we have Mσ =E M ′σ. Thus

(P{M/x}σ, P{M ′/x}σ) ∈ R, hen
e P{M/x}σ ≈ P{M ′/x}σ. Sin
e this holds for any


losing σ, P{M/x} ∼∼∼ P{M ′/x}.

We show (v): First, assume that A := (let x = D in P else P ′) is 
losed. We have

that if A → A′
, then A′ ≡ P{M ′/x} for some M ′

with D ⇓ M ′
. By (iv) and using that

M =E M
′
for all M ′

with D ⇓M ′
, this implies A′ ≈ P{M/x}. Furthermore A does not


ontain unprote
ted inputs or outputs. Thus by (iii), we have A ≈ P{M/x}. From this

follows that (let x = D in P else P ′) ∼∼∼ P{M/x} even if (let x = D in P else P ′) is not

losed, analogously to (i).

We show (vi): First, assume that A := (let x = D in P else P ′) is 
losed. We

have that if A → A′
, then A′ ≡ P ′

. Furthermore A does not 
ontain unprote
ted

inputs or outputs. Thus by (iii), we have A ≈ P ′
. From this follows that (let x =

D in P else P ′) ∼∼∼ P ′
even if (let x = D in P else P ′) is not 
losed, analogously to (i).

We show (vii): First, assume that A := (if D = D′
then P else P ′) is 
losed. We

resolve the synta
ti
 sugar for �if� and have A = (let x = equals(D,D′) in P else P ′). If
A→ A′

, then A′ ≡ P (x 6∈ fv(P )). Thus by (iii), we have A ≈ P ′
. From this follows that

(let x = D in P else P ′) ∼∼∼ P ′
even if (let x = D in P else P ′) is not 
losed, analogously

to (i).

We show (viii): If !P → P ′′
, then P ′′ ≡ P |!P by de�nition of →. By (iii) this implies

!P ≈ P |!P .

We show (ix): Given a set A = {t1, . . . , tk} ⊆ SID , we write

∑
x∈A P for

P{t1/x}| . . . |P{tk/x}. Let

R := {
(
E[

∏

x∈SID\A\D

P |
∑

x∈A

P ], E[
∏

x∈SID\B\D

P |
∑

x∈B

P ]
)
}

up to stru
tural equivalen
e where E ranges over evaluation 
ontexts and A,B,D range

over subsets of SID with D disjoint of A∪B. One 
an 
he
k thatR satis�es all 
onditions

for being a bisimulation. Sin
e (
∏

x∈SID P,
∏

x∈SID\{t1,...,tn}
|P{t1/x}| . . . |P{tn/x}) ∈ R,

(ix) follows. �

Lemma 3.3 Let C be a 0-1-
ontext whose hole is not under a bang and su
h that n does

not o

ur in C, Q, or t. Assume that C does not bind any of fv(Q) \ {x} or fn(Q) over
its hole. Then νn.C[n〈t〉]|n(x).Q ∼∼∼ C[Q{t/x}]
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Proof. We show the lemma for ≈ instead of

∼∼∼, and assuming that νn.C[n〈t〉]|n(x).Q and

C[Q{t/x}] are 
losed and that fn(Q) ⊆ {x}. The general 
ase then follows by de�nition

of

∼∼∼. We de�ne the relation R: (A,B) ∈ R i� A ≈ B or there is a name n, a list of

names ã, a term t, a variable x, an integer k, a 0-1-
ontext C not 
ontaining n and not

having its hole under a bang and not binding fn(Q) over its hole, su
h that the following

holds:

A ≡ νnã.C[n〈t〉]|n(x).Q, B ≡ νnã.C[Q{t/x}] (1)

We 
he
k the three 
onditions for bisimulations (in both dire
tions).

• If (A,B) ∈ R and A ↓M , then B ↓M :

The 
ase A ≈ B is trivial. We thus assume that A,B are as in (1).

If νnã.C[n〈t〉]|n(x).Q ↓M , then the output on M is in C. (n〈t〉 
annot be that

output, be
ause n is bound.) Hen
e νnã.C[Q{t/x}] ↓M .

• If (A,B) ∈ R and B ↓M , then there exists an A′
with A→∗ A′

and A′ ↓M :

The 
ase A ≈ B is trivial. We thus assume that A,B are as in (1).

If νnã.C[Q{t/x}] ↓M , we distinguish two 
ases. If the output on M is in C, then
νnã.C[n〈t〉]|n(x).Q ↓M . Consider the 
ase that the output on M is in Q{t/x}.
Without loss of generality, we 
an assume that no name in t is bound in C (otherwise

we 
ould move the 
orresponding restri
tions from C into νã sin
e C does not bind

fn(Q) over its hole). Sin
e the output on M is in Q{t/x}, C is an evaluation


ontext and thus νnã.C[n〈t〉]|n(x).Q → νnã.C[0]|Q{t/x} ↓M .

• If (A,B) ∈ R and A→ A′
, then there is a B′

with B →∗ B′
and (A′, B′) ∈ R:

The 
ase A ≈ B is trivial. We thus assume that A,B are as in (1).

We distinguish the following 
ases:

If the redu
tion A→ A′
involves only C, then A′ ≡ νnã.C̃[n〈t〉σ]|n(x).Q for some

0-1-
ontext C̃. Here the substitution σ represents possible variable assignments

performed over the hole of C (e.g., if C = a〈T 〉 | a(y).�, then σ = {T/y}).

Then B → B′ := νnã.C̃[Q{t/x}σ] = νnã.C̃[Q{tσ/x}] where the last equality uses

that fn(Q) ⊆ x. Also, C̃ does not have more that one hole (in whi
h 
ase C̃ would

not be a zero-or-one-hole 
ontext) be
ause the hole in C does not o

ur under a

bang.

Thus we have (A′, B′) ∈ R.

If the redu
tion involves n〈t〉 or n(x).Q, then the hole of C is only under restri
tions

and parallel 
ompositions. We assume without loss of generality that the hole in C
is not under any restri
tion (otherwise we 
ould move the 
orresponding restri
tions

into νã sin
e C does not bind fn(Q) over its hole). Then A′ ≡ νnã.C[0]|Q{t/x} ≡
νnã.C[Q{t/x}] =: B′ ≡ B. Thus B →∗ B′

and (A′, B′) ∈ R (sin
e A′ ≈ B′
).
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• If (A,B) ∈ R and B → B′
, then there is an A′

with A→∗ A′
and (A′, B′) ∈ R:

The 
ase A ≈ B is trivial. We thus assume that A,B are as in (1).

If the redu
tion B → B′
involves only C, then B′ ≡ νnã.C̃[Q{t/x}σ]

(∗)
=

νnã.C̃[Qσ{t/x}] for some zero-or-one-hole 
ontext C̃. Here the substitution σ
represents possible variable assignments performed over the hole of C (e.g., if

C = a〈T 〉 | a(y).�, then σ = {T/y}). And the equality (∗) uses that fn(Q) ⊆ x.

Then A → A′ := νnã.C̃[n〈t〉σ]|n(x).Q. Also, C̃ does not have more that one hole

(in whi
h 
ase C̃ would not be a 
ontext) be
ause the hole in C does not o

ur

under a bang.

Thus we have (A′, B′) ∈ R.

If the redu
tion B → B′
involves Q{t/x}, then the hole of C is only under re-

stri
tions and parallel 
ompositions. We assume without loss of generality that

the hole in C is not under any restri
tion (otherwise we 
ould move the 
orre-

sponding restri
tions into νã sin
e C does not bind fn(Q) over its hole). Then

A → νnã.C[0]|Q{t/x} ≡ νnã.C[Q{t/x}] ≡ B → B′ =: A′
. Thus trivially

(A′, B′) ∈ R (sin
e A′ = B′
and thus A′ ≈ B′

), and A→∗ A′
.

• If E is an evaluation 
ontext, and (A,B) ∈ R, then (E[A], E[B]) ∈ R:

The 
ase A ≈ B is trivial. We thus assume that A,B are as in (1). Then E[A] ≡
E[νnã.C[n〈t〉]|n(x).Q] ≡ νnã.C[n〈t〉]|P |n(x).Q for some pro
ess P up to renaming

of the names n, ã. And E[B] ≡ E[νnã.C[Q{t/x}]] ≡ νnã.C[Q{t/x}]|P . Thus

(using the 
ontext C|P instead of C), we have (E[A], E[B]) ∈ R.

Thus R is a bisimulation. Thus νn.C[n〈t〉]|n(x).Q ≈ νn.C[Q{t/x}] (where n,C, t, x
refer to the values from the statement of the lemma). And sin
e n does not o

ur in C,Q, t,
we have νn.C[Q{t/x}] ≈ C[Q{t/x}] by Lemma 3.2 (i). Thus νn.C[n〈t〉]|n(x).Q ≈
C[Q{t/x}]. �

Lemma 3.4 Let C,D be 
ontexts, Q a pro
ess, n,m names, t, t′ terms, and x a variable.

Assume that C,D have no bang over their holes. Assume that n,m /∈ fn(C,D,Q, t, t′).
Assume that C,D do not bind n,m, fn(Q). Assume that fv(Q) ⊆ {x}.

Then νn.(C[!n〈t〉] | D[n(x).Q]) ≈ νm.(C[m().Q{t/x}] | D[m〈t′〉]).

Proof. We de�ne the relation R as follows: We have (A,B) ∈ R i� A ≈ B or there exist

0-1-
ontexts C,D without a bang over their holes and not binding n, fn(Q), terms t, t′, a
name n /∈ fn(C,D,Q, t, t′), a list of names ã not 
ontaining n, and an integer i ≥ 0 su
h

that

A ≡ νnã.(C[n〈t〉i | !n〈t〉] | D[n(x).Q])

B ≡ νnã.(C[n().Q{t/x}] | D[n〈t′〉]) (2)
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Here n〈t〉i denotes n〈t〉| . . . |n〈t〉 (i 
opies). Note: Q is the pro
ess from the statement

of the lemma. (It is intentional that we use n in the de�nition of B, not m as in the

statement of the lemma. We will rename n into m at the end of the proof.)

We show that R is a bisimulation. In all 
ases below, the 
ase A ≈ B is trivial by

the properties of ≈, so we assume in ea
h 
ase that A,B are as in (2).

• If (A,B) ∈ R and A ↓M , then B →∗↓M :

Sin
e n is bound, the output onM is not one of the n〈t〉 (here we use that M 6=E n
if n /∈ fn(M) by Lemma 3.1 (i)). Hen
e C ↓M or D ↓M . Thus B ↓M .

• If (A,B) ∈ R and B ↓M , then A→∗↓M :

Sin
e n is bound, the output on M is not n〈t′〉. Hen
e C ↓M or D ↓M . Thus A ↓M .

• If (A,B) ∈ R and A→ A′
, then there is a B′

su
h that B →∗ B′
and (A′, B′) ∈ R:

We distinguish the following 
ases:

� A → A′
is a redu
tion !n〈t〉 → n〈t〉 | !n〈t〉: Then A′ ≡ νnã.(C[n〈t〉i+1 |

!n〈t〉] | D[n(x).Q]) and hen
e (A′, B′) ∈ R for B′ := B.
� A → A′

is a redu
tion within C, within D, or a 
ommuni
ation between

C and D (in all 
ases not involving the argument of C,D): Then A′ ≡
νnã.(C ′[n〈t〉i | !n〈t〉] | D′[n(x).Q]) for suitable 
ontexts C ′,D′

(satisfying all

the 
onditions required for C,D in the de�nition of R), and B → B′ :=
νnã.(C ′[n().Q{t/x}] | D′[n〈t′〉]). (Note: This uses impli
itly that Q has no

free variables ex
ept x, otherwise Q might 
hange in this redu
tion.)

� A→ A′
is a 
ommuni
ation between n〈t〉 and n(x).Q:

Then C and D are evaluation 
ontexts.

Without loss of generality, we 
an assume that C,D do not bind any names

over their holes: For this, we �rst rename the bound names in C,D su
h that

they be
ome distin
t from all free names (possibly also renaming the names

in t in the pro
ess, but not in Q sin
e fn(Q) are not bound), and then move

the restri
tions up into νã.
Then A′ ≡ νnã.(C[n〈t〉i−1 | !n〈t〉] | D[Q{t/x}]). Furthermore

B′ := B ≡ ν ã.(C[0] | D[νn.(n().Q{t/x} | n〈t′〉)])
(∗)

≈ νã.(C[0] | D[Q{t/x}])
(∗∗)

≈ νã.(C[νn.(n〈t〉i−1 | !n〈t〉)] | D[Q{t/x}]) ≡ A′

Here (∗) follows from Lemma 3.3. And (∗∗) uses that νn.(n〈t〉i−1 | !n〈t〉) ≈ 0,
whi
h 
an be seen by verifying that R′ := {(E[νn.(n〈t〉i−1 | !n〈t〉)], E[0]) :
E evaluation 
ontext} is a bisimulation.

Thus A′ ≈ B′
and hen
e (A′, B′) ∈ R. And B = B′

implies B →∗ B′
.

� A → A′
is a 
ommuni
ation between C or D and n〈t〉 or n(x).Q: This


ase does not o

ur be
ause n /∈ fn(C,D).
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• If (A,B) ∈ R and B → B′
, then there is a A′

su
h that A→∗ A′
and (A′, B′) ∈ R:

We distinguish the following 
ases:

� B → B′
is a redu
tion within C, within D, or a 
ommuni
ation between

C and D (in all 
ases not involving the argument of C,D): Then B′ =
νnã.(C ′[n().Q{t/x}] | D′[n〈t′〉]) for suitable 
ontexts C ′,D′

(satisfying all

the 
onditions required for C,D in the de�nition of R), and A → A′ ≡
νnã.(C ′[n〈t〉i | !n〈t〉] | D′[n(x).Q]).

� B → B′
is a 
ommuni
ation between n().Q{t/x} and n〈t′〉:

Then C,D are evaluation 
ontexts.

Without loss of generality, we 
an assume that C,D do not bind any names

over their holes (analogous to the 
orresponding sub
ase of A→ A′
above).

Then B′ ≡ νnã.(C[Q{t/x}] | D[0]).
Furthermore,

A→∗ A′ := νã.(C[νn.(n〈t〉i | !n〈t〉)] | D[Q{t/x}])
(∗)

≈ νã.(C[0] | D[Q{t/x}]) ≡ νã.(C[Q{t/x}] | D[0])
(∗∗)

≈ B′

Here (∗) uses that νn.(n〈t〉i | !n〈t〉) ≈ 0 (see the 
orresponding sub
ase of

A→ A′
above). And (∗∗) uses Lemma 3.2 (i). So A′ ≈ B′

, hen
e (A′, B′) ∈ R.

Hen
e A→∗ A′
and (A′, B′) ∈ R.

� B → B′
is a 
ommuni
ation between C or D and n〈t〉 or n(x).Q: This


ase does not o

ur be
ause n /∈ fn(C,D).

• If (A,B) ∈ R and E is an evaluation 
ontext, then (E[A], E[B]) ∈ R:

Then E ≡ νb̃.(�|P ) for some names b̃ and some pro
ess P .

Without loss of generality, n does not o

ur in b̃ or fn(P ) (otherwise we rename n).

Thus with ã′ := ãb̃ and C ′ := C|P , we have

E[A] ≡ νnã′.(C ′[n〈t〉i | !n〈t〉] | D[n(x).Q])

E[B] ≡ νnã′.(C ′[n().Q{t/x}] | D[n〈t′〉])

Hen
e (E[A], E[B]) ∈ R.

Under the 
onditions of the lemma, we have (νn.C[!n〈t〉] |
D[n(x).Q], νn.C[n().Q{t/x}] | D[n〈t′〉]) ∈ R where C,D,Q, n, t, t′, x are as in the

statement of the lemma. Sin
e R is a bisimulation, this implies

νn.C[!n〈t〉] | D[n(x).Q] ≈ νn.C[n().Q{t/x}] | D[n〈t′〉] ≡ νm.C[m().Q{t/x}] | D[m〈t′〉])

�

Lemma 3.5 Let A,B,C be 
losed pro
esses. If A ≡E B → C, then there is a 
losed

pro
ess B′
su
h that A→ B′ ≡E C.
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Proof. It is easy to see that → is the smallest relation satisfying the following rules:

STREQ If P ≡ P ′ → Q′ ≡ Q, then P → Q
E-REPL E[!P ] → E[P | !P ]
E-COMM E[C 〈T 〉.P | C ′(x ).Q] → E[P | Q{T/x}] if C =E C ′

E-LET-THEN E[let x = D in P else Q] → E[P{M /x}] if D ⇓ M

E-LET-ELSE E[let x = D in P else Q] → E[Q] if ∄M s.t. D ⇓ M

Here in all rules E ranges over evaluation 
ontexts with the following property: Let

E[R] denote the left hand side of the rule. Then all bound names in E[R] are di�erent
from ea
h other and from the free names in E[R]. (In a derivation of →, we 
an always

enfor
e this latter property by �rst using STREQ to alpha-rename the left hand side of

the redu
tion.) We say E[R] has no name 
on�i
ts.

For stating the next 
laim, we also need to introdu
e an asymmetri
 variantր≡ of the

stru
tural equivalen
e ≡. The di�eren
e is that in ≡, we are allowed to apply the rule

NEW-PAR in both dire
tions, while inր≡ we are only allowed to move restri
tions up

(P | νu.Qր≡ νu.(P | Q)), but not down (not: νu.(P | Q)ր≡ P | νu.Q). More formally,ր≡
is the smallest transitive, re�exive (but not ne
essarily symmetri
) relation 
losed under

α-
onversion, and 
losed under appli
ation of evaluation 
ontexts, and satisfying the

rules PAR-0, PAR-A, PAR-C, NEW-C, NEW-PAR from Figure 2 as well as the reversed

rule PAR-0-rev (but not NEW-PAR-rev). (By reversed rule we mean the rules with left

hand side and right hand side ex
hanged. E.g., PAR-0-rev says P |0 ր≡ P . Note that

PAR-C-rev and NEW-C-rev are not needed sin
e PAR-C and NEW-C are symmetri
.

And PAR-A-rev follows from PAR-C and PAR-A via (P |Q)|Rր≡ R|(P |Q)ր≡ (R|P )|Qր≡
Q|(R|P )ր≡ (Q|R)|Pր≡ P |(Q|R).)

Also, we de�neր≡E analogously to ≡E: ր≡E 
orresponds to a sequen
e of rewritings

usingր≡ and =E, i.e.,ր≡E:= (ր≡ ∪ =E)
∗
.

Claim 1 For 
losed pro
esses A,B,C, if A =E Bր≡ C, then there exists a 
losed pro
ess

B′
su
h that Aր≡ B′ =E C.

We show this 
laim by indu
tion over the derivation of Bր≡ C. We distinguish the

following 
ases:

• α-
onversion: Then B = C up to α-
onversion. Hen
e A =E B implies A =E C
sin
e =E allows α-
onversions. Thus Aր≡ B∗ =E C with B∗ := A.

• Closure under evaluation 
ontexts: Then B = E[B̃] and C = E[C̃] for pro
esses
B̃ ր≡ C̃ and an evaluation 
ontext E. And the indu
tion hypothesis holds for

B̃ր≡ C̃. Sin
e A =E B = E[B̃], we have that A = E∗[B̃∗σ] for some evaluation


ontext E∗ =E E, some pro
ess B̃∗ =E B̃, and a renaming σ that 
orresponds to

the alpha-renaming over the hole of E. Sin
e B̃∗ =E B̃, the indu
tion hypothesis

implies that B̃∗ր≡ B̃′ =E C̃ for some pro
ess B̃′
. Hen
e

A = E∗[B̃∗σ]ր≡ E∗[B̃′σ] =E E[B̃′] =E E[C̃] = C.

Thus Aր≡ B′ =E C with B′ := E∗[B̃′σ].
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• Re�exivity: Then B = C. Hen
e Aր≡ B∗ =E C with B∗ := A.
• Transitivity: Then Bր≡ Sր≡ C for some pro
ess S. And the indu
tion hypothesis

applies to Bր≡ S and Sր≡ C. Sin
e A =E Bր≡ S, by indu
tion hypothesis, there

is a pro
ess B′
with Aր≡ B′ =E S. Sin
e B′ =E Sր≡ C, by indu
tion hypothesis

there is a pro
ess S∗
with B′ ր≡ S∗ =E C. Thus Aր≡ S∗ =E C, and the 
laim

follows with B∗ := S∗
.

• PAR-0 : In this 
ase, C = B|0 and A =E B. Hen
e Aր≡ B∗ =E C with B∗ := A|0.
• PAR-0-rev : In this 
ase, B = C|0 and A =E B. Hen
e A = B∗|0 for some pro
ess

B∗ =E C. Then Aր≡ B∗ =E C.
• PAR-A: In this 
ase, B = B1|(B2|B3) and C = (B1|B2)|B3. Sin
e A =E B,
A = A1|(A2|A3) for some pro
esses Ai with Ai =E Bi, i = 1, 2, 3. Then with

B∗ := (A1|A2)|A3, we have Aր≡ B∗ =E C.
• PAR-C, PAR-C : Analogous to PAR-A.

• NEW-C : In this 
ase, B = νnm.B̂ and C = νmn.B̂ for some names n,m and

a pro
ess B̂. Sin
e A =E B, we have that A = νab.Â for some names a, b and

a pro
ess Â. (Not ne
essarily ab = nm, be
ause =E allows α-
onversion.) Thus

νab.Â =E νnm.B̂. This implies νba.Â =E νmn.B̂ (by indu
tion over the derivation

of νab.Â =E νnm.B̂). Hen
e with B
∗ := νba.Â, we have that Aր≡ B∗ =E C.

• NEW-PAR: Then B = B1|νn.B2 and C = νn.(B1|B2) with n /∈ fn(B1). Sin
e

A =E B, we have A = A1|νa.A2 for some name a and pro
esses A1, A2 with

A1 =E B1 and νa.A2 =E νn.B2. (Not ne
essarily a = n, be
ause =E al-

lows α-
onversion.) Let m be a fresh name, i.e., m /∈ fn(A1, A2, B1, B2). Let

B∗ := νm.(A1|A2{m/a}). Sin
e νn.B2 =E νa.A2 and m /∈ fn(A2, B2), we have

νm.B2{m/n} =E νm.A2{m/a}. Hen
e νm.(A1|B2{m/n}) =E νm.(A1|A2{m/a}).
And using A1 =E B1, we get νm.(B1|B2{m/n}) =E νm.(A1|A2{m/a}) = B∗

. Fur-

thermore C = νn.(B1|B2) =E νm.(B1|B2{m/n}) sin
e n,m /∈ fn(B1), m /∈ fn(B2).
Thus B∗ =E C. And A = A1|νa.A2 ր≡ A1|νm.A2{m/a} ր≡ νm.(A1|A2{m/a}) =
B∗

. Thus B∗
is a pro
ess with Aր≡ B∗ =E C.

This shows Claim 1.

Claim 2 If Aր≡E B, then there exists an S su
h that Aր≡ S =E B.

This follows dire
tly from Claim 1.

Claim 3 If B,C are 
losed pro
esses and B → C (derived using the rules listed at the

beginning of this proof), then for any 
losed A with A ≡E B there exists a 
losed B′
with

A→ B′ ≡E C.

This 
laim will then immediately prove the lemma. We show the 
laim by indu
tion

over the derivation of B → C. We distinguish the following rule appli
ations:

• STREQ: Then B ≡ B̃ → C̃ ≡ C for some B̃, C̃, and the indu
tion hypothesis

holds for B̃ → C̃. Sin
e A ≡E B ≡ B̃, the indu
tion hypothesis implies that

A→ B′ ≡E C̃ for some 
losed B′
. Sin
e C̃ ≡ C, we have A→ B′ ≡E C.
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• E-REPL: Then B = E[!B̃] and C = E[B̃ | !B̃] where E is an evaluation 
ontext

and E[!B̃] has no name 
on�i
ts. We have A ≡E E[!B̃]. From this it follows that

Aր≡E E′[!B̃] where E′
results from E by moving all unprote
ted restri
tions to the

top (no names in B̃ need to be renamed be
ause E[!B̃] has no name 
on�i
ts). By

Claim 2, this implies that Aր≡ S =E E
′[!B̃] for some S. Hen
e S = E′′[!B̃′σ] where

E′′ =E E
′
and B̃′ =E B̃ and where σ is a renaming that 
orresponds to the alpha-


onversions between E′
and E′′

over the hole. Thus Aր≡ S → E′′[(B̃|!B̃)σ] =E

E′[B̃ | !B̃] ≡ E[B̃ | !B̃] = C and hen
e A→ B′ ≡E C with B′ := E′′[(B̃|!B̃)σ].

• E-COMM: Then B = E[M 〈T 〉.P | N(x).Q] and C = E[P | Q{T/x}] where E is

an evaluation 
ontext, M =E N , and B has no name 
on�i
ts. As in the E-REPL


ase, we have Aր≡E E′[M〈T 〉.P | N(x).Q] where E′
results from E by moving

all unprote
ted restri
tions to the top. By Claim 2, this implies that Aր≡ S =E

E′[M〈T 〉.P | N(x).Q] for some S. Hen
e S = E′′[(M ′〈T ′〉.P ′ | N ′(x).Q′)σ] where
E′′ =E E

′
, M ′ =E M , T ′ =E T , P

′ =E P , N
′ =E N , Q′ =E Q, and σ is as in the


ase of E-REPL. Then

Aր≡ S → E′′[P ′ | Q′{T ′/x}σ] =E E
′[P | Q{T ′/x}]

(∗)
=E E

′[P | Q{T/x}] ≡ E[P | Q{T/x}] = C.

(Note that (∗) also uses the fa
t that =E may also rewrite terms that are subterms

of destru
tor terms; this is needed if x o

urs in a destru
tor term in Q.)

Hen
e A→ B′ ≡E C for B′ := E′′[P ′ | Q′{T ′/x}σ].

• E-LET-THEN: Then B = E[let x = D in P else Q] and C = E[P{M/x}] where E
is an evaluation 
ontext, D ⇓M , and B has no name 
on�i
ts. As in the E-REPL


ase, we have Aր≡E E′[let x = D in P else Q] where E′
results from E by moving

all unrestri
ted restri
tions to the top. By Claim 2, this implies that Aր≡ S =E

E′[let x = D in P else Q] for some S. Hen
e S = E′′[(let x = D′
in P ′

else Q′)σ]
where E′′ =E E′

, D′ =E D, P ′ =E P , Q′ =E Q, and σ is as in the 
ase of E-

REPL. Then D′ =E D and DM ⇓ imply D′M ⇓′
for some M ′ =E M . Hen
e

(let x = D′
in P ′

else Q′) → P ′{M ′/x}. Then

Aր≡ S → E′′[P ′{M ′/x}σ] =E E
′[P{M ′/x}]

(∗)
=E E

′[P{M/x}] ≡ E[P{M/x}] = C.

(Here (∗) again uses that =E rewrites destru
tor terms, see the 
ase E-COMM.)

Hen
e A→ B′ ≡E C for B′ := E′′[P ′{M ′/x}σ].

• E-LET-ELSE: Then B = E[let x = D in P else Q] and C = E[Q] where E is

an evaluation 
ontext, ∀M. D 6⇓ M , and B has no name 
on�i
ts. As in the

E-REPL 
ase, we have A ր≡E E′[let x = D in P else Q] where E′
results from

E by moving all unrestri
ted restri
tions to the top. By Claim 2, this implies

that Aր≡ S =E E′[let x = D in P else Q] for some S. Hen
e S = E′′[(let x =
D′

in P ′
else Q′)σ] where E′′ =E E′

, D′ =E D, P ′ =E P , Q′ =E Q, and σ is as

in the 
ase of E-REPL. Sin
e D′ =E D and ∀M. D 6⇓ M , we have ∀M. D′ 6⇓ M .

Hen
e (let x = D′
in P ′

else Q′) → Q′
. Then

Aր≡ S → E′′[Q′σ] =E E
′[Q] ≡ E[Q] = C.
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Hen
e A→ B′ ≡E C for B′ := E′′[Q′σ].

This shows Claim 3. And from that 
laim the lemma follows. �

3.1 Relating events and observational equivalen
e

For stating Lemma 3.7 below, we will need pro
esses 
ontaining events. The variant

of the applied pi 
al
ulus presented in Se
tion 2 (whi
h is used by Proverif for obser-

vational equivalen
e proofs) does not support events. When using Proverif for showing

tra
e properties de�ned in terms of events, a di�erent variant of the applied pi 
al
u-

lus is used [Bla09℄. We will 
all pro
esses in that 
al
ulus event pro
esses. Synta
ti-


ally, event pro
esses di�er from pro
esses as in Figure 1 only by an additional 
onstru
t

event f(t1, . . . , tn).P whi
h means that the event f is raised, with arguments t1, . . . , tn
(these are normal terms), and then the event pro
ess P is exe
uted.

The semanti
s of event pro
esses are formulated in [Bla09℄ in a di�erent way from

the semanti
s used here. Fortunately, we will be able to en
apsulate everything that we

need to know about that semanti
s in Lemma 3.6 below, so we do not need to repeat

those semanti
s here.

Instead, we extend the de�nition of the internal redu
tion relation → to event pro-


esses. → is de�ned as in De�nition 2.3, ex
ept that we add the following rule:

EVENT: event f(t1, . . . , tn).P → P

The semanti
s de�ned by → will be related to those from [Bla09℄ by Lemma 3.6 below.

Finally, [Bla09℄ de�nes the 
on
ept of a tra
e property . We will only need tra
e

properties of a spe
i�
 form, namely

end(x) ⇒ start(x) ∨ x = t1 ∨ · · · ∨ x = tn

Intuitively, an event pro
ess P satis�es a tra
e property end(x) ⇒ start(x)∨x = t1∨· · ·∨
x = tn if in any exe
ution P |R → P1 → . . . → Pn, we have that if one of the transitions

raises the event end(t), then t ∈ {t1, . . . , tn} and in the same tra
e, the event start(t) is
also raised (for any adversarial R not 
ontaining events).

Formally, satisfying a tra
e property is de�ned with respe
t to the semanti
s from

[Bla09℄.

8

Instead of giving those semanti
s here, we present the following lemma whi
h

summarizes seven fa
t about that de�nition. We will not use any other fa
ts. The fa
ts


an be veri�ed by inspe
ting the semanti
s and de�nitions from [Bla09℄.

8

Stri
tly speaking, the semanti
s des
ribed in [Bla09℄ does not allow expressions of the form x = ti
in tra
e properties. Su
h expressions are, however, supported by Proverif. Also, [Bla09, footnote 3 in

the full version℄ explains how to en
ode su
h equality tests in the tra
e properties supported by [Bla09℄.

In their notation, our tra
e property be
omes the somewhat less readable tra
e property: end(x) ⇒
(end(x) start(x)) ∨ (end(t1) true) ∨ · · · ∨ (end(tn) true).

Also, the semanti
s des
ribed [Bla09℄ do not support equations (i.e., t =E t′ i� t = t′ in their semanti
s).

However, Proverif supports these, so we assume the intended semanti
s of Proverif is that of [Bla09℄ with

the natural extension of equality tests to equality modulo =E.
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Lemma 3.6 Let t1, . . . , tn be terms. Let ℘ stand for the tra
e property start(x) ⇒
end(x) ∨ x = t1 ∨ · · · ∨ x = tn. Let P be an event pro
ess.

(i) If P ≡ P ′
and P satis�es ℘, then P ′

satis�es ℘.
(ii) Assume P → P ′

and P satis�es ℘ and the redu
tion P → P ′
does not use the

EVENT rule. Then P ′
satis�es ℘.

(iii) Let t be a 
losed term. Assume P = C[event start(t).Q] where C is an event 
ontext

not binding fn(t) over its hole. Assume that P satis�es ℘. Then P ′ := C[Q] satis�es
℘ ∨ x = t.

(iv) Assume P = C[event end(t).Q] where C is an event 
ontext. Assume that P
satis�es ℘. Then P ′ := C[Q] satis�es ℘.

(v) Assume P satis�es ℘ and E is an evaluation 
ontext (not 
ontaining events) and

E does not bind fn(t1, . . . , tn) over its hole. Then E[P ] satis�es ℘.
(vi) Assume E is an evaluation event 
ontext that does not bind any names over its

hole. Assume P = E[event end(t).Q]. Assume that P satis�es ℘. Then t =E ti for
some i.

(vii) If νa.P satis�es ℘, then P satis�es ℘.

We explain the intuitive reason for ea
h fa
t:

(i) Stru
turally equivalent pro
esses behave identi
ally and thus raise the same events.

(ii) If P → P ′
without raising an event, then for any event tra
e that P ′

may produ
e,

P may produ
e the same by �rst redu
ing to P ′
.

(iii) P ′
has the same event tra
es as P , ex
ept that some start(t)-events are removed.

If P ′
does not satisfy ℘ ∨ x = t, then there must be an event end(t′) with t 6= t′

that is not pre
eded by a start(t′)-event. But then also in a tra
e of P , there would
be an end(t′)-event not pre
eded by start(t′) (sin
e the tra
es only di�er in their

start(t)-events and start(t) 6= start(t′)).

(iv) P ′
has the same event tra
es as P , ex
ept that various end(·)-events are removed.

(Sin
e t is not ne
essarily 
losed, end(t) may be instantiated to di�erent end(·)-
events.) If a tra
e of P ′

does not satisfy ℘, this means there was an end(t′)-event
not pre
eded by a start(t′) event. Then also in P the 
orresponding end(t′)-event
is not pre
eded by a start(t′)-event, as P has the same start(·)-events, and more

end(·)-events.

(v) The semanti
s of satisfying tra
e properties are de�ned with respe
t to P running in

parallel with an adversary R not 
ontaining events. Thus the 
ase of an evaluation


ontext running with P is already 
overed. (It is important that E does not bind

fn(t1, . . . , tn) be
ause otherwise the terms t1, . . . , tn o

urring in the pro
ess would

be 
onsidered di�erent from those in ℘.)

(vi) There is a tra
e of P that 
onsists only of an end(t)-event. That tra
e does not

satisfy end(t) ⇒ start(t). Thus it satis�es ℘ only if ℘ 
ontains x = t as one of its

lauses.

25



(vii) νa.P has the same tra
es as P , ex
ept that o

urren
es of a in the P -tra
es are
repla
ed by a fresh restri
ted name a′. Thus, if P does not satisfy ℘, then there

is a tra
e 
ontaining an end(t)-event without pre
eding start(t)-event su
h that

t /∈ {t1, . . . , tn}. In the 
orresponding νa.P -tra
e, we have an end(t{a′/a})-event
without pre
eding start(t{a′/a})-event. Sin
e t /∈ {t1, . . . , tn} and a is fresh, also

t{a′/a} /∈ {t1, . . . , tn}. Hen
e the νa.P -tra
e does not satisfy ℘, either.

Lemma 3.7 Let s be a name. Let P be a pro
ess 
ontaining s only in 
onstru
ts of the

form (!(s, t)〈t′〉)|P ′
and (s, t)().P ′

(for arbitrary and possibly di�erent t, t′, P ′
).

Let plains(P ) denote the pro
ess resulting from P by repla
ing all o

urren
es

!(s, t)〈t′〉|P ′
and (s, t)().P ′

by P ′
.

Let ev s(P ) denote the pro
ess resulting from P by repla
ing all o

urren
es

!(s, t)〈t′〉|P ′
by event start(t).P ′

and (s, t)().P ′
by event end(t).P ′

.

Assume that ev s(P ) satis�es the tra
e property end(x) ⇒ start(x).
Then plains(P ) ≈ νs.P .

Proof. We 
all a pro
ess P s-well-formed if it 
ontains s only in 
onstru
ts of the form

!(s, t)〈t′〉|P ′
and (s, t)().P ′

(for arbitrary and possibly di�erent t, t′, P ′
). Given a multiset

T = {t1 7→ t′1, . . . , tn 7→ t′n} with ti, t
′
i terms, we 
all an event-pro
ess P T -good if P

satis�es the tra
e property end(x) ⇒ start(x) ∨ x = t1 ∨ · · · ∨ x = tn.
For example, the pro
ess P from the statement of the lemma is s-well-formed, and

ev s(P ) is ∅-good.
We de�ne the following relation R (up to stru
tural equivalen
e):

R :=
{(
νa.plains(P ), νas.(P | !(s, t1)〈t

′
1〉 | · · · | !(s, tn)〈t

′
n〉 | (s, u1)〈u

′
1〉 | · · · | (s, um)〈u′m〉

)

P s-well-formed, s, a distin
t names, evs(P ) is {t1, . . . , tn}-good
}

Here P, n,m, ti, t
′
i, ui, u

′
i, s, a refer to arbitrary values, not only to the values P, s from

the statement of the lemma.

We write short syncout s({t1 7→ t′1, . . . , tn 7→ t′n}; {u1 7→ u′1, . . . , un 7→ u′n}) for

!(s, t1)〈t′1〉 | · · · | !(s, tn)〈t
′
n〉 | (s, u1)〈u

′
1〉 | · · · | (s, um)〈u′m〉.

We now show that R is a bisimulation:

• If (A,B) ∈ R, and A ↓M , then B ↓M :

Then A = νa.plains(P ). Hen
e plains(P ) ↓M and a /∈ fn(M). Also, s /∈
fn(plains(P )), so s /∈ fn(M). By de�nition of plains(·), plains(P ) ↓M implies

P ↓M . Sin
e a, s /∈ fn(M), it follows B = νas.(P | . . . ) ↓M .

• If (A,B) ∈ R, and B ↓M , then A ↓M :

Then B = νas.(P |syncout s(T ;U)). Thus a, s /∈ fn(M) and P |syncout s(T ;U) ↓M .

Sin
e all 
hannels in syncouts(T ;U) are of the form (s, ·), we have

syncout s(T ;U) 6↓M .

9

Hen
e P ↓M . By de�nition of plains(P ) and sin
e M does

not 
ontain s, this implies plains(P ) ↓M . Hen
e A = νa.plains(P ) ↓M .

9

Here we impli
itly use the fa
t that (s, ·) 6=E M for any M not 
ontaining s (Lemma 3.1 (iii)).
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• If (A,B) ∈ R, and A→ A′
, then there exists a B′

with B →∗ B′
and (A′, B′) ∈ R:

Then A ≡ νa.plains(P ) and B ≡ νas.(P |syncout s(T ;U)). We 
all an event pro
ess

name-redu
ed , if it does not 
ontain unprote
ted restri
tions.

Without loss of generality, assume that P (and hen
e also evs(P )) is name-redu
ed

(otherwise we 
ould move the super�uous restri
tions into the νa).

Let a0 := a and P0 := P and T0 := T . We �rst 
onstru
t a sequen
e P1, . . . , Pk

of pro
esses and a sequen
e of lists of names a1, . . . , ak, and a sequen
e of sets

T1, . . . , Tk su
h that Pk does not 
ontain unprote
ted inputs (s, ·)().Q or unpro-

te
ted outputs !(s, ·)〈·〉, and for all i = 0, . . . , k we have:

(a) νs.(P |syncout s(T ;U)) →∗ νais.(Pi|syncout s(Ti;U)), and
(b) ev s(Pi) is Ti-good, and
(
) plains(P ) ≡ νai.plain

s(Pi).
(d) Pi is s-well-formed.

For i = 0, these 
onditions are trivially satis�ed. When 
onstru
ting Pi for i > 0,
we already have a pro
ess Pi−1 satisfying these 
onditions. We distinguish three


ases:

� If Pi−1 does not 
ontain unprote
ted inputs (s, ·)(), we are done (k := i− 1).

� If Pi−1 does 
ontain an unprote
ted input (s, t)() that is not part of a subterm
of the form !(s, ·)〈·〉|Q, then we 
an write Pi−1 as Pi−1 = νb.E[(s, t)().P ′] for
some names b and some evaluation 
ontext E that has no restri
tions over its

hole. Sin
e (s, t)() is not part of a subterm of the form !(s, ·)〈·〉|Q, evs(E) is
an evaluation 
ontext (!(s, ·)〈·〉|Q would have translated to event start(·).Q).
Without loss of generality, b ∩ fn(Ti−1, U) = ∅.

Sin
e evs(Pi−1) ≡ νb.evs(E)[event end(t).evs(P ′)] is Ti−1-good

by (b), Lemma 3.6 (vii) implies that ev s(E)[event end(t).ev s(P ′)]
is Ti−1-good. Sin
e E does not bind any names over its hole,

Lemma 3.6 (vi) implies that t =E t∗ for some t∗ ∈ Ti−1. Thus

Pi−1|syncout s(Ti−1;U) ≡ (νb.E[(s, t)().P ′])|syncout (Ti−1;U) →∗

(νb.E[P ′])|syncout(Ti−1;U). Sin
e without loss of generality, b∩ fn(Ti−1, U) =
∅, (νb.E[P ′])|syncout (Ti−1;U) ≡ νb.Pi|syncout(Ti−1;U) with Pi := E[P ′].

Hen
e νs.P |syncout s(T ;U)
(a)

→∗νai−1s.(Pi−1|syncouts(Ti−1;U)) →∗

νai−1sb.Pi|syncout s(Ti−1;U) ≡ νais.Pi|syncout s(Ti;U) with Ti := Ti−1

and ai := ai−1b. Thus (a) is satis�ed by Pi, ai, Ti.

Sin
e evs(Pi−1) ≡ νb.ev s(E)[event end(t).ev s(P ′)] is Ti−1-good by (b) and

thus Ti-good, we have by Lemma 3.6 (vii) that evs(E)[event end(t).ev s(P ′)]
is Ti-good. Sin
e E does not bind names over its hole, neither does evs(E).
Thus by Lemma 3.6 (iv), evs(E)[ev s(P ′)] = evs(Pi) is Ti-good. Thus (b) is

satis�ed by Pi, ai, Ti.

Sin
e Pi−1 = νb.E[(s, t)().P ′] is s-well-formed by (d), so is Pi = E[P ′]. Thus
(d) is satis�ed by Pi, ai, Ti.
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Finally, plains(Pi−1) = νb.plains(E)[plain s(P ′)] = νb.plains(Pi). Sin
e by

(
) we have that plains(P ) ≡ νai−1.plain
s(Pi−1), we have plains(P ) ≡

νai.plain
s(Pi). Thus (
) is satis�ed by Pi, ai, Ti.

� If Pi−1 
ontains an unprote
ted output !(s, t)〈t′〉 that is not part of a subterm
of the form !(s, ·)〈·〉|Q, then we 
an write Pi−1 as Pi−1 = νb.E[(s, t)〈t′〉|P ′] for
some names b and some evaluation 
ontext E that has no restri
tions over its

hole. Sin
e (s, t)〈t′〉 is not part of a subterm of the form !(s, ·)〈·〉|Q, ev s(E) is
an evaluation 
ontext (!(s, ·)〈·〉|Q would have translated to event start(·).Q).
Without loss of generality, b ∩ fn(Ti−1, U) = ∅.

We have Pi−1|syncout s(Ti−1;U) ≡ (νb.E[!(s, t)〈t′〉|P ′])|syncout(Ti−1;U)
(∗)

≡
νb.(E[!(s, t)〈t′〉|P ′]|syncout (Ti−1;U)) ≡ νb.(E[P ′]|syncout(Ti;U)) with

Ti := Ti−1 ∪ {t 7→ t′}. Here (∗) uses that b ∩ fn(Ti−1, U) =

∅. Hen
e νs.P |syncouts(T ;U)
(a)

→∗νai−1s.(Pi−1|syncout s(Ti−1;U)) →∗

νai−1sb.(E[P ′]|syncout s(Ti;U)) ≡ νais.(Pi|syncout s(Ti;U)) with Pi := E[P ′]
and ai := ai−1b (remember that Ti = Ti−1 ∪ {t 7→ t′}. Thus (a) is satis�ed by

Pi, ai, Ti.

Sin
e evs(Pi−1) ≡ νb.evs(E)[event start(t).evs(P ′)] is Ti−1-good by (b),

we have by Lemma 3.6 (vii) that evs(E)[event start(t).evs(P ′)] is Ti−1-good.

Sin
e E does not bind names over its hole, neither does ev s(E). Thus by

Lemma 3.6 (iii), ev s(E)[ev s(P ′)] = ev s(Pi) is Ti-good. Thus (b) is satis�ed

by Pi, ai, Ti.

Sin
e Pi−1 = νb.E[(s, t)〈t′〉.P ′] is s-well-formed by (d), so is Pi = E[P ′]. Thus
(d) is satis�ed by Pi, ai, Ti.

That (
) is satis�ed by Pi, ai, Ti is shown as in the previous 
ase.

Note that in the last two 
ases, the size of Pi is smaller than that of Pi−1, so

we eventually rea
h the �rst 
ase. Hen
e the 
onstru
tion terminates and we

get a pro
ess Pk that satis�es (a)�(d) and that does not 
ontain unprote
ted

inputs (s, ·)() or unprote
ted outputs !(s, ·)〈·〉. We have A ≡ νa.plains(P )
(
)

≡
νaak.plain

s(Pk). Thus A → A′
implies that νaak.plain

s(Pk) → A′
and and

thus plains(Pk) → A′′
where A′′

is A′
with the restri
tions νaak removed. (I.e.

A′ ≡ νaak.A
′′
.) Sin
e Pk is s-well-formed by (d) and does not 
ontain unprote
ted

inputs (s, ·)() or unprote
ted outputs !(s, ·)〈·〉, by inspe
tion of the de�nition of

plains
, ev s, and →, it follows that Pk → P ′

and ev s(Pk) → ev s(P ′) for some

s-well-formed P ′
with plains(P ′) ≡ A′′

. The redu
tion evs(Pk) → evs(P ′) does

not use the EVENT rule. Sin
e evs(Pk) is Tk-good by (b), from Lemma 3.6 (ii)

we have that evs(P ′) is Tk-good. Let B′ := νaaks.(P
′|syncout s(Tk;U)). Then

(A′, B′) ≡ (νaak.plain
s(P ′), B′) ∈ R. Finally, B = νas.(P |syncout s(T ;U))

(a)

→∗

νaaks.(Pk|syncout
s(Tk;U)) → νaaks.(P

′|syncout s(Tk;U)) = B′
.

• If (A,B) ∈ R, and B → B′
, then there exists an A′

with A→∗ A′
and (A′, B′) ∈ R:
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We have A ≡ νa.plains(P ) and B ≡ νas.(P |syncout s(T ;U)) for some s-well-formed

P and T -good ev s(P ).

We distinguish three 
ases for B → B′
:

� B → B′
is a redu
tion within syncouts(T ;U):

In this 
ase, the redu
tion of the form E[!(s, t)〈t′〉] → E[(s, t)〈t′〉|!(s, t)〈t′〉] for
some t, t′. Thus B′ ≡ νas.(P |syncout s(T ;U ∪ {t 7→ t′})). Then A = A′ :=
νa.plains(P ) and evs(P ) is T -good. Hen
e A→∗ A′

and (A′, B′) ∈ R.

� B → B′
is a COMM redu
tion between P and syncouts(T ;U):

Then for some terms t, t′, some pro
ess Q, and some evaluation 
ontext E, we
have P ≡ E[(s, t)().Q] for some t, t′, and B′ ≡ νas.(P ′|syncout s(T ;U ′)) with
P ′ := E[Q] and U ′

with U = U ′ ∪ {t 7→ t′}. Sin
e plains((s, t)().Q) =
plains(Q), we have A ≡ A′ := νa.plains(P ′). Furthermore, evs(P ) =
ev s(E)[event end(t).evs(Q)] and evs(P ′) = evs(E)[ev s(Q)]. Thus by

Lemma 3.6 (iv), the fa
t that evs(P ) is T -good implies that evs(P ′) is T -good.

Hen
e A→∗ A′
and (A′, B′) ∈ R.

� B → B′
is a redu
tion within P .

Thus P → P ′
for some P ′

, and B′ ≡ νas.(P ′|syncout s(T ;U)). Sin
e P is

s-well-formed, we have P ≡ E[Q] → E[Q′] ≡ P ′
for some evaluation 
ontext

E and pro
ess Q, su
h that Q is of the form !(s, t)〈t′〉|Q1, or Q is a redex

not of the form !(s, ·)〈·〉, or Q = M〈N〉.Q1|M ′(x).Q2 with M 6=E (s, ·). (We


annot have a redu
tion on a 
hannel (s, ·), sin
e s-well-formed terms have

outputs on su
h 
hannels only below bangs.) Without loss of generality, we


an assume that all unprote
ted o

urren
es of !(s, t)〈t′〉 in E are not below

a restri
tion (otherwise we 
ould move these restri
tions from E to νa).

Let E∗
be E with all unprote
ted o

urren
es of !(s, t)〈t′〉 removed (for arbi-

trary t, t′). Let T ∗
be the multiset of the pairs (t 7→ t′) from these o

urren
es.

Then E[Q] ≡ E∗[Q]|syncout s(T ∗;∅). Sin
e evs(P ) = ev s(E[Q]) is T -good,
and sin
e ev s(E∗[Q]) results from ev s(P ) by removing event start(t) for all
(t 7→ ·) ∈ T ∗

, by Lemma 3.6 (iii) we have that ev s(E∗[Q]) is T ∪ T ∗
-good.

We now distinguish on the form of Q:

∗ If Q =!(s, t)〈t′〉|Q1:

Then B′ ≡ νas.(E∗[Q1]|syncout s(T ′;U ′)) for T ′ := T ∪ T ∗ ∪ {t 7→
t′} and U ′ := U ∪ {t 7→ t′}, and A′ := νas.plain(E∗[Q1]) =
νas.plain(E∗[!(s, t)〈t′〉|Q1]) ≡ A. And sin
e ev s(E∗[Q]) =
ev s(E∗)[event start(t).ev s(Q1)] is T∪T ∗

-good, we have that ev s(E∗[Q]) ≡
ev s(E∗)[ev s(Q1)] is T

′
-good by Lemma 3.6 (iii). Thus A →∗ A′

and

(A′, B′) ∈ R.

∗ If Q is a redex, or Q = M〈N〉.Q1|M ′(x).Q2 with M =E M
′
and M 6=E

(s, ·):
Then B′ ≡ νas.(P ′|syncouts(T ′;U)) with P ′ = E∗[Q′] and Q 7→ Q′

and

T ′ := T ∪ T ∗
. And A → A′ := νa.plain(P ′). And evs(Q) → evs(Q′).
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Sin
e E∗
is an evaluation 
ontext and does not 
ontain unprote
ted

!(s, t)〈t′〉, we have that evs(E∗) is an event evaluation 
ontext. Hen
e

ev s(E∗[Q]) = ev s(E∗)[ev s(Q)] → ev s(E∗)[ev s(Q′)] = ev s(P ′), not us-

ing the EVENT rule. By Lemma 3.6 (ii) and using that evs(E∗[Q]) is

T ′
-good, this implies that ev s(P ′) is T ′

-good, too. Thus A →∗ A′
and

(A′, B′) ∈ R.

• If (A,B) ∈ R, and E is an evaluation 
ontext, then (E[A], E[B]) ∈ R:

We have A ≡ νa.plains(P ) for some s-well-formed P . And B ≡ νas.(P |
syncout s(T ;U)) for some sets T,U . And ev s(P ) is T -good. Without loss of general-

ity, a, s do not o

ur in E (neither bound nor free). Let νb.E′
be E with all restri
-

tions over the hole moved up into b. Then E[A] ≡ νb.E′[A] and E[B] ≡ νb.E′[B].

Sin
e P is s-well-formed, and E and hen
e E′
does not 
ontain s, E′[P ] is s-well-

formed.

Sin
e E does not 
ontain a, s, we have that abs are distin
t names.

Sin
e ev s(P ) is T -good, by Lemma 3.6 (v) we have evs(E′[P ])) = E′[evs(P )] is T -
good. (We use the fa
t that E′

does not bind the fn(T ) as they have been moved

into νb.)

Thus (νab.plains(E′[P ]), νabs.(E′[P ]|syncout s(T ;U))) ∈ R with E′[P ] instead of

P and ab instead of a.

By de�nition of plains(·), E[A] ≡ νb.E′[A] ≡ νb.E′[νa.plains(P )] =
νab.plains(E′[P ]). And E[B] ≡ νb.E′[B] ≡ νb.E[νas.(P |syncout s(T ;U))] ≡
νabs.(E′[P ]|syncout s(T ;U)).

Sin
e R is 
losed under stru
tural equivalen
e, this implies that (E[A], E[B]) ∈ R.

Sin
e R is a bisimulation, and (plains(P ), νs.P ) ∈ R (using P, s as in the statement

of the lemma), we have plains(P ) ≈ νs.P . �

3.2 Unpredi
tability of non
es

Lemma 3.8 (Unpredi
tability of non
es) Let C be a 
ontext not binding the vari-

able x and let P,Q be pro
esses. Then νr.C[if x = r then P else Q] ∼∼∼ νr.C[Q].

Proof. In the following, a multi-hole 
ontext is a 
ontext C with zero, one, or more holes.

C[P ] means C with every o

urren
e of the hole repla
ed by the same pro
ess P .
We de�ne the following relation R:

R :=
{
(νr.C[if T = r then P else Q], νr.C[Q])

}

up to stru
tural equivalen
e. Here C ranges over multi-hole 
ontexts, T over terms,

r /∈ fv(T ) over names, and P,Q over pro
esses.

We show that R is a bisimulation:
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• If (A,B) ∈ R and A ↓M , then B →∗↓M :

Immediate sin
e �if T = r then P else Q� does not have unprote
ted outputs.

• If (A,B) ∈ R and B ↓M , then A→∗↓M :

If the output on M is in C, A ↓M . Otherwise the output is in an unprote
ted

instan
e of Q in νr.C[Q] ≡ B. Sin
e r /∈ fn(T ), we have T 6=E r by Lemma 3.1 (i)

and hen
e (if T = r then P else Q) → Q. Then A → A′
where A′

results from

repla
ing one instan
e of �if T = r then P else Q� by Q. Then A′ ↓M .

• If (A,B) ∈ R and A→ A′
then there is a B′

with B →∗ B′
and (A′, B′) ∈ R:

Then A ≡ νr.C[if T = r then P else Q] and B ≡ νr.C[Q]. If the redu
tion A→ A′

takes pla
e in C, then there is a 
orresponding redu
tion B → B′
and (A′, B′) ∈ R.

Thus we 
an assume that one of the �if T = r then P else Q� is being redu
ed in

A. Sin
e T 6=E r by Lemma 3.1 (i), that subpro
ess redu
es to Q. Thus A′ ≡
νr.C ′[if T = r then P else Q] where C ′

is C with one of the holes repla
ed by Q.
Then B′ := B ≡ νr.C[Q] = νr.C ′[Q]. Hen
e B →∗ B′

and (A′, B′) ∈ R.

• If (A,B) ∈ R and B → B′
then there is an A′

with A→∗ A′
and (A′, B′) ∈ R:

Then A ≡ νr.C[if T = r then P else Q] and B ≡ νr.C[Q]. As before, we have

(if T = r then P else Q) → Q. The redu
tion B → B′
may involve C and up to two

instan
es of Q. We 
an thus write B as B ≡ C ′′[Q] where C ′′
results from repla
ing

in C the holes 
orresponding to these instan
es of Q. These instan
es of Q are not

prote
ted, so the holes we have repla
ed by Q are not prote
ted, either. Thus A→∗

C ′′[if T = r then P else Q] =: A′′
. Then the redu
tion B ≡ C ′′[Q] → B′

involves

only C ′′
. Hen
e B′ ≡ C ′[Q] for some C ′

, and A′′ → C ′[if T = r then P else Q] =:
A′
. Thus A→∗ A′

and (A′, B′) ∈ R.

• If (A,B) ∈ R and E is an evaluation 
ontext, then (E[A], E[B]) ∈ R:

Then A ≡ νr.C[if T = r then P else Q] and B ≡ νr.C[Q]. Without loss of gen-

erality, r /∈ fn(E), bn(E). Hen
e E[A] ≡ νr.E[C[if T = r then P else Q]] and
E[B] ≡ νr.E[C[Q]]. Hen
e (E[A], E[B]) ∈ R (with E[C] instead of C).

We 
an now show the lemma. Let C,P,Q, r be as in the lemma. Let σ be a

substitution 
losing νr.C[if x = r then P else Q] and νr.C[Q]. Without loss of gener-

ality, r /∈ fn(σ) (otherwise we rename r and 
hange C,P,Q a

ordingly). In parti
ular,

σ(x) will be some 
losed term T with r /∈ fn(T ). Then C[if x = r then P else Q]σ =
C ′[if T = r then P ′

else Q′] and C[Q]σ = C ′[Q′] where C ′, P ′, Q′
are the result of apply-

ing σ to C,P,Q. (In the 
ase of P,Q, restri
ted to those variables not bound by C.) And
(C ′[if T = r then P ′

else Q′], C ′[Q′]) ∈ R. Thus C ′[if T = r then P ′
else Q′] ≈ C ′[Q′].

Sin
e this holds for any 
losing σ, we have C[if x = r then P else Q] ∼∼∼ C[Q]. �
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4 Symboli
 UC

Intuition. We start by presenting the intuition that underlies the original UC frame-

work [Can01℄ and thus also our work. The basi
 idea is to de�ne se
urity of a proto
ol π
by 
omparing it to a so-
alled ideal fun
tionality F . The ideal fun
tionality is a ma
hine

that by de�nition does what the proto
ol should a
hieve. For example, if the task of the

proto
ol is to transmit a messagem se
urely from Ali
e to Bob, then the fun
tionality is a

trusted ma
hine that expe
ts a message m from Ali
e over a se
ure 
hannel, sends to the

adversary that su
h a message was re
eived (but does not send the message itself), and

then after the adversary allows delivery, forwards the message to Bob. (In the applied pi


al
ulus, this fun
tionality would be netscstart ().ioA(x).(netnotify〈〉 | netdeliver ().ioB 〈x〉)
where the net ...-
hannels belong to the adversary; see De�nition 6.2 below.) In a sense,

the fun
tionality is an abstra
t spe
i�
ation of the proto
ol behavior, and the proto
ol is

supposed to be a 
on
rete instantiation of that spe
i�
ation using 
rypto, in a way that

preserves the se
urity properties of the spe
i�
ation.

So how to model that a proto
ol π is as se
ure as a fun
tionality F? The basi
 idea

is to ensure that any atta
k on π is also possible on F . Sin
e by assumption F does not

allow any atta
ks, this implies that π does not allow any atta
ks either, so π is se
ure. To

model that any atta
k on π is possible on F , we require that for any adversary atta
king

π, there is a 
orresponding adversary (the �simulator�) atta
king F that performs an

equivalent atta
k. And what do we mean by equivalent? Any �environment� that 
an

observe the overall proto
ol out
ome (inputs and outputs), and that 
an talk to the

adversary (i.e., it learns what se
ret information the adversary might have obtained),


annot distinguish between the two atta
ks. In other words, for any adversary A, there
is a simulator S su
h that for all environments Z, we have that π+A+Z (the proto
ol

running with A and Z) and F + S + Z are indistinguishable from Z's point of view.

Noti
e that we do not wish to allow Z to observe the internal proto
ol 
ommuni
ation �

doing so would require that π and F work the same way internally, but we only want that

the two have the same �observable e�e
ts�, we do not 
are about their inner workings.

Due to this, in a formal de�nition, we need to distinguish between the proto
ol-internal


ommuni
ation 
hannels (net-
hannels), and the proto
ol's interfa
e (io-
hannels). Only

the latter is a

essible to the environment.

Formal de�nition. To formalize the above intuition in the applied pi 
al
ulus, we

�rst formalize the distin
tion between 
hannels that make up the proto
ol's input/output

interfa
e, and those that make up the proto
ol's internal 
hannels. We partition the set of

all names into two sets IO and NET (both in�nite). We will then require adversaries and

simulators to only 
ommuni
ate on NET 
hannels. (We do not forbid the environment

to a

ess NET 
hannels. But we will give the adversary/simulator the ability to rename

and hide NET 
hannels, and thus e�e
tively prote
t the proto
ol's NET 
hannels from

the environment.)

In order to keep the distin
tion between NET-
hannels and IO-
hannels, we also want

to avoid that NET-
hannels are transmitted to the environment (we use this in a few
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pla
es in our proofs):

De�nition 4.1 We 
all a pro
ess P NET-stable if every name n ∈ NET ∩ fn(P ) in P

o

urs only in 
hannel identi�ers (i.e., in parti
ular, P does not send n to the environ-

ment).

Note that there is no restri
tions on the bound names. Thus a NET-stable adversary
is free to share arbitrary fresh names with the environment and to use them as 
hannels.

We now de�ne the 
on
ept of an adversary. Essentially, an adversary is just a pro
ess

A that is intended to intera
t with the proto
ol (or fun
tionality). Sin
e the adversary


onne
ts to the proto
ol over some NET-names, the spe
i�
ation of the adversary ad-

ditionally in
ludes a list of NET-names n of the proto
ol that will be a

essed by A
(and are thus private between A and the proto
ol). Finally, an adversary/simulator

sometimes needs to rename NET-
hannels of the proto
ol/fun
tionality to avoid name


lashes. Sin
e NET-
hannels are proto
ol internal and not part of the externally visible

interfa
e, it should not matter whether the same name is used in proto
ol and fun
tional-

ity or not. This is a
hieved by letting the adversary rename NET-names, we model this

by spe
ifying a renaming ϕ as part of the adversary.

De�nition 4.2 An adversary is a triple (A,ϕ,n) where A is a 
losed NET-stable pro
ess
with IO ∩ fn(A) = ∅, ϕ : NET → NET a bije
tion and n a list of names n ⊆ NET.

We 
an now state our se
urity de�nition. Both proto
ol and fun
tionality are modeled

by pro
esses P and Q , respe
tively. An adversary (A,ϕA, nA) 
onne
ting to P is modeled

as νnA.(PϕA|A), as we would expe
t from the meaning of ϕ and n explained above. To

model that P emulates Q, we would require that νnA.(PϕA|A) and νnS .(QϕS |S) are

indistinguishable for any environment for a suitable simulator (S,ϕS , nS). We do not

need to spe
ify the environment expli
itly be
ause we have the notion of observational

equivalen
e: νnA.(PϕA|A) ≈ νnS .(QϕS |S) means that no 
ontext 
an distinguish the

left and right hand side. The following de�nition 
aptures this, ex
ept that we make one

simpli�
ation: Instead of quantifying over all adversaries (A,ϕA, nA), we �x A := 0, ϕA

the identity, and nA the empty list, so that νnA.(PϕA|A) = P . (Su
h an adversary, that

essentially just leaves all NET-
hannels a

essible to the environment, is usually 
alled

a dummy adversary .) This de�nition is often te
hni
ally mu
h simpler to handle, and

Lemma 4.4 below guarantees that it is equivalent to the more natural de�nition that

quanti�es over all adversaries.

De�nition 4.3 Let P and Q be pro
esses. We say P emulates Q (written P ≤ Q) i�

there exists an adversary (S,ϕ, n) su
h that P ∼∼∼ νn.(Qϕ|S). (S,ϕ, n) will often be 
alled

simulator.

We use

∼∼∼ instead of ≈ to get a more general de�nition, allowing non-
losed P,Q. For
the appli
ations presented in this paper, the spe
ial 
ase using ≈ (whi
h is equivalent to

our de�nition restri
ted to 
losed pro
esses) is su�
ient. (Note however that we would

still use

∼∼∼ to state various te
hni
al lemmas more 
onveniently.)
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Note that there is no formal distin
tion between proto
ols and fun
tionalities. Indeed,

it 
an sometimes be 
onvenient to 
ompare two proto
ols P,Q. Furthermore, note that

≤ is weaker than

∼∼∼: P ∼∼∼ Q entails P ≤ Q (and Q ≤ P ) with the simulator (0, id , ∅).
As observed in [KDMR08℄ there are several approa
hes to de�ne simulation based se-


urity. The following Lemma shows that our de�nition (resembling strong simulatability)

is equivalent to the two alternatives: bla
k-box simulatability and universally-
omposable

simulatability (the latter being the de�nition that 
orresponds dire
tly to the intuition

given at the beginning of this se
tion).

Lemma 4.4 For pro
esses P , Q we have that the following are equivalent:

(i) strong simulatability: P ≤ Q
(ii) bla
k-box simulatability: ∃(S,ϕS , nS) ∀(A,ϕA, nA) νnA.(PϕA|A) ∼∼∼

νnA.((νnS.(QϕS |S))ϕA|A)
(iii) universally-
omposable simulatability: ∀(A,ϕA, nA) ∃(S,ϕS , nS) νnA.(PϕA|A) ∼∼∼

νnS .(QϕS |S)
where all triples are adversaries a

ording to De�nition 4.2.

Proof.

• (i) ⇒ (ii):

P ≤ Q⇒ ∃(S,ϕS , nS) P ∼∼∼ νnS .(QϕS |S)
(∗)
⇒ ∀ bije
tions ϕA PϕA

∼∼∼ (νnS .(QϕS |S))ϕA

(∗∗)
⇒ ∀(A,ϕA, nA) νnA.(PϕA|A) ∼∼∼ νnA.((νnS .(QϕS |S))ϕA|A)

(∗) sin
e ∼∼∼ is 
losed under renaming and (∗∗) sin
e ∼∼∼ is 
losed under the appli
ation

of evaluation 
ontexts.

• (ii) ⇒ (iii): Let (S,ϕS , nS) be the simulator from (ii), (A,ϕA, nA) be an adversary

and ϕ a bije
tion on names su
h that nS(ϕ◦ϕA)∩ fn(A) = ∅ and ϕ is the identity

on the free names of Q(ϕA ◦ ϕS) and SϕA (this ϕ 
an be used as α-
onversion in

step three below). We observe

νnA.((νnS .(QϕS |S))ϕA|A)

≡ νnA.(νnSϕA.(Q(ϕA ◦ ϕS)|SϕA)|A)

≡ νnA.(νnS(ϕ ◦ ϕA).(Q(ϕ ◦ ϕA ◦ ϕS)|S(ϕ ◦ ϕA))|A)

≡ νnA.νnS(ϕ ◦ ϕA).(Q(ϕ ◦ ϕA ◦ ϕS)|S(ϕ ◦ ϕA)|A)

and thus (SA, nSA
, ϕSA

) := (S(ϕ ◦ ϕA)|A,nA ∪ nS(ϕ ◦ ϕA), (ϕ ◦ ϕA ◦ ϕS)) is an

adversary su
h that

νnA.(PϕA|A) ∼∼∼ νnSA
.(QϕSA

|SA)

• (iii) ⇒ (i) We 
onstru
t the simulator from the last step for the adversary (0,∅, id)
and have (i).
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Lemma 4.5 (Re�exivity, transitivity) Let P,Q,R be pro
esses. Then P ≤ P . And

if P ≤ Q and Q ≤ R, then P ≤ R.

Proof. P ≤ P follows dire
tly from De�nition 4.3 by setting S := 0, ϕ as the identity,

and n := ∅.
Assume now that P ≤ Q and Q ≤ R. Then there are pro
esses S1, S2 with IO ∩

fn(S1) = IO ∩ fn(S2) = ∅, bije
tions ϕ1, ϕ2 : NET → NET, and lists of names n1, n2 ⊆
NET su
h that P ∼∼∼ νn1.(Qϕ1|S1) and Q ∼∼∼ νn2.(Rϕ2|S2). Without loss of generality we


an 
hoose n2 su
h that n2ϕ1 ∩ fn(S1) = ∅. It follows

P ∼∼∼ νn1.(Qϕ1|S1)
(∗)
∼∼∼ νn1.((νn2.(Rϕ2|S2))ϕ1|S1)]
(∗∗)

≡ νn1.((νn2ϕ1.(R(ϕ1 ◦ ϕ2)|S2ϕ1))|S1)
(∗∗∗)

≡ νn1.νn2ϕ1.(R(ϕ1 ◦ ϕ2)|S2ϕ1|S1)

Here (∗) follows sin
e ∼∼∼ is 
losed under the appli
ation of evaluation 
ontexts and under

renaming of free names.

And (∗∗) follows sin
e for any pro
ess R, we have (νn2.R)ϕ1 ≡ νn2ϕ1.(Rϕ1).
And (∗∗∗) follows sin
e n2ϕ1 ∩ fn(S1) = ∅.
Thus, 
hoosing n := n1∪n2ϕ1, ϕ := ϕ1◦ϕ2, and S := S2ϕ1|S1, we get P ∼∼∼ νn.(Rϕ|S).

Hen
e P ≤ R. �

Corruption. So far, we have not yet modeled the ability of the adversary to 
orrupt

parties. There are two main variants of 
orruption: stati
 and adaptive 
orruption. In

the 
ase of stati
 
orruption, it is determined in the beginning of the proto
ol who is 
or-

rupted. For adaptive 
orruption, 
orruption may o

ur during the proto
ol and depend

on proto
ol messages. Modeling stati
 
orruption is quite easy in our model: When a

party X is 
orrupted, we simply remove the subpro
ess PX 
orresponding to that party

from the proto
ol P , make all NET-names o

urring in PX publi
, and � in the 
ase of a

fun
tionality � additionally rename all IO-names of PX into NET-names. For example,

if P = νnet1net2.(PA|PB |F) where net1 o

urs in PA and PB and net2 only in PB , and

F has IO-names ioFA, ioFB then 
orrupting A leads to P ′ = νnet2.(PB |F{netFA/ioFA}).
And a fun
tionality G with IO-names ioA, ioB be
omes G{netA/ioA}.

So, if we want to verify that a P emulates G for any 
orruption, we need to 
he
k:

• Un
orrupted: P ≤ G.

• Ali
e 
orrupted: νnet2.(PB |F{netFA/ioFA}) ≤ G{netA/ioA}.

• Bob 
orrupted: PA|F{netFB/ioFB} ≤ G{netB/ioB}.
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An example is given in Se
tion 9.1 in the 
ase of UC se
ure 
ommitments.

Modeling adaptive 
orruptions is more 
omplex. For this one would need to introdu
e

spe
ial parties that rea
t to a spe
ial signal from the environment and then swit
h into

a 
orrupted mode. We do not follow that approa
h here.

5 Composition

One of the salient properties of the UC framework is 
omposition. Assume a proto
ol

π UC-emulates a fun
tionality F . And ρ is a proto
ol using F . Then ρπ/F (whi
h is ρ
with F repla
ed by π) UC-emulates ρ. And hen
e, by transitivity, if ρ emulates some

fun
tionality G, ρπ/F UC-emulates G.
In our 
ontext, ideally we would like a 
omposition theorem su
h as P ≤ Q =⇒

C[P ] ≤ C[Q] for arbitrary 
ontexts C. Unfortunately, the situation is not as simple.

A simple observation is that if C may 
ontain NET-names, then 
omposition will not

work: For example, assume P ≤ Q, and P is a proto
ol using some NET-
hannel net to

implement an ideal fun
tionality Q (whi
h does not use net). And C = �|R re
eives on

a NET-
hannel net and outputs the re
eived messages on an IO-
hannel io. Then C[P ]
will output proto
ol-internal messages on io (observable to the environment), while C[Q]
will not (sin
e the fun
tionality Q will not use the 
hannel net). Hen
e C[P ] 6≤ C[Q].
(We give a formal analysis of the various 
ases in whi
h the 
omposition theorem does

not hold in Appendix A.)

Thus a �rst 
ondition on C is that it may not use the same NET-names. In fa
t,

we show below (Theorem 5.37) that if C is an evaluation 
ontext binding only IO-names

and not using any of the NET-names of P,Q, then P ≤ Q =⇒ C[P ] ≤ C[Q] holds.
This already allows for a large range of 
omposition operations. (In parti
ular, we


an 
onne
t di�erent proto
ols through their interfa
es se
urely by 
omposing them in

parallel, and restri
ting the IO-
hannels through whi
h they are 
onne
ted.) But one

important operation is missing, namely 
on
urrent 
omposition. Con
urrent 
omposition

means that if P ≤ Q, then P ′ ≤ Q′
where P ′


onsists of many instan
es of P and Q′

analogously. Su
h a result is important in many 
ases, e.g., if P is a single session key-

ex
hange, but an embedding proto
ol needs a large number of keys. The most obvious

way to model this in our setting would be a theorem stating P ≤ Q =⇒ !P ≤ !Q.
Unfortunately, su
h a theorem 
annot hold, either. The intuitive reason is as follows:

When trying to 
onstru
t a simulator for !Q, then this simulator will not be able to

distinguish messages from di�erent instan
es of Q. The simulator will then be unable to

even de
ide whether he talks to a single instan
e or several. For example:

P := νnm.
(
io1〈n〉 | io2(x).if x = n then net2〈m〉

| io3(x).if x = n then net3〈m〉
)

Q := νn.
(
io1〈n〉 | io2(x).if x = n then net2〈empty〉

| io3(x).if x = n then net3〈empty〉
)

Here we have P ≤ Q be
ause a simulator re
eiving empty on net2 or net3 just has to

repla
e it by some fresh name m. However, we do not have !P ≤ !Q. Depending on
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the messages the environment sends on io2, !P will output either the same name m on

net2,net3, or di�erent names m,m′
. However, a simulator intera
ting with !Q in both


ases gets empty , empty on net2,net3. The simulator then does not know whether he

should 
hange this into m,m or m,m′
for fresh m,m′

. Thus the simulator fails. (The

formal argument is in Appendix A.)

So we 
annot have a theorem stating P ≤ Q =⇒ !P ≤ !Q. Does this mean 
on-


urrent 
omposition is not possible? No, just that ! is not the right operator to model

it. In the 
omputational UC framework, 
omposition also does not involve a number of

indistinguishable instan
es. Instead, ea
h instan
e of P and Q is given a unique session

id, and all 
ommuni
ation is tagged with that session id so that it 
an be routed to the

right instan
e. In our setting, one possibility to a
hieve this is to de�ne an operator !!
[Che66℄ su
h that !!P behaves like an unlimited number of instan
es of P , where ea
h

instan
e is tagged with a unique session id sid . I.e., ea
h 
hannel C in P is repla
ed by

(sid , C).10

The question is how to de�ne !!P . The applied pi 
al
ulus does not have any 
onstru
t

that 
onveniently allows to perform in�nite bran
hing with di�erent ids. Thus, we have

to work around this restri
tion by introdu
ing a more elaborate 
onstru
tion. As a �rst

step, we de�ne the tagged version P ((M)) of the pro
ess P :

De�nition 5.1 Let P be a pro
ess, and let M be a term. We write P((M )) for P with

every o

urren
e of C (x ) repla
ed by (M ,C )(x ) and every o

urren
e of C 〈T 〉 repla
ed
by (M ,C )〈T 〉. (If M 
ontains bound variables or bound names from P , we assume that

these bound variables/names are �rst renamed in P .)

Now we have to somehow de�ne !!P as P ((s1))|P ((s2))| . . . where s1, s2, . . . range over
some in�nite set SID of session ids. Using produ
t pro
esses (see Se
tion 2.2) this is

easy: !!P :=
∏

x∈SID P ((x)) does the job. However, produ
t pro
esses are a nonstan-

dard extension of the applied pi 
al
ulus, but we wish to stay 
ompatible with existing

variants (in parti
ular, to be able to use Proverif for veri�
ation). Thus, instead of

using

∏
x∈SID P ((x)), we de�ne a suitable 
ontext C su
h that C[P ((x))] behaves like∏

x∈SID P ((x)). Then we 
an de�ne !!P := C[P ((x))]. Of 
ourse, depending on the parti
-

ular set SID we 
hoose, a di�erent 
ontext C will be needed. Instead of �xing a parti
ular

one, we thus give a general de�nition what 
ontexts are suitable for a given set SID , and

from then on, just assume an arbitrary su
h 
ontext.

De�nition 5.2 (Indexing 
ontext) Given a set S of terms, a variable x (will be used

for tagging), and names n, we 
all a 
losed 
ontext Cx ,n with bn(Cx ,n) = n and fn(Cx ,n) =
∅ (not 
ontaining indexed repli
ations) an S-indexing 
ontext i� for all pro
esses P with

10

One might instead 
onsider tagging the messages sent over the 
hannel with sid . This, however, does

not work as well: One would need a spe
i�
 multiplexer pro
ess that given a message (sid , T ) dis
overs
the 
orresponding instan
e of P and delivers to it. This might be possible, but is probably 
onsiderably

more 
ompli
ated than the approa
h we take below.
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x 6∈ bv(P) 11

and n ∩ fn(P) = ∅ we have

Cx ,n [P((x ))] ∼∼∼
∏

x∈S

P((x ))

In the following, we �x a set SID of terms 
ontaining no names or variables. The set

SID will represent the set of all session IDs. We assume that id =E id ′
entails id = id ′

for id , id ′ ∈ SID (di�erent IDs are never equivalent by the equational theory).

Note that not for every set SID a SID-indexing 
ontext exists. For example, if SID is

not semi-de
idable (but the equational theory is), then there is no SID-indexing 
ontext.

One might be 
on
erned that our de�nition of SID -indexing 
ontexts 
annot be ful�lled.

The following de�nition shows that this is not the 
ase, at least if we use suitably en
oded

bitstrings as SIDs.

De�nition 5.3 Assume that a nullary 
onstru
tor nil and unary 
onstru
tors zero and

one are part of our symboli
 model. Let SIDbits be the set of all terms built from nil , zero
and one. Assume furthermore that for id , id ′ ∈ SIDbits in our symboli
 model id =E id ′

entails id = id ′
. Let

CSIDbits
x ,a := νa.(a〈nil〉|!a(x ).(a〈zero(x )〉|a〈one(x )〉|�))

Intuitively, CSIDbits
x ,a is a fa
tory with parameters x and a for tagged instan
es of P

that realizes the abstra
t 
onstru
tion of

∏
x∈SIDbits

P ((x)). We now show that CSIDbits
x ,a

a
tually is an SIDbits-indexing 
ontext. Towards this goal we �rst de�ne an intermediate

representation of CSIDbits
x ,a .

De�nition 5.4 Let P be a pro
ess. We write Pn
for n parallel instan
es of P (P | . . . |P).

We de�ne the following fun
tions on the set of pro
esses:

Gx ,a(P) :=a(x ).(a〈zero(x )〉 | a〈one(x )〉 | P)

Gn
x ,a(P) :=(Gx ,a(P))n | !Gx ,a (P)

C(sID ,gID ,n)
x ,a (P) :=Σx∈sIDP | νa.(Σx∈gIDa〈x 〉 | G

n
x ,a(P))

where Σx∈T P for a �nite set of terms T = {T1 , . . . ,Tl} is synta
ti
 sugar for

P{T1/x}| . . . |P{Tl/x} (this is only well-de�ned up to stru
tural equivalen
e), sID ⊆
SID , gID ⊆ SID and n ∈ N.

Intuitively, sID (spawned IDs) 
ontains the ids for all instan
es of P , that have

already been tagged but are still formally a part of CSIDbits
x ,a (i.e., �are still in the fa
tory�).

gID is the foundation for the ids yet to be generated. These ids are the elements of the

span of gID whi
h we will introdu
e in the following de�nition. The last parameter n
exists mainly for te
hni
al reasons and 
ounts the number of 
urrently a
tive generator

instan
es Gx ,a(P).

11P may have x ∈ fv(P) but we forbid x ∈ bv(P) to avoid te
hni
alities in the de�nition of P((x)) due
to the shadowed x .
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De�nition 5.5 (Span) Let S ⊆ SIDbits be a set of IDs. We 
all 〈S〉 := S ∪
{cn(. . . c2(c1(s)) . . . ) : s ∈ S, ci ∈ {zero, one}} the span of S (note that 〈S〉 ⊆ SIDbits).

The following de�nition bridges the gap between C
(sID ,gID,n)
x ,a (P((x ))) and

∏
x∈S P((x )).

Have in mind that S denotes the set of ids that are yet to be used by the produ
t pro
ess

for tagging and we have S = SIDbits at the beginning.

De�nition 5.6 (S-valid) Let sID ⊆ SIDbits , gID ⊆ SIDbits and S ⊆ SIDbits be sets of

ids and sID and gID be �nite. We 
all C
(sID ,gID,n)
x ,a S-valid if sID = ∅ and gID = {nil}

or if

(i) sID ⊆ S

(ii) gID = {f(x) : x ∈ G, f(x) 6∈ G, f ∈ {zero, one}} where G := (SIDbits \ S) ∪ sID

(intuitively, G is the set of ids already generated)

(iii) 〈gID〉 = S \ sID

Lemma 5.7 Let S ⊆ SIDbits and C
(sID ,gID ,n)
x ,a be S-valid where n ≥ 1. Then for any

id ∈ gID we have that C
(sID ′,gID ′,n−1)
x ,a is S-valid where sID ′ := sID ∪ {id} and gID ′ :=

gID \ {id} ∪ {zero(id), one(id)}.

Proof. Due to De�nition 5.6 point iii we have that gID ∩ sID = ∅ and gID ⊆ S. We


he
k the three points of De�nition 5.6 for sID ′
and gID ′

:

(i) id ∈ gID ⊆ S and sID ⊆ S entail sID ′ = (sID ∪ {id}) ⊆ S

(ii) For a set G ⊆ SIDbits we de�neM(G) := {f(x) : x ∈ G, f(x) 6∈ G, f ∈ {zero, one}}.
By assumption we have gID = {nil} or gID = M(G) for G := (SIDbits \ S) ∪ sID .

The �rst 
ase leads to sID ′ = {nil} and gID ′ = {zero(nil), one(nil)} for whi
h

this point 
an easily be veri�ed. For the se
ond 
ase we de�ne G′ := G ∪ {id}.
id 6∈ M(G′) sin
e id ∈ G′

. f(id) ∈ M(G′) for f ∈ {zero, one} i� f(id) 6∈ G′
. We

assume towards 
ontradi
tion that f(id) ∈ G′
. Then f(id) ∈ G and by de�nition

of G f(id) ∈ (SIDbits \ S) ∪ sID . However

• f(id) ∈ (SIDbits \ S) entails f(id) 6∈ S and thus f(id) 6∈ 〈gID〉. This 
ontra-

di
ts f(id) ∈ 〈gID〉 (whi
h holds sin
e id ∈ gID).

• f(id) ∈ sID entails f(id) 6∈ 〈gID〉 and leads to a 
ontradi
tion analogously.

All together we have f(id) 6∈ G′
and hen
e M(G′) = M(G) \ {id} ∪

{zero(id), one(id)} = gID ′
.

(iii) 〈gID ′〉 = 〈gID\{id}∪{zero(id), one(id)}〉 = 〈gID〉\{id} = S\sID\{id} = S\gID ′
.

�

To show that CSIDbits
x ,a is a SIDbits-indexing 
ontext (see Lemma 5.10) we �rst show

C
(sID ,gID ,n)
x ,a (P((x ))) ∼∼∼ νa.

∏
x∈S P((x )) for every S-valid C

(sID ,gID ,n)
x ,a .
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Lemma 5.8 Let P be a pro
ess and M be a term. If C
(sID ,gID ,n)
x ,a (P((x ))) lM there is

exa
tly one id ∈ sID su
h that P((id)) lM .

Proof. It is easy to see that C
(sID ,gID ,n)
x ,a (0) never 
ommuni
ates on a 
hannel (note that

a is bound). Hen
e for C
(sID ,gID ,n)
x ,a (P((x ))) lM we need one of the tagged instan
es of P

in C
(sID ,gID ,n)
x ,a (P((x ))) to 
ommuni
ate on M , i.e., P((id)) lM for some id ∈ sID requiring

M =E (id ,�). Analogously, for any id ′ ∈ sID with P((id ′)) lM we have M =E (id ′,�).
Due to De�nition 2.5 (vi) (natural symboli
 model) this entails id =E id ′

whi
h leads to

id = id ′
by de�nition of SIDbits (sID ⊆ SIDbits). Thus, the ID id with P((id)) lM is

unique. �

Lemma 5.9 Let P be a pro
ess with at most one free variable, whi
h we 
all x if existent,

and x 6∈ bv(P). Let a 6∈ fn(P) be a name. Then

C(∅,{nil},0)
x ,a (P((x ))) ≈

∏

x∈SIDbits

P((x ))

Proof. We de�ne the relation

R := ≈ ∪ {(E [C(sID ,gID ,n)
x ,a (P((x )))], E [

∏

x∈S

P((x ))]) : for any n ≥ 0, S ⊆ SIDbits ,

evaluation 
ontext E , pro
ess P and C(sID ,gID ,n)
x ,a S-valid}


losed under stru
tural equivalen
e. Then we show that R ⊆ ≈. Towards this goal we
show that R and R−1

are simulations. We start with R:

• E [C
(sID ,gID,n)
x ,a (P((x )))] ↓M : If E [0] ↓M we obviously have E [

∏
x∈S P((x ))] ↓M . Oth-

erwise C
(sID ,gID ,n)
x ,a (P((x ))) ↓M . In this 
ase, a

ording to Lemma 5.8, there is

a distin
t id ∈ sID su
h that P((id)) ↓M and, sin
e E [C
(sID ,gID ,n)
x ,a (P((x )))] ↓M ,

E [P((id))] ↓M . On the other hand, due to the S-validity of C(sID ,gID ,n)
x ,a , sID ⊆

S. With id ∈ S we have

∏
x∈S P((x )) → P((id))|

∏
x∈S\{id} P((x )) and hen
e

E [
∏

x∈S P((x ))] →↓M .

• E [C
(sID ,gID,n)
x ,a (P((x )))] → (E [C

(sID ,gID ,n)
x ,a (P((x )))])′: We distinguish three 
ases

1. → does only a�e
t C
(sID ,gID ,n)
x ,a (P((x ))) up to stru
tural equivalen
e. In

this 
ase we have E [0] → E ′[0], E [
∏

x∈S P((x ))] → E ′[
∏

x∈S P((x ))] and

(E ′[C
(sID ,gID ,n)
x ,a (P((x )))], E ′[

∏
x∈S P((x ))]) ∈ R.

2. → is a COMM redu
tion that interferes with E and C
(sID ,gID,n)
x ,a (P((x ))). Due

to Lemma 5.8 we �nd a distin
t id ∈ sID su
h that

E [C(sID ,gID ,n)
x ,a (P((x )))] → E ′[P((id))′|C(sID\{id},gID ,n)

x ,a (P((x )))]
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Analogously to the 
ase for E [C
(sID ,gID ,n)
x ,a (P((x )))] ↓M we spawn a properly

tagged instan
e of P from

∏
x∈S P((x )). With Ẽ [�] := E ′[P((id))′|�] we have

(Ẽ [C(sID\{id},gID ,n)
x ,a (P((x )))], Ẽ [

∏

x∈S\{id}

P((x ))]) ∈ R

sin
e C
(sID\{id},gID ,n)
x ,a is (S \ {id})-valid.

3. → does only a�e
t E up to stru
tural equivalen
e. In this 
ase we have

C
(sID ,gID ,n)
x ,a (P((x ))) → C

(sID ,gID,n)
x ,a (P((x )))′. We distinguish three 
ases:

� → is a REPL redu
tion and spawns a new instan
e of Gx ,a (see

De�nition 5.4). In this 
ase C
(sID ,gID ,n)
x ,a (P((x ))) → C

(sID ,gID ,n+1)
x ,a (P((x )))

and (E [C
(sID ,gID ,n+1)
x ,a (P((x )))], E [

∏
x∈S P((x ))]) ∈ R.

� → is a COMM redu
tion on 
hannel a (a〈id〉) (note that this requires

n ≥ 1). In this 
ase id ∈ gID ⊆ S and C
(sID ,gID,n)
x ,a (P((x ))) →

C
(sID ′,gID ′,n−1)
x ,a (P((x ))) where sID ′ := sID ∪{id} and gID ′ := gID \{id}∪

{zero(id), one(id)}. By Lemma 5.7 we see that C
(sID ′,gID ′,n−1)
x ,a (P((x ))) is

still S-valid. Hen
e (E [C
(sID ′,gID ′,n−1)
x ,a (P((x ))))], E [

∏
x∈S P((x ))]) ∈ R.

� → is a redu
tion of one of the P -instan
es P((id)) (id ∈ sID) (note that

due to Lemma 5.8 and a 6∈ fn(P) only one instan
e 
an be a�e
ted). In

this 
ase we pro
eed analogously to 
ase 2.

• Obviously R is 
losed under the appli
ation of evaluation 
ontexts.

We 
ontinue by showing the three points of observational equivalen
e for R−1
:

• E [
∏

x∈S P((x ))] ↓M i� E [0] ↓M . Therefore E [C
(sID ,gID ,n)
x ,a (P((x )))] ↓M .

• E [
∏

x∈S P((x ))] → E [
∏

x∈S P((x ))]′: If we have E [
∏

x∈S P((x ))] → E ′[
∏

x∈S P((x ))] we

have (E ′[
∏

x∈S P((x ))], E ′[C
(sID ,gID ,n)
x ,a (P((x )))]) ∈ R−1

. Otherwise → is an IREPL

redu
tion:

∏
x∈S P((x )) → P((id))|

∏
x∈S\{id} P((x )) with id ∈ S. On the right side

of the relation we have E [C
(sID ,gID ,n)
x ,a (P((x )))]. Sin
e C

(sID ,gID ,n)
x ,a (P((x ))) is S-valid,

we have that id ∈ sID or id ∈ 〈gID〉.

If id 6∈ sID , i.e., id ∈ 〈gID〉, id is of the form id = cl(. . . c1(id0 ) . . . ) for some

id0 ∈ gID , some l ∈ N and ci ∈ {zero, one} for i ∈ {1, . . . , l}. We write idi for

ci(. . . c1(id0 ) . . . ) for i ∈ {1, . . . , l}, ci := zero if ci = one, ci := one otherwise and

idi for ci(ci−1(. . . c1(id0 ) . . . )). The redu
tion
a〈idi 〉
−−−→ denotes a REPL redu
tion that

spawns an instan
e of Gx ,a (see De�nition 5.4) and a following COMM redu
tion

on 
hannel a with message idi ∈ gID . The appli
ation of the sequen
e

a〈id0 〉
−−−−→

. . .
a〈idk 〉
−−−−→ to E [C

(sID ,gID ,n)
x ,a (P((x )))] for some 0 ≤ k ≤ l yields a pro
ess that is

stru
turally equivalent to E [C
(sIDk ,gIDk,n)
x ,a (P((x )))] with sIDk := sID∪{id0 , . . . , idk}

and gIDk := gID \ {id0 } ∪ {id1 , . . . , idk−1} ∪ {zero(idk ), one(idk )}. For ea
h step
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k  k + 1 the S-validity of C
(sIDk,gIDk,n)
x ,a is guaranteed by Lemma 5.7. We de�ne

sID ′ := sID l and gID ′ := gID l and have that id ∈ sID ′
.

Otherwise, if id ∈ sID , we de�ne sID ′ := sID and gID ′ := gID .

With id ∈ sID ′
and E ′[�] := E [P((id))|�] we have that

(E ′[
∏

x∈S\{id}

P((x ))], E ′[C(sID ′\{id},gID ′,n)
x ,a (P((x )))]) ∈ R−1

sin
e C(sID ′\{id},gID ′,n)
x ,a is (S \ {id})-valid.

• Obviously R−1
is 
losed under the appli
ation of evaluation 
ontexts.

Sin
e C
(∅,{nil},0)
x ,a is SIDbits-valid the Lemma holds. �

Lemma 5.10 CSIDbits
x ,a is an SIDbits-indexing 
ontext.

Proof. Let, a

ording to De�nition 5.2, P be a pro
ess and x be a variable with x 6∈ bv(P).
We pi
k a name a with a 6∈ fn(P). We 
laim

CSIDbits
x ,a

∼∼∼
∏

x∈SIDbits

P((x ))

We have to show CSIDbits
x ,a [P((x ))]σ ≈ (

∏
x∈SIDbits

P((x )))σ for all 
losing substitutions σ.
W.l.o.g. a 6∈ σ and σ(x) = x and thus it su�
es to show

CSIDbits
x ,a [P((x ))σ] ≈

∏

x∈SIDbits

(P((x ))σ) (3)

Note that Pσ is a pro
ess with at most one free variable, denoted x . Furthermore

x 6∈ bv(Pσ), a 6∈ fn(Pσ) and CSIDbits
x ,a [P((x ))σ] = C

(∅,{nil},0)
x ,a (P((x ))σ) by De�nition 5.4.

By Lemma 5.9 we have (3) whi
h 
on
ludes our proof. �

We stress that CSIDbits
x ,a is just one example of an indexing 
ontext. From now on SID is

an arbitrary but �xed set of indexes and CSID
x ,n an arbitrary but �xed SID -indexing 
ontext

a

ording to De�nition 5.2. All our results then hold independently of the parti
ular


hoi
e of SID .

We 
an now �nally de�ne !!P :

De�nition 5.11 (Indexed repli
ation) Let P be a pro
ess. We de�ne !!xP :=
CSID
x ,n [P((x ))] for some arbitrary n with n ∩ fn(P) = ∅. We write !!P for !!xP with

x 6∈ (fv(P) ∪ bv(P)).

Noti
e that our de�nition is a bit more general, we 
an even write !!xP , in this 
ase P
will have a

ess to the sid via the variable x. We need this added �exibility in Se
tion 8.3

for the proto
ol KE
∗
.

Note that sin
e CSID
x ,n [P((x ))] ∼∼∼

∏
x∈S P ((x)) by de�nition, we 
an a
tually think of

!!xP as being de�ned as

∏
x∈S P ((x)). Our de�nition, however, has the advantage that

!!xP is a
tually a pro
ess in the original 
al
ulus, the 
on
ept of produ
t pro
esses was

only used as a tool for de�ning !!.
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On real-life implementations of !!. When implementing a pro
ess !!P in real life

(i.e., in software for a
tual deployed proto
ols), a pro
ess su
h as !!c(x).P ′
is probably best

implemented by a pro
ess that listens on c for messages of the form (sid ,m). Whenever

su
h a message is re
eived, a new instan
e of P ′
with session id sid is spawned, and all

further messages with that sid are routed to that instan
e of P ′
. On the other hand,

a pro
ess su
h as !!c〈M〉.P ′

annot be implemented, be
ause su
h a pro
ess would non-

deterministi
ally send (sid ,M) for all possible sid . A pro
ess !!(A|B), where A and B

orrespond to pro
esses run on di�erent 
omputers, does not immediately make sense,

be
ause if, e.g., A re
eives a message that spawns a new instan
e, B would have to

spawn a new instan
e, too, without 
ommuni
ation between A and B. Fortunately, we
show in Lemma 5.36 below that !!(A|B) ∼∼∼ !!A | !!B; then A and B 
an spawn instan
es

independently.

Properties of !!. The following four lemmas state several important properties of !!.
We will need these to prove the 
omposition theorem below. Lemmas 5.12, 5.13, and 5.36

also hold for ! instead of !!. But Lemma 5.35 is spe
i�
 to !!, and is 
ru
ial for enabling

the 
omposition theorem.

Lemma 5.12 Let P be a pro
ess and ϕ : N → N be a permutation on names. Then

(!!xP)ϕ ≡ !!x (Pϕ) for all variables x 6∈ bv(P).

Proof. Pi
k names n with n ∩ fn(P) = ∅ and ϕ(n) ∩ fn(P) = ∅. Note that (!!xP)ϕ ≡
CSID
x ,n [P((x ))]ϕ. Therefore (!!xP)ϕ ≡ CSID

x ,n [P((x ))]ϕ = CSID
x ,ϕ(n)[P((x ))ϕ] ≡ !!x (Pϕ) sin
e

ϕ(n) ∩ fn(P) = ∅. �

Lemma 5.13 Let P , Q be pro
esses. Then P ∼∼∼ Q ⇒ !!xP ∼∼∼ !!xQ for all variables

x 6∈ bv(P) ∪ bv(Q).

This lemma was surprisingly hard to prove. Before we pro
eed to the proof (for whi
h

we have to develop a number of auxiliary 
on
epts and de�nitions �rst) We very roughly

sket
h the proof idea here: The main thing to show is that P ≈ Q =⇒ P ((M)) ≈ Q((M))
for arbitrary �xed M . To show this, we de�ne an operation untag that maps P ((M)) to
P , i.e., removes the tag M from all 
hannels. Then we wish to prove that the following

relation is a bisimulation: ∼Ssid
:= {(P ,Q) : untag(P) ≈ untag(Q)}. On
e we have that,

we see that P ((M)) ∼Ssid
Q((M)) and hen
e P ((M)) ≈ Q((M)). Unfortunately, ∼Ssid

is

not really a bisimulation. A bisimulation must be 
losed under evaluation 
ontexts, even

under 
ontexts in whi
h not all 
hannels are tagged with M . To solve this problem, we

tweak untag in su
h a way that non-tagged 
hannels C are mapped to spe
ially marked


hannels (using a spe
ial name nsid )whi
h 
an then be mapped ba
k to C when tagging

again. And we need to tweak the notion of a bisimulation slightly, so that ∼Ssid
only

needs to be 
losed under evaluation 
ontexts on whi
h our operation untag works properly.

These tweaks lead to an unexpe
tedly 
omplex proof of Lemma 5.13.

Before we prove Lemma 5.13 (on page 56), we will need to develop a number of tools

and lemmas.
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De�nition 5.14 A set S of 
losed pro
esses is n-
omplete for a name n i� for any


losed pro
ess P with n 6∈ fn(P) ∪ bn(P), there is a 
losed pro
ess S ∈ S su
h that

P ≈ S.

De�nition 5.15 (S-n-observational equivalen
e) Let S be a set of 
losed pro
esses

and n be a name. An S-n-simulation R is a relation on 
losed pro
esses P , Q with

n 6∈ (fn(P) ∪ fn(Q) ∪ bn(P) ∪ bn(Q)) su
h that (P ,Q) ∈ R implies

(i) if P ↓M then Q →∗↓M

(ii) if P → P ′
with n 6∈ fn(P ′) ∪ bn(P ′) then Q →∗ Q ′

and (P ′,Q ′) ∈ R for some Q ′

(iii) (νs.(S|P), νs.(S|Q)) ∈ R for all 
losed S ∈ S and names s ⊆ N with n 6∈ (fn(S)∪
bn(S) ∪ s).

A relation R is an S-n-bisimulation if both R and R−1
are S-n-simulations. S-n-

observational equivalen
e (≈n
S) is the largest S-n-bisimulation.

Intuitively ≈n
S is like observational equivalen
e on pro
esses that do not 
ontain n

where the environment is restri
ted to be a pro
ess from S. It is easy to 
he
k that

the transitive hull of ≈n
S satis�es the 
onditions (i), (ii) and (iii) from above. Hen
e ≈n

S


ontains its own transitive hull and thus is indeed an equivalen
e relation.

Lemma 5.16 If a set of pro
esses S is n-
omplete and n 6∈ (fn(S)∪bn(S)) for all S ∈ S,
then P ≈n

S Q ⇔ P ≈ Q for all 
losed pro
esses P , Q with n 6∈ (fn(P)∪ fn(Q)∪ bn(P)∪
bn(Q)).

Proof.

Let P ,Q ∈ {(P ,Q) : P ,Q 
losed pro
esses with n 6∈ (fn(P)∪fn(Q)∪bn(P)∪bn(Q)}.

P ≈ Q ⇒ P ≈n
S QP ≈ Q ⇒ P ≈n
S QP ≈ Q ⇒ P ≈n
S Q. We show that observational equivalen
e restri
ted to pro
esses that

do not 
ontain n is an S-n-bisimulation. Points (i) and (iii) of De�nition 5.15 follow

dire
tly from points (i) and (iii) of observational equivalen
e (see De�nition 2.4). It

remains to show that for P → P ′
with n 6∈ fn(P ′) ∪ bn(P ′) we 
an �nd a sequen
e of


orresponding internal redu
tions for Q . Sin
e P ≈ Q we �nd a sequen
e Q =: Q1 →
. . .→ Qℓ =: Q ′

with P ′ ≈ Q ′
. However, we do not ne
essarily have n 6∈ fn(Q ′) ∪ bn(Q ′)

sin
e this is not a requirement for observational equivalen
e. Fortunately, we we will see

that we 
an �nd a pro
ess Q̂ ′
with Q →∗ Q̂ ′

, P ′ ≈ Q̂ ′
and n 6∈ fn(Q̂ ′) ∪ bn(Q̂ ′). For

this, we transform the sequen
e Q1 → . . . → Qℓ to a sequen
e Q̂1 → . . . → Q̂ℓ with

Qi ≡E Q̂i and n 6∈ fn(Q̂i) ∪ bn(Q̂i) for i ∈ {1, . . . , ℓ}: First, we set Q̂1 := Q1 and in

parti
ular have Q1 ≡E Q̂1 and n 6∈ fn(Q̂1) ∪ bn(Q̂1). For i ∈ {2, . . . , ℓ} we de�ne Q̂i as

follows: By Lemma 3.5, sin
e Q̂i−1 ≡E Qi−1 → Qi, we �nd Q̃ with Q̂i−1 → Q̃ ≡E Qi.

W.l.o.g. we 
an assume n 6∈ bn(Q̃) sin
e → and ≡E allow for renaming of bound names.

We distinguish two 
ases:

44



• n 6∈ fn(Q̃): Then Q̂i := Q̃ meets our requirements.

• n ∈ fn(Q̃): Sin
e Q̂i−1 → Q̃ and n 6∈ fn(Q̂i−1), the free o

urren
es of n 
an

only be the result of a destru
tor evaluation (LET-THEN, Figure 3). Let D denote

the 
orresponding destru
tor term with D ⇓ T . By De�nition 2.5 (vii) (natural

symboli
 model) and sin
e n 6∈ fn(D) we �nd a term T ′
with n 6∈ fn(T ′) su
h that

D ⇓ T ′
and T =E T ′

. Then Q̂i := Q̃{T/T ′} meets our requirements.

Finally, Q̂ℓ does not 
ontain n and Q = Q̂1 →∗ Q̂ℓ ≡E Qℓ = Q ′ ≈ P ′
. Hen
e

(P ′, Q̂ℓ) ∈ ≈ ∩ {(P ,Q) : P ,Q 
losed pro
esses with n 6∈ (fn(P)∪fn(Q)∪bn(P)∪bn(Q)}
and thus observational equivalen
e restri
ted to pro
esses that do not 
ontain n ful�lls

De�nition 5.15 (ii).

P ≈n
S Q ⇒ P ≈ QP ≈n
S Q ⇒ P ≈ QP ≈n
S Q ⇒ P ≈ Q. We �rst introdu
e a bisimulation ≈ϕ and then show P ≈n

S Q ⇒
P ≈ϕ Q ⇒ P ≈ Q : Let ϕ : N → N \ {n} be a bije
tion on names. We de�ne

≈ϕ:= {(P ,Q) : Pϕ ≈n
S Qϕ}

We 
laim that ≈ϕ is a bisimulation: It is easy to verify that ≈ϕ satis�es points (i) and

(ii) of De�nition 2.4 (both follow straightforwardly by De�nition 5.15). For point (iii)

we have to show C[P ] ≈ϕ C[Q ], i.e., C[P ]ϕ ≈n
S C[Q ]ϕ, for all evaluation 
ontexts C and

P ≈ϕ Q , i.e., Pϕ ≈n
S Qϕ. For any evaluation 
ontext C we have C[�] ≡ νn.(C|�) for

some pro
ess C and names n ⊆ N . Due to the 
ompleteness of S we �nd an evaluation


ontext C̃[�] := νnϕ.(C̃ |�) su
h that Cϕ ≈ C̃ with C̃ ∈ S. Sin
e n is not in the

range of ϕ and n 6∈ (fn(C̃) ∪ bn(C̃)) for C̃ ∈ S we have C̃[Pϕ] ≈n
S C̃[Qϕ]. Furthermore

C̃[Pϕ] ≈ C[P ]ϕ and hen
e (both sides do not 
ontain n) C̃[Pϕ] ≈n
S C[P ]ϕ (analogously for

Q). Altogether we have C[P ]ϕ ≈n
S C̃[Pϕ] ≈n

S C̃[Qϕ] ≈n
S C[Q ]ϕ. Sin
e ≈ϕ is symmetri


by de�nition this 
loses the proof of our 
laim that ≈ϕ is a bisimulation.

We have that P ≈n
S Q entails P ≈ϕ Q by de�nition of ≈ϕ. Furthermore P ≈ϕ Q

entails P ≈ Q sin
e ≈ is the largest bisimulation. Hen
e P ≈n
S Q entails P ≈ Q . This


loses the se
ond part of our proof. �

In the following we �x a name nsid and 
losed term Msid with nsid 6∈ fn(Msid ).

De�nition 5.17 (Sid-sensitive pro
esses) Ssid , the set of sid-sensitive pro
esses, is

the set of pro
esses following the grammar from Figure 4.

De�nition 5.18 (Ssid -transformation) We de�ne the fun
tion Φ : P 7→ Φ(P) = S,
whi
h maps a 
losed pro
ess P with nsid 6∈ P to a sid-sensitive pro
ess S ∈ Ssid , as

follows:

1. For ea
h prote
ted o

urren
e of an input C (x ).P ′
in P we repla
e C (x ).P ′

by

if Msid = fst(C ) then (let y = snd(C ) in (Msid , y)(x ).P
′) else C (x ).P ′

2. For ea
h o

urren
e of an output in P we pro
eed analogously.
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P ,Q ::= 0

(Msid ,C )(x ).P

(Msid ,C )〈T 〉.P

C ∗(x ).P

C ∗〈T 〉.P

if Msid = fst(C ) then P else C (x ).Q

if Msid = fst(C ) then P else C 〈T 〉.Q

P | Q

!P

νa.P

let x = D in P else Q

Figure 4: Syntax of sid-sensitive pro
esses. Msid is the �xed term. C , T range over all

terms with nsid 6∈ fn(C ) and nsid 6∈ fn(T ), C ∗
over all terms with nsid 6∈ fn(C ∗) su
h

that there is no substitution σ with C ∗σ =E (Msid ,�) for some term �. D is a destru
tor

term with nsid 6∈ fn(D) and a 6= nsid is a name. Note that in the if-
onstru
tions both

o

urren
es of C stand for the same term.

Lemma 5.19 Ssid is nsid -
omplete.

Proof.

• Claim 1: For all pro
esses P we have

if Msid = fst(C ) then (let y = snd(C ) in (Msid , y)(x ).P) else C (x ).P ∼∼∼ C (x ).P
(4)

(analogously for outputs). Proof: Let σ be a 
losing substitution for Equation 4.

We remember that

if Msid = fst(C ) then (let y = snd(C ) in (Msid , y)(x ).P) else C (x ).P

is just synta
ti
 sugar for

let z = equals(Msid , fst(C )) in (let y = snd(C ) in (Msid , y)(x ).P) else C (x ).P

By de�nition of equals we have equals(Msid , fst(C ))σ ⇓ Msid i� fst(C )σ ⇓ Msid .

We distinguish two 
ases:

� If fst(Cσ) ⇓ Msid , then by De�nition 2.5 (v) (natural symboli
 model) we have
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that (Msid ,C2) =E Cσ for all C2 with snd(Cσ) ⇓ C2. Hen
e

if Msid = fst(Cσ) then (let y = snd(Cσ) in (Msid , y)(x ).Pσ) else Cσ(x ).Pσ
(∗)

≈ if Msid = fst((Msid ,C2)) then

let y = snd((Msid ,C2)) in (Msid , y)(x ).Pσ

else

(Msid ,C2)(x ).Pσ
(∗∗)

≈ let y = snd((Msid ,C2)) in (Msid , y)(x ).Pσ
(∗∗)

≈ (Msid ,C2)(x ).Pσ
(∗)

≈ C (x ).P

(∗) by Lemma 3.2 (iv) and (∗∗) by Lemma 3.2 (vii).

� If fst(C )σ 6⇓ Msid , then the 
laim follows by Lemma 3.2 (vi).

• Claim 2: P ∼∼∼ Φ(P). We prove this by stru
tural indu
tion on P . Sin
e Φ does

only a�e
t in- and outputs we 
an fo
us on those: If P = C (x ).P ′
then

P = C (x ).P ′

(∗)
∼∼∼ C (x ).Φ(P ′)
(∗∗)
∼∼∼ if Msid = fst(C ) then (let y = snd(C ) in (Msid , y)(x ).P

′) else C (x ).P ′

= Φ(P)

where (∗) holds by the indu
tion hypothesis and (∗∗) by Claim 1.

For any 
losed P we have P ∼∼∼ Φ(P) by Claim 2. Φ(P) is 
losed sin
e P is 
losed and

hen
e P ≈ Φ(P). For P with nsid 6∈ (fn(P) ∪ bn(P)) we have Φ(P) ∈ Ssid . Thus Ssid is

nsid -
omplete. �

Lemma 5.20 For 
losed S ∈ Ssid and S → S′
with nsid 6∈ fn(S′) ∪ bn(S′) we have

S′ ∈ Ssid .

Proof. First, we observe that all pro
esses not 
ontaining nsid and being stru
turally

equivalent to a sid-sensitive pro
ess are sid-sensitive as well. Furthermore C[P ], where C
is an evaluation 
ontext and P a pro
ess, is sid-sensitive i� C[0] and P are sid-sensitive.

In all 
ases w.l.o.g. nsid 6∈ fn(C) ∪ bn(C) be
ause ≡ does not introdu
e free names and

bound names are w.l.o.g. not nsid . We have the following 
ases:

• REPL: S ≡ C[!P ] → C[P |!P ] ≡ S′
. !P is sid-sensitive, hen
e P and P |!P are.

• COMM: S ≡ C[C 〈T 〉.P |C̃ (x ).Q ] → C[P |Q{T/x}] ≡ S′
. Q is sid-sensitive and

nsid 6∈ fn(T ) sin
e nsid 6∈ fn(S) ∪ bn(C). We 
an easily 
he
k the grammar of sid-

sensitive pro
esses from Figure 4 to see that a substitution {T/x} with nsid 6∈ T

applied to a sid-sensitive pro
ess yields a sid-sensitive pro
ess. Therefore Q{T/x}
and P |Q{T/x} are sid-sensitive.
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P ,Q ::= 0

C (x ).P

C 〈T 〉.P

(nsid ,C
∗)(x ).P

(nsid ,C ∗)〈T 〉.P

if Msid = fst(C ) then P else (nsid ,C )(x ).Q

if Msid = fst(C ) then P else (nsid ,C )〈T 〉.Q

P | Q

!P

νa.P

let x = D in P else Q

Figure 5: Syntax of nsid -good pro
esses. Msid is the �xed term. C , T range over all

terms with nsid 6∈ fn(C ), nsid 6∈ fn(T ). C ∗
ranges over all terms with nsid 6∈ fn(C ∗) su
h

that there is no substitution σ with C ∗σ =E (Msid ,T ) for some term T . D is a destru
tor

term with nsid 6∈ fn(D) and a 6= nsid is a name. Note that in the if-
onstru
tions both

o

urren
es of C stand for the same term.

• LET-THEN: S ≡ C[let x = D in P else Q ] → C[P{T/x}] ≡ S′
for some term T

with D ⇓ T and nsid 6∈ fn(T ) sin
e nsid 6∈ fn(S′) ∪ bn(C). Analogously to the

argument in the COMM 
ase, P{T/x} is sid-sensitive.

• LET-ELSE: Here, a

ording to the grammar of sid-sensitive pro
esses from

Figure 4, we distinguish three 
ases:

� S ≡ C[if Msid = fst(C ) then P else C (x ).Q ] → C[C (x ).Q ] ≡ S′
. C is 
losed

sin
e S is 
losed. Msid = fst(C ) is false, i.e., there is no term M su
h

that equals(Msid , fst(C )) ⇓ M . Therefore fst(C ) 6⇓=E Msid . This implies

C 6=E (Msid ,X ) for all terms X by De�nition 2.5 (v) (natural symboli
 model).

Hen
e C (x ).Q is sid-sensitive (mat
hing the C ∗(x ).P rule).

� S ≡ C[if Msid = fst(C ) then P else C 〈T 〉.Q ] → C[C 〈T 〉.Q ] ≡ S′
. Analo-

gously to the previous 
ase.

� S ≡ C[let x = D in P else Q ] → C[Q ] ≡ S′
. Q is sid-sensitive by de�nition.

This 
on
ludes our proof. �

De�nition 5.21 (nsid -good) A pro
ess P is nsid -good if it follows the grammar from

Figure 5.
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De�nition 5.22 (tag) We de�ne the fun
tion tag on terms:

tag((nsid ,C )) :=C

tag(C ) :=(Msid ,C ) otherwise

Let P be an nsid -good pro
ess. Then we write tag(P) for the pro
ess that results from

repla
ing any 
hannel identi�er C by tag(C ) in P .

The fun
tion tag adds a tag Msid to all 
hannel identi�ers in a pro
ess. We will see

that tag returns a sid-sensitive pro
ess. We will need that tag is a bije
tive mapping

between nsid -good pro
esses and sid-sensitive pro
esses. The spe
ial name nsid is needed

to 
over the 
orner 
ases when 
onstru
ting that bije
tion.

Lemma 5.23 Let P be an nsid -good pro
ess. Then tag(P) ∈ Ssid .

Proof. We do a stru
tural indu
tion over the grammar of nsid -good pro
esses from

Figure 5. Assume that tag(P ′) and tag(Q ′) are in Ssid .

• For the 
ommuni
ation on a 
hannel C with nsid 6∈ fn(C ) we have tag(C (x ).P ′) =
(Msid ,C )(x ).tag(P ′) whi
h is obviously in Ssid . tag(C 〈T 〉.P ′) analogous.

• For the 
ommuni
ation on a 
hannel C = (nsid ,C
∗) we have

tag((nsid ,C
∗)(x ).P ′) = C ∗(x ).tag(P ′). C ∗(x ).tag(P ′) is in Ssid sin
e, by

de�nition of nsid -good, there is no substitution σ with C ∗σ =E (Msid ,T ) for some

term T . (nsid ,C ∗)〈T 〉.P ′
analogous.

• For the �rst pair of if statements we have that

tag(if Msid = fst(C ) then P ′
else (nsid ,C )(x ).Q ′)

= (if Msid = fst(C ) then tag(P ′) else C (x ).tag(Q ′))

is in Ssid sin
e nsid 6∈ fn(C ). Analogous for (nsid ,C )〈T 〉.Q ′
in the ELSE bran
h.

Che
king the remaining rules from Figure 5 is a straightforward task. �

De�nition 5.24 (untag) We de�ne the fun
tion untag on terms:

untag((Msid ,C )) :=C

untag(C ) :=(nsid ,C ) otherwise

Let P be a sid-sensitive pro
ess. Then we write untag(P) for the pro
ess that results from
repla
ing any 
hannel identi�er C by untag(C ).

Lemma 5.25 Let P ∈ Ssid be a sid-sensitive pro
ess. Then untag(P) is nsid -good.

Proof. Analogous to the proof of Lemma 5.23 a straightforward stru
tural indu
tion

shows this Lemma. We qui
kly sket
h the interesting 
ases:
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• untag((Msid ,C )(x ).P ′) = C (x ).untag(P ′) mat
hes rule C (x ).P from Figure 5

(note that nsid 6∈ fn(C )). (Msid ,C )〈T 〉.P ′
analogous.

• untag(C ∗(x ).P ′) = (nsid ,C
∗)(x ).untag(P ′): untag(C ∗) = (nsid ,C

∗) sin
e there is
no substitution σ with C ∗σ =E (Msid ,�) for some term �. The expression mat
hes

rule (nsid ,C
∗)(x ).P from Figure 5. C ∗〈T 〉.P analogous.

• For the �rst if-rule we distinguish two 
ases:

� C 6= (Msid ,�). Then

untag(if Msid = fst(C ) then P ′
else C (x ).Q ′)

= (if Msid = fst(C ) then untag(P ′) else (nsid ,C )(x ).untag(Q ′))

mat
hes rule (if Msid = fst(C ) then P else (nsid ,C )(x ).Q) from Figure 5.

� C = (Msid ,C
′). Then

untag(if Msid = fst(C ) then P ′
else C (x ).Q ′)

= (if Msid = fst((Msid ,C
′)) then untag(P ′) else C ′(x ).untag(Q ′))

= (let y = equals(Msid , fst((Msid ,C
′))) in untag(P ′) else C ′(x ).untag(Q ′))

nsid 6∈ fn(C ′) sin
e nsid 6∈ fn(C ). Hen
e

C ′(x ).untag(Q ′) is nsid -good. The pro
ess (let y =
equals(Msid , fst((Msid ,C

′))) in untag(P ′) else C ′(x ).untag(Q ′)) mat
hes rule

(let x = D in P else Q) from Figure 5 with D = equals(Msid , fst((Msid ,C
′))).

Analogous for C 〈T 〉.Q ′
in the ELSE bran
h.

�

Lemma 5.26 Let P be an nsid -good pro
ess. Then untag(tag(P)) ∼∼∼ P .

Proof.

We prove this lemma by stru
tural indu
tion over P a

ording to the grammar from

Figure 5.

• P = C (x ).P ′
where C is a 
hannel identi�er with nsid 6∈ C : Then C 6= (nsid ,C

′)
for some term C ′

and thus tag(C ) = (Msid ,C ). Hen
e untag(tag(C )) = C and

untag(tag(P)) = untag(tag(C (x ).P ′)) = C (x ).untag(tag(P ′)) ∼∼∼ C (x ).P ′ = P by

the indu
tion hypothesis and sin
e

∼∼∼ is 
losed under the appli
ation of 
ontexts

(Lemma 2.7). P = C 〈T 〉.P ′
analogously.

• P = (nsid ,C
∗)(x ).P ′

for some term C ∗
with nsid 6∈ fn(C ∗) and C ∗σ 6=E (Msid , C̃

∗)
for all substitutions σ and terms C̃ ∗

. Certainly tag((nsid ,C
∗)) = C ∗

. By assump-

tion C ∗ 6= (Msid , C̃
∗) and thus untag(tag((nsid ,C

∗))) = untag(C ∗) = (nsid ,C
∗).

The rest of this 
ase, as well as the 
ase for P = (nsid ,C ∗)〈T 〉.P ′
, is analogous to

the previous 
ase.

• P = if Msid = fst(C ) then P ′
else (nsid ,C )(x ).Q ′

where nsid 6∈ fn(C ): Clearly

tag((nsid ,C )) = C . We now distinguish two 
ases for C :
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� C = (Msid ,C
′) for some term C ′

. Then untag(C ) = untag((Msid ,C
′)) =

C ′ 6= C . This is the reason why we 
annot have untag(tag(P)) = P in

general. However,

untag(tag(P))

= untag(tag(if Msid = fst(C ) then P ′
else (nsid ,C )(x ).Q ′))

= if Msid = fst((Msid ,C
′)) then untag(tag(P ′)) else untag(tag((nsid ,C )(x ).Q ′))

(∗)
∼∼∼ untag(tag(P ′))

(∗∗)
∼∼∼ P ′

(∗)
∼∼∼ if Msid = fst((Msid ,C

′)) then P ′
else (nsid ,C )(x ).Q ′

= if Msid = fst(C ) then P ′
else (nsid ,C )(x ).Q ′ = P

In both 
ases (∗) holds by Lemma 3.2 (vii) and De�nition 2.5 (iv) (natural

symboli
 model). (∗∗) holds by the indu
tion hypothesis.

� Otherwise untag(C ) = (nsid ,C ) and it is easy to see that untag(tag(P)) = P .

P = if Msid = fst(C ) then P ′
else (nsid ,C )〈T 〉.Q ′

analogously.

The missing 
ases for parallel 
omposition, bang, name restri
tion and let-statement all

work straightforwardly.

�

Lemma 5.27 Let P be a sid-sensitive pro
ess. Then tag(untag(P)) = P .

Proof. Sin
e tag and untag do only modify 
hannel identi�ers we show tag(untag(C )) =
C for the di�erent kinds of 
hannel identi�ers that are allowed in an sid-sensitive pro
ess

by Figure 4:

• C is a 
hannel identi�er with C = (Msid ,C
′) for some term C ′

with nsid 6∈ fn(C ′):
Then untag(C ) = C ′

and tag(C ′) = (Msid ,C
′) = C sin
e nsid 6∈ fn(C ). Hen
e

untag(tag(C )) = C .

• C is a 
hannel identi�er C ∗
with nsid 6∈ fn(C ∗) and C ∗σ 6=E (Msid , C̃

∗) for all

substitutions σ and terms C̃ ∗
. Then tag(untag(C )) = tag((nsid ,C

∗)) = C ∗ = C .

• C is a 
hannel identi�er with nsid 6∈ fn(C ) in the ELSE-bran
h of (if tag = fst(C )).
We distinguish two 
ases:

� C = (Msid ,C
′) for some term C ′

. Then untag(C ) = C ′
and tag(C ′) =

(Msid ,C
′) sin
e nsid 6∈ fn(C ′) ⊆ fn(C ).

� Otherwise untag(C ) = (nsid ,C ) and tag((nsid ,C )) = C .

In both 
ases we have untag(tag(C )) = C .

�
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De�nition 5.28 We de�ne a relation ∼Ssid
:= {(P ,Q) : P ,Q ∈ Ssid , untag(P) ≈

untag(Q)}.

Lemma 5.29 Assume that ∼Ssid
is an Ssid -bisimulation and P ≈ Q for 
losed nsid -good

pro
esses P and Q . Then tag(P) ≈ tag(Q).

Proof. Note that tag(P) and tag(Q) are sid-sensitive pro
esses by Lemma 5.23 and thus

do not 
ontain nsid . We have

P ≈ Q ⇒untag(tag(P)) ≈ P ≈ Q ≈ untag(tag(Q)) (by Lemma 5.26)

⇒tag(P) ∼Ssid
tag(Q)

⇒tag(P) ≈nsid

Ssid
tag(Q) (sin
e ≈nsid

Ssid
is the largest Ssid -bisimulation by De�nition 5.15)

⇒tag(P ) ≈ tag(Q) (by Lemmas 5.16, 5.19)

�

Lemma 5.30 Let P be a 
losed nsid -good pro
ess with P ≡E Q → Q ′
for some 
losed

pro
esses Q , Q ′
. Then there is a 
losed nsid -good pro
ess P ′

su
h that P → P ′ ≡E Q ′

and tag(P) → tag(P ′).

Proof. A

ording to Lemma 3.5 we �nd a 
losed pro
ess P̃ ′
su
h that P → P̃ ′ ≡E Q ′

(this

holds for any P , not just for nsid -good ones). Now we show that if P is additionally nsid -

good, there is a 
losed nsid -good pro
ess P ′
with P → P ′ ≡E P̃ ′

and tag(P) → tag(P ′)
whi
h proves the Lemma.

First, we make some general observations: For P → P̃ ′
we �nd an evaluation 
ontext

C and pro
esses R,R′
su
h that P ≡ C[R] → C[R′] ≡ P̃ ′

and R → R′
is a dire
t

appli
ation of one of the rules for internal redu
tions from Figure 3. Furthermore, it is

easy to verify that any pro
ess A with P ≡ A and nsid 6∈ bn(A) is also nsid -good and

tag(P) ≡ tag(A). Additionally, C[R] is nsid -good i� C[0] and R are nsid -good. Hen
e,

w.l.o.g. (sin
e ≡ allows for renaming of bound names), we 
an assume C[0] and R to be

nsid -good. Sin
e tag(C[R]) = tag(C)[tag(R)], it remains to show that R′
is nsid -good and

that tag(R) → tag(R′). We will be able to show this for the REPL, the COMM and the

THEN-ELSE rules and have that P ′ := C[R′] ≡ P̃ ′ ≡ Q ′
in these 
ases. In the LET-

THEN 
ase however, the destru
tor evaluation might introdu
e a term T 
ontaining a

free o

urren
e of nsid . Fortunately, repla
ing T with an equivalent term T ′
will solve

the problem and we have that P ′ := C[R′{T/T ′}] ≡E P̃ ′ ≡ Q ′
for R′{T/T ′} being

nsid -good. In detail:

• REPL: !R → C[R|!R] ≡ P̃ ′
where w.l.o.g. C[!R] and therefore C[R|!R] are nsid -

good. We set P ′ := C[R|!R] and have tag(P) ≡ tag(C[!R]) = tag(C)[!tag(R)]
(∗)
→

tag(C)[tag(R)|!tag(R)] = tag(C[R|!R]) = tag(P ′). (∗) by the REPL rule.

• COMM: Analogously to REPL P ≡ C[C 〈T 〉.R|C̃ (x ).R̃] → C[R|R̃{T/x}] ≡ P̃ ′

where C =E C̃ and w.l.o.g. C[C 〈T 〉.R|C̃ (x ).R̃] and C[R|R̃{T/x}] are nsid -good.

We observe

tag(C 〈T 〉.R) = tag(C )〈T 〉.tag(R) and tag(C̃ (x ).R̃) = tag(C̃ )(x ).tag(R̃)
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by De�nition 5.22. Analogously to REPL we have to show

tag(C)[tag(C )〈T 〉.tag(R)|tag(C̃ )(x ).tag(R̃)] → tag(C)[tag(R)|tag(R̃){T/x}]

Note that tag(R̃){T/x} = tag(R̃{T/x}) sin
e nsid 6∈ fn(T ). Hen
e it is ne
essary
and su�
ient to show tag(C ) =E tag(C̃ ). Now we distinguish two 
ases to show

tag(C ) =E tag(C̃ ):
� C = (nsid ,C

′) for some term C ′
. By assumption we have C =E C̃ and hen
e

C̃ =E (nsid ,C
′). By the grammar of nsid -good pro
esses (Figure 5) we have

nsid 6∈ fn(C̃ ) or C̃ = (nsid ,C
∗) for some C ∗

. Lemma 3.1 (iii) above ex
ludes

the �rst 
ase and leaves us with C̃ = (nsid ,C
∗). By De�nition 2.5 (vi) (natural

symboli
 model) we have C ′ =E C ∗
and hen
e tag(C̃ ) = C ∗ =E C ′ = tag(C ).

� C 6= (nsid ,C
′) for any term C ′

. By the grammar of nsid -good pro
esses

(Figure 5) we then have nsid 6∈ fn(C ). C̃ = (nsid ,C
′) for some term C ′

leads

to C =E (nsid ,C
′) whi
h 
ontradi
ts Lemma 3.1 (iii). Hen
e (again by the

grammar of nsid -good pro
esses) nsid 6∈ fn(C̃ ). Thus tag(C ) = (Msid ,C ) =E

(Msid , C̃ ) = tag(C̃ ).
• LET-THEN: P ≡ C[let x = D in R else R̃] → C[R{T/x}] ≡ P̃ ′

with D ⇓ T . By

De�nition 2.5 (vii) (natural symboli
 model) we �nd T ′
with nsid 6∈ T ′

, D ⇓ T ′

and T ′ =E T . Hen
e we have

P ≡ C[let x = D in R else R̃] → C[R{T ′/x}] =: P ′

and P ′ ≡E P̃ ′ ≡ Q ′
. Altogether

tag(P) ≡ tag(C[let x = D in R else R̃])

= tag(C)[let x = D in tag(R) else tag(R̃)]

→ tag(C)[tag(R){T ′/x}]
(∗)
= tag(C)[tag(R{T ′/x})]

≡ tag(P ′)

(∗) sin
e nsid 6∈ fn(T ′).
• LET-ELSE is not a�e
ted by tag and the proof is analogous to that for the REPL

rule.

�

Lemma 5.31 Let P be a 
losed sid-sensitive pro
ess and P ′
be a 
losed pro
ess with

nsid 6∈ fn(P ′). Then there is a pro
ess P∗
with untag(P) → P∗

and P∗ ≈ untag(P ′).

Proof. The rest of this proof is partially analogous to that of Lemma 5.30. Similarly, we


an fo
us on the rules from Figure 3 dire
tly. The main di�eren
e is that, for some sid-

sensitive pro
ess R and term T with nsid 6∈ fn(T ), untag(R){T/x} 6= untag(R{T/x}).
Instead, we only have untag(R){T/x} ∼∼∼ untag(R{T/x}) (we are going to prove that

�rst). Therefore the COMM rule and the LET-THEN rule, where substitutions o

ur,

have to be handled di�erently. The arguments for the REPL rule and the LET-ELSE

rule are analogous.
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Claim: If R is a sid-sensitive pro
ess, untag(R){T/x} ∼∼∼ untag(R{T/x})untag(R){T/x} ∼∼∼ untag(R{T/x})untag(R){T/x} ∼∼∼ untag(R{T/x}) for all
TTT with nsid 6∈ fn(T )nsid 6∈ fn(T )nsid 6∈ fn(T ). For all 
hannel identi�ers C = (Msid ,C

′) and C = C ∗
a

ord-

ing Figure 4 we obviously have untag(C ){T/x} = untag(C{T/x}) for all substitutions
{T/x}. However, in the ELSE-bran
h of (if Msid = fst(C )), C 
an be an arbitrary

term with nsid 6∈ fn(C ). If C = (Msid ,C
′) for some term C ′

, untag(C ){T/x} =
untag(C{T/x}) holds. Otherwise, for a substitution {T/x}, we distinguish two 
ases:

• C{T/x} 6= (Msid ,C
′) for all terms C ′

. Then untag(C ){T/x} = (nsid ,C{T/x}) =
untag(C{T/x}).

• Otherwise C{T/x} = (Msid ,C
′) for some term C ′

. Then untag(C ){T/x} =
(nsid ,C{T/x}) 6= C ′ = untag(C{T/x}). Sin
e fst(C{T/x}) ⇓ Msid the ELSE-

bran
h of R will never be exe
uted and we, analogously to the proof of Lemma 5.26,

repla
e (nsid ,C{T/x}) by C ′
to have untag(R){T/x} ∼∼∼ untag(R{T/x}).

Note that P ′
is sid-sensitive by Lemma 5.20.

We now handle the COMM rule and the LET-THEN rule:

• COMM: Analogously to Lemma 5.30 we have to prove untag(C ) =E untag(C̃ )
where C and C̃ are the 
hannel identi�ers used for 
ommuni
ation. By the gram-

mar of sid-sensitive pro
esses from Figure 4 all 
hannel identi�ers whi
h o

ur

unrestri
ted are either of the form (a) (Msid ,C
′) for some term C ′

or (b) C ∗
su
h

that C ∗σ 6=E (Msid ,C
′) for all substitutions σ and all terms C ′

. We distinguish

two 
ases

� C = (Msid ,C
′). C̃ 
annot be of form (b) sin
e C =E C̃ . Hen
e C̃ = (Msid , C̃

′)
and C ′ =E C̃ by De�nition 2.5 (vi) (natural symboli
 model). Therefore

untag(C ) = C ′ =E C̃ ′ = untag(C̃ ).

� Otherwise, C is of form (b). Then C̃ 
annot be of form (a) sin
e C =E C̃ .

We thus have untag(C ) = (nsid ,C ) =E (nsid , C̃ ) = untag(C̃ ).

We �nd

P ≡ C[C 〈T 〉.R|C̃ (x ).R̃] → C[R|R̃{T/x}] ≡ P ′

⇒untag(P) ≡ untag(C)[untag(C )〈T 〉.untag(R)|untag(C̃ )(x ).untag(R̃)]
(∗)
→ untag(C)[untag(R)|untag(R̃){T/x}] =: P∗

(∗) sin
e untag(C ) =E untag(C̃ ). Due to the 
laim above P∗ ≈ untag(P ′) whi
h
proves the COMM 
ase.

• LET-THEN: We have P ≡ C[let x = D in R else R̃] → C[R{T/x}] ≡ P ′
. In


ontrast to Lemma 5.30 the evaluation of the destru
tor may not lead to a term

T with nsid ∈ fn(T ) here if x ∈ fv(R) sin
e we required P ′
to be sid-sensitive.

(Otherwise, if x 6∈ fv(R), we obviously have untag(R){T/x} = untag(R{T/x}).)
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Thus

untag(P) ≡ untag(C)[let x = D in untag(R) else untag(R̃)]

→ untag(C)[untag(R){T/x}] =: P ∗ (∗)

≈ untag(C[R{T/x}]) = untag(P ′)

(*) due to the 
laim above. This proves the LET-THEN 
ase.

Sin
e untag dos not a�e
t the REPL and LET-ELSE 
ases these 
an be handled exa
tly

like the REPL 
ase in the proof of Lemma 5.30. �

Lemma 5.32 ∼Ssid
is an Ssid -nsid -bisimulation

Proof.

Let (P ,Q) ∈ ∼Ssid
. We show the three points of an Ssid -nsid -simulation.

• P ↓C : We have P ↓C i� P ↓
Ĉ

for a 
hannel identi�er Ĉ =E C whi
h o

urs in

P and thus follows the grammar from Figure 4. Sin
e P ∼Ssid
Q : untag(P) ≈

untag(Q) holds by de�nition. Sin
e P ↓
Ĉ

we have untag(P) ↓
untag(Ĉ ) and thus

untag(Q) =: Q̂1 → . . . → Q̂n ↓
untag(Ĉ ) for some n ∈ N and pro
esses Qi, i ∈

{1, . . . , n}. By Lemma 5.25 Q̂1 = untag(Q) is nsid -good. By Lemma 5.30 we get

a sequen
e of nsid -good pro
esses Q̂ ′
1 → . . . → Q̂ ′

n with Q̂ ′
1 = Q̂1, Q̂ ′

i ≡E Q̂i

and tag(Q̂ ′
1) → . . . → tag(Q̂ ′

n). Sin
e Q̂ ′
1 = Q̂1 = untag(Q) we have tag(Q̂ ′

1) =
Q by Lemma 5.27. Furthermore, Q̂ ′

n ≡E Q̂n ↓
untag(Ĉ ) implies Q̂ ′

n ↓
untag(Ĉ ) (see

Footnote 7) and tag(Q̂ ′
n) ↓

tag(untag(Ĉ )). Sin
e Ĉ is a term a

ording to Figure 4

we have tag(untag(Ĉ )) = Ĉ (=E C ) (see Lemma 5.27). Hen
e Q = tag(Q̂ ′
1) →

∗

tag(Q̂ ′
n) ↓C .

• P → P ′
with nsid 6∈ fn(P ′)∪bn(P ′): A

ording to Lemma 5.31 we �nd P∗

su
h that

untag(P) → P∗ ≈ untag(P ′). Sin
e P ∼Ssid
Q we also have untag(Q) =: Q̂1 →

. . . → Q̂n ≈ P∗
. Analogously to the previous part we �nd some nsid -good Q̂ ′

n su
h

that Q →∗ tag(Q̂ ′
n) and Q̂ ′

n ≡E Q̂n. By Lemma 5.26 we have untag(tag(Q̂ ′
n)) ≈ Q̂ ′

n

(Q̂ ′
n is 
losed). Thus untag(tag(Q̂ ′

n)) ≈ Q̂ ′
n ≡E Q̂n ≈ P∗ ≈ untag(P ′) whi
h

implies untag(tag(Q̂ ′
n)) ≈ untag(P ′) sin
e ≡E entails ≈ by Lemma 3.2 (iv). Hen
e

Q →∗ tag(Q̂ ′
n) and P ′ ∼Ssid

tag(Q̂ ′
n).

• Assume P ∼Ssid
Q and let R ∈ Ssid be a pro
ess and a names. We have

untag(P ) ≈ untag(Q) by de�nition of ∼Ssid
and ≈ is 
losed under the appli
ation

of evaluation 
ontexts. Hen
e untag(νa.(P | R)) = νa.(untag(P)|untag(R)) ≈
νa.(untag(Q)|untag(R)) = untag(νa.(Q |R)). Thus, by de�nition of ∼Ssid

,

νa.(P |R) ∼Ssid
νa.(Q |R).

Sin
e ∼Ssid
is symmetri
 it is an Ssid -nsid -bisimulation.

�
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Lemma 5.33 Let P and Q be 
losed pro
esses and M be an arbitrary 
losed term. Then

P ≈ Q ⇒ P((M )) ≈ Q((M )).

Proof. Fix a name nsid 6∈ (fn(M )∪ fn(P)∪ bn(P)∪ fn(Q)∪ bn(Q))and Msid := M . Re-

member that all lemmas in this se
tion were proven for an arbitrary �xedMsid with nsid 6∈
fn(Msid ). Now P , Q are nsid -good and P((Msid )) = tag(P) and Q((Msid)) = tag(Q). By
Lemmas 5.29,5.32: tag(P) ≈ tag(Q). Hen
e P((M )) = P((Msid )) ≈ Q((Msid)) = Q((M )).
�

Lemma 5.34 Let P and Q be pro
esses and M be a term with fv(M )∩(bv(P)∪bv(Q)) =
∅. Then P ∼∼∼ Q ⇒ P((M )) ∼∼∼ Q((M )).

Proof. For all 
losing substitutions σ we have P ∼∼∼ Q ⇒ Pσ ≈ Qσ. By Lemma 5.33 we

have Pσ((Mσ)) ≈ Qσ((Mσ)) for the 
losed pro
esses Pσ and Qσ and the 
losed term

Mσ. This entails P((M ))σ ≈ Q((M ))σ sin
e fv(M ) ∩ (bv(P) ∪ bv(Q)) = ∅. Therefore

P((M )) ∼∼∼ Q((M )). �

Proof of Lemma 5.13. By Lemma 5.34 P((x )) ∼∼∼ Q((x )). A

ording to De�nition 5.11

!!xP = C
x ,np

SID [P((x ))] for some names np ∩ fn(P) = ∅ and !!xQ = C
x ,nq

SID [Q((x ))] for
some names nq ∩ fn(Q) = ∅. Let n be names su
h that n ∩ (fn(P) ∪ fn(Q)) = ∅ and

|n| ≥ max(|np|, |nq |). We have

C
x ,np

SID [P((x ))] ≡ C
x ,n
SID [P((x ))]

(∗)
∼∼∼ C

x ,n
SID [Q((x ))] ≡ C

x ,nq

SID [Q((x ))]

(*) sin
e P((x )) ∼∼∼ Q((x )) and ∼∼∼ is 
losed under the appli
ation of 
ontexts (Lemma 2.7).

Therefore !!xP ∼∼∼ !!xQ . �

Note that Lemma 5.13 also implies P ∼∼∼ Q ⇒ !!P ∼∼∼ !!Q .

Lemma 5.35 Let P be a pro
ess and n be a name that o

urs only in 
hannel identi�ers

in P . Then νn.!!xP ∼∼∼ !!xνn.P for all variables x 6∈ bv(P).

Proof. First, we observe that instan
es of P with distin
t tags 
annot 
ommuni
ate with

ea
h other. This 
an be formalized by the following

Claim. Let id , id ′ ∈ SID be distin
t IDs and P , Q arbitrary pro
esses. Then

P((id)) →∗lC and Q((id ′)) →∗lC ′
for terms C ,C ′

implies C 6=E C ′
. Proof: By

De�nition 5.1 every 
hannel identi�er in P((id)) is of the form (id ,X ) for some term

X . Analogously, every 
hannel identi�er in Q((id ′)) is of the form (id ′,Y ). Towards


ontradi
tion we assume C = (id ,X ) =E (id ′,Y ) = C ′
. Then, by De�nition 2.5 (vi)

(natural symboli
 model), we have id =E id ′
. However, id 6=E id ′

is required for all pairs

of distin
t IDs id , id ′ ∈ SID . This proves the 
laim.
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It is now easy to 
he
k that

R := {(C[νn.(P1((id1 ))| . . . |Pℓ((idℓ))|
∏

x∈S

P((x )))], C[νn.P1((id1 ))| . . . |νn.Pℓ((idℓ))|
∏

x∈S

νn.P ((x ))]) :

P1, . . . ,Pℓ pro
esses where n o

urs only in 
hannel identi�ers,

id1 , . . . , idl ⊆ SID \ S are distin
t, S ⊆ SID and C evaluation 
ontext}

is a bisimulation and thereby prove the lemma. Although the Pi in R are formally

arbitrary pro
esses that 
ontain n only in 
hannel identi�ers, they intuitively allow to

represent the running instan
es of P . Note that the 
laim above holds for any pair

Pi((idi )), Pj((idj )) with i 6= j. Intuitively, sin
e n o

urs only in 
hannel identi�ers and

thus is never transmitted, no 
ontext 
an tell the di�eren
e between a private n that is

shared among all instan
es and an n individual n for ea
h instan
e. �

Lemma 5.36 Let P and Q be pro
esses. Then !!x(P |Q) ∼∼∼ !!xP |!!xQ for all variables

x 6∈ bv(P) ∪ bv(Q).

Proof. We use the semanti
s of produ
t pro
esses (see De�nition 2.9) for this proof. By

De�nition 5.2 and De�nition 5.11 we have !!xR ∼∼∼
∏

x∈SID R((x )) for any pro
ess R. Let
σ be a 
losing substitution for !!xP and !!xQ (i.e., fv(P((x ))σ), fv (Q((x ))σ) ⊆ {x}). We

set ΠP (X) :=
∏

x∈X P((x ))σ for arbitrary X ⊆ SID and

∑
P (X) :=

∑
x∈X P((x ))σ =

P((x1))σ| . . . |P((xℓ))σ for �nite X = {x1, . . . , xℓ} ⊆ SID . Analogously ΠQ(X),
∑

Q(X)
and ΠPQ(X) :=

∏
x∈X (P((x ))σ|Q((x ))σ). We then de�ne the relation R:

R := {(C[
∑

P

(SP ) |
∑

Q

(SQ) | ΠPQ (SPQ)], C[ΠP (SPQ ∪ SP ) | ΠQ(SPQ ∪ SQ)]) :

C evaluation 
ontext, SP , SQ, SPQ ⊆ SID , SP ∩ SPQ = ∅, SQ ∩ SPQ = ∅}


losed under stru
tural equivalen
e. Note that

(
∏

x∈SID

(P((x ))σ|Q((x ))σ),
∏

x∈SID

P((x ))σ |
∏

x∈SID

Q((x ))σ

)
∈ R

for SP := ∅, SQ := ∅ and SPQ := SID whi
h proves this lemma if R ⊆≈. Therefore, we
show the three points of a simulation for R and R−1

respe
tively. First, we show that

R is a simulation. For (A,B) ∈ R:

1. A ↓C : Produ
t pro
esses do not emit on 
hannels. Three 
ases remain:

(a) If C[0] ↓C , then B ↓C .
(b) If P((id))σ ↓C for some id ∈ SP , then B 
an spawn the instan
e P((id))σ from

ΠP (SPQ ∪ SP ) and then emit on C . Hen
e B →↓C .
(
) Analogously for Q((id))σ ↓C for some id ∈ SQ.
Hen
e A ↓C entails B →∗↓C .

2. A→ A′
: We distinguish two 
ases:
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(a) → follows the IREPL rule: Then → spawns a new instan
e with id id from

ΠPQ (SPQ): We set C′[�] := C[P((id))σ | Q((id))σ | �] and S′
PQ := SPQ \{id}.

Hen
e we have A→ C′[
∑

P (SP ) |
∑

Q(SQ) | ΠPQ (S′
PQ)]. Additionally, we ob-

serve B ≡ C[ΠP (SPQ∪SP ) | ΠQ(SPQ∪SQ)] →→ C′[ΠP (S
′
PQ∪SP ) | ΠQ(S

′
PQ∪

SQ)] by spawning P((id))σ from ΠP (SPQ ∪ SP ) and Q((id))σ from

ΠQ(SPQ ∪ SQ). We have (C′[
∑

P (SP ) |
∑

Q(SQ) | ΠPQ(S
′
PQ)], C

′[ΠP (S
′
PQ ∪

SP ) | ΠQ(S
′
PQ ∪ SQ)]) ∈ R.

(b) → follows a rule from Figure 3: Then we distinguish two 
ases:

i. If we have C[0] → C′[0], → translates 
anoni
ally to C in B → B′
su
h

that (A′, B′) ∈ R.

ii. Otherwise, → a�e
ts instan
es from

∑
P (SP ) |

∑
Q(SQ). We re-

move the ids of the a�e
ted instan
es from SP and SQ yielding

sets S′
P and S′

Q and de�ne a 
ontext C′
(in
luding the a�e
ted in-

stan
es) su
h that A → C′[
∑

P (S
′
P ) |

∑
Q(S

′
Q) | ΠPQ(SPQ)]. We now

spawn the 
orresponding instan
es in B �rst and then mimi
 → ex-

a
tly yielding B →∗ C′[ΠP (SPQ ∪ S′
P ) | ΠQ(SPQ ∪ S′

Q)]. We have

(C′[
∑

P (S
′
P ) |

∑
Q(S

′
Q) | ΠPQ (SPQ)], C′[ΠP (SPQ∪S′

P ) | ΠQ(SPQ∪S′
Q)]) ∈

R.

3. By de�nition R is 
losed under the appli
ation of evaluation 
ontexts.

Now we show that R−1
is a simulation. For (A,B) ∈ R−1 :

1. A ↓C : Sin
e produ
t pro
esses do not emit on 
hannels we have C[0] ↓C and thus

B ↓C .
2. A→ A′

: We distinguish two 
ases:

(a) → follows the IREPL rule: We distinguish four 
ases:

i. A new instan
e P((id))σ is spawned from ΠP (SPQ ∪ SP ) with id ∈
SP : We de�ne the 
ontext C′[�] := C[P((id))σ | �], S′

P := SP \
{id} and have A → C′[ΠP (SPQ ∪ S′

P ) | ΠQ(SPQ ∪ SQ)] and B ≡
C′[
∑

P (S
′
P ) |

∑
Q(SQ) | ΠPQ(SPQ)]. Hen
e (C′[ΠP (SPQ∪S′

P ) | ΠQ(SPQ∪

SQ)], C′[
∑

P (S
′
P ) |

∑
Q(SQ) | ΠPQ(SPQ)] ∈ R−1

.

ii. A new instan
e Q((id))σ is spawned from ΠQ(SPQ ∪ SQ) with id ∈ SQ:
Analogous to the previous 
ase.

iii. A new instan
e P((id))σ is spawned from ΠP (SPQ ∪ SP ) with id ∈ SPQ:

We de�ne the 
ontext C′[�] := C[P((id))σ | �], S′
PQ := SPQ \{id}, S′

Q :=
SQ ∪ {id} and have A → C′[ΠP (S

′
PQ ∪ SP ) | ΠQ(S

′
PQ ∪ S′

Q)]. Note

that SPQ ∪ SQ = S′
PQ ∪ S′

Q. In B we spawn P((id))σ | Q((id))σ from

ΠPQ (SPQ) and have B → C′[
∑

P (SP ) |
∑

Q(S
′
Q) | ΠPQ (S′

PQ)]. Hen
e

(C′[ΠP (S
′
PQ∪SP ) | ΠQ(S

′
PQ∪S′

Q)], C
′[
∑

P (SP ) |
∑

Q(S
′
Q) | ΠPQ (S′

PQ)] ∈

R−1
.

iv. A new instan
e Q((id))σ is spawned from ΠQ(SPQ ∪ SQ) with id ∈ SPQ:

Analogous to the previous 
ase.

(b) → follows a rule from Figure 3: Then we basi
ally have C[0] → C′[0] whi
h
translates 
anoni
ally to C in B → B′

su
h that (A′, B′) ∈ R.

3. By de�nition R is 
losed under the appli
ation of evaluation 
ontexts.
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This shows that R is a bisimulation and hen
e R ⊆≈. �

Alternative de�nitions of !!!!!!. Of 
ourse, our de�nition of !!P is not the only possible

de�nition of a repli
ation with session ids. For example, one might try to de�ne !!P in

su
h a way that an instan
e of P is spawned for arbitrary terms as sessions id, not only

terms in some �xed set SID . In parti
ular, a fresh name 
ould then be used as session id

whi
h is not possible with our modeling. (Then, of 
ourse, the set of pro
esses to whi
h

!! may be applied should be restri
ted to pro
esses whi
h wait for an input before doing

anything. Otherwise pro
esses 
ould spawn spontaneously that use some other pro
ess'

fresh names as session ids.)

Any de�nition of !! that satis�es Lemmas 5.12, 5.13, 5.35, and 5.36 would lead to the

same 
omposition theorem. (If that de�nition !! is appli
able only to a 
ertain set P of

pro
esses, we additionally need that P is 
losed under parallel 
omposition, restri
tions,

renaming, and !!, and that the de�nition of≤ (De�nition 4.3) is with respe
t to simulators

in P.)

The 
omposition theorem. We 
an now state and prove the 
omposition theorem.

It says that if P ≤ Q, we 
an restri
t the IO-names, 
ompose in parallel with pro
esses

that have disjoint NET-names, rename names (as long as NET- and IO-names are not

inter
hanged), and perform 
on
urrent 
omposition.

Theorem 5.37 (Composition Theorem) Let P , Q be pro
esses with P ≤ Q . Then

(i) For any list of names io ⊆ IO we have νio.P ≤ νio.Q .

(ii) For any pro
ess R with (fn(R) ∩ (fn(P) ∪ fn(Q))) ⊆ IO we have P |R ≤ Q |R.
(iii) For any permutation ψ : NET → NET we have Pψ ≤ Q and P ≤ Qψ.
(iv) For any permutation ψ : IO → IO we have Pψ ≤ Qψ.
(v) If Q is a NET-stable pro
ess, !!xP ≤ !!xQ for all variables x 6∈ bv(P) ∪ bv(Q).

Proof. In the following, let (S,ϕ,n) be as in De�nition 4.3. (They exist be
ause P ≤ Q .)

(i) P ∼∼∼ νn.(Qϕ|S)
(∗)
⇒ νio.P ∼∼∼ νio.νn.(Qϕ|S)

(∗∗)
∼∼∼ νn.((νio.Q)ϕ|S)

(∗) sin
e ∼∼∼ is 
losed under the appli
ation of evaluation 
ontexts.

(∗∗) sin
e neither S nor ϕ 
ontain names from IO

(ii) W.l.o.g. we 
an assume fn(R) ∩ n = ∅ and that ϕ is the identity on (fn(R) ∪
bn(R)) ∩NET. These assumptions guarantee (∗) in the up
oming equations. P ∼∼∼

νn.(Qϕ|S) ⇒ P |R ∼∼∼ νn.(Qϕ|S)|R
(∗)
∼∼∼ νn.((Q|R)ϕ|S)

(iii) P ∼∼∼ νn.(Qϕ|S) ⇒ Pψ ∼∼∼ (νn.(Qϕ|S))ψ ≡ νnψ.(Q(ψ ◦ ϕ)|Sψ). Therefore, with

(Sψ,ψ ◦ ϕ,nψ) as simulator, we have Pψ ≤ Q . With (S,ϕ ◦ ψ−1,n) we have

P ≤ Qψ.

(iv) P ∼∼∼ νn.(Qϕ|S) ⇒ Pψ ∼∼∼ (νn.(Qϕ|S))ψ ≡ νn.(Q(ϕ ◦ ψ)|S) sin
e S,ϕ and n do

not 
ontain IO names and thus are not a�e
ted by ψ : IO → IO.
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(v) Note that Qϕ is NET-stable sin
e Q is NET-stable. Then P ∼∼∼ νn.(Qϕ|S) entails

!!xP ∼∼∼ !!xνn.(Qϕ|S) (by Lemma 5.13)

∼∼∼ νn.!!x (Qϕ|S) (by Lemma 5.35 sin
e Qϕ|S NET-stable)
∼∼∼ νn.(!!x (Qϕ)|!!xS) (by Lemma 5.36)

≡ νn.((!!xQ)ϕ|!!xS) (by Lemma 5.12)

Thus (!!xS,ϕ,n) is a proper simulator for !!xP ≤ !!xQ . �

6 Property preservation

Besides se
ure 
omposition, the se
ond salient property of the UC framework is the fa
t

that se
urity properties of the ideal fun
tionality F automati
ally 
arry over to any

proto
ol emulating F . For example, a se
ure 
hannel fun
tionality that takes a message

m from Ali
e and gives it dire
tly to Bob will obviously have the property that m stays

se
ret. Then, if π UC-emulates F , any message given to π will also stay se
ret. A similar

property preservation law holds in our 
ase, the following theorem formalizes it:

Theorem 6.1 (Property preservation) Let P,Q be NET-stable pro
esses with P ≤
Q. Let E1 and E2 be 
ontexts whose holes are prote
ted only by parallel 
ompositions (|),
restri
tions (ν), and indexed repli
ations (!!x). Assume that E1, E2 do not 
ontain NET-

names (neither bound nor free). Assume that the number of !!x (possibly with di�erent

x) over the hole is the same in E1 and E2.

If E1[Q] ∼∼∼ E2[Q], then E1[P ] ∼∼∼ E2[P ].

Proof. Let b denote the number of !!x over the hole of E1, E2. We write !!bS for b ≥ 0
appli
ations of !! to S.

Sin
e P ≤ Q, there are S,ϕ, n with P ∼∼∼ νn.(Qϕ|S) and S 
losed and NET-stable,

and IO ∩ fn(A) = ∅, ϕ : NET → NET a bije
tion and n a list of names n ⊆ NET.
Without loss of generality, we 
an assume that n∩ fn(E1, E2) = n∩ bn(E1, E2) = ∅. For
i = 1, 2, we have

Ei[P ]
(i)

∼∼∼ Ei[νn.(Qϕ|S)]
(ii)

∼∼∼ νn.Ei[(Qϕ|S)]
(iii)

∼∼∼ νn.(Ei[Qϕ]|!!
bS)

(iv)

= νn.(Ei[Q]ϕ|!!bS).

Here (i) uses Lemma 2.7.

And (ii) uses that the names n do not o

ur in Ei, the rules NEW-C and NEW-PAR

from Figure 2, and Lemma 5.35 for swapping !!x in Ei and the names n (the pre
onditions
of Lemma 5.35 are ful�lled be
ause n are NET-names and thus do not o

ur in Ei).
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free nets
start, netnotify, netdeliver, n1, n2.

fun empty/0.

let FSC = in(netstart,y); in(ioA,x);

( out(netnotify,empty) | in(netdeliver,z); out(ioB,x) ).

pro
ess new ioA; new ioB; out(ioA,
hoi
e[n1,n2℄) | in(ioB,z) | FSC

Figure 6: Proverif 
ode for showing E1[FSC ] ≈ E2[FSC ] in Lemma 6.3 (prop-pres.pv,

see [BU13℄).

And (iii) uses that the names in Ei (IO-names only) and the names in S (NET-names

only) are disjoint, as well as Lemma 5.36 for moving S over a !! in Ei. (Lemma 5.36

guarantees !!x(R|S) ≈ !!xR|!!xS, this is why S a

umulates on !!x for ea
h !!x over the

hole of Ei. Sin
e S is 
losed, we 
an drop the x from !!x.)
And (iv) uses that Ei does not 
ontain NET-names (bound or free) while ϕ is a

substitution on NET-names.

Furthermore, sin
e

∼∼∼ is 
losed under renaming of free names, and under appli
a-

tion of 
ontexts (Lemma 2.7), from E1[Q] ∼∼∼ E2[Q] it follows that νn.(E1[Q]ϕ|!!bS) ∼∼∼
νn.(E2[Q]ϕ|!!bS) and hen
e E1[P ] ∼∼∼ E2[P ]. �

Thus, any se
urity property that 
an be expressed by an indistinguishability game

of the form �E1[P ] ∼∼∼ E2[P ]� with E1, E2 as in the theorem will 
arry over from the

ideal fun
tionality Q to the proto
ol P , given P ≤ Q. Note that even many tra
e based

properties 
an be expressed in su
h a way. E.g., if we want to say that E1[P ] does not
raise an event bad (modeled by emitting on a spe
ial 
hannel), we just de�ne E2 to be

like E1, but without the event. Then E1[P ] ∼∼∼ E2[P ] implies that E1[P ] does not raise
the event.

Example: Strong se
re
y. We illustrate the use of this theorem with an example.

Consider the se
ure 
hannel fun
tionality:

De�nition 6.2 (Se
ure 
hannel)

FSC := net scstart().ioA(x).(netnotify〈〉 | netdeliver ().ioB 〈x〉)

We want to show:

Lemma 6.3 If P ≤ FSC , then P has strong se
re
y in the following sense: We have

P1 ≈ P2 where Pi := νioAioB .ioA〈ni〉|ioB ()|P .

Proof. Let Ei := νioAioB .ioA〈ni〉|ioB ()|�. We use Proverif to show that E1[FSC ] ≈
E2[FSC ]. The Proverif 
ode is given in Figure 6. By Theorem 6.1 (and using that ≈
and

∼∼∼ 
oin
ide for 
losed pro
esses), we have P1 = E1[FSC ] ≈ E2[FSC ] = P2. �

Anonymity properties are modeled very similarly, ex
ept that instead of di�erent

payloads n1, n2, di�erent user ids are provided to the two pro
esses.
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Example: Unlinkability. The next example is strong unlinkability [ACRR10℄. This

property requires that the adversary 
annot distinguish whether every user runs only one

session of a proto
ol, or whether every user runs many sessions. Formally: !νid .!νsid .P ≈
!νid .νsid .P if we assume that P 
ontains free names id , sid for the user id and the

session id. At a �rst glan
e, su
h a property seems to be ex
luded by the restri
tion of

Theorem 6.1 that E1, E2 may not have a ! over their hole. This is, however, not the 
ase
if proto
ol P (and the fun
tionality Q) are modeled suitably, namely if P is already a

multi-session proto
ol. For example, if P expe
ts a pair of user id and session id on an

IO-
hannel init for ea
h session to be run, then strong unlinkability 
an be expressed as

follows:

De�nition 6.4 A proto
ol P has strong unlinkability i�

νinit .(P |!νid .!νsid .init〈(id , sid)〉) ≈ νinit .(P |!νid .νsid .init〈(id , sid)〉).

Then Theorem 6.1 guarantees that if Q has strong unlinkability and P ≤ Q, then P has

strong unlinkability.

Noti
e that if we model a di�erent session id me
hanism, we also need a di�erent

de�nition. For example, if P and Q are 
onstru
ted using the !! operator, session ids

will be part of the 
hannel name (we would have 
hannels su
h as (sid , (id , init))). The
variant des
ribed above seems most realisti
 for unlinkability, though, be
ause !! in
ludes
session ids in the 
lear in all network-messages, so 
onstru
ting unlinkable proto
ols by


on
urrent 
omposition of individual sessions using !! does not seem to work well.

In Appendix A we show that the various restri
tions in Theorem 6.1 are ne
essary.

In parti
ular, property preservation for 
ontexts E1, E2 having a ! over their hole (instead
of a !!) does not hold. The reasons are similar to those that forbid ! in the 
omposition

theorem (
f. Se
tion 5). This is another indi
ation that an operator like !! is more natural

in this 
ontext.

7 Relation to Delaune-Kremer-Pereira

DKP-se
urity. As mentioned in the introdu
tion, Delaune, Kremer, and Pereira

[DKP09℄ have already presented a variant of the UC model in the applied pi 
al
ulus.

In this se
tion, we des
ribe the di�eren
es between their and our model, and why these

di�eren
es are ne
essary to a
hieve stronger se
urity results.

In [DKP09℄, se
urity is de�ned as follows:

De�nition 7.1 (DKP-se
urity) Let � ( observational preorder) be the largest simula-

tion (not bisimulation).

Let P,Q be pro
esses. Then P ≤SS Q i� there exists a simulator S (a 
ontext) su
h

that P � S[Q].
Here a simulator S is an evaluation 
ontext subje
t to 
ertain 
onditions, see [DKP09℄,

notably that it only binds NET-names.
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Noti
e that in this de�nition, the main di�eren
e to our de�nition is that P and S[Q]
do not have to be observationally equivalent, but only observationally preordered. (Also,

the notion of the simulator S is somewhat di�erent from ours, but not in essen
e.) The

e�e
t of this is that the simulator may introdu
e additional non-determinism. For exam-

ple, in our model, if the proto
ol P 
an take one out of two a
tions, the simulator needs

to simulate the appropriate a
tion, he thus needs to �gure out whi
h of the two a
tions

is taken. With respe
t to DKP-se
urity, the simulator 
an just non-deterministi
ally


hoose whi
h a
tion to take; the observational preorder takes 
are that the right a
tion

is taken in the right situation. This makes simulators for DKP-se
urity mu
h easier to


onstru
t and DKP-se
urity into a 
onsiderably weaker notion.

DKP-se
urity satis�es similar laws as our notion. In parti
ular, ≤SS
is re�exive and

transitive and it satis�es a 
omposition theorem (whi
h di�ers from ours mainly in that

P ≤SS Q =⇒ !P ≤SS !Q holds, no need to introdu
e !!). They do not state a property

preservation theorem. We believe, though, that their DPK-se
urity supports property

preservation for 
ertain kinds of tra
e properties.

12

The problem with observational preorder. We explain why we believe that a

de�nition based on observational preorder instead of equivalen
e does not give su�
ient

se
urity guarantees. We illustrate this by the following example. Consider a simple

fun
tionality that is supposed to model an inse
ure but anonymous 
hannel:

Fanon := ioA(x).net〈x〉|ioB (x).net〈x〉

Obviously, this fun
tionality preserves anonymity about whether Ali
e or Bob

sends a message (i.e., whether an input on ioA or ioB o

urs). Formally:

νioAioB .(ioA〈T 〉|Fanon ) ≈ νioAioB .(ioB 〈T 〉|Fanon ). (In fa
t, we even have ≡.) Now


onsider a naive proto
ol in whi
h Ali
e and Bob send their message over distin
t 
han-

nels netA,netB . Formally:

P := ioA(x).netA〈x〉|ioB (x).netB 〈x〉

Obviously, P does not provide anonymity, it is easy to see that νioAioB .(ioA〈T 〉|P ) 6≈
νioAioB .(ioB 〈T 〉|P ). Consequently (Theorem 6.1), we have P 6≤ Fanon as we would

expe
t sin
e P gives less se
urity than Fanon .

On the other hand, with respe
t to DKP-se
urity, P is 
onsidered as se
ure as Fanon ,

i.e., P ≤SS Fanon . We use the following simulator: S := net(x).netA〈x〉 | net(x).netB 〈x〉 |
�. Then P � S[Fanon ] be
ause S relays messages sent on net onto netA or netB , and

the de�nition of � makes sure that the message is non-deterministi
ally delivered on the

right 
hannel netA or netB . Hen
e P ≤SS Fanon .

Lemma 7.2 (with non-rigorous proof) P ≤SS Fanon .

12

Probably a law of the following kind holds: Assume P ≤SS Q. Let c /∈ fv(P,Q), and E be a 
ontext

satisfying 
ertain properties. Then E[Q] 6 ↓c =⇒ E[P ] 6 ↓c. Compare with Theorem 6.1 whi
h 
an deal

with indistinguishability properties.
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Proof. In this proof, we assume that Lemma 3.3 also holds for the 
al
ulus from [DKP09℄.

Sin
e that 
al
ulus is somewhat di�erent from ours, this makes the present proof non-

rigorous. (However, probably the proof of Lemma 3.3 
an be easily adapted to the


al
ulus of [DKP09℄.)

Then we have

P
(∗)

≈ νnet .(ioA(x).net〈x〉|net(x).netA〈x〉)

| νnet .(ioB (x).net〈x〉|net(x).netB 〈x〉)
(∗∗)

� ioA(x).net〈x〉|net(x).netA〈x〉

| ioB (x).net〈x〉|net(x).netB 〈x〉

≡ S[Fanon ] with S := net(x).netA〈x〉 | net(x).netB 〈x〉 | �.

Here (∗) uses two appli
ations of Lemma 3.3 (in the reverse dire
tion), the �rst with

n := net , t := x, x := x, and Q := netA〈x〉, and the se
ond with n := net , t := x, x := x,
and Q := netB 〈x〉. And (∗∗) uses that νc.P � P ([DKP, Lemma 8℄).

Sin
e ≈ implies � and � is transitive, we have P � S[Fanon ]. Furthermore, S is a

valid simulator for DKP-se
urity. Thus P ≤SS Fanon . �

Thus, the se
urity of a proto
ol in the sense of [DKP09℄ does not imply that the

proto
ol has the same anonymity properties as the ideal fun
tionality. The same probably

holds for other equivalen
e properties su
h as strong se
re
y et
. We 
onsider this a strong

restri
tion of the notion and thus believe that a symboli
 analogue to UC se
urity should

use observational equivalen
e or a similar notion of equivalen
e.

Why observational preorder? The reader may wonder why [DKP09℄ use observa-

tional preorder instead of observational equivalen
e, in parti
ular sin
e observational

equivalen
e is the more dire
t analogue to the indistinguishability in the 
omputational

UC framework [Can01℄. We explain the reasons as we understand them (this is based

both on explanations in [DKP09℄ and on our own insights while working on the 
urrent

result), and due to what de�nitional de
isions we managed to get around those reasons:

• It is not possible to model �relays�. That is, if we have a pro
ess P that outputs

on a 
hannel c, then as a te
hni
al tool we might wish to 
onstru
t a pro
ess

R (a relay) that forwards all message on c to another 
hannel c′, i.e., we want

νc.(P |R) ≈ P{c′/c}. Unfortunately, su
h a relay does not seem to exist in the

applied pi 
al
ulus. R :=!c(x).c′〈x〉 does not work. Consider, e.g., P := c〈n〉.a〈n〉.
Then νc.(P |R) ↓a but P{c′/c} 6 ↓a. With respe
t to �, however, we 
an have relays

(P{c′/c} � νc.(P |R)).

Why are relays important? One reason is whether a dummy adversary exists. Su
h

a dummy adversary is an adversary that forwards all messages on NET-
hannels

from the proto
ol to the environment and vi
e versa. (So, essentially, a relay.) The

existen
e of the dummy adversary is used impli
itly or expli
itly in most stru
-

tural theorems (re�exivity, transitivity, 
on
urrent 
omposition). In fa
t, it seems
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that when using observational equivalen
e in [DKP09℄, one would not even have

re�exivity.

We get around this problem by using a slightly di�erent de�nition of adver-

saries/simulators (De�nition 4.2). In our setting, a dummy 
an be trivially 
on-

stru
ted as (0, ϕ,∅) where ϕ just renames the proto
ol's NET-
hannels to the

NET-
hannels that the environment expe
ts the messages on. This simple tri
k

obviates the need for using relays in the 
onstru
tion of the dummy adversary.

• The se
ond problem is that one does not get a 
omposition theorem that guaran-

tees P ≤SS Q =⇒ !P ≤SS !Q when using observational equivalen
e. However, we

believe that this is a natural limitation be
ause we 
an show that property preser-

vation does not even hold for equivalen
e-based se
urity properties that repli
ate

the proto
ol. Thus we 
annot expe
t to get su
h a 
omposition theorem and simul-

taneously have property preservation for equivalen
e properties. We get around

this problem by de�ning a di�erent notion of 
on
urrent 
omposition, using the !!
operator (see Se
tion 5).

• Finally, the non-existen
e of relays is a problem when proving the se
urity of 
on-


rete proto
ols P ≤ F : A typi
al thing a simulator has to do is to take a message

m on a NET-
hannel and somehow rewrite it (e.g., to enc(k,m)) before sending

it on to the environment. This, of 
ourse, is a generalization of the 
on
ept of a

relay. Thus, if relays are impossible, we 
an hardly expe
t to 
onstru
t sensible

simulators. This, however, is not true if we pay some attention in the de�nition of

the fun
tionality and obey the following guideline:

Guideline: When designing a fun
tionality, use di�erent names for all

NET-
hannels and, whenever sending something on a NET-
hannel C,
use C〈T 〉|P ′

instead of C〈T 〉.R.

In these 
ases, R :=!c(x).c′〈x〉 will usually work as a relay (e.g., νc.(P |R) ≈ P{c′/c}
for P := c〈n〉|a〈n〉).

8 Example: Se
ure 
hannels

In this se
tion we apply symboli
 UC hands on. We illustrate how our results from

Se
tion 5 
an be usefully applied in pra
ti
e to 
onstru
t a se
ure 
hannel from the

widely known NSL proto
ol and a PKI. Furthermore, when extending the se
ure 
hannel

to multiple sessions, we present an example for a joint state, i.e., multiple instan
es of

one proto
ol that jointly use one instan
e of another fun
tionality. While the original UC

model of Canetti [Can01℄ requires an additional theorem to handle joint states [CR03℄,

we 
an dire
tly use !! in our 
ase. We used Proverif

13

for our proofs as mu
h as possible

to show how it helps with the veri�
ation of various properties in the 
ontext of symboli


UC.

13

Version 1.86pl4
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fun sen
/3. (* sen
(key,msg,rand) *)

redu
 sde
(k,sen
(k,m,r)) = m.

fun empty/0.

fun hash/1.

fun pk/1.

fun sk/1.

fun pen
/3. (* pen
(pk,msg,rand) *)

redu
 pde
(sk(k),pen
(pk(k),m,r)) = m.

redu
 pkofsk(sk(k)) = pk(k).

redu
 pkofen
(pen
(p,m,r)) = p.

Figure 7: Key-ex
hange example: Proverif 
ode for the symboli
 model

(se

han-model.pv, see [BU13℄)

In this se
tion, we only 
onsider an example where we assume all parties to be honest

(as the goal of se
ure 
hannels is to prote
t from an outside adversary). For an example

with 
orruption, see Se
tion 9.

We �rst de�ne the symboli
 model used in this se
tion. The 
onstru
tors are:

penc/3, pk/1, sk/1, senc/3, (·, ·), hash/1, and empty/0, representing publi
-key en
ryp-

tion, publi
 and se
ret keys, symmetri
 en
ryption, pairs, hashing, and empty messages,

respe
tively. En
ryption has a third argument modeling randomness used for en
rypt-

ing. More spe
i�
ally, penc(pk(k),m, r) models a publi
 key en
ryption using key pk(k),
plaintext m, and randomness r, and senc(k,m, r) a symmetri
 en
ryption using key k,
plaintext m, and randomness r. We believe that senc without the additional random-

ness argument r would also work in our setting. However, we introdu
e this additional

non
e to help Proverif, whi
h 
an then better distinguish 
iphertexts (e.g., the proof

of se

han-s
2.pv fails without r due to Proverif's overapproximation te
hnique). We

have no equations in our theory.

Furthermore we have the destru
tors pdec/2, sdec/2, pkofsk/1, and pkofenc/1, mod-

eling publi
-key de
ryption, symmetri
 de
ryption, extra
tion of a publi
 key from a

se
ret key, and extra
tion of a publi
 key from a 
iphertext. (The latter two are not

needed in our proto
ols, but we provide them to make the adversary more realisti
.) The

behavior of the destru
tors is spe
i�ed by the following rewrite rules:

pdec(sk(x), penc(pk(x), y, z)) → y

sdec(x, senc(x, y, z)) → y

pkofsk (sk(x)) → pk(x)

pkofenc(penc(x, y, z)) → x

The Proverif 
ode for this symboli
 model is given in Figure 7.

66



8.1 Key ex
hange using NSL

With the symboli
 model set up we next show how to tailor a UC-se
ure key ex
hange

from NSL using a PKI fun
tionality FPKI . Towards this goal we model the ideal key

ex
hange fun
tionality FKE , the PKI FPKI and the NSL proto
ol based on FPKI as

follows:

De�nition 8.1 (Key ex
hange fun
tionality)

FKE := νk.netdelA().ioka〈k〉 | netdelB ().iokb〈k〉

De�nition 8.2 (Publi
 key infrastru
ture fun
tionality)

FPKI := νkakb.iopkeA〈(sk (ka), pk (ka), pk (kb))〉

| iopkeB 〈(sk (kb), pk (ka), pk (kb))〉

| netpke〈(pk (ka), pk (kb))〉

De�nition 8.3 (Needham-S
hroeder-Lowe)

NSLA := iopkeA((xsk ,_, xpkB
)).νna.νr1.

netnslA〈penc(xpkB
, na, r1)〉.netnslA(xc).

let (=na, xnb
,=B) = pdec(xsk , xc) in

νr2.netnslA〈penc(xpkB
, xnb

, r2)〉.

ioka〈hash((na, xnb
))〉

NSLB := iopkeB ((xsk , xpkA
,_)).netnslB (xc).

let xna
= pdec(xsk , xc) in

νnb.νr.netnslB 〈penc(xpkA
, (xna

, nb, B), r)〉.

netnslB (x
′
c).if nb = pdec(xsk , x

′
c) then

iokb〈hash((xna
, nb))〉

NSL := νiopkeAiopkeB .(NSLA | NSLB | FPKI )

The di�eren
es to the original NSL proto
ol [Low95℄ are: The original proto
ol in-


ludes A's identity in the �rst message, and the original proto
ol does not spe
ify what

to do with the non
es na, nb, while we use them to derive a key hash((na, nb)). Also,

[Low95℄ also presents an extended version of the proto
ol that expli
itly 
ommuni
ates

with a server S for getting the keys for Ali
e and Bob. We 
ould get this extended

proto
ol by proving that this retrieval proto
ol implements FPKI , and then 
omposing

our NSL proto
ol with the retrieval proto
ol.

We 
an now state the �rst result of this se
tion, namely that the NSL is a UC-se
ure

realization of FKE .

Lemma 8.4 NSL ≤ FKE .
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Proof. Let NSL
′
A be NSLA without the initial iopkeA((xsk ,_, xpkB

)). NSL
′
B anal-

ogously. And NSL
′′
A := NSL

′
A{netdelA/ioka , sk (ka)/xsk , pk(kb)/xpkB } and NSL

′′
B :=

NSL
′
B{netdelB/iokb , sk(kb)/xsk , pk (ka)/xpkA}.
We have

NSL ≡ νiopkeAiopkeBkakb.
(
iopkeA((xsk ,_, xpkB )).NSL

′
A | iopkeA((xsk , xpkA ,_)).NSL′B

| iopkeA〈(sk(ka), pk (ka), pk (kb))〉 | iopkeB 〈(sk(kb), pk (ka), pk (kb))〉 | netpke〈(pk (ka), pk (kb))〉
)

(v)

≈ νkakb.
(
let (xsk ,_, xpkB ) = (sk(ka), pk (ka), pk (kb)) in NSL

′
A

| let (xsk , xpkA ,_) = (sk(kb), pk (ka), pk(kb)) in NSL
′
B | netpke〈(pk (ka), pk (kb))〉

)

(vi)

≈ νkakb.
(
NSL

′
A{sk(ka)/xsk , pk (kb)/xpkB } | NSL′B{sk(kb)/xsk , pk (ka)/xpkA}

| netpke〈(pk(ka), pk (kb))〉
)

(vii)

≈ νnetdelAnetdelBkakb.
(
NSL

′′
A | NSL′′B | netpke〈(pk(ka), pk(kb))〉

| netdelA(x).ioka〈x〉 | netdelB (x).iokb〈x〉
)

(viii)

≈ νnetdelAnetdelBkakb.
(
NSL

′′
A | NSL′′B | netpke〈(pk(ka), pk(kb))〉

| νk.(netdelA(x).ioka〈x〉 | netdelB (x).iokb〈x〉)
)
=: NSL1

Here (v) uses two 
onse
utive appli
ations of Lemma 3.3, the �rst with n := iopkeA
and C := � and t := (sk (ka), pk (ka), pk (kb)), and the se
ond with n := iopkeB and

C := � and t := (sk(kb), pk (ka), pk (kb)). Remember also that iopkeA((xsk ,_, xpkB )) is
synta
ti
 sugar for iopkeA(x).let (xsk ,_, xpkB ) = x.

And (vi) uses two 
onse
utive appli
ations of Lemma 3.2 (v) and the fa
t that ≈ is


losed under evaluation 
ontexts.

And (vii) uses two appli
ations of Lemma 3.3 (both in the opposite dire
tion), the �rst

with n := netdelA, Q := ioka〈x〉, and t := H((na, xnb
)), and the se
ond with n := netdelB ,

Q := iokb〈x〉, and t := H((xna
, nb)).

And (viii) uses Lemma 3.2 (i) to add νk.
Using Proverif, we 
an show the following observational equivalen
e:

NSL1
(∗)

≈ νnetdelAnetdelBkakb.(NSL
′′
A | NSL′′B | netpke〈(pk (ka), pk (kb))〉 | FKE )

≡ νnetdelAnetdelB .(FKE |S)

for S := νkakb.(NSL
′′
A|NSL

′′
B |netpke〈(pk (ka), pk (kb))〉). The Proverif 
ode for 
he
king (∗)

is given in Figure 8.

Hen
e NSL ≤ FKE . �

8.2 Se
ure 
hannel from key ex
hange.

Next, we realize a se
ure 
hannel. Sin
e we already have a realization of a se
ure key

ex
hange at hand, we realize the se
ure 
hannel SC from the idealized key ex
hange FKE .

Later we repla
e FKE by NSL. We model FSC and SC based on FKE as follows:
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free B, netnsla, netnslb, netpke.

free ioka, iokb.

let A =

new na;

new r1;

out(netnsla,pen
(pk(kb),na,r1));

in(netnsla,x
);

let (=na,xnb,=B) = pde
(sk(ka),x
) in

new r2;

out(netnsla,pen
(pk(kb),xnb,r2));

out(netdela,hash((na,xnb))).

let B =

in(netnslb,x
);

let xna = pde
(sk(kb),x
) in

new nb;

new r;

out(netnslb,pen
(pk(ka),(xna,nb,B),r));

in(netnslb,x
2);

if nb = pde
(sk(kb),x
2) then

out(netdelb,hash((xna,nb))).

let KE =

new k;

(in(netdela,x);out(ioka,
hoi
e[x,k℄)) |

(in(netdelb,x);out(iokb,
hoi
e[x,k℄)).

pro
ess

new netdela; new netdelb;

new ka; new kb; (A | B | out(netpke,(pk(ka),pk(kb))) | KE)

Figure 8: Key-ex
hange example: Proverif 
ode for analyzing NSL (se

han-nsl.pv, see

[BU13℄). (Has to be pre�xed with the 
ode from Figure 7.)
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De�nition 8.5 (Se
ure 
hannel)

14

FSC := netscstart ().ioA(x).(netnotify〈〉 | netdeliver ().ioB 〈x〉)

De�nition 8.6 (Se
ure 
hannel proto
ol)

SCA := ioka(xk).ioA(xm).νr.netA〈senc(xk, xm, r)〉

SCB := iokb(xk).netB (xc).let xm = sdec(xk, xc) in ioB 〈xm〉

SC := νioka iokb .(SCA|SCB |FKE )

Lemma 8.7 SC ≤ FSC .

Proof. We have:

SC ≡ νioka iokbk.
(
ioka(xk).ioA(xm).νr.netA〈senc(xk, xm, r)〉 | iokb(xk).netB (xc).

let xm = sdec(xk, xc) in ioB 〈xm〉 | netdelA().ioka〈k〉 | netdelB ().iokb〈k〉
)

(∗)

≈ νk.
(
netdelA().ioA(xm).νr.netA〈senc(k, xm, r)〉 | netdelB ().netB (xc).

let xm = sdec(k, xc) in ioB 〈xm〉
)
=: SC1

Here (∗) uses two 
onse
utive appli
ations of Lemma 3.3, the �rst with n := ioka and

C := netdelA().� and t := k, and the se
ond with n := iokb and C := netdelB ().� and

t := k. (And it uses Lemma 2.7, so that we 
an apply Lemma 3.3 to a subpro
ess instead

of the whole pro
ess.)

We show next:

SC1 ≈ νs k.
(
netdelA().ioA(xm).νr.(!(s, senc(k, xm, r))〈xm〉 | netA〈senc(k, xm, r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in (s, xc)(x
′
m).ioB 〈xm〉

)
=: SC2

By Lemma 3.7, to show the above it is su�
ient to show that the tra
e property end() ⇒
start() holds in the following event pro
ess:

νk.
(
netdelA().ioA(xm).νr.event start(senc(k, xm, r)).netA〈senc(k, xm, r)〉 |

netdelB ().netB (xc).let xm = sdec(k, xc) in event end(xc).ioB 〈xm〉
)
.

We show this tra
e property using Proverif, the required 
ode is given in Figure 9.

Note: We 
ould also have shown an analogous observational equivalen
e with s instead
of (s, senc(k, xm, r)). Then, however, Proverif fails on the 
ode given in Figure 10 be
ause
it does not see there is only one message xm sent over the 
hannel. Thus, it believes that

di�erent xm 
ould be 
onfused. Adding xc to the 
hannel name helps Proverif to see that

xm is unique (sin
e xc already determines xm).
Sin
e we send the message xm dire
tly to Bob via the 
hannel (s, ·) (who re
eives

it as x′m), we 
an let Bob output the message x′m re
eived over that 
hannel instead of

14

This de�nition was already given in Se
tion 6 (De�nition 6.2) and is repeated here for 
onvenien
e.
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free ioa. (* A-input of F_SC *)

free iob. (* B-output of F_SC *)

free neta. (* A-end of inse
ure 
hannel in P_SC *)

free netb. (* B-end of inse
ure 
hannel in P_SC *)

free netdela, netdelb.

query ev:end(x) ==> ev:start(x).

let PA =

in(netdela,x);

in(ioa,xm);

new r;

event start(sen
(k,xm,r));

out(neta,sen
(k,xm,r)).

let PB =

in(netdelb,x);

in(netb,x
);

let xm=sde
(k,x
) in

event end(x
);

out(iob,xm).

pro
ess

new k;

PA | PB

Figure 9: Key-ex
hange example: Proverif 
ode for analyzing the tra
e property of SC

(se

han-s
1.pv, see [BU13℄). (Has to be pre�xed with the 
ode from Figure 7.)
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free ioa. (* A-input of F_SC *)

free iob. (* B-output of F_SC *)

free neta. (* A-end of inse
ure 
hannel in P_SC *)

free netb. (* B-end of inse
ure 
hannel in P_SC *)

free netdela, netdelb.

let PA =

in(netdela,x);

in(ioa,xm);

new r;

(!out((s,sen
(k,
hoi
e[xm,empty℄,r)),xm)) |

out(neta,sen
(k,
hoi
e[xm,empty℄,r)).

let PB =

in(netdelb,x);

in(netb,x
);

let xm=sde
(k,x
) in

in((s,x
),xm2);

out(iob,
hoi
e[xm,xm2℄).

pro
ess

new s;

new k;

PA | PB

Figure 10: Key-ex
hange example: Proverif 
ode for analyzing the observation equiv-

alen
e in SC (se

han-s
2.pv, see [BU13℄). (Has to be pre�xed with the 
ode from

Figure 7.)

using the de
rypted value xm. Sin
e then the plaintext of the 
iphertext xc is then not

used any more, we 
an en
rypt empty instead of xm (as the adversary 
annot tell the

di�eren
e). Formally, we show the following observational equivalen
e:

SC2 ≈ νs k.(netdelA().ioA(xm).νr.(!(s, senc(k, empty , r))〈xm〉 | netA〈senc(k, empty , r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in (s, xc)(x
′
m).ioB 〈x

′
m〉) =: SC3.

We show this observational equivalen
e using Proverif, the required 
ode is given in

Figure 10.

Then we move the restri
tion νr to the top and repla
e the 
hannel

(s, senc(k, empty , r)) by s:

SC3
(∗)

≈ νs k r.(netdelA().ioA(xm).(!(s, senc(k, empty , r))〈xm〉 | netA〈senc(k, empty , r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in (s, xc)(x
′
m).ioB 〈x

′
m〉)
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free ioa. (* A-input of F_SC *)

free iob. (* B-output of F_SC *)

free neta. (* A-end of inse
ure 
hannel in P_SC *)

free netb. (* B-end of inse
ure 
hannel in P_SC *)

free netdela, netdelb.

let PA =

in(netdela,x);

in(ioa,xm);

(!out(
hoi
e[(s,sen
(k,empty,r)),s℄,xm)) |

out(neta,sen
(k,empty,r)).

let PB =

in(netdelb,x);

in(netb,x
);

let xm=sde
(k,x
) in

in(
hoi
e[(s,x
),s℄,xm2);

out(iob,xm2).

pro
ess

new s;

new k;

new r;

PA | PB

Figure 11: Key-ex
hange example: Proverif 
ode for analyzing the se
ond observation

equivalen
e in SC (se

han-s
3.pv, see [BU13℄). (Has to be pre�xed with the 
ode from

Figure 7.)

(∗∗)

≈ νs k r.(netdelA().ioA(xm).(!s〈xm〉 | netA〈senc(k, empty , r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in s(x
′
m).ioB 〈x

′
m〉) =: SC4

Here (∗) follows from Lemma 3.2 (ii), and (∗∗) is proven using Proverif. The required


ode is given in Figure 11.

We 
ontinue:

SC4
(∗)

≈ νnetdeliver k r.(netdelA().ioA(xm).(netdeliver ().ioB 〈xm〉 | netA〈senc(k, empty , r)〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in netdeliver 〈〉)
(∗∗)

≈ νnetdeliver k r netnotify .(netdelA().ioA(xm).(netdeliver ().ioB 〈xm〉 | netnotify〈〉) |

netdelB ().netB (xc).let xm = sdec(k, xc) in netdeliver 〈〉 | netnotify().netA〈senc(k, empty , r)〉)

≡ νnetdeliver netnotify .(FSC {netdelA/net scstart}|S)

with S := νkr.netdelB ().netB (xc).let xm = sdec(k, xc) in netdeliver 〈〉
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| netnotify().netA〈senc(k, empty , r)〉

Here (∗) uses Lemma 3.4 with Q := ioB 〈x′m〉, x := x′m, n := s, and m := netdeliver .

And (∗∗) uses Lemma 3.3 with Q := netA〈senc(k, empty , r)〉, n := netnotify , t :=
empty .

So SC ≈ νn.(FSCσ|S) for σ := {netdelA/net scstart} and n := netdeliver netnotify .

Hen
e SC ≤ FSC . �

With NSL ≤ FKE (Lemma 8.4) and SC ≤ FSC (Lemma 8.7) at hand we 
an now

use the 
ompositional 
apabilities of UC: We de�ne an evaluation 
ontext C[�] :=
νioka iokb .(SCA|SCB|�) where SCA and SCB are the pro
esses from De�nition 8.6. Sin
e

C meets the requirements of Theorem 5.37 NSL ≤ FKE implies C[NSL] ≤ C[FKE ]. Sin
e
C[FKE ] = SC and SC ≤ FSC we have, by transitivity of ≤ (Lemma 4.5), C[NSL] ≤ FSC .

We did 
onstru
t a se
ure 
hannel from a PKI using the NSL proto
ol. More interest-

ing than this result is the way we a
hieved it: We did not have to analyze the 
omplete

system C[NSL] in one pie
e but 
ould repla
e the NSL proto
ol with an idealized fun
-

tionality. This illustrates two striking advantages of the UC approa
h:

• The fa
t that NSL realizes an ideal key ex
hange 
an be re-used for se
urity proofs

of further systems.

• We 
annot only plug NSL into C but any proto
ol that realizes a se
ure key ex
hange

(e.g., if no PKI is available and thus NSL is not an option).

Instead of one monolithi
 se
urity proof for C[NSL] we end up with smaller proofs and

results whi
h 
an be used �exibly. Furthermore, to split the se
urity analysis of a 
omplex

system into smaller parts might be the only feasible option to ta
kle it at all.

8.3 Generating many keys from one

While the example until now illustrates 
omposition and the power of UC, C[NSL] only
realizes a single-use se
ure 
hannel. To transfer multiple messages, we 
ould just use


on
urrent 
omposition to have !!C[NSL] ≤ !!FSC . However, the resulting proto
ol uses

one instan
e of NSL per message, and � sin
e NSL 
ontains FPKI , another PKI for ea
h

message that is sent. This is 
learly unrealisti
. To get rid of this overhead we want to

have all the instan
es of SC to jointly use just one key ex
hange FKE , i.e., we want to

use the previously mentions joined state te
hnique here. Towards this goal we model a

wrapper proto
ol KE
∗
whi
h uses one key ex
hange to emulate multiple key ex
hanges

(from a key k it derives session keys hash((sid , k)) where sid is the session id). Formally,

we de�ne KE
∗
as follows and then show KE

∗ ≤ !!FKE .

De�nition 8.8

KE
∗
A := io′ka(xk).!!xsid

ioka〈hash((xsid , xk))〉

KE
∗
B := io′kb(xk).!!xsid

iokb〈hash((xsid , xk))〉

KE
∗ := νio′ka io

′
kb .(KE

∗
A | KE∗

B | F ′
KE )

where F ′
KE := FKE{io′ka/ioka , io

′
kb/iokb}.
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Lemma 8.9 KE
∗ ≤ !!FKE .

Proof. Let S := netdelA().!!net
′
delA〈〉 | netdelB ().!!net ′delB 〈〉. Here we use the shorthand

t〈〉 for t〈empty〉. Let n := net ′delAnet
′
delB . Let σ := {net ′delA/netdelA,net

′
delB/netdelB}.

We have

KE
∗ (i)

≈ νk.netdelA().!!xsid
ioka〈hash((xsid , k))〉 | netdelB ().!!xsid

iokb〈hash((xsid , k))〉
(ii)

≈ νk.netdelA().!!xsid
νnet ′delA.(net

′
delA〈〉 | net

′
delA().ioka〈hash((xsid , k))〉)

| netdelB ().!!xsid
νnet ′delB .(net

′
delB 〈〉 | net

′
delB ().iokb〈hash((xsid , k))〉)

(iii)

≈ νk.νnet ′delA.netdelA().(!!xsid
net ′delA〈〉 | !!xsid

net ′delA().ioka〈hash((xsid , k))〉)

| νnet ′delB .netdelB ().(!!xsid
net ′delB 〈〉 | !!xsid

net ′delB ().iokb〈hash((xsid , k))〉)
(iv)

≈ νk.νnet ′delA.(netdelA().!!xsid
net ′delA〈〉 | !!xsid

net ′delA().ioka〈hash((xsid , k))〉)

| νnet ′delB .(netdelB ().!!xsid
net ′delB 〈〉 | !!xsid

net ′delB ().iokb〈hash((xsid , k))〉)
(v)

≈ νn.
(
νk.!!xsid

(
net ′delA().ioka〈hash((xsid , k))〉 | net

′
delB ().iokb〈hash((xsid , k))〉

)
| S
)

(vi)

≈ νn.(!!xsid
νk.(net ′delA().ioka〈k〉 | net

′
delB ().iokb〈k〉) | S)

= νn.(!!FKE σ | S)

Here (i) uses two appli
ation of Lemma 3.3, the �rst with C := netdelA().�, n := io′ka ,

and t := k, the se
ond with C := netdelB ().�, n := io′kb , and t := k. (And it uses

Lemma 2.7, so that we 
an apply Lemma 3.3 to a subpro
ess instead of the whole pro-


ess.)

And (ii) uses Lemma 3.3 with C := � to show ioka〈hash((xsid , k))〉 ∼∼∼
νnet ′delA.(net

′
delA〈〉 | net ′delA().ioka〈hash((xsid , k))〉 and iokb〈hash((xsid , k))〉 ∼∼∼

νnet ′delB .(net
′
delB 〈〉 | net

′
delB ().iokb〈hash((xsid , k))〉.

And (iii) uses Lemma 3.2 (ii) and Lemma 5.36 and Lemma 5.35.

And (iv) uses the following 
laim (proven below) twi
e. First with n := net ′delA,

m := netdelA, Q := ioka〈hash((xsid , k))〉. Then with n := net ′delB , m := netdelB , Q :=
iokb〈hash((xsid , k))〉.

Claim 4 For names n,m, and for any pro
ess Q, we have νn.m().(!!xn〈〉 | !!xn().Q) ≈
νn.((m().!!xn〈〉) | !!xn().Q).

(Intuitively, this 
laim holds be
ause !!xn().Q 
annot perform any observable a
tions

until !!xn〈〉 is exe
uted. So it makes no di�eren
e whether both !!xn().Q and !!xn〈〉 wait
for the input on m to o

ur, or whether only !!xn().Q waits for it.)

And (v) follows from the de�nition of ≡ and Lemma 5.36.

Finally, (vi) follows from the following 
laim (proven below):

Claim 5 For any pro
ess P , we have νk.!!xP{hash((x, k))/k} ≈ !!xνk.P .
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Thus we have derived KE
∗ ≈ νn.(!!FKE σ | S). This shows KE∗ ≤ !!FKE . It remains

to show the two 
laims.

To show Claim 4, 
onsider the following relation:

R :=
{
E[νn.m().(

∏

x∈SID

n〈〉 |
∏

x∈SID

n().Q((x)))],

E[νn.(m().
∏

x∈SID

n〈〉 |
∏

x∈SID\S

n().Q((x)) |
∑

x∈S

n().Q((x)))]
}
∪ ≈

up to stru
tural equivalen
e. Here E ranges over evaluation 
ontexts, and S over �nite

subsets of SID . n,m,Q are from the statement of the lemma.

∑
x∈S P stands short for

P{s1/x}| . . . |P{sk/x} with S =: {s1, . . . , sk}. I.e.,

∑
x∈S is almost the same as

∏
x∈S ,

ex
ept that

∑
x∈S is synta
ti
 sugar (and only makes sense for �nite S) while

∏
x∈S is a

proper 
onstru
t in the syntax of produ
t pro
esses.

We show that R is a bisimulation:

• If (A,B) ∈ R and A ↓M , then B ↓M :

In the 
ase A ≈ B, the statement is immediate. We 
an thus assume A ≡
E[νn.m().(

∏
x∈SID n〈〉 |

∏
x∈SID n().Q((x)))] and B ≡ E[νn.(m().

∏
x∈SID n〈〉 |∏

x∈SID\S n().Q((x)) |
∑

x∈S n().Q((x)))].

In the argument to E, there are no unprote
ted outputs. Thus the output on M
is in E and thus B ↓M trivially follows.

• If (A,B) ∈ R and B ↓M , then A ↓M : Analogous to the previous 
ase.

• If (A,B) ∈ R and A→ A′
, then there is a B′

with B →∗ B′
and (A′, B′) ∈ R:

In the 
ase A ≈ B, the statement is immediate. We 
an thus assume A ≡
E[νn.m().(

∏
x∈SID n〈〉 |

∏
x∈SID n().Q((x)))] and B ≡ E[νn.(m().

∏
x∈SID n〈〉 |∏

x∈SID\S n().Q((x)) |
∑

x∈S n().Q((x)))].

If A→ A′
is a redu
tion within E, then let B → B′

be the 
orresponding redu
tion,

and then (A′, B′) ∈ R.

Otherwise, A → A′
is a 
ommuni
ation on m between E and the input m() in its

argument, hen
e A′ ≡ E′[νn.(
∏

x∈SID n〈〉 |
∏

x∈SID n().Q((x)))]. And B → B′ :=
E′[νn.(

∏
x∈SID n〈〉 |

∏
x∈SID\S n().Q((x)) |

∑
x∈S n().Q((x)))].

From Lemma 3.2 (ix), we have A′ ≈ B′
, hen
e (A′, B′) ∈ R.

• If (A,B) ∈ R and B → B′
, then there is a A′

with A→∗ A′
and (A′, B′) ∈ R:

In the 
ase A ≈ B, the statement is immediate. We 
an thus assume A ≡
E[νn.m().(

∏
x∈SID n〈〉 |

∏
x∈SID n().Q((x)))] and B ≡ E[νn.(m().

∏
x∈SID n〈〉 |∏

x∈SID\S n().Q((x)) |
∑

x∈S n().Q((x)))].

If B → B′
is a redu
tion within E, or if B → B′

is a 
ommuni
ation on m between

E and m() in its argument, then the reasoning is as in the previous 
ase.
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Otherwise, we have that B → B′
is a redu
tion of the se
ond produ
t, i.e. B′ ≡

E[νn.(m().
∏

x∈SID n〈〉 |
∏

x∈SID\S′ n().Q((x)) |
∑

x∈S′ n().Q((x)))] with S′ := S \

{t} for some t ∈ SID \ S. Then (A′, B′) ∈ R with A′ := A.

• If (A,B) ∈ R, then (E[A], E[B]) ∈ R:

Immediate from the de�nition of R.

The statement of the 
laim is equivalent to

P1 := νn.m().(
∏

x∈SID

n〈〉 |
∏

x∈SID

n().Q((x))) ≈ νn.((m().
∏

x∈SID

n〈〉) |
∏

x∈SID

n().Q((x)) =: P2.

And this follows from the fa
t that R is a bisimulation sin
e (P1, P2) ∈ R. Thus Claim 4

is shown.

To show Claim 5, 
onsider the following relation:

R :=
{(
νnk.Qσ |

∏

x∈S

P{hash((x, k))/k}, νn kσ.Q |
∏

x∈S

νk.P
)}

up to stru
tural equivalen
e. Here k /∈ fn(S) is an arbitrary name, S ⊆ SID is a set of

terms, σ is a (�nite) substitution mapping names to distin
t (with respe
t to =E) terms

hash((t, k)) with t ∈ SID \ S, kσ = domσ, kσ ∩ fn(P, S) = ∅, n is a list of names, and

Q is an arbitrary pro
ess with k /∈ fn(Q).
We show that R is a bisimulation:

• If (A,B) ∈ R and A ↓M then B ↓M :

Sin
e k and kσ are bound names, we have that M does not 
ontain either of them.

But only terms 
ontaining k or kS are di�erent in A and B. Thus B ↓M .

• If (A,B) ∈ R and B ↓M then A ↓M :

Analogous.

• If (A,B) ∈ R and A→ A′
, then there is a B′

with B →∗ B′
and (A′, B′) ∈ R:

If the redu
tion is

∏
x∈S P{hash((x, k))/k} → P{hash((t, k))/k, t/x} |∏

x∈S′ P{hash((x, k))/k} with S′ := S \ {t}, then we have B →∗ B′
and (A′, B′) ∈

R with B′ := νnkσ′ .Q | P{kt/k, t/x} |
∏

x∈S′ νk.P and σ′ := σ ∪ {kt 7→ H((t, k))}
for some fresh name kt. Noti
e that the terms in the range of σ′ are still distin
t

be
ause S ⊆ SID 
ontains only distin
t terms, and t ∈ SID \ S.

If the redu
tion is a redu
tion of Qσ → Q′
, then it is easy to see (by 
he
king,

in parti
ular, for all destru
tors that f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ)) that Q →
Q′σ−1

. From this it follows that B →∗ B′
and (A,B) ∈ R with B′ := νnkσ.Q

′σ−1 |∏
x∈S νk.P .
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• If (A,B) ∈ R and B → B′
, then there is a A′

with A→∗ A′
and (A′, B′) ∈ R:

If the redu
tion is

∏
x∈S νk.P → νk.P{t/x} |

∏
x∈S′ νP with S′ := S \{t}, then we

have (A′, B′) ∈ R with A′ := νnk.(Q | P{H((t, k))/k})σ |
∏

x∈S′ P{H((x, k))/k}
and B′ ≡ νnkσ′ .Q | P{kt/k} |

∏
x∈S′ νk.P and σ′ := σ∪{kt 7→ H((t, k))} and some

fresh name kt. Noti
e that the terms in the range of σ′ are still distin
t be
ause

S ⊆ SID 
ontains only distin
t terms, and t ∈ SID \ S.

If the redu
tion is a redu
tion of Q → Q′
, then it is easy to see (by 
he
king, in

parti
ular, for all destru
tors that f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ)) that Qσ → Q′σ.
From this it follows that (A,B) ∈ R with A′ := νnk.Q′σ |

∏
x∈S P{hash((x, k))/k}.

• If (A,B) ∈ R and E is an evaluation 
ontext, then (E[A], E[B]) ∈ R:

Then A = νnk.Qσ |
∏

x∈S P{hash((x, k))/k} and B = νnkσ.Q |
∏

x∈S νk.P .
Without loss of generality, k, kσ /∈ fn(E) ∪ fn(E). (Otherwise we 
ould repla
e

k, kσ by other names in A,B.) There is a pro
ess Q′
and a list of names n′ su
h

that E[P ] ≡ νn′.(P |Q′) for all P . Then

(E[A], E[B]) ≡
(
νn′ nk.(Q|Q′)σ |

∏

x∈S

P{hash((x, k))/k}, νn′ nkσ.(Q|Q′) |
∏

x∈S

νk.P
)
∈ R.

Sin
e (νk.
∏

x∈SID P{hash((x, k))/k},
∏

x∈SID νk.P ) ∈ R, we have

νk.!!xP{hash((x, k))/k} ≈ νk.
∏

x∈SID P ((x)){hash((x, k))/k} ≈
∏

x∈SID νk.P ((x)) ≈
!!νk.P . This shows Claim 5. �

Analogously to the single session 
ase we de�ne a suitable 
ontext C∗
by repla
ing

F ′
KE in KE

∗
with � and have

C∗[NSL] ≤ C∗[F ′
KE ] = KE

∗ ≤ !!FKE

Furthermore, !!SC ≈ νioka iokb .(!!SCA|!!SCB|!!FKE ) (by Lemmas 5.35,5.36). Hen
e

νioka iokb .(!!SCA|!!SCB |C
∗[NSL])

≤ νioka iokb .(!!SCA|!!SCB |!!FKE )

≤ !!SC ≤ !!FSC .

Finally, we have a proto
ol whi
h realizes multiple se
ure 
hannels while invoking the

NSL proto
ol and using only one PKI.

9 Virtual primitives

In this se
tion, we present a te
hnique for deriving se
urity of proto
ols in the symboli


UC model that is spe
i�
 to the symboli
 model. No analogue in the 
omputational

world seems to exist. The idea is the following: When 
onstru
ting UC se
ure pro-

to
ols, it is often ne
essary to in
lude spe
i�
 �trapdoors� that allow the simulator to

extra
t or modify 
ertain information. For example, when 
onstru
ting a simulator for
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a 
ommitment s
heme, we need to in
lude in the proto
ol some way for the simulator

to extra
t the value of the 
ommitment when given a 
ommitment by the environment

(extra
tability), or to 
hange the 
ontent of a 
ommitment when produ
ing a 
ommit-

ment for the environment (equivo
ality), see [CF01℄. These additional trapdoors often

make the proto
ols more 
omplex, and they often also need more 
omplex 
ryptographi


primitives. A simple 
ommitment proto
ol in whi
h the 
ommitter just sends hash(m, r)
for message m and randomness r is not UC se
ure be
ause the simulator 
annot extra
t

or equivoke. Instead, one would need to assume a spe
ial hash fun
tion that takes an

additional parameter crs (the 
ommon referen
e string) hash(crs ,m, r) in su
h a way

that given a suitably 
hosen �fake� crs , one 
an �nd 
ollisions in hash or extra
t m from

hash(crs ,m, r). With su
h a hash fun
tion, one 
an 
onstru
t a UC se
ure 
ommitment

relatively easily (see De�nition 9.3 below). However, now our proto
ol uses a 
onsider-

ably more 
omplex primitive than a simple hash fun
tion. And 
ertainly 
ommon hash

fun
tions su
h as SHA-3 do not have these properties.

This leads to a strange situation: We have a proto
ol that we 
an only prove se
ure

using a hash fun
tion that has additional weaknesses (namely that given a �bad� 
rs, one


an 
heat). One might be tempted to state that if the proto
ol is se
ure for su
h weak

hash fun
tions, it should in parti
ular be se
ure for good hash fun
tions. Unfortunately,

su
h reasoning does not work in the 
omputational setting: We 
annot just remove the

existen
e of trapdoors from the hash fun
tion � if we do so, we have a 
ompletely di�erent

hash fun
tion and our se
urity proof makes no 
laims about that fun
tion.

In the symboli
 world, things are di�erent. Here it turns out that we 
an indeed

�rst analyze a proto
ol using a hash fun
tion with trapdoors, and then remove these

trapdoors in a later step, still preserving se
urity. We 
all this approa
h the �virtual

primitives� approa
h, be
ause we use primitives (in this example a hash fun
tion with

trapdoors) that do not need to a
tually exist, and that are removed in the �nal proto
ol.

In a nutshell, the virtual primitives approa
h when trying to realize a fun
tionality F
(e.g., a 
ommitment) works as follows:

• First, identify a symboli
 model Mreal 
ontaining 
ryptographi
 primitives (e.g. a

hash fun
tion) that should be used in the �nal proto
ol.

• Extend Mreal by additional 
onstru
tors, destru
tors, or equality rules, 
all the

resulting model Mvirt . The extension Mvirt should be �safe� in the sense that in

Mvirt an adversary will have at least as mu
h power as in Mreal (this will be made

formal in Se
tion 9.2).

• Design a proto
ol P . Show that P emulates F with respe
t to Mvirt .

• Compose P with other proto
ols, leading to a 
omplex proto
ol C[P ] ≤ C[F ] ≤ G
(with respe
t to Mvirt) where G is some desired �nal goal, e.g., some 
rypto-heavy

voting proto
ol.

• Property preservation guarantees that any property ℘ that holds for G also holds

for C[P ] (with respe
t to Mvirt). Sin
e Mvirt only makes adversaries stronger, ℘
also holds for C[P ] with respe
t to Mreal .

• Summarizing, we have 
onstru
ted a proto
ol C[P ] in a modular way su
h that C[P ]
uses the symboli
 model Mreal (without any trapdoors) and has all the se
urity
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properties of the fun
tionality G.
The virtual primitive approa
h is not limited to 
ommitments. But in the following

se
tions, we illustrate it in the 
ase of a 
ommitment proto
ol. Note however, that the

main theorem that allows us to 
on
lude that Mvirt -se
urity implies Mreal -se
urity is

formulated for general safe extensions.

A few words are in order why the virtual primitives approa
h works in the symboli


setting. What is the spe
i�
 property of the symboli
 model � in 
ontrast to the 
om-

putational one � that makes it possible? In our interpretation, this is due to the fa
t

that a primitive (like hashes) in the symboli
 world is a 
on
rete obje
t (i.e., a parti
ular


onstru
tor with 
ertain redu
tion rules and equalities) while in the 
omputational world

it is a 
lass of obje
ts (hash fun
tions) that are des
ribed by some negative properties

(�fun
tions su
h that the adversary 
annot. . . �). Therefore in the symboli
 world, it is

possible to formally 
ompare exe
utions using di�erent kinds of a primitive (e.g., hashes

with and without trapdoors); exe
utions in one setting 
an be mapped into exe
utions in

the other setting by rewriting the terms sent around. In 
ontrast, in the 
omputational

setting, this is not possible: a se
urity result for hash fun
tions with trapdoors has no

impli
ations for hash fun
tions without trapdoors � these two are 
ompletely di�erent

mathemati
al fun
tions on bitstrings, and it is not possible to rewrite an exe
ution that

uses one hash fun
tion into an exe
ution using another (in parti
ular if the adversary

makes his a
tions depend on individual bits of the hashes). This di�eren
e between the

symboli
 and the 
omputational setting seems to be the reason why virtual primitives

work in the symboli
 setting.

Related approa
hes in the 
omputational model. Although virtual primitives

as des
ribed above are restri
ted to the symboli
 setting, somewhat related te
hniques

do exist in the 
omputational model. [PS04, BS05℄ show how to 
ir
umvent UC im-

possibility results (su
h as the impossibility of OT, 
ommitment, or general multi-party


omputation without trusted setup) by giving the simulator additional power. Namely

the simulator is allowed to run in (slightly) superpolynomial time. This is in some sense

similar to giving the simulator a

ess to additional 
onstru
tors/destru
tors for extra
-

tion/equivo
ation as we do. Yet, there are three 
ru
ial di�eren
es to our setting: First,

they 
an only use primitives that 
an a
tually exist 
omputationally. For example, even a

superpolynomial-time simulator 
annot invert a �xed-length hash fun
tion, as part of the

input is information-theoreti
ally lost. In 
ontrast, we 
an add arbitrary properties to,

e.g., hash fun
tions by introdu
ing new equations in the symboli
 model. Se
ond, their

�nal proto
ols have to use whatever primitives have been introdu
ed for proof purposes;

it is not possible to remove additional properties in the end as done in our approa
h.

Third, their proto
ols involve advan
ed 
ryptographi
 te
hniques whi
h makes the pro-

to
ols 
onsiderably more involved and, 
onsequently, ine�
ient. On the other hand, of


ourse, proto
ols designed with our te
hniques are only proven se
ure in the symboli


model but la
k a proof in the 
omputational model � we believe therefore that our and

their approa
hes are in
omparable with respe
t to their advantages and disadvantages.
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fun hash/2.

fun empty/0.

fun fake/3.

fun fakeH/2.

fun 
rseqv/1.

fun 
rsext/1.

equation hash(
rseqv(n),(m,fake(n,m,r))) = fakeH(n,r).

redu
 extra
t(n,hash(
rsext(n),(m,r))) = m.

Figure 12: Virtual primitives example: Proverif 
ode for the symboli
 model

(virtprim-model.pv, see [BU13℄)

9.1 Realizing 
ommitments

For simpli
ity, we formulate a 
ommitment fun
tionality where the adversary is not

informed that a 
ommitment takes pla
e (when both Ali
e and Bob are honest). Of


ourse, su
h a fun
tionality 
an only be realized if we assume perfe
tly se
ure 
hannels

between Ali
e and Bob that do not even allow the adversary to noti
e or blo
k messages.

If our proto
ols were to use se
ure 
hannels where the adversary 
an noti
e and blo
k


ommuni
ation, we would instead realize a somewhat weaker fun
tionality whi
h noti�es

the adversary

15

(the resulting 
hanges in the proof are orthogonal to the issues of this


hapter).

De�nition 9.1 (Commitment) FCOM := iocoma (xm).(iocomb〈〉|ioopena ().ioopenb〈xm〉).

Symboli
 model. The symboli
 model Mreal has 
onstru
tors hash/2, empty/0, and
(·, ·) (pairs) � f/n means f has arity n �, has destru
tors fst , snd , has no equalities, and

has the rewrite rules for fst , snd , equals pres
ribed by De�nition 2.5. This model Mreal is

quite standard and does not use any 
ryptography ex
ept hash fun
tions (hash is binary

for 
onvenien
e only).

As explained above, to 
onstru
t UC-se
ure 
ommitments, we need additional �trap-

doors� in our equational theory. Let Mvirt be the symboli
 model Mreal with the follow-

ing additions: Constru
tors fake/3, fakeH /2, crseqv/1, crsext/1, destru
tor extract/2,
equation hash(crseqv(xn), (xm, fake(xn, xm, xr))) =E fakeH (xn, xr), and rewrite rule

extract(xn, hash(crsext(xn), (xm, xr))) → xm.

The Proverif 
ode for this symboli
 model is given in Figure 12.

Noti
e that if we have a CRS crseqv(n) and know n, we 
an open fakeH (n, r) to

arbitrary values. Similarly, if the CRS is crsext(n) and we know n, we 
an extra
t m
from hash(crsext(n), (m, r)). These two fa
ts allow us to 
onstru
t a simulator that does

equivo
ation and extra
tion.

15

Namely, FCOM := iocoma(xm).(netcoma〈〉|netcomb().iocomb〈〉|ioopena().(netopena 〈〉|netopenb().
ioopenb〈xm〉))
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Note that we introdu
ed two di�erent CRS-
onstru
tors for faking, crsext

and crseqv . It would be tempting to use only one of them, i.e., use the

equation hash(fakecrs(x), (y, fake(x, y, z))) =E fakeH (x, z) and the redu
tion rule

extract(x, hash(fakecrs(x), (y, z))) → y. But then we would have for any terms k,m, r
that extract(k, fakeH (k, r)) =E extract(k, hash(fakecrs(k), (m, r))) → m, so by 
omput-

ing extract(k, fake(k, r)) the adversary 
an derive any term m, thus the adversary will

know all se
rets. This is 
learly not a sensible symboli
 model.

The 
ommitment proto
ol. The proto
ol we 
onstru
t uses a 
rs, so we �rst need to

de�ne the 
rs fun
tionality FCRS that gives a random non-se
ret value k to Ali
e, Bob,

and the adversary.

De�nition 9.2 (Common referen
e string) FCRS := νk.iocrsa〈k〉 | iocrsb〈k〉 | netcrs〈k〉.

Our proto
ol is then as expe
ted. To 
ommit to a message xm, Ali
e fet
hes the 
rs
xcrs , pi
ks a random r, and sends h := hash(xcrs , (xm, r)) to Bob. To unveil, Ali
e sends

(xm, r), so that Bob 
an 
he
k whether h indeed 
ontained these values. We 
all Ali
e's

part of the proto
ol COMA and Bob's part COMB .

De�nition 9.3 (Commitment proto
ol)

COMA := iocrsa(xcrs).iocoma (xm).

νr.
(
net1〈hash(xcrs , (xm, r))〉

|ioopena ().net2〈(xm, r)〉
)

COMB := iocrsb(xcrs).net1(xh).
(
iocomb〈〉|net2((xm, xr)).

if xh = hash(xcrs , (xm, xr)) then ioopenb〈xm〉
)

COM := νiocrsa iocrsbnet1net2.(COMA|COMB |FCRS )

To show that COM is a se
ure 
ommitment proto
ol, we need to show the following

lemma (
f. also the dis
ussion on how to model 
orruptions in Se
tion 4):

Lemma 9.4 With respe
t to Mvirt , we have

(i) Un
orrupted 
ase: COM ≤ FCOM .

(ii) Ali
e 
orrupted: νiocrsb .(COMB |FCRS{
netcrsa
iocrsa

}) ≤ FCOM {netcoma

iocoma
,
netopena
ioopena

}

(iii) Bob 
orrupted: νiocrsa .(COMA|FCRS{
netcrsb
iocrsb

}) ≤ FCOM {netcomb

iocomb
,
netopenb
ioopenb

}.

In the proof, we show the various observational equivalen
es by a sequen
e of rewriting

steps on the proto
ol, interspersed with automated Proverif proofs for the steps that

a
tually involve the symboli
 model (i.e., we do not have to manually deal with the


omplex symboli
 model Mvirt).

We split this lemma into the following three lemmas:

Lemma 9.5 (Commitment � un
orrupted 
ase) COM ≤ FCOM .
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Proof.

COM ≡ νiocrsa iocrsbnet1net2 k r. iocrsa〈k〉 | iocrsb〈k〉 | netcrs〈k〉

| iocrsa(xcrs).iocoma (xm).
(
net1〈hash(xcrs , (xm, r))〉 | ioopena ().net2〈(xm, r)〉

)

| iocrsb(xcrs).net1(xh).
(
iocomb〈〉|net2((x

′
m, xr)).

if xh = hash(xcrs , (x
′
m, xr)) then ioopenb〈x

′
m〉
)

(i)

≈ ν net1net2 k r. netcrs〈k〉

| iocoma(xm).
(
net1〈hash(k, (xm, r))〉 | ioopena ().net2〈(xm, r)〉

)

| net1(xh).
(
iocomb〈〉|net2((x

′
m, xr)).

if xh = hash(k, (x′m, xr)) then ioopenb〈x
′
m〉
)

(ii)

≈ ν net2 k r. netcrs〈k〉

| iocoma (xm).
(
iocomb〈〉 | net2((x

′
m, xr)).

if hash(k, (xm, r)) = hash(k, (x′m, xr)) then ioopenb〈x
′
m〉

| ioopena ().net2〈(xm, r)〉
)

(iii)

= νnet2 k r. netcrs〈k〉

| iocoma (xm).
(
iocomb〈〉 | net2(xtmp).let (x

′
m, xr) = z in

if hash(k, (xm, r)) = hash(k, (x′m, xr)) then ioopenb〈x
′
m〉

| ioopena ().net2〈(xm, r)〉
)

(iv)

≈ ν k r. netcrs〈k〉

| iocoma (xm).
(
iocomb〈〉 | ioopena (). let (x′m, xr) = (xm, r) in

if hash(k, (xm, r)) = hash(k, (x′m, xr)) then ioopenb〈x
′
m〉

)

(v)

≈ νk r. netcrs〈k〉 | iocoma (xm).
(
iocomb〈〉 | ioopena (). ioopenb〈xm〉

)

≡ FCOM | S with S := νk r.netcrs〈k〉

Here (i) uses two invo
ations of Lemma 3.3, one with n := iocrsa , t := k, and x := xcrs ,
and one with n := iocrsb , t := k, and x := xcrs .

And (ii) uses one invo
ation of Lemma 3.3 with n := net1, x := xh, and t :=
hash(k, (xm, r)).

And (iii) uses the fa
t that t(p).P is synta
ti
 sugar for t(z).let p = z in P for a

pattern p and a fresh variable z.
And (iv) uses one invo
ation of Lemma 3.3 with n := net2, x := xtmp , and t :=

(xm, r). (And it uses Lemma 2.7, so that we 
an apply Lemma 3.3 to a subpro
ess

instead of the whole pro
ess.)

And (v) uses several invo
ations of Lemma 3.2 (v) to evaluate the let- and the if-

statement.

So COM ≈ FCOM | S for some S with IO ∩ fn(S) = ∅. Hen
e COM ≤ FCOM . �

Lemma 9.6 (Commitment � Ali
e 
orrupted)

νiocrsb .(COMB |FCRS{
netcrsa
iocrsa

}) ≤ FCOM {netcoma

iocoma
,
netopena
ioopena

}

83



free net
rs,net
rsa,net1,net2,io
omb,ioopenb.

pro
ess

new k;

out(net
rsa,
hoi
e[k,
rsext(k)℄) |

out(net
rs,
hoi
e[k,
rsext(k)℄) |

in(net1,xh);

out(io
omb,empty) |

in(net2,(xm,xr));

if xh = hash(
hoi
e[k,
rsext(k)℄,(xm,xr)) then

out(ioopenb,
hoi
e[xm,extra
t(k,xh)℄)

Figure 13: Virtual primitives example: Proverif 
ode for 
orrupted Ali
e

(virtprim-a
orr.pv, see [BU13℄). (Has to be pre�xed with the 
ode from Figure 12.)

Proof. We have

νiocrsb .(COMB |FCRS{
netcrsa
iocrsa

})

(i)

≈ νk.netcrsa〈k〉 | netcrs〈k〉 | net1(xh).
(
iocomb〈〉|

net2((xm, xr)).if xh = hash(k, (xm, xr)) then ioopenb〈xm〉
)

(ii)

≈ νk.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 | net1(xh).
(
iocomb〈〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then ioopenb〈extract(k, xh)〉
)

(iii)

≈ νk.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 | net1(xh).νnetopena .
(
iocomb〈〉|netopena ().ioopenb〈extract(k, xh)〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then netopena 〈〉
)

(iv)

≈ νnetopena k.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 | net1(xh).
(
iocomb〈〉|netopena ().ioopenb〈extract(k, xh)〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then netopena 〈〉
)

(v)

≈ νnetcoma netopenak.netcrsa〈crsext(k)〉 | netcrs〈crsext(k)〉 | net1(xh).
(
netcoma 〈extract(k, xh)〉|

net2((xm, xr)).if xh = hash(crsext(k), (xm, xr)) then netopena 〈〉
)
|

netcoma (x
′
m).
(
iocomb〈〉|netopena ().ioopenb〈x

′
m〉
)

≡ νnetcoma netopena .(FCOM {netcoma

iocoma
,
netopena
ioopena

}|S) for some S with IO ∩ fn(S) = ∅.

Here (i) uses Lemma 3.3 with n := iocrsb , C := νk.netcrsa〈k〉 | netcrs〈k〉 | �, x := xcrs ,
and t := k.

And (ii) is shown using Proverif, the required 
ode is given in Figure 13. Note that in

the rhs of (ii), we have repla
ed all o

urren
es of the CRS k by crsext(k), and instead

of outputting xm in the end, we output extract(k, xh).
And (iii) uses Lemma 3.3 (in the opposite dire
tion) with n :=

netopena , Q := ioopenb〈extract (k, xh)〉, and C := iocomb〈〉|net2((xm, xr)).
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if xh = hash(crsext(k), (xm, xr)) then �. (And it uses Lemma 2.7, so that we 
an

apply Lemma 3.3 to a subpro
ess instead of the whole pro
ess.)

And (iv) uses Lemma 3.2 (ii) to swap νnetopena and net1(xh). (And Lemma 2.7 to

apply Lemma 3.2 (ii) to a subpro
ess.)

And (v) uses Lemma 3.3 (in the opposite dire
tion) with n := netcoma , x := x′m,
t := extract(k, xh), and Q := iocomb〈〉|netopena ().ioopenb〈x

′
m〉
)
.

So we have νiocrsb .(COMB |FCRS{
netcrsa
iocrsa

}) ≈ νnetcomanetopena .(FCOM {netcoma

iocoma
,
netopena
ioopena

}|S)

for some S with IO ∩ fn(S) = ∅. Hen
e νiocrsb .(COMB |FCRS{
netcrsa
iocrsa

}) ≤

FCOM {netcoma

iocoma
,
netopena
ioopena

}. �

Lemma 9.7 (Commitment � Bob 
orrupted)

νiocrsa .(COMA|FCRS{
netcrsb
iocrsb

}) ≤ FCOM {netcomb

iocomb
,
netopenb
ioopenb

}.

Proof. We have

νiocrsa .(COMA|FCRS{
netcrsb
iocrsb

})

(i)

≈ νk.netcrsb〈k〉 | netcrs〈k〉 | iocoma (xm).νr.
(
net1〈hash(k, (xm, r))〉|ioopena ().net2〈(xm, r)〉

)

(ii)

≈ νk.netcrsb〈crseqv(k)〉 | netcrs〈crseqv(k)〉 | iocoma (xm).νr.(
net1〈fakeH (k, r)〉|ioopena ().net2〈(xm, fake(k, xm, r))〉

)

(iii)

≈ νk.netcrsb〈crseqv(k)〉 | netcrs〈crseqv(k)〉 | iocoma (xm).νr.

νnetopenb .
(
net1〈fakeH (k, r)〉|ioopena ().netopenb〈xm〉|netopenb(x

′
m).net2〈(x

′
m, fake(k, x

′
m, r))〉

)

(iv)

≈ νnetopenb k r.netcrsb〈crseqv(k)〉 | netcrs〈crseqv (k)〉 | iocoma (xm).(
net1〈fakeH (k, r)〉|ioopena ().netopenb〈xm〉|netopenb(x

′
m).net2〈(x

′
m, fake(k, x

′
m, r))〉

)

(v)

≈ νnetcomb netopenb k r.netcrsb〈crseqv(k)〉 | netcrs〈crseqv(k)〉 | iocoma (xm).(
ioopena ().netopenb〈xm〉|netcomb〈〉

)
|

netcomb().
(
net1〈fakeH (k, r)〉|netopenb(x

′
m).net2〈(x

′
m, fake(k, x

′
m, r))〉

)

≡ νnetcombnetopenb .(FCOM {netcomb

iocomb
,
netopenb
ioopenb

}|S) for some S with IO ∩ fn(S) = ∅.

Here (i) uses Lemma 3.3 with n := iocrsa , C := νk.netcrsb〈k〉 | netcrs〈k〉 | �, x := xcrs ,
and t := k.

And (ii) is shown using Proverif, the required 
ode is given in Figure 14. Note that in

the rhs of (ii), we have repla
ed all o

urren
es of the CRS k by crseqv(k), and instead

of sending the hash value hash(k, (xm, r)) we send fakeH (k, r) whi
h does not depend

on xm, and in the end, instead of sending the randomness r, we send fake(k, xm, r).
Intuitively, this repla
ement is indistinguishable be
ause our symboli
 model 
ontains

the equation hash(crseqv (k), (m, fake(k,m, r))) =E fakeH (k, r).
And (iii) uses Lemma 3.3 (in the opposite dire
tion) with n := netopenb , x := x′m,

t := xm, Q := net2〈(x′m, fake(k, x
′
m, r))〉, and C := net1〈fakeH (k, r)〉 | ioopena ().�. (And
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free net
rs,net
rsb,net1,net2,io
oma,ioopena.

pro
ess

new k;

out(net
rs,
hoi
e[k,
rseqv(k)℄) |

out(net
rsb,
hoi
e[k,
rseqv(k)℄) |

in(io
oma,xm);

new r;

out(net1,
hoi
e[hash(k,(xm,r)),fakeH(k,r)℄) |

in(ioopena,x);

out(net2,(xm,
hoi
e[r,fake(k,xm,r)℄))

Figure 14: Virtual primitives example: Proverif 
ode for 
orrupted Bob

(virtprim-b
orr.pv, see [BU13℄). (Has to be pre�xed with the 
ode from Figure 12.)

it uses Lemma 2.7, so that we 
an apply Lemma 3.3 to a subpro
ess instead of the whole

pro
ess.)

And (iv) uses Lemma 3.2 (ii) to swap νr and νnetopenb with iocoma (xm). (And

Lemma 2.7 to apply Lemma 3.2 (ii) to a subpro
ess.)

And (v) uses Lemma 3.3 (in the opposite dire
tion) with n := netcomb , t := empty ,

and Q := net1〈fakeH (k, r)〉 | netopenb(x
′
m).net2〈(x′m, fake(k, x

′
m, r))〉.

So we have νiocrsa .(COMA|FCRS{
netcrsb
iocrsb

}) ≈ νnetcombnetopenb .(FCOM {netcomb

iocomb
,
netopenb
ioopenb

}|S)

for some S with IO ∩ fn(S) = ∅. Hen
e νiocrsa .(COMA|FCRS{
netcrsb
iocrsb

}) ≤

FCOM {netcomb

iocomb
,
netopenb
ioopenb

}. �

9.1.1 A note on adaptive 
orruption

We have only modeled stati
 
orruption in our examples, i.e., it is �xed in the be-

ginning of the exe
ution whi
h parties are 
orrupted. If we were to model adaptive


orruption where parties may be 
orrupted during the proto
ol exe
ution, we would

fa
e an additional 
hallenge (besides the fa
t that the des
riptions of the pro
esses

would be mu
h more 
omplex): Sin
e the simulator may have to provide the CRS

before he knows whether Ali
e or Bob will be 
orrupted, he will not know whether

he should use crseqv(k) or crsext(k) as CRS. And on page 82 we explained why we


annot just repla
e both crseqv and crseqv by a single 
onstru
tor fakecrs be
ause

then the adversary would be able to dedu
e any term. However, this problem 
an

be solved using the 
onditional destru
tors supported by Proverif 1.87: we 
an make

sure that the rewrite rule extract(xn, hash(crsext(xn), (xm, xr))) → xm only triggers

if hash(crsext(xn), (xm, xr)) 6=E fakeH (M,M ′) for all M,M ′
. The resulting symboli


model is shown in Figure 15. We 
an show Lemmas 9.5, 9.6, and 9.7 also using this sym-

boli
 model by repla
ing all o

urren
es of crseqv and crsext in the simulators by fakecrs .

Proverif still shows all the ne
essary equivalen
es. Although this does not show adaptive
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(* Needs proverif1.87 beta *)

fun hash(bitstring,bitstring):bitstring.


onst empty:bitstring.

fun fake(bitstring,bitstring,bitstring):bitstring.

fun fakeH(bitstring,bitstring):bitstring.

fun fake
rs(bitstring):bitstring.

equation forall n:bitstring,m:bitstring,r:bitstring;

hash(fake
rs(n),(m,fake(n,m,r))) = fakeH(n,r).

fun extra
t(bitstring,bitstring):bitstring

redu
 forall n:bitstring,r:bitstring;

extra
t(n,fakeH(n,r)) = empty

otherwise forall n:bitstring,m:bitstring,r:bitstring;

extra
t(n,hash(fake
rs(n),(m,r))) = m.

Figure 15: Virtual primitives example: Proverif 
ode for the symboli
 model when using

fakecrs 
onstru
tor (virtprim-model-x.pv, see [BU13℄) Note that we use the typed

Proverif syntax here be
ause Proverif 1.87 does not support 
onditional destru
tors in

the untyped syntax.

se
urity, it shows that the simulator does not need to 
hoose the CRS depending on who

is 
orrupted, giving hope for the adaptive 
ase. We leave that 
ase for future work.

9.2 Removing the virtual primitives

In this se
tion, we will 
onsider di�erent symboli
 models. Sin
e the relation symbols

→,⇓,≈, ↓,=E et
. do not expli
itly spe
ify the symboli
 model, we use the following


onvention: When referring to a symboli
 model Mi, we write →i,⇓i,≈i, ↓i,=Ei
et
. We

say a term (or destru
tor term) is an M-term (or M-destru
tor term) if it 
ontains only


onstru
tors (and destru
tors) from M. We 
all a pro
ess an M-pro
ess if it 
ontains

only M-terms and M-destru
tor terms.

We have now shown that COM is a se
ure 
ommitment proto
ol with respe
t toMvirt .

However, we would like to dedu
e se
urity of proto
ols using COM with respe
t to Mreal .

For this, we �rst need to formalize what it means that Mvirt is a safe extension of Mreal :

De�nition 9.8 (Safe extension) We 
all a symboli
 model M1 = (Σ1,E1,R1) a safe

extension of a symboli
 model M2 = (Σ2,E2,R2) i� the following holds:

(i) Σ1 ⊇ Σ2.

(ii) If D is an M2-destru
tor term, and M is an M1-term, and D ⇓1 M , then there

exists an M2-term M ′ =E1 M with D ⇓2 M
′
.

(iii) For all M2-destru
tor terms D and M2-terms M , we have D ⇓2 M ⇒ D ⇓1 M .
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(iv) For all M2-terms M,M ′
we have M =E1 M

′ ⇔M =E2 M
′
.

The following lemma is relatively easy to show:

Lemma 9.9 Mvirt is a safe extension of Mreal .

Proof. Obviously, Σvirt ⊇ Σreal . So De�nition 9.8 (i) is satis�ed.

We show that De�nition 9.8 (ii) is satis�ed: Let D be an Mreal -destru
tor term and

M be an Mvirt -term. Sin
e Mreal 
ontains no destru
tors, D is an Mreal -term. Thus

D ⇓virt M implies D =M . This implies that M ′ :=M is an Mreal -term and D ⇓real M
′
.

We show that De�nition 9.8 (iii) is satis�ed: Let D be an Mreal -destru
tor term and

M be an Mreal -term. Sin
e Mreal 
ontains no destru
tors, D is an Mreal -term. Thus

D ⇓virt M implies D =M whi
h implies D ⇓real M .

We show that De�nition 9.8 (iv) is satis�ed: For Mreal -terms M,M ′
, obviously

M =Ereal
M ′

implies M =Evirt
M ′

. We show the opposite dire
tion: The only equa-

tion in Evirt (namely hash(crseqv (k), (m, fake(k,m, r))) =E fakeH (k, r)) only allows us

to rewrite terms 
ontaining crseqv or fakeH . Sin
e M,M ′
are Mreal -terms, they do not


ontain these 
onstru
tors. Hen
e M =Evirt
M ′

only ifM =M ′
. SoM =Evirt

M ′
implies

M =Ereal
M ′

. �

The following theorem justi�es the above de�nition of safe extensions:

Theorem 9.10 Assume that M1 is a safe extension of M2. Then for all M2-pro
esses

P,P ′
we have P ≈1 P

′ ⇒ P ≈2 P
′
.

Proof. We �rst show some auxiliary 
laims:

Claim 1 For all M2-pro
esses P,P
′
, we have P →2 P

′ ⇒ P →1 P
′
.

We show this 
laim by indu
tion over the derivation of P →2 P
′
. We distinguish the

following 
ases:

• Closure under stru
tural equivalen
e: In this 
ase P →2 P
′
has been derived from

P ≡ P̂ →2 P̂
′ ≡ P ′

for M2-pro
esses P̂ , P̂
′
, and the indu
tion hypothesis implies

P̂ →1 P̂
′
. Thus P ≡ P̂ →1 P̂

′ ≡ P ′
whi
h implies P →1 P

′
. The 
laim follows.

• Closure under evaluation 
ontexts: In this 
ase P →2 P
′
has been derived from

P = E[P̂ ], P ′ = E[P̂ ′], and P̂ →2 P̂ ′
for some M2-pro
esses P̂ , P̂

′
and some

M2-evaluation 
ontext E. The indu
tion hypothesis implies P̂ →1 P̂ ′
. Hen
e

P = E[P̂ ] →1 E[P̂ ′] = P ′
.

• REPL: In this 
ase P = !P̂ and P ′ = P̂ |!P̂ . Hen
e P →1 P
′
.

• COMM: In this 
ase P = C〈T 〉.P̂ | C ′(x).Q̂ and P ′ = P̂ | Q{T/x} and C =E2 C
′
.

Sin
e P is an M2-pro
ess, C,C
′
are M2-terms. Sin
e M1 is a safe extension of

M2, C =E2 C
′
implies C =E1 C

′
. Thus P →1 P

′
. The 
laim follows.

• LET-THEN: In this 
ase P = (let x = D in P̂ else Q̂) and P ′ = P̂{M/x} for

some M2-pro
esses P̂ , Q̂, and some M2-destru
tor term D and M2-term M with

D ⇓2 M . Sin
e P is an M2-pro
ess, D is an M2-destru
tor term. Sin
e M1 is a

safe extension of M2, D ⇓2 M implies that D ⇓1 M . Thus P →1 P
′
. The 
laim

follows.
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• LET-ELSE: In this 
ase P = (let x = D in P̂ else Q̂) and P ′ = Q̂ and for all

M2-terms M we have D 6⇓2 M . Sin
e P is an M2-pro
ess, D is an M2-destru
tor

term. If we had D ⇓1 M for some M1-term M , we would have D ⇓2 M
′
for some

M2-term M ′
sin
e M1 is a safe extension of M2. This 
ontradi
ts D 6⇓2 M for all

M2-terms M . Thus D 6⇓1 M for all M1-terms M . Hen
e P →1 P
′
. The 
laim

follows.

Claim 2 For all M2-pro
esses P , and all M1-pro
esses P
′′
with P →1 P

′′
, there exists

an M2-pro
ess P
′
su
h that P →2 P

′ ≡E1 P
′′
.

We show this 
laim by indu
tion over the derivation of P →1 P
′′
. We distinguish the

following 
ases:

• Closure under stru
tural equivalen
e: In this 
ase P →1 P ′′
has been derived

from P ≡ P̂ →1 P̂
′′ ≡ P ′′

for M1-pro
esses P̂ , P̂
′′
, and the indu
tion hypothesis

(Claim 2) holds for P̂ →1 P̂
′′
. Sin
e stru
tural equivalen
e does not rewrite terms,

the fa
t that P is an M2-pro
ess implies that P̂ is an M2-pro
ess. Thus P̂ →1 P̂
′′

implies together with the indu
tion hypothesis that P̂ →2 P
′ ≡E1 P̂

′′
for some

M2-pro
ess P
′
. Thus P ≡ P̂ →2 P

′
whi
h implies P →2 P

′
and we have P ′ ≡E1

P̂ ′′ ≡ P ′′
whi
h implies P ′ ≡E1 P

′′
. The 
laim follows.

• Closure under evaluation 
ontexts: In this 
ase P →1 P
′′
has been derived from

P = E[P̂ ], P ′′ = E[P̂ ′′], and P̂ →1 P̂
′′
for some M1-pro
esses P̂ , P̂

′′
and some

M1-evaluation 
ontext E. And the indu
tion hypothesis holds for P̂ →1 P̂
′′
. Sin
e

P is an M2-pro
ess and P = E[P̂ ], we have that P̂ is an M2-pro
ess and E and

M2-evaluation 
ontext. Thus by indu
tion hypothesis, there exists an M2-pro
ess

P̂ ′
su
h that P̂ →2 P̂

′ ≡E1 P̂
′′
. Let P ′ := E[P̂ ′]. Obviously P ′

is an M2-pro
ess.

And P = E[P̂ ] →2 E[P̂ ′] = P ′
and P ′′ = E[P̂ ′′] ≡E1 E[P̂ ′] = P ′

. The 
laim

follows.

• REPL: In this 
ase P = !P̂ and P ′′ = P̂ |!P̂ . Sin
e P is an M2-pro
ess, so is P̂ ,
and hen
e also P ′ := P ′′

is an M2-pro
ess. Then P →2 P
′
and P ′′ ≡E1 P

′
and the


laim follows.

• COMM: In this 
ase P = C〈T 〉.P̂ | C ′(x).Q̂ and P ′′ = P̂ | Q̂{T/x} and C =E1 C
′
.

Sin
e P is an M2-pro
ess, C,C
′
are M2-terms and P̂ , Q̂ are M2-pro
esses. Sin
e

M1 is a safe extension of M2, C =E1 C
′
implies C =E2 C

′
. Thus P →2 P

′′
. With

P ′ := P ′′
, the 
laim follows.

• LET-THEN: In this 
ase P = (let x = D in P̂ else Q̂) and P ′′ = P̂{M/x} for

some M1-pro
esses P̂ , Q̂, and some M1-destru
tor term D and M1-term M with

D ⇓1 M . Sin
e P is an M2-pro
ess, P̂ , Q̂ are M2-pro
esses and D is an M2-

destru
tor term. Sin
eM1 is a safe extension ofM2, D ⇓1 M implies thatD ⇓2 M
′

for some M2-term M ′ =E1 M . Let P ′ := P̂{M/x}. Then P ′′ = P̂{M/x} ≡E1

P̂{M ′/x} = P ′
and P →2 P

′
. The 
laim follows.

• LET-ELSE: In this 
ase P = (let x = D in P̂ else Q̂) and P ′′ = Q̂ and for all M1-

terms M we have D 6⇓1 M . Sin
e P is an M2-pro
ess, P̂ , Q̂ are M2-pro
esses and

D is an M2-destru
tor term. Sin
e M1 is a safe extension of M2, for all M2-terms
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M , D 6⇓1 M implies that D 6⇓2 M . With P ′ := Q̂ = P ′′
, we thus have P ′′ ≡E1 P

′

and P →2 P
′
. The 
laim follows.

Claim 3 For all M2-pro
esses P , and all M1-pro
esses P
′′
with P →∗

1 P
′′
, there exists

an M2-pro
ess P
′
su
h that P →∗

2 P
′ ≡E1 P

′′
.

Proof. To show this 
laim, we show that for all n ≥ 0, all M2-pro
esses P , and all M1-

pro
esses P ′′
with P →n

1 P
′′
, there exists an M2-pro
ess P

′
su
h that P →∗

2 P
′ ≡E1 P

′′
.

Here→n
1 means exa
tly n appli
ations of→. We show this by indu
tion over n. For n = 0,

the statement is trivial. Assume the statement holds for n, we show it for n+1: We have

P →n+1
1 P ′′

hen
e P →n
1 P̂

′′ →1 P
′′
for some M1-pro
ess P̂

′′
. By indu
tion hypothesis

there exists an M2-pro
ess P̂
′
with P →∗

2 P̂
′ ≡E1 P̂

′′
. Sin
e P̂ ′ ≡E1 P̂

′′ →1 P
′′
, by

Lemma 3.5, we have P̂ ′ →1 P2 ≡E1 P
′′
for some M1-pro
ess P2. Sin
e P̂ ′

is an M2-

pro
ess and P̂ ′ →1 P2, by Claim 2, there is anM2-pro
ess P
′
su
h that P̂ ′ →2 P

′ ≡E1 P2.

Combining all this, we have

P →∗
2 P̂

′ →2 P
′ ≡E1 P2 ≡E1 P

′′.

Thus P →∗
2 P

′ ≡E1 P
′′
. �

We are now ready to show Theorem 9.10. Let R := {(P,Q) :
P,Q M2-pro
esses, P ≈1 Q}. We show that R is an M2-simulation (and due to its

symmetry also an M2-bisimulation):

• If (P,Q) ∈ R and P ↓2M for some M2-term M , then Q →∗
2 Q′ ↓2M for some

M2-pro
ess Q
′
.

P ↓2M implies (see Footnote 7) P ≡E2 E[M 〈T 〉.P ′] for some evaluation 
ontext E
not binding fn(M). This implies P ≡E1 E[M 〈T 〉.P ′] (sin
e M1 =E2 M2 implies

M1 =E1 M2 for M2-terms M1,M2). Thus P ↓1M . Sin
e (P,Q) ∈ R, we have that

P ≈1 Q and thus Q→∗
1 Q

′′ ↓1M for some M1-pro
ess Q
′′
. By Claim 3, this implies

that Q →∗
2 Q

′ ≡E1 Q
′′
for some M2-pro
ess Q

′
. Sin
e Q′′ ≡E1 Q

′′ ↓1M , we have

Q′ ↓1M (this follows immediately using the 
hara
terization from Footnote 7). Sin
e

Q′ ↓1M , by de�nition of ↓, we have Q′ ≡ E[M ′〈T ′〉.Q̃] for some M1-terms M ′, T ′

with M ′ =E1 M and M1-pro
ess Q̃, and some evaluation 
ontext not binding

fn(M). Sin
e Q′
is an M2-pro
ess, E[M ′〈T ′〉.Q̃] is an M2-pro
ess, hen
e M

′
is

an M2-term. Thus M,M ′
are M2-terms, and M ′ =E1 M . Sin
e M1 is a safe

extension of M2, this implies M ′ =E2 M . Thus Q′ ≡ E[M ′〈T ′〉.Q̃] implies Q′ ↓2M .

So we have Q →∗
2 Q

′ ↓2M and Q′
is an M2-pro
ess.

• If (P,Q) ∈ R and P →2 P
′
for an M2-pro
ess P

′
, then there exists an M2-pro
ess

Q′
with (P ′, Q′) ∈ R and Q→∗

2 Q
′
:

Sin
e P,P ′
are M2-pro
esses, and P →2 P

′
, by Claim 1 we have P →1 P

′
. Sin
e

(P,Q) ∈ R, we have P ≈1 Q and thus Q →∗
1 Q

′′
for some M1-pro
ess Q

′′ ≈1

P ′
. By Claim 3, there is an M2-pro
ess Q

′
su
h that Q′′ ≡E1 Q

′
and Q →∗

2 Q
′
.
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Furthermore, by Lemma 3.2 (iv), we have =E1⊆ ≈1 and trivially ≡⊆≈1, hen
e

≡E1⊆ ≈1. Thus Q′′ ≡E1 Q
′
implies Q′′ ≈1 Q

′
. Together with Q′′ ≈1 P

′
, we have

P ′ ≈1 Q
′
and thus (P ′, Q′) ∈ R.

• If (P,Q) ∈ R and E is an M2-evaluation 
ontext, then (E[P ], E[Q]) ∈ R.

Sin
e (P,Q) ∈ R, we have P ≈1 Q. Furthermore, sin
e E is an M2-evaluation


ontext, E is also an M1-evaluation 
ontext. Hen
e E[P ] ≈1 E[Q] and thus

(E[P ], E[Q]) ∈ R.

Sin
e R is a M2-bisimulation, R ⊆ ≈2. Thus for M2-terms P,P ′
we have P ≈1 P

′ ⇒
(P,P ′) ∈ R ⇒ P ≈2 P

′
. Theorem 9.10 follows. �

Now we 
an �nally state the following result that derives se
urity of COM with respe
t

to Mreal in any 
ontext (we state it generally, though):

Lemma 9.11 Let P,F be Mreal -pro
esses (representing a proto
ol and an ideal fun
tion-

ality, e.g., P = COM and F = FCOM ). Let Mvirt be a safe extension of Mreal . Assume

that P ≤virt F .

Let C be an Mreal -
ontext whose hole is prote
ted only by νio for IO-names io, by

parallel 
ompositions, and by !, and that does not 
ontain any NET-names in fn(P,F).
Assume that C[F ] ≤virt G for some Mreal -pro
ess G.

Let E1, E2 be Mreal -
ontexts satisfying the 
onditions of Theorem 6.1 (property

preservation).

If E1[G] ≈virt E2[G] then E1[C[P ]] ≈real E2[C[P ]].

Proof. By the 
omposition theorem (Theorem 5.37), P ≤virt F implies C[P ] ≤virt C[F ].
With transitivity and C[F ] ≤virt G, this implies C[P ] ≤virt G. Then by the property

preservation theorem (Theorem 6.1), E1[G] ≈virt E2[G] implies E1[C[P ]] ≈virt E2[C[P ]].
Sin
e Mvirt is a safe extension of Mreal , this implies E1[C[P ]] ≈real E2[C[P ]] by

Theorem 9.10. �

9.3 On removing the CRS

Using virtual primitives, we have managed to get rid of the need for trapdoors in our


ommitment proto
ol. However, we still use a 
ommon referen
e string. This leads to

the question whether the CRS 
an also be removed from the proto
ol. We do not answer

that question here, but we give some indi
ations as to how it might be possible to remove

the CRS, also.

First, the question is whether we 
an 
onstru
t a UC se
ure 
ommitment proto
ol

without using a CRS in the �rst pla
e (i.e., instead of the proto
ol from Se
tion 9.1). We

know that this is impossible in the 
omputational UC setting (no matter what primitives

we use) [CF01℄. Unfortunately, their impossibility result 
arries over to the symboli


setting:

Lemma 9.12 There are no 
losed pro
esses A,B and NET-names net with the following

three properties:
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(i) νnet .(A|B) ≤ FCOM . (Un
orrupted 
ase.)

(ii) A ≤ FCOM {netcomb

iocomb
,
netopenb
ioopenb

}. (Bob 
orrupted.)

(iii) B ≤ FCOM {netcoma

iocoma
,
netopena
ioopena

}. (Ali
e 
orrupted.)

Thus, a UC se
ure 
ommitment proto
ol has to be of the form νnet .(A|B|F) for some

fun
tionality F , e.g., FCRS .

Proof. Assume that there are su
h pro
esses A,B and NET-names net .

Then there are simulators (S0, ϕ0, n0), (SA, ϕA, nA), and (SB, ϕB , nB) su
h that

νnet .(A|B) ≈ νn0.(FCOMϕ0|S0) = νn0.(FCOM |S0) (5)

A ≈ νnA.(FCOM {netcomb

iocomb
,
netopenb
ioopenb

}ϕA|SA) = νnA.(FCOM {
net ′

comb

iocomb
,
net′

openb

ioopenb
}|SA)

(6)

B ≈ νnB.(FCOM {netcoma

iocoma
,
netopena
ioopena

}ϕB |SB) = νnB.(FCOM {net ′coma

iocoma
,
net ′opena
ioopena

}|SB)

(7)

for suitable names net ′coma ,net
′
opena ,net

′
comb ,net

′
openb . The equalities use the fa
t that

FCOM does not 
ontain any NET-names.

Let

E := νiocoma iocomb ioopena ioopenb .((
νr.
(
iocoma 〈r〉|iocomb().(ioopena 〈〉|ioopenb(x).if x = r then c〈〉)

))
|�
)

where c is a fresh name. Intuitively, this 
ontext 
ommits to a fresh non
e r, waits until
the 
ommit su

eeds, then opens the 
ommitment and 
he
ks whether the unveiled value

is indeed r. For a �good� 
ommitment s
heme, this should always be the 
ase. Indeed:

By de�nition of FCOM (and using that n0 does not 
ontain IO-names), we have that

E[νn0.(FCOM |S0)] →∗↓c. By (5) we have E[νnet .(A|B)] ≈ E[νn0.(FCOM |S0)] and thus

E[νnet .(A|B)] →∗↓c.
We now use (6) and (7) to transform E[νnet .(A|B)] into a pro
ess that does not use

the 
ommitment proto
ol A|B any more, but instead uses two instan
es of FCOM :

E[νnet .(A|B)]
(6,7)

≈ E[νnet .(νnA.(FCOM {
net ′

comb

iocomb
,
net ′

openb

ioopenb
}|SA)|νnB .(FCOM {net ′coma

iocoma
,
net ′opena
ioopena

}|SB))]

By moving all restri
tions up (and potentially renaming names to avoid 
lashes of bound

variables), we get:

E[νnet .(A|B)] ≈ νnet ′.E[FCOM {
net ′′

comb

iocomb
,
net ′′

openb

ioopenb
}|FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

}|SAB ] =: P

Here net ′ is the list of all names that were moved up. net ′′coma et
 are potentially renamed

names, and SAB := SA|SB potentially up to renamings. Note that SAB does not 
ontain

IO-names.
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We now use several appli
ation of Lemma 3.3 to simplify P . Ea
h of the following

observational equivalen
es 
orresponds to one appli
ation of Lemma 3.3.

P ≡ νnet iocoma iocomb ioopena ioopenbr.

iocoma 〈r〉 | iocomb().(ioopena 〈〉 | ioopenb(x).if x = r then c〈〉)

| FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

} | FCOM {
net ′′

comb

iocomb
,
net ′′

openb

ioopenb
} | SAB

= νnet iocoma iocomb ioopena ioopenbr.

iocoma 〈r〉 | iocomb().(ioopena 〈〉 | ioopenb(x).if x = r then c〈〉)

| FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

} | iocoma(xm).(net ′′comb〈〉 | ioopena ().net ′′openb〈xm〉) | SAB

(i)

≈ νnet iocomb ioopena ioopenbr.

net ′′comb〈〉 | ioopena ().net
′′
openb〈r〉 | iocomb().(ioopena 〈〉 | ioopenb(x).if x = r then c〈〉)

| FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

} | SAB

(ii)

≈ νnet iocomb ioopenbr.

net ′′comb〈〉 | iocomb().(net
′′
openb〈r〉 | ioopenb(x).if x = r then c〈〉)

| FCOM {net ′′coma

iocoma
,
net ′′opena
ioopena

} | SAB

= νnet iocomb ioopenbr.

net ′′comb〈〉 | iocomb().(net
′′
openb〈r〉 | ioopenb(x).if x = r then c〈〉)

| net ′′coma (xm).(iocomb〈〉 | net
′′
opena ().ioopenb〈xm〉) | SAB

(iii)

≈ νnet ioopenbr. net
′′
comb〈〉

| net ′′coma (xm).(net ′′openb〈r〉 | ioopenb(x).if x = r then c〈〉 | net ′′opena ().ioopenb〈xm〉) | SAB

(iv)

≈ νnet r. net ′′comb〈〉

| net ′′coma (xm).(net ′′openb〈r〉 | net ′′opena ().if xm = r then c〈〉) | SAB

Here (i) uses Lemma 3.3 with n := iocoma , t := r, and x := xm.
And (ii) uses Lemma 3.3 with n := ioopena .

And (iii) uses Lemma 3.3 with n := iocomb .

And (iv) uses Lemma 3.3 with n := ioopenb , t := xm, and x := x (and Lemma 3.2 (ii)

to move the νioopenb below the net ′′coma (xm) �rst, and Lemma 2.7, so that we 
an apply

Lemma 3.3 to a subpro
ess instead of the whole pro
ess.)

Thus we have

E[νnet .(A|B)] ≈ P ≈

νnet r. net ′′comb〈〉 | net
′′
coma (xm).(net ′′openb〈r〉 | net

′′
opena ().if xm = r then c〈〉) | SAB =: P2

Note that in P2, xm is re
eived before the fresh non
e r is revealed. Thus we expe
t
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that the 
omparison xm = r will always fail. Indeed:

P2
(∗)

≡ νnet .net ′′comb〈〉 | net
′′
coma (xm).νr.(net ′′openb〈r〉 | net

′′
opena ().if xm = r then c〈〉) | SAB

(∗∗)

≈ νnet .net ′′comb〈〉 | net
′′
coma (xm).νr.(net ′′openb〈r〉 | net

′′
opena ().0) | SAB =: P3

Here (∗) uses Lemma 3.2 (ii) with x := xm to move the restri
tion νr down, and (∗∗)
uses Lemma 3.8 to repla
e the if-statement by its else-bran
h (whi
h is 0).

Thus we have that E[νnet .(A|B)] ≈ P2 ≈ P3. Furthermore, we showed above that

E[νnet .(A|B)] →∗↓c. But sin
e c does not o

ur in P3 (we 
hose it as a fresh name, thus

it also does not o

ur in SAB), we have that P3 →∗↓c 
annot hold. This is a 
ontradi
tion
to the observational equivalen
e E[νnet .(A|B)] ≈ P3. Thus our assumption was wrong

that pro
esses A,B and NET-names net as in the statement of the lemma exist. �

However, Lemma 9.12 does not ex
lude that an approa
h similar to the virtual primi-

tives approa
h might work: We �rst 
onstru
t a UC se
ure 
ommitment proto
ol (again,


ommitments are just one example), build a 
omplex proto
ol from it using the 
ompo-

sition theorem, and then show that se
urity of the 
omplex proto
ol implies (non-UC)

se
urity of a modi�
ation that does not use the CRS. It is likely that this works as the

CRS returned by the CRS fun
tionality is just a fresh publi
 name, so instead of the

CRS we should be able to just use some fresh (non-restri
ted) name a.
There is one subtlety, though: When 
omposing the 
ommitment proto
ol P , we end

up with a 
omplex proto
ol C[P ] that may use multiple instan
es of FCRS . In parti
ular,

if C[P ] 
ontains !!P , then C[P ] will 
ontain an unbounded number of FCRS -instan
es. So

we 
annot repla
e FCRS just by a single name, we will need a way to generate an arbitrary

number of fresh values. The obvious way for this is to use something like hash(a, sid)
instead of the CRS that we get from the FCRS -instan
e with session-id sid (here a is a

fresh name).

A lemma roughly like the following 
onje
ture should therefore lead to a method for

removing the CRS from a proto
ol that was produ
ed by UC 
omposition:

Conje
ture 9.13 Let hash be a free 
onstru
tor (i.e., not o

urring in any equations or

rewrite rules in the symboli
 models). Let P be a pro
ess. Let E1, E2 be 
ontexts. Assume

that hash does not o

ur in E1, E2, P . Let a /∈ fn(E1, E2, P ) ∪ bn(E1, E2, P ).
(i) Let P ′

result from P by repla
ing all subterms �netcrsa(x).Q� by �let x = a in Q�.
Then E1[νnetcrsa .(P |FCRS )] ∼∼∼ E2[νnetcrsa .(P |FCRS )] implies E1[νnetcrsa .(P

′)] ∼∼∼
E2[νnetcrsa .(P

′)].
(ii) Let P ′

result from P by repla
ing all subterms �(Msid ,netcrsa)(x).Q� by �let x =
hash(a,Msid ) in Q�. Then E1[νnetcrsa .(P |!!FCRS )] ∼∼∼ E2[νnetcrsa .(P |!!FCRS )] im-

plies E1[νnetcrsa .(P
′)] ∼∼∼ E2[νnetcrsa .(P

′)].

Proving (i) is probably 
onsiderably simpler than proving (ii). An alternative to

proving (ii) 
ould be to make sure that C[P ] does not 
ontain FCRS under a !!. This


ould be a
hieved if we design a 
ommitment proto
ol P that does not implement FCOM ,

but !!FCOM (
ompare with Se
tion 8.3). Then a single 
opy of P would be su�
ient in

C[P ].
We leave further exploration of approa
hes to get rid of the CRS to future resear
h.
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fun empty/0.

free net2, net3.

let Q = new n; out(io1,n) |

(in(io2,x); if x=n then out(net2,empty)) |

(in(io3,x); if x=n then out(net3,empty)).

pro
ess new io1; new io2; new io3; in(io1,x1); in(io1,x2);

out(io2,x1) | out(io3,
hoi
e[x1,x2℄) | !Q

Figure 16: Proverif 
ode for showing E1[Q] ≈ E2[Q] in Lemma A.1

(prop-pres-bang1.pv, see [BU13℄).

A Limits for 
omposition and property preservation

In this se
tion, we show that the restri
tions of the 
omposition theorem are ne
essary.

More pre
isely, we show that if P ≤ Q, then not ne
essarily !P ≤ !Q or io(x).P ≤ io(x).Q
or io〈t〉.P ≤ io〈t〉.Q or νnet .P ≤ νnet .Q or P |R ≤ Q|R (for R that has NET-names

in 
ommon with P,Q). We show that this is not just a limitation of the 
omposition

theorem, we show that similar limitations also apply to property preservation. More

pre
isely, property preservation P ≤ Q,E1[Q] ≈ E2[Q] =⇒ E1[P ] ≈ E2[P ] does not

ne
essarily hold if E1, E2 
ontain a bang (!) over their hole, or an input/output over

their hole, or an if/let over their hole, or a di�erent number of !!'s over their respe
tive
holes, or restri
t NET-names over their holes, or use NET-names.

Example A.1

P := νnm. io1〈n〉 | io2(x).if x = n then net2〈m〉 | io3(x).if x = n then net3〈m〉

Q := νn . io1〈n〉 | io2(x).if x = n then net2〈empty〉 | io3(x).if x = n then net3〈empty〉

E1 := νio1 io2 io3. io1(x1).io1(x2).(io2〈x1〉 | io3〈x1〉) | !�

E2 := νio1 io2 io3. io1(x1).io1(x2).(io2〈x1〉 | io3〈x2〉) | !�

Lemma A.1 Using the notation from Example A.1, we have P ≤ Q, and E1[Q] ≈ E2[Q],
but E1[P ] 6≈ E2[P ].

Proof. We show P ≤ Q: We have P ≈ νnet ′2net
′
3.(Q{

net ′2
net2

,
net ′3
net3

}|S) for S :=

νm.(net ′2(x).net2〈m〉|net ′3(x).net3〈m〉) by two invo
ations of Lemma 3.3 (�rst with

n := net ′2, x := x, and t := empty , se
ond with n := net ′3, x := x, and t := empty).

Hen
e P ≤ Q.
The 
laim E1[Q] ≈ E2[Q] is shown using Proverif. The Proverif 
ode is given in

Figure 16
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fun empty/0.

free net2, net3.

private free 
.

query mess:
,
.

let P = new n; new m; out(io1,n) |

(in(io2,x); if x=n then out(net2,m)) | (in(io3,x); if x=n then out(net3,m)).

let E2P = new io1; new io2; new io3; in(io1,x1); in(io1,x2);

out(io2,x1) | out(io3,x2) | !P.

let D = in(net2,y1); in(net3,y2); if y1=y2 then out(
,empty).

pro
ess D | E2P

Figure 17: Proverif 
ode for showing that D|E2[P ] →∗↓c does not hold in the proof of

Lemma A.1 (prop-pres-bang2.pv, see [BU13℄).

We now show E1[P ] 6≈ E2[P ]. Let D := net2(y1).net3(y2).if y1 = y2 then c〈empty〉.
Then D | E1[P ] →∗ D | · · · | νm.(net2〈m〉 | net3〈m〉) →∗ νm.(· · · |
if m = m then c〈〉) →∗↓c. Using Proverif, we show that D | E2[P ] →∗↓c does not

hold (for any 
ontext D not 
ontaining c). The Proverif 
ode is given in Figure 17.

E1[P ] ≈ E2[P ] would imply D | E1[P ] ≈ D | E2[P ] whi
h together with D | E1[P ] →∗↓c
would imply the wrong fa
t D | E2[P ] →∗↓c. Thus E1[P ] 6≈ E2[P ].

�

Lemma A.2 Using the notation from Example A.1, we have P ≤ Q but not !P ≤!Q.

Proof. From Lemma A.1 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume !P ≤ !Q. We


an write E1 = E′
1[!�] and E2 = E′

2[!�] for NET-free evaluation 
ontexts E1, E2. Then

E′
1[!Q] = E1[Q] ≈ E2[Q] = E′

2[!Q] and thus by Theorem 6.1, we have E1[P ] = E′
1[!P ] ≈

E′
2[!P ] = E2[P ]. This is a 
ontradi
tion to Lemma A.1. Thus the assumption !P ≤ !Q

was wrong. �

Example A.2

P := net〈empty〉

Q := 0

E1 := νio. (io().� | io〈empty〉)

E2 := νio. (io().�)
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Lemma A.3 Using the notation from Example A.2, we have P ≤ Q, and E1[Q] ≈ E2[Q],
but E1[P ] 6≈ E2[P ].

Proof. Obviously, P ≈ Q|S with S := net〈empty〉. Hen
e P ≤ S.
We show E1[Q] ≈ E2[Q]: We have E1[Q] = νio. (io().0 | io〈empty〉) ≈ 0 by

Lemma 3.3 with n := io and C := �. And E2[Q] = νio.io().0 ≈ 0 by Lemma 3.3

with n := io and C := 0. Hen
e E1[Q] ≈ E2[Q].
We show E1[P ] 6≈ E2[P ]: We have E1[P ] →∗ νio.net〈empty〉 ↓net . But E2[P ] 6↓net ,

and E2[P ] does not redu
e. Thus there is no su

essor of E2[P ] that emits on net . This


ontradi
ts E1[P ] ≈ E2[P ] by de�nition of observational equivalen
e. �

Lemma A.4 Using the notation from Example A.2, we have P ≤ Q but not io().P ≤
io().Q.

Proof. From Lemma A.3 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume io().P ≤ io().Q.
We 
an write E1 = E′

1[io().�] and E2 = E′
2[io().�] for NET-free evaluation 
ontexts

E1, E2. Then E′
1[io().Q] = E1[Q] ≈ E2[Q] = E′

2[io().Q] and thus by Theorem 6.1, we

have E1[P ] = E′
1[io().P ] ≈ E′

2[io().P ] = E2[P ]. This is a 
ontradi
tion to Lemma A.3.

Thus the assumption io().P ≤ io().Q was wrong. �

Example A.3 Let P,Q be as in Example A.2.

E1 := νio. (io〈empty〉.� | io())

E2 := νio. (io〈empty〉.�)

Lemma A.5 Using the notation from Example A.3, we have P ≤ Q, and E1[Q] ≈ E2[Q],
but E1[P ] 6≈ E2[P ].

Lemma A.6 Using the notation from Example A.3, we have P ≤ Q but not

io〈empty〉.P ≤ io〈empty〉.Q.

The proofs of Lemmas A.5 and A.6 are identi
al to those of Lemmas A.5 and A.6,

ex
ept that io() and io〈empty〉 are ex
hanged.

Example A.4 Let P,Q be as in Example A.2.

E1 := if true then �

E2 := if false then �

Here true is an equality t = t for an arbitrary 
losed t (e.g., empty = empty), and false

is an equality t = t′ for arbitrary 
losed t, t′ with t 6=E t
′
(e.g., empty = (empty , empty)).

Remember that if x = y is synta
ti
 sugar for let z = equals(x, y). So this example

is a 
ounterexample for let-statements.
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Lemma A.7 Using the notation from Example A.4, we have P ≤ Q, and E1[Q] ≈ E2[Q],
but E1[P ] 6≈ E2[P ].

Proof. P ≤ Q was already shown in Lemma A.3. By Lemma 3.2 (v) we have that

E1[P ] ≈ P and E1[Q] ≈ Q = 0 and by Lemma 3.2 (v) we have that E1[P ] ≈ 0 and

E2[Q] ≈ 0. Obviously, P 6≈ 0. E1[P ] 6≈ E2[P ], but E1[Q] ≈ E2[Q]. �

Example A.5 Let P,Q be as in Example A.2.

E1 := !!�

E2 := �

Lemma A.8 Using the notation from Example A.5, we have P ≤ Q, and E1[Q] ≈ E2[Q],
but E1[P ] 6≈ E2[P ].

Proof. P ≤ Q was already shown in Lemma A.3. Let t ∈ SID be arbitrary. We have

E1[P ] ≈
∏

x∈SID (x,net)〈empty〉 →∗↓(t,net). But no su

essor of E2[P ] = net〈empty〉
emits on (t,net) 6=E net . Thus E1[P ] 6≈ E2[P ].

It is easy to see that 0 ≈
∏

x∈SID 0 (by showing that R := {(R,R|
∏

x∈SID\S 0)} up

to stru
tural equivalen
e is a bisimulation). Thus

E1[Q] = !!0 ≈
∏

x∈SID

0 ≈ 0 = E2[Q].

�

Example A.6

P := net().io().io ′〈〉

Q := net ′().io().io ′〈〉

E1 := νio.(io〈〉 | νnet ′.�)

E2 := νio.(νnet ′.�)

Lemma A.9 Using the notation from Example A.6, we have P ≤ Q, and E1[Q] ≈ E2[Q],
but E1[P ] 6≈ E2[P ].

Proof. P ≤ Q holds with simulator S := 0, ϕ := (net ′ 7→ net), n := ∅.
It is easy to see that νnet ′.Q ≈ 0. Hen
e E1[Q] ≈ νio.io〈〉 and E2[Q] ≈ νio.0. Thus

E1[Q] ≈ E2[Q].
But E1[P ] →∗↓io′

and E2[P ] 6→∗↓io′
. Hen
e E1[P ] 6≈ E2[P ]. �

Lemma A.10 Using the notation from Example A.1, we have P ≤ Q but not νnet ′.P ≤
νnet ′.Q.
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Proof. From Lemma A.9 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume νnet ′.P ≤ νnet ′.Q.
We 
an write E1 = E′

1[νnet
′.�] and E2 = E′

2[νnet
′.�] for NET-free evaluation 
ontexts

E1, E2. Then E
′
1[νnet

′.Q] = E1[Q] ≈ E2[Q] = E′
2[νnet

′.Q] and thus by Theorem 6.1, we

have E1[P ] = E′
1[νnet

′.P ] ≈ E′
2[νnet

′.P ] = E2[P ]. This is a 
ontradi
tion to Lemma A.9.

Thus the assumption νnet ′.P ≤ νnet ′.Q was wrong. �

Example A.7

P := io().net〈〉

Q := io().net ′〈〉

E1 := νio.(io〈〉 | � |!net ′〈〉)

E2 := (νio.� |!net ′〈〉)

Lemma A.11 Using the notation from Example A.6, we have P ≤ Q, and E1[Q] ≈
E2[Q], but E1[P ] 6≈ E2[P ].

Proof. P ≤ Q holds with simulator S := 0, ϕ := (net ′ 7→ net), n := ∅.
By Lemma 3.3, we have E1[Q] ≈ net ′〈〉 |!net ′〈〉. And by Lemma 3.2 (viii), net ′〈〉 |

!net ′〈〉 ≈!net ′〈〉. Finally E2[Q] ≈ 0 |!net ′〈〉. Hen
e E1[Q] ≈ E2[Q].
But E1[P ] →∗↓net and E2[P ] 6→∗↓net . Hen
e E1[P ] 6≈ E2[P ]. �

Lemma A.12 Using the notation from Example A.1, we have P ≤ Q but not P |
!net ′〈〉 ≤ Q | !net ′〈〉.

Proof. From Lemma A.11 we have P ≤ Q and E1[Q] ≈ E2[Q]. Assume P | !net ′〈〉 ≤
Q | !net ′〈〉. We 
an write E1 = E′

1[� | !net ′〈〉] and E2 = E′
2[� | !net ′〈〉] for NET-free

evaluation 
ontexts E1, E2. Then E
′
1[Q | !net ′〈〉] = E1[Q] ≈ E2[Q] = E′

2[Q | !net ′〈〉] and
thus by Theorem 6.1, we have E1[P ] = E′

1[P | !net ′〈〉] ≈ E′
2[P | !net ′〈〉] = E2[P ]. This

is a 
ontradi
tion to Lemma A.11. Thus the assumption P | !net ′〈〉 ≤ Q | !net ′〈〉 was

wrong. �
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N The set of names 6

V The set of variables 6

Σ The Signature � a set of fun
tion symbols (ap-
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6

T The set of terms 6

E The �nite set of equations that are to hold in the

equational theory (applied pi 
al
ulus)

6

M =E N Terms M and N are equal with respe
t to the

equational theory E
6

D(M1 , . . . ,Mn) → M Redu
tion rule for destru
tor D 6

R Finite set of rewrite rules for destru
tors 6

DM ⇓ Term D evaluates to M 6

M Symboli
 model M 6

0 Empty pro
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al
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utions of instan
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al
ulus

7

νa Restri
tion of the name a (applied pi 
al
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eiving x on 
hannel N 7

M〈N〉 Sending N on 
hannel N 7

let x = D in P else Q Let it be 7

fn(P ) Free names in P 7

fv(P ) Free variables in P 7

bn(P ) Bound names in P 7

bv(P ) Bound variables in P 7

P ≡ Q Stru
tural equivalen
e of P and Q 8

P → Q Pro
ess P redu
es to Q 8
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hannel M 8
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ess P reads on a 
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if M = N then P else Q Synta
ti
 sugar for let x =
equals(M ,N ) in P else Q

9

103



C().P Synta
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P ≤ Q P emulates Q 33
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Msid Fixed term for sid-sensitive pro
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� Observational preorder 62

P ≤SS Q P emulates Q in the sense of Delaune et al.
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62
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hannel fun
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tor: publi
 key en
ryption 66

pk Constru
tor: publi
 key 66

sk Constru
tor: se
ret key 66
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tor: symmetri
 en
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hash Constru
tor: hash fun
tion 66

empty Constru
tor: empty message 66
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tor: publi
 key de
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hange fun
tionality 67

FPKI Publi
 key infrastru
ture fun
tionality 67

NSL Needham-S
hroeder-Lowe proto
ol 67

SC Se
ure 
hannel proto
ol 70

KE
∗

Proto
ol for generating many keys 74

FCOM Commitment fun
tionality 81

Mvirt Symboli
 model with virtual primitives 81

Mreal Symboli
 model without virtual primitives 81

crsext Constru
tor: CRS for extra
tion 81

crseqv Constru
tor: CRS for equivo
ation 81

fakeH Constru
tor: Fake (equivo
al) hash 81

fake Constru
tor: Randomness for fake hash 81

extract Destru
tor: Extra
ting from a hash 81

FCRS Common referen
e string fun
tionality 82

COM Commitment proto
ol 82

Index
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S-n-bisimulation, 44
S-n-observational equivalen
e, 44
S-n-simulation, 44
0-1-
ontext, 10

adversary, 33

dummy, 33

α-
onversion, 8

bisimulation, 9

bla
k-box simulatability, 34


hannel identi�ers, 10


ommuni
ate, 9


omplete (set of pro
esses), 44


omposition


on
urrent, 36


on
urrent 
omposition, 36


ontext, 8

0-1-, 10

evaluation, 8

indexing, 37

multi-hole, 30

destru
tor term, 6

M-, 87

DKP-se
urity, 62

dummy adversary, 33

emit, 9

empty, 10

emulate, 33

equals, 10

equivalen
e

full observational, 11

observational, 9

stru
tural, 8

event pro
ess, 24

EVENT rule, 24

extension

safe, 87

free, 7

full observational equivalen
e, 11

if-statement, 9

indexed repli
ation, 13

indexing 
ontext, 37

internal redu
tion, 8

IREPL, 13

M-destru
tor term, 87

M-pro
ess, 87

M-term, 87

model

symboli
, 6

multi-hole 
ontext, 30

name, 6

bound, 7

name-redu
ed, 27

natural symboli
 model, 10

NET-stable, 33

observational equivalen
e, 9

full, 11

observational preorder, 62

preorder

observational, 62

pro
ess

M-, 87


losed, 7

event, 24

produ
t, 13

produ
t pro
ess, 13

prote
ted, see unprote
ted

read, 9

relay, 64

repli
ation

indexed, 13

safe extension, 87

satisfy

tra
e property, 24

signature, 6

simulatability

bla
k-box, 34

strong, 34

universally-
omposable, 34
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simulation, 9

simulator, 33

strong simulatability, 34

strong unlinkability, 62

stru
tural equivalen
e, 8

substitution, 6


losing, 11

symboli
 model, 6

natural, 10

term

M-, 87

tra
e property, 24

satisfy, 24

universally-
omposable simulatability,

34

unlinkability

strong, 62

unprote
ted, 8

variable, 6

bound, 7

virtual primitives, 78
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