Symbolic Universal Composability

Florian Bohl Dominique Unruh
KIT University of Tartu
Abstract

We introduce a variant of the Universal Composability framework (UC; Canetti,
FOCS 2001) that uses symbolic cryptography. Two salient properties of the UC
framework are secure composition and the possibility of easily defining security by
giving an ideal functionality as specification. These advantages are now also available
in a symbolic modeling of cryptography, allowing for a modular analysis of complex
protocols.

We furthermore introduce a new technique for modular design of protocols that
uses UC but avoids the need for powerful cryptographic primitives that often comes
with UC protocols; this “virtual primitives” approach is unique to the symbolic
setting and has no counterpart in the original computational UC framework.

Contents

[l Introduction

2.1 Svntactic sugall

2.2 Additional concepts used in this worl

i3 1 Relating events and observational emlivalen(’a

.2 Unpredictability of nonced

32

36

60

62

" T 78
i9 1 Realizing (’ommitmentq ‘ 81

86
87
91

95

99
ISymbol index 103
Index 105

1 Introduction

In the analysis of cryptographic protocols, symbolic analysis techniques (going back to
Dolev and Yao [DY8I1]) have shown to be very fruitful. Symbolic techniques allow for
much better automation than techniques working in the computational model (wherein
messages are bitstrings and adversaries are runtime-limited computations). In a symbolic
model of cryptography, messages are typically modeled as terms in a certain algebra, and
the capacities of the adversary are described by, e.g., certain deduction rules over these
terms.

In this work, we show how to apply the idea of Universal Composability (UC) [Can01]
to the setting of symbolic cryptography. (The independently developed Reactive Simu-
latability has the same idea. For simplicity, we only refer to UC in the following.)
The Universal Composability framework is a framework for specifying security properties
of cryptographic protocols that has the following two salient properties:

o Specifying security properties via functionalities. In the UC framework, the security
goals of a protocol are specified by describing a so-called ideal functionality which
is a hypothetical entity which, by construction, achieves all the desired security
goals. For example, if we wish to ask whether a protocol is a secure communication
protocol, we simply specify the secure channel functionality. This very simple
functionality just takes a message from Alice, informs the adversary that Alice sent
a message, and gives that message to Bob. From the description of the functionality,
it is then obvious what properties we achieve: The adversary learns nothing except
that a message is delivered (secrecy). The message Bob receives is the same as the
one that Alice sent (integrity).

Given the description of an ideal functionality, we then call a protocol secure if it
“UC-emulates” that functionality. UC-emulation essentially means that the proto-
col is as secure as the functionality, i.e., that any security property satisfied by the
functionality (secrecy and integrity in our example) is also satisfied by the protocol.

Using ideal functionalities to describe what security a protocol achieves is often
simpler than explicitly describing all required properties one by one. For example,
the security of the Direct Anonymous Attestation protocol [BCC04] is only specified
by an ideal functionality.

Another view on this definition is one of security preserving refinement. The func-
tionality is an abstract specification, and the protocol is a refinement that preserves
security

Note that the fact that UC-emulation preserves security can be formalized: For a
certain class of security properties we have that if the functionality has this property,
so has any protocol that UC-emulates that functionality. (See Section @).

e (Composition and modular design and analysis. Security in the UC framework im-
plies secure composition. That is, assume a secure protocol p that uses an ideal
functionality F as a building block (e.g., p uses a secure channel F). Then, if
another protocol 7 UC emulates F (i.e., w is a message transmission protocol), we
can replace F by 7 in p and again get a secure protocol.

This composition operation enables the modular design and analysis of a protocol.
For example, in [Section 8 we show that a variant of the Needham-Schroeder-Lowe
protocol NSL [Low95] UC-emulates the key exchange functionality Fxg which gives
a secure key to two parties. Another protocol SC UC-emulates the secure channel
functionality Fsc. And finally, assume we had some complex protocol X imple-
menting some complex functionality Fx (think, e.g., of some large e-commerce
application), and that X uses secure channels. Then we can plug X, NSL, and
SC together, and get a protocol X* that still UC-emulates Fx. (And due to the
composition theorem, we do not need to verify the composed protocol anew.) In
contrast, without the composition theorem, we would have had to analyze X* in
one go; that analysis being much more complex because the implementation of the
secure channel would be intermixed with the complex protocol X.

The composition theorem also has the implication that a protocol will keep its secu-
rity when run in other, as yet unknown, contexts. This is a very important property,
because on the Internet, a protocol will hardly run alone. (Cryptographers often
call security definitions that do not have this property “stand-alone models”.)

The UC framework has been defined in the context of computational cryptography.
However, its two salient properties, security specification via functionalities and secure
composition, are as useful in a context where cryptography is modeled symbolically.
In particular, even though computer verification in the symbolic setting scales much
better than the usually manual verification in the computational setting, most analysis

!Many other refinement notions do not preserve, e.g., anonymity. For example, imagine a protocol
where user Alice sends A or B over the network (chosen non-deterministically). And Bob sends A or B.
Then the adversary cannot distinguish Alice and Bob. A refinement might be that Alice sends A and
Bob sends B. Obviously, the anonymity of Alice and Bob is now violated.

techniques still cannot deal with arbitrarily complex protocolsE So being able to design
and verify a protocol modularly will allow us to analyze more complex protocols.

Our contribution. In this work, we show that the ideas of the UC framework carry
over to the symbolic setting. We show that the composition theorem and the fact that
security properties carry over still hold in the symbolic UC framework. (Concurrent com-
position turns out to be non-trivial because we need to encode a special variant of process
replication in the applied pi calculus that provides session ids to replicated processes.)
We present an example analysis of a key exchange using the Needham-Schroeder-Lowe
protocol, and how to use it in a secure channel protocol via composition.

We show that impossibilities from the computational UC framework unfortunately
still apply in the symbolic setting; in particular, implementing a commitment function-
ality without any trusted setup is impossible. On the positive side, we show that this
impossibility can be circumvented to a large part by a trick that we call “virtual primi-
tives”; here we perform the proof of security under the assumption that the cryptographic
primitives have some exotic features, but in the end conclude security for the original cryp-
tographic primitives without these exotic features. This “virtual primitives”-approach is
unique to the symbolic setting, to the best of our knowledge no corresponding technique
exists in the computational world.

We also show how to use Proverif as a helping tool for performing the observational
equivalence proofs when showing security in our framework. For this we develop a set of
lemmas that help in rewriting processes and allows us to use Proverif as a tool even for
observational equivalence proofs that do not involve so-called biprocesses and are thus
out of the scope of Proverif. (See[Section 8) We believe that this set of lemmas is useful
also in other settings than that of our work.

Prior work. The problem of transporting the ideas of the UC framework into the
symbolic setting has already been tackled by Delaune, Kremer, and Pereira [DKP09].
They do, however, differ from the original UC framework (and from our work) in one
crucial point: In the original framework, the existence of a so-called simulator is required
that makes two different protocol executions — the “real and ideal execution” — indis-
tinguishable (this will become clearer later). Instead of indistinguishability, [DKPQ09:
use an observational preorder. That is, everything that can happen in the real world
can non-deterministically be matched by the ideal world, but not necessarily vice-versa.
This was due to certain problems in constructing simulators when using observational
equivalence instead. However, we show that using an observational preorder limits the
strength of the security definition considerably. For example, if a functionality guarantees
anonymity (e.g., an anonymous broadcast), a protocol that emulates that functionality
will not necessarily satisfy anonymity. On the other hand, we show that using observa-
tional equivalence instead of an observational preorder gives a stronger definition that
does, e.g., preserve anonymity properties. Furthermore, we show that, when designing

*Verification by type checking (e.g., IM) being a notable exception; this approach usually scales
very well. But annotating a protocol with types suitable for verification can be daunting.

the functionality according to a simple guideline, the problems with observational equiv-
alence that [DKP09] observed vanish. (However, there are challenges when dealing with
concurrent composition that apply only in our setting, and not when using the weaker
definition based on observational preorders.) We explain the issues related to
in more detail in

On the computational side, relevant prior work is of course the UC framework
[Can01] itself. Other models based on the same ideas are Reactive Simulatability
(RSIM) [BPW07], SPPC [DKMRO3], ITTM [Kiis06], Task-PIOA [CCK™06al [CCKT06b],
and GNUC [HS11]. Some of our results are adaptations of existing computational sound-
ness results: the impossibility of commitments [CEQT] in [S 3l and the joint state
technique [CRO3] in [Section 8 Finally, the symbolic setting is not the first example of
the fact that the UC framework can easily adapted to other settings to get different
or stronger security guarantees, e.g., GUC (UC with shared functionalities) [CDPWQ7],
quantum UC [Unrl0, Unrld], UC with local adversaries [CV12], UC/c (incoercibility)
[UMQ10], UC with everlasting security [MQUO7]. Furthermore, links between UC and
symbolic models occurred where UC-like models were used to establish computational
soundness results [CH11]. Furthermore, [PS04 present UC protocol
constructions where impossibilities are circumvented by giving the simulator additional
power (namely superpolynomial-time computation); this shows some parallels to our
“virtual primitives”™-approach, see the discussion on [page 80}

Outlook. Further research might tackle the following points:

e Using our framework for analyzing the security of existing protocols. A particu-
lar interesting candidate is the Direct Anonymous Attestation protocol [BCC04|
because its security is already formulated in a UC model.

e Although we partially used Proverif for some of the proof steps, the analysis of our
example protocols still used a lot of manual work. Can the verification of symbolic
UC security be automated?

e There are extensions of the UC framework. For example [UMQI0] provides an ex-
tension that captures incoercibility. That model could be translated to the symbolic
setting and used for the analysis of voting protocols.

e In combination with computational soundness results (these are results that show
that symbolic security in certain cases implies computational security), the virtual
primitives approach could be a viable new technique for showing computational
security: Design the protocol symbolically modularly using virtual primitives, and
then carry the security over to the computational setting.

2 Review of the applied pi calculus

In this section we review the variant of the applied pi calculus from that we use
in our paper. Below (Section 2.2) we list some non-standard definitions that we will use,

readers familiar with the applied pi calculus can directly skip to that section.
The process calculus presented in [BAF0S§] is a combination of the original applied pi

calculus [AFOT] and one of its dialects [Bla04].

We have a set of terms that is built upon three basic sets. The infinite set of names N,
the infinite set of variables V and the set of function symbols (called the signature).
Names describe all kinds of atomic data, i.e. are used as nonces or to represent messages.
We distinguish two categories of function symbols: constructors, which are used to con-
struct terms of higher order, and destructors. Let 7(X) be the set of terms built from
names in A/, variables in V and constructors in .

A substitution is a function from variables to terms o : V — T(X). For a term T' To
denotes the substitution of every variable z in T' by o(z) (all variables are replaced at
once). We write {M;/z;,..., M, /x,} for a substitution o s. t. o(z;) = M; and o(z) =z
forall z € V\ {zy,...,2,}.

Sometimes it is desirable to consider two terms, that were constructed differently,
equivalent. Therefore we have a finite set E of equations (M, N) (for M = N) where
M and N are terms that contain only variables and constructors. E is called equational
theory.

The equivalence relation =g on terms is defined as the reflexive, transitive and sym-
metric closure of E closed under the application of substitutionsﬁ and contexts (i.e. for
all terms M, N and T M =g N = T{M/z} =g T{N/z}).

To define the semantics of a destructor d we introduce a finite set R of rewrite rules
d(My,...,M,) —-p M where M and M;, i € {1,...,n} are terms that contain only
variables and constructors and the variables in M must be a subset of the variables used
in My,...,M,, and P is a predicate on n-tuples of terms invariant under :EH. (We write
— instead of —p when P(...) = true always.) Analogous to [BAF0§| we introduce the
rewrite rule f(z7,...,2,) = f(z1,...,2,) for each constructor f € 3.(Destructors with
conditional rewrite rules have been introduced in Proverif 1.87, see also [CB13]. None
of our results need this additional generality. However, we explain in why
such destructors can be useful in some cases.)

D |} M denotes the evaluation of D to M where D is a destructor term, i.e., a term
or the application of a function to destructor terms. For all terms M we define M || M
(i.e. when evaluating a term we obtain the term itself). If we have D = g(Dy, ..., D,,) for
a function g where D; are destructor terms we define g(Dy, ..., D,) |} Mo for substitution
o iff there is a rewrite rule g(M;,...,M,) —p M and terms Ny,..., N, s.t. D; |} N;,
N; =g M;o, and P(Ny,...,N,) = true.

Definition 2.1 (Symbolic model) By symbolic model, denoted M = (X,E,R), we
refer to the entity of a signature X2, a finite set of equations E and a finite set of rewrite

®Le., for every substitution o and M =g N we have Mo =g No.
“Le., “Invariant under =g” means that if N; =g N, for i = 1,...,n, then P(Ny,...,N,) =
P(N7{,...,N},).

PIQ
P

M(z).P

M(N).P

let z =D in P else)
va.P

Figure 1: Syntax of processes in the applied pi calculus

rules R.

Note that the infinite set of names and infinite set of variables are not explicitly part
of the symbolic model since they are not specific for any concrete model in our setting.
We refer to them globally as N and V respectively.

Except for Section 9 it will be clear from the context which symbolic model we use.
In we focus on the relation between different symbolic models. Only then we
will introduce a notation that explicitly states the symbolic model underlying a property,
e.g., observational equivalence of two processes.

We can describe processes in our process calculus using the inductively defined gram-
mar from [Figure 1 For a better understanding of the syntax we anticipate the following
section about its semantics and give a quick overview of the intuition connected to the
syntax. The O-process simply does nothing and terminates (and is therefore often omit-
ted). Two processes, P and @, can be executed in parallel (denoted P|Q) They may
interact with each other or with the environment independently of each other. A repli-
cation (!P) behaves as an infinite number of copies (instances) of P running in parallel.
The scope of a name n may be restricted to a process P (vn.P). M(z).P allows P to
receive a message (a term) 7 on a channel identified by the term M. The variable z is
used in P as a reference to the input. The counterpart of M (z) is M(T).P which sends
a message (a term) T on M and then behaves like P.

Inlet £ = D in P else Q the symbol D stands for a term or a destructor term. If we
have D |} M for a term M the process behaves like P{M /z} otherwise it behaves like Q.

Except for the let-statement and parallel execution, processes do have the structure
statement.P and we say for P (or any part of P) that it is under the statement (e.g. we
say that “P is under a bang” in !P or that P is under an input in c¢(z).vn.P). We say
that P is under a let if P occurs in one of the two branches of a let.

An occurrence of a name n in a process is bound if it is under a vn. An occurrence of
a variable z is bound if it is under a M (z) or in the P-branch of alet z = D in P else Q.
bn(P) resp. bu(P) denotes the set of names resp. variables with bound occurrences in P.
If an occurrence is not bound, it is called free and fn(P), fu(P) denote the corresponding
sets for names resp. variables. A process is closed if it has no free variables.

PAR-0 P = P|O
PARA P|(Q|R) = (P|QI|R
PAR-C PlQ = Q|P
NEW-C vuvv.P = vovwvu.P
NEW-PAR u ¢ fn(P) =

Plvu.Q = vu(P|Q)

Figure 2: Rules for structural equivalence

REPL P — P|IP
COMM C(T).P| C'(z).Q
— P|lQ{T/z}if C =5 C
LET-THEN let z =D in P else)
— P{M/z} it Dy M
LET-ELSE let x =D in P else @

— QifdIMst. DI M

Figure 3: Rules for internal reduction

A context C is a process where exactly one occurrence of 0 is replaced with 0. C[P]
denotes the process resulting from the replacement of [with P in C. An ewvaluation
contezt is a closed context C built from O, C|P, P|C, and va.C. We call an occurrence of
a term or process within a process unprotected if it is only below parallel compositions
(]) and restrictions (v).

Definition 2.2 (Structural equivalence (=)) Structural equivalence, denoted =, is
the smallest equivalence relation on processes that is closed under a—conversioﬂa on names
and variables, application of evaluation contexts and the rules from [Figure 29

Definition 2.3 (Internal reduction (—)) Internal reduction, denoted —, is the
smallest relation on closed processes closed under structural equivalence and application
of evaluation contexts such that the rules from hold for any closed processes P
and Q. —* denotes the reflexive, transitive closure of —.

®An a-conversion is a renaming process that doesn’t change the meaning of a term. E.g. renam-
ing b to c in va.vb.net{a).net(b) is a valid a-conversion (and thus we have that va.vb.net(a).net(b) =
va.ve.net(a).net(c)), renaming b to a is not.

SWe differ from by defining = also for non-closed processes. But on closed processes, our
definition coincides with that from [BAF0S].

A closed process P emits on M (denoted P |j) if P = C[M’(N).Q] for some eval-
uation context C that does not bind fn(M) and M =g M’ A Analogously it reads on
M (denoted P tyr) if P = C[M'(N).Q]. We say that P communicates on M (denoted

Definition 2.4 A simulation R is a relation on closed processes such that (P,Q) € R
implies

(i) if P las then for some Q' we have that Q —* Q' and Q' |y
(i1) if P — P’ then for some Q' we have that Q —* Q' and (P',Q') € R
(111) (C[P],C[Q]) € R for all evaluation contexts C.

A relation R is a bisimulation if both R and R~ are a simulation.
Observational equivalence (=) is the largest bisimulation.

It is easy to check that the transitive hull of ~ satisfies the conditions ({Il), (@) and (il
from above. Hence ~ contains its own transitive hull and thus is indeed an equivalence
relation.

Substitutions on processes work like substitutions on terms but must additionally
respect the scopes of names and variables (bound or free). Since renaming of bound
names and variables doesn’t change the structural equivalence class of a process we
assume w.l.0.g. from now on that for Po we have o(z) = z for all z € bv(P) and o(x)
does not contain names n € bn(P) for all z € fu(P).

2.1 Syntactic sugar

We introduce if D = D’ then P else @ as syntactic sugar for
let z = equals(D, D’) in P else @ where z must not occur in P or @ and D,D’
are destructor terms. Note that we assume the existence of an equals destructor
with the rewrite rule equals(z,z) — x throughout this paper (see [Definition 2.51 ().
Furthermore, we write C().P for C(z).P where z is a fresh variable, and C().P for
C(empty) assuming a nullary constructor empty (see [Definition 2.5(H)).

Later, when dealing with Proverif processes, e.g., in[Definition 8.3 we use the Proverif
syntax for pattern matching in inputs and lets: E.g., (let (=n,z) = D in P else Q)
executes P{T/z} if D || (n, T) (i.e., D has to evaluate to a pair with n beeing the first
value while z is used as a reference for the arbitrary second value T') and @ otherwise.
Inputs of type C((x,)) expect a pair as input where the first value is referenced by z
while the second value is dropped (i.e., when receiving an input (7', 77) on C, C((z,)).P
continues to run as P{7T/z}. For more details see the Proverif manual We stress

Tt is indeed intentional that the definition requires C not to bind fn(M) (as opposed to fn(M')) even

though we consider the process C[M’(N).Q]. This way the definition is equivalent to the following: P |

iff P =g C[M(N).Q] for some evaluation context C not binding fn(M), and some process Q [Blal2al.
Here =g is structural equivalence modulo replacing terms by equivalent ones, see [Definition 2.6l

that these constructions are just syntactic sugar and can be replaced by statements
accoding to the grammar of the pi calculus we described above.

2.2 Additional concepts used in this work

In this section, we describe several nonstandard concepts related to the applied pi calculus
that we use in this work.

Miscellaneous. A context always contains a single occurrence of the hole. Sometimes
we need a context which may or may not contain a hole: A 0-1-contezt is defined like a
context, except that there may be zero or one occurrences of the hole.

We refer to occurrences of terms that identify channels in a process as channel iden-
tifiers. E.g., in M{T) M is a channel identifier and T is not — even if M and T were the
same term (because M and T are different occurrences).

We allow destructors with conditional rewrite rules following [CB13], see[page 6} None
of our results actually requires these conditional destructors, though. The reader may
safely assume the usual, unconditional definition of constructors.

Natural symbolic models. A number of lemmas in this paper only hold when the
symbolic model we use satisfies certain natural conditions. Instead of stating these
explicitly each time, we collect all these conditions in the following definition:

Definition 2.5 (Natural symbolic model) We say a symbolic model is natural if it
satisfies the following conditions:
(i) there is a constructor empty/0 € X,
(i1) a constructor for pairings, denoted (OJ,0), is part of the signature X,
(111) there is a destructor equals/2 € 3 with rewrite rule equals(z,) — = and no further
rewrite rules that contain equals,
() there are destructors fst/1,snd/1 € X with rewrite rules fst((z,y)) — = and
snd((z,y)) =y,
(v) for all terms T, Ty with fst(T) |} Ty there exists a term Ty with snd(T) | Te and
furthermore (Ty, To) =g T for all such Ty and vice versa,
(vi) for arbitrary terms Ty, To, T{, Ty we require that (T, Ta) =g (T, T4) entails
T1 =E T{ and T2 =E Té,
(vi) for any destructor term D and any name n & fn(D) we require that D || T for a
term T entails the existence of a term T with D | T', n & fn(T') and T =g T’,
(viii) there are terms T, T" with T #g T".

In the following, we will always assume that the symbolic model is natural in the

sense of [Definition 2.5]

Equivalence of processes modulo rewriting. Structural equivalence = does not
allow us to replace a term M by another term M’ =g M. In some places, we will

10

therefore need to apply =g to processes, and we will also use an extension =g of = that
allows us to replace terms:

Definition 2.6 We extend =g to destructor terms and processes as follows:

Given two destructor terms D, D', we have D =g D' iff D can be rewritten into D’ by
replacing subterms by =g-equivalent subterms. (But replacing destructors is not allowed.
E.g., if d is a destructor and f,g are constructors, and f(x) =g g(x) is in the equational
theory, we have d(f(a)) =g d(g(a)) but not f(d(a)) =g g(d(a)). Formally, =g is the
smallest equivalence relation on destructor terms such that D{M/x} =g D{M'/x} for
destructor terms D and terms M =g M.

Given two processes P, P', we have P =g P’ iff P can be rewritten into P’ by -
conversion and by replacing terms and destructor terms by =g-equivalent ones. Formally,
=g is the smallest equivalence relation closed under a-renaming such that P{M/z} =g
P{M'/x} for processes P and terms M =g M’.

Given two processes P, P', we have P =g P’ iff P can be rewritten into P’ by =g and
=. Formally, =g := (=g U=)".

Full observational equivalence. A substitution o is a closing substitution if Po is
closed. We call two (not necessarily closed) processes P and @ fully observationally
equivalent (denoted P & Q) iff Po ~ Qo for all closing substitutions ¢ (where we
implicitly assume that the bound names in P, Q) are renamed so that they are distinct
from the free names of o). Since = is closed under = it follows in a straightforward way
that & is closed under =.

The motivation behind the definition of & is the following lemma which allows us to
replace fully observationally equivalent subprocesses by each other.

Lemma 2.7 Let P and Q be processes and P & Q. Then C[P] & C[Q] for every con-
text C.

To show this lemma, we first prove the following lemma:

Lemma 2.8 Let P and Q be closed processes. We have P~ Q = P~ Q).

Proof. We define a relation R :=~ U {(vn.(IP|'P),vn.(IQ|'Q)) : IP, IQ) closed processes
with IP ~ IQ) and n a vector of names } closed under structural equivalence. Intuitively,
IP and IQ represent the running instances of P resp.). For (A, B) € R we show the

three points of observational equivalence.
If (A, B) € ~ there is nothing to show. Otherwise (A, B) = (vn.(IP|!P),vn.(1Q]!Q)).

o If un.(IP|'P) |y we have vn.IP | and, since IQ ~ IQ, vn.IQ |pr. Therefore
vn.(1Q|1Q) L.

e For internal reductions — in vn.(IP|!P) we distinguish two cases:

11

— A new instance of P spawns, i.e., vn.(IP|!\P) — vn.(IP|P|'P). We define
IP' := IP|P and IQ" analogously. Then there is a corresponding internal
reduction (following the REPL rule) for the Q-side vn.(1Q|'Q) — vn.(1Q']!Q)
and therefore (vn.(IP'|'P),vn.(IQ'|'Q) € R (note that IP’' ~ IQ' since IP ~
IQ and P =~ Q).

— The reduction — only affects !P structurally. That is, we basically have
vn.(IP|!P) — vn.(IP'|'P). Since IP =~ IQ we find IQ" s.t. IQ —* IQ" and
IP' =~ IQ’'. Hence (vn.(IP'|!P),vn.(1Q']'Q)) € R.

e For any evaluation context C we have Clvn.(IP|'P)] = vn'.(C'[IP]|'P) where C’
is C with all restrictions moved into n'. Analogously we have Clvn.(1Q|'Q)] =
vn'.(C'[1Q])'Q) with the same C’, n/. Since C’ is an evaluation context, C'[IP] ~
C'[1Q]. Altogether we have (vn'.(C'[IP]|'P),vn'.(C'[IQ]|!Q)) € R.

O

This concludes our proof since the definition of R is symmetric.

We can now show [Lemma 2.7t

Proof of Lemma 2.7 First consider the case that C is an evaluation context which is
allowed to have free variables here. For all closing substitutions ¢ we have Po =~ Qo and
hence Co[Po] =~ Co[Qo]. Therefore C[P]o ~ C[Q]o which entails C[P] & C[Q].

To expand the proof from evaluation contexts to general contexts C we show the
following properties for & from which the Lemma immediately follows by induction:

1. If PAN Q then M(T).P & M(T).Q for arbitrary terms M and T
Let o be a closing substitution for M(T).P and M(T).Q. We define the relation
R =~ U {(C[(M(T).P)o],C[(M(T).Q)o]) : C closed evaluation context} closed
under structural equivalence. We show that R satisfies the three points of obser-
vational equivalence. Let (A,B) € R. For (A, B) € = there is nothing to do.
Otherwise (A, B) = (C[(M(T).P)o],C[(M(T).Q)c]) for some closed evaluation
context C.

e A |y: If C[0] [y obviously B |y as well. Otherwise (M(T).P)o |y where
the free names of N are not bound by C which requires N =g M and hence

leads to (M(T).Q)o In= B In.
e For internal reductions in A we distinguish two cases:

— — is the COMM reduction C[(M(T).P)o] — C'[Po] (up to structural
equivalence). In the same way we can reduce C[(M(T).Q)o] — C'[Qo].
Since Po ~ Qo and C' is closed we have (C'[Po],C'[Qo]) e~C R .

— The reduction — affects (M (T).P)o only structurally. That is, we basi-

cally have C[0] — C’[0]. In this case we apply the same reduction in effect
to B and have (C'[(M(T).P)o],C'[(M{T).Q)o]) € R.

e Obviously, R is closed under the application of closed evaluation contexts.

This concludes our proof since the definition of R is symmetric.

12

2. If P& Q then M(z).P & M(z).Q for an arbitrary term M:
We prove this statement analogously to the previous one: It only differs in the
direction of message flow on M. In the corresponding branch of the proof an input
of N on M results in P{N/z} resp. Q{N/z} (note that C is closed and hence N
is closed). Since we have Po ~ Qo in particular for every closing o with o(z) = N
we have that P{N/z} & Q{N/z} holds.

3. If P Q then |P & 1Q:
A closing substitution o with Po ~ Qo but !Po % !Qo contradicts [Lemma 2.8

4. 1f P, & @1 and P, N Q2 then (letz = Din Pielse P,) & (letz =
D in @ else Q2) for an arbitrary destructor term D:
Again, the complete proof is analogous to the one in case 2. Hence we only
discuss the reduction of the let-statement here: For all closing substitutions o
for let z = D in P else P, and let x = D in Q7 else Q2 we have that Do is
closed. If we have Do |} M for a (closed!) term M the let-statement reduces
to PI{M /z}o ~ Q1{M /z}o (note that o(z) = z since z is a bound variable)
which holds since P; & Q1. Otherwise it reduces to Pyo = Qo0 which holds since
Py & Qo. O

Product processes. In order to argue about concurrent composition, as a technical
tool, we will need an extension of the applied pi calculus that supports infinite parallel
compositions of processes which are tagged with distinct terms.

Intuitively, the indexed replication [] . g P stands for P{sy/x}|P{s2/x}|... when
S = {si1,s2,...}. (Like !P stands for P|P|....) We call processes from this extended
calculus product processes. Note that our main definitions and results are still stated
with respect to the original calculus from [BAF0S|; we only use product processes in
some specific situations.

Definition 2.9 (Product processes) Product processes are defined by the grammar
in [Figure 1| with the additional construct [[,.q P where x is a variable, S a (possibly
infinite) set of terms, and P a product process. (We call [], .4 P an indexed replication.)
(Note that we consider [g to be a binder. Le., in [[,.q P, we consider x a bound
variable.)
Structural equivalence (=) on product processes is defined using the same rules as on

processes (see [Figure 7).

The reduction relation — on product processes is defined using the same rules as on
processes (see [Figure), with the following additional rule (IREPL): If M € S, then
[Toes P = (Iloeg P) | PAM/x} with " := S\ {M' : M =g M'}. (Essentially S is
treated as a set of session ids which contains each sid at most once modulo =g.)

Observational equivalence (=) on product processes is defined like observational equiv-

alence on processes (Definition 2.7]). In particular, as in[Definition 2.4 in rule () we

quantify over evaluation contexrts that do not contain indexed replications.

13

Notice that processes are also product processes, and that on processes, the new
definitions of =, —, and = from [Definition 2.9] coincide with the original definitions.

3 Useful properties of the pi calculus

In this section, we introduce a number of useful lemmas for the applied pi calculus.
These lemmas are useful to derive observational equivalences of processes by step by step
rewriting (and for using Proverif as a tool in deriving equivalences that Proverif cannot
handle). We believe that they may be useful in other similar situations, too.

Lemma 3.1 For natural symbolic models, the following hold:
(i) If n ¢ fn(M), then n #g M.
(ii) n #g m for names n # m.

(ii1) (n,M') #g M for all terms M, M’ and names n & fn(M).

Proof. We show (f):

Fix a term M with n ¢ fn(M). Assume for contradiction n =g M. Fix a renaming
a such that a(n) =: n* # n and a(m) = m for all m € fn(M). (This is possible since
n ¢ fn(M).) Hence n =g M = Ma =g na = n* (since the rules defining =g are
closed under renaming). Thus n =g n* # n. Intuitively, this means that all names are
equivalent under =g.

By [Definition 2.5 (Wiil) (natural symbolic model) there are terms T, T with T #g T".
Since the equations in E contain by definition only variables and constructors, all rules
defining =g are closed under substitutions of names by terms. Hence n =g n* implies
T=gT.

We have a contradiction, hence (@) follows.

@) follows from () with M :=m.

We show (I):

Assume (n, M') =g M towards contradiction. Since M does not contain n, M = Mo
for o := (n— n/,n’ — n) and any n’ ¢ fn(M). Then (n’,M'c) = (n,M')o =g Mo =
M =g (n,M"). (Here we use that =g is closed under renaming which follows from the
fact that equations and reduction rules in the symbolic model do not contain names.)
By [Definition 2.5/([vi) (natural symbolic model), this implies n’ =g n which contradicts
(). Thus, the assumption that (n, M’) =g M was wrong. () follows. O

Lemma 3.2 Let P, P’ be processes. Let D, D’ be destructor terms. Let M, M’ be terms.
(i) If a ¢ fn(P), then P & va.P.
(11) If a ¢ fn(M), then va.M(x).P & M(zx).va.P.
(113) Assume P is closed and that P does not contain unprotected inputs or outputs.
Assume P — P', and that for all P" with P — P"” we have P’ ~ P”. Then
P~P.

14

(i) If M, M’ are terms with M =g M', then P{M/x} & P{M'/x}.

(v) If for all substitutions o that close D, M we have Do | Mo, and for all M’ with
Do || M'o we have Mo =g M'o, then (let x = D in P else P') & P{M/x}.

(vi) If D is closed and there is no M with D |, M, then (let x = D in P else P') & P’.

(vii) If for all substitution o that close D, D’ there exist M, M' with Do |} Mo, D'o |
M'c and Mo =g M'c then (if D = D’ then P else P') & P

(viii) We have |P ~ P |\P.

(iv) loesip P~ Toesip\gur,.tny PIPUEH - [P{5)} for ta,... 1, € SID.

Proof. We show ({l): Let R := {(Q,va.Q) : Q a closed process,a ¢ fn(Q) a name} up to
structural equivalence. It is easy to see that R is a bisimulation. Thus @ =~ va.Q) for
any closed process. This implies that Po ~ va.(Po) = (va.P)o for any closing 0. Hence
P X va.P.

We show (): Let R := {(E[va.M(z).Q|, E[M(x).va.Q])} U~ up to structural equiv-
alence where F ranges over all evaluation contexts, () over closed processes, a over names,
and M over terms with a ¢ fn(M). One can check that R satisfies the conditions for
a bisimulation. To show va.M(z).P & M (z).va.P, fix a closing substitution o. Then
((va.M(z).P)o,(M(z).va.P)o) € R, thus (va.M(z).P)o ~ (M(z).va.P)o. Since this
holds for any closing o, we have va.M (z).P & M (x).va.P and () follows.

We show (l)): Let R := {(E[P], E[P']) : E evaluation context}U=~. (Here P, P’ refer
to the processes from the statement of the lemma.) We check that R is a bisimulation. In
all the following cases, if A ~ B, the statement is immediate. Thus we assume A = E[P],
B = E[P’] in each case.

e If (A,B) € R and A |y then there exists a B’ with B —* B’ and B’ |y If
A =~ B, then this is immediate. Thus assume A = F[P|, B = E[P’]. Since P does
not contain unprotected outputs, we have that the output on M is in E. Hence
B =E[P] .

e If (A,B) € R and B) then there exists an A" with A —* A" and A" |y If
A = B, then this is immediate. Thus assume A = E[P], B = E[P']. Since P — P’
we have A — A’ := E[P'] = B. Since B |y, also A" |-

e If (A,B) € R and A — A’ then there exists a B with B —* B’ and (4, B’) € R: If
A =~ B, then this is immediate. Thus assume A = E[P|, B = E[P’]. Since P does
not contain unprotected inputs or outputs, A" = E’[P] for some evaluation context
E or A’ = E[P"] for some P” with P — P”. In the first case, B — B’ := E’[P’] and
hence (A’, B’) € R. In the second case, P” ~ P' and thus A’ ~ E[P'] = B =: B'.
Thus B —* B" and (4',B’) € R.

e If (A, B) € R and B — B’ then there exists a A’ with A —* A" and (4’,B’) € R: If
A = B, then this is immediate. Thus assume A = E[P], B = E[P’]. Since P — P/,
we have A — A” := E[P'| = B. Since B — B’, we have A — A" — A" .= B'.
Hence A —* A’ and (A, B') € R.

15

e R is closed under application of evaluation contexts by construction.

We show ([): Let (A, B) € R iff A results from B by replacing terms M by terms
M’ with M =g M'. Tt is easy to check that R is a bisimulation. Fix a process P, terms
M, M’ with M =g M’, and o a substitution mapping variables to ground terms that
closes P{M/x} and P{M'/x}. Then P{M/x}o results from P{M’/x}o by replacing
some occurrences of M'c by Mo. Since M =g M', we have Mo =g M'c. Thus
(P{M/z}o, P{M'/x}0) € R, hence P{M/x}o ~ P{M’/x}o. Since this holds for any
closing o, P{M/x} & P{M'/z}.

We show (): First, assume that A := (let x = D in P else P’) is closed. We have
that if A — A’ then A’ = P{M’/x} for some M’ with D |} M'. By (ix)) and using that
M =g M’ for all M’ with D || M’, this implies A’ ~ P{M/xz}. Furthermore A does not
contain unprotected inputs or outputs. Thus by (i), we have A ~ P{M/z}. From this
follows that (let x = D in P else P') & P{M/z} even if (let z = D in P else P’) is not
closed, analogously to ().

We show (I): First, assume that A := (let z = D in P else P’) is closed. We
have that if A — A/, then A’ = P’. Furthermore A does not contain unprotected
inputs or outputs. Thus by (@), we have A ~ P’. From this follows that (let z =
D in P else P') & P’ even if (let x = D in P else P’) is not closed, analogously to (1.

We show (vil): First, assume that A := (if D = D’ then P else P’) is closed. We
resolve the syntactic sugar for “if” and have A = (let x = equals(D, D’) in P else P’). If
A — A’ then A’ = P (x & fv(P)). Thus by (), we have A ~ P’. From this follows that
(let x = D in P else P') & P’ even if (let x = D in P else P’) is not closed, analogously

to (@).

We show (uiil): If |P — P”, then P” = P|!P by definition of —. By (i) this implies
P~ P|!P.

We show (ix]): Given a set A = {ti,...,t&x} C SID, we write >, P for
P{ty/z}|...|P{tp/x}. Let

rR={E [[P~ P.El [P> PN

2€SID\A\D z€A 2€SID\B\D z€B

up to structural equivalence where E ranges over evaluation contexts and A, B, D range
over subsets of SID with D disjoint of AUB. One can check that R satisfies all conditions
for being a bisimulation. Since ([[,cgp P Iliesip\gt,... 101 [P{t1/2} - [P{tn/2}) € R,
(ix)) follows. O

Lemma 3.3 Let C be a 0-1-context whose hole is not under a bang and such that n does
not occur in C, Q, ort. Assume that C does not bind any of fu(Q)\ {x} or fn(Q) over
its hole. Then vn.C[n(t)]|n(x).Q & C[Q{t/xz}]

16

Proof. We show the lemma for ~ instead of &, and assuming that vn.C[n(t)]|n(x).Q) and
C[Q{t/x}] are closed and that fn(Q) C {x}. The general case then follows by definition
of . We define the relation R: (A,B) € R iff A ~ B or there is a name n, a list of
names a, a term t, a variable x, an integer k, a 0-1-context C' not containing n and not
having its hole under a bang and not binding fn(Q) over its hole, such that the following
holds:

A = vna.Clr(t)]|n(z).Q, B =vna.ClQ{t/z}] (1)

We check the three conditions for bisimulations (in both directions).

e If (A,B) € R and A |y, then B |:
The case A = B is trivial. We thus assume that A, B are as in ().

If vna.Cn(t)||n(z).Q L, then the output on M is in C. (n(t) cannot be that
output, because n is bound.) Hence vna.C[Q{t/x}] {um.

e If (A,B) € R and B |y, then there exists an A" with A —* A" and A’ | y:
The case A = B is trivial. We thus assume that A, B are as in (D).

If vna.CQ{t/z}] Lm, we distinguish two cases. If the output on M is in C, then
vna.Cn(t)]|n(z).Q Jy. Consider the case that the output on M is in Q{t/x}.
Without loss of generality, we can assume that no name in ¢ is bound in C' (otherwise
we could move the corresponding restrictions from C' into va since C' does not bind
fn(Q) over its hole). Since the output on M is in Q{t/z}, C is an evaluation
context and thus vna.C[n(t)||n(x).Q — vna.C[0]|Q{t/x} lum.

o If (A,B) € R and A — A’, then there is a B’ with B —* B’ and (A, B") € R:
The case A = B is trivial. We thus assume that A, B are as in (D).
We distinguish the following cases:

If the reduction A — A’ involves only C, then A’ = vna.Cla(t)o]|n(z).Q for some
0-1-context C. Here the substitution o represents possible variable assignments
performed over the hole of C (e.g., if C'=a(T) | a(y).0d, then o = {T/y}).

Then B — B’ := ynd.Q[Q{t/m}a] = vna.C[Q{to/x}] where the last equality uses
that fn(Q) C z. Also, C does not have more that one hole (in which case C' would
not be a zero-or-one-hole context) because the hole in C' does not occur under a
bang.

Thus we have (A’, B') € R.

If the reduction involves 7 (t) or n(x).Q, then the hole of C'is only under restrictions
and parallel compositions. We assume without loss of generality that the hole in C
is not under any restriction (otherwise we could move the corresponding restrictions
into va since C' does not bind fn(Q) over its hole). Then A’ = vna.C[0]|Q{t/z} =
vna.C[Q{t/x}] =: B'= B. Thus B —* B" and (A’, B’) € R (since A’ ~ B’).

17

e If (A,B) € R and B — B’, then there is an A’ with A —* A" and (4’, B') € R:
The case A = B is trivial. We thus assume that A, B are as in ().

If the reduction B — B’ involves only C, then B’ = wvna.ClQ{t/z}o] &
vna.C[Qo{t/z}] for some zero-or-one-hole context C. Here the substitution o
represents possible variable assignments performed over the hole of C (e.g., if
C =a(T) | a(y).0, then 0 = {T/y}). And the equality () uses that fn(Q) C x.

Then A — A" := vna.Ca(t)o]|n(z).Q. Also, C' does not have more that one hole
(in which case C' would not be a context) because the hole in C' does not occur
under a bang.

Thus we have (A’, B') € R.

If the reduction B — B’ involves Q{t/z}, then the hole of C is only under re-
strictions and parallel compositions. We assume without loss of generality that
the hole in C is not under any restriction (otherwise we could move the corre-
sponding restrictions into va since C' does not bind fn(Q) over its hole). Then
A — vna.C0]|Q{t/x} = vna.ClQ{t/z}] = B — B’ =: A’. Thus trivially
(A',B') € R (since A’ = B’ and thus A’ = B’), and A —* A'.

e If E is an evaluation context, and (A, B) € R, then (E[A], E[B]) € R:

The case A ~ B is trivial. We thus assume that A, B are as in ([{II). Then E[A] =
Elvna.Cn(t)]|n(z).Q] = vna.C[n(t)]|P|n(z).Q for some process P up to renaming
of the names n,a. And E[B] = E[vna.C[Q{t/z}]] = vna.C|Q{t/x}]|P. Thus
(using the context C|P instead of C'), we have (E[A], E[B]) € R.

Thus R is a bisimulation. Thus vn.C[n(t)]|n(x).Q ~ vn.C[Q{t/x}] (where n,C,t,x
refer to the values from the statement of the lemma). And since n does not occur in C, @, t,
we have vn.C[Q{t/x}] ~ C[Q{t/z}] by Lemma 32#). Thus vn.Ca(t)]in(z).Q =~
ClRft/x}. 0

Lemma 3.4 Let C, D be contexts, QQ a process, n,m names, t,t' terms, and x a variable.
Assume that C, D have no bang over their holes. Assume that n,m ¢ fn(C,D,Q,t,t').
Assume that C, D do not bind n,m, fn(Q). Assume that fo(Q) C {x}.

Then vn.(C[m(t)] | Din(x).Q)) = vm.(C[m().Q{t/x}] | D[m(t')]).

Proof. We define the relation R as follows: We have (A, B) € R iff A ~ B or there exist
0-1-contexts C, D without a bang over their holes and not binding n, fn(Q), terms ¢, ¢, a
name n ¢ fn(C,D,Q,t,t), a list of names @ not containing n, and an integer i > 0 such
that

A=wvna.(Ca)" | W) | Dn(x).Q))
B =wvna.(Cn().Q{t/z}] | D[n{t")])

18

Here 71(t)? denotes m(t)|...|m(t) (i copies). Note: @ is the process from the statement
of the lemma. (It is intentional that we use n in the definition of B, not m as in the
statement of the lemma. We will rename n into m at the end of the proof.)

We show that R is a bisimulation. In all cases below, the case A ~ B is trivial by
the properties of &, so we assume in each case that A, B are as in (2)).

e If (A,B) € R and A |y, then B —*|y;:

Since n is bound, the output on M is not one of the 72(t) (here we use that M #g n

if n ¢ fn(M) by Lemma 3.11({)). Hence C |y or D |a. Thus B |-

o If (A,B) € R and B |y, then A —* |
Since n is bound, the output on M is not 7(t'). Hence C |ps or D {pr. Thus A |-

e If (A,B) € R and A — A’, then there is a B’ such that B —* B’ and (A’, B’) € R:

We distinguish the following cases:

— A — A'is a reduction W(t) — m(t) | W(t): Then A’ = vna.(Ca{t)™* |
m(t)] | D[n(z).Q]) and hence (A’, B’) € R for B’ := B.

— A — A’ is a reduction within C, within D, or a communication between
C and D (in all cases not involving the argument of C,D): Then A’ =
vna.(C'[r(t) | m(t)] | D'[n(z).Q]) for suitable contexts C’, D’ (satisfying all
the conditions required for C, D in the definition of R), and B — B’ :=
vna.(C'n().Q{t/x}] | D'[n(t')]). (Note: This uses implicitly that @ has no
free variables except z, otherwise Q might change in this reduction.)

— A — A’ is a communication between 71(t) and n(z).Q:

Then C' and D are evaluation contexts.

Without loss of generality, we can assume that C, D do not bind any names
over their holes: For this, we first rename the bound names in C, D such that
they become distinct from all free names (possibly also renaming the names
in ¢ in the process, but not in @ since fn(Q) are not bound), and then move
the restrictions up into va.

Then A’ = vna.(C[R(t)~1 | a(t)] | D[Q{t/x}]). Furthermore

B':=B=v a.(C[0]| Dlvn.(n().Q{t/z} | n(t'))])
() -
~ va.(C[0] | D[@{t/x}])
~va.(Clun.@()™" | (b)) | DIQ{t/z}]) =
Here (x) follows from [Lemma 3.3 And (xx) uses that vn. ﬁ(YL
which can be seen by verifying that R’ := {(E[vn.(m{t)""! | n(t
E evaluation context} is a bisimulation.
Thus A’ ~ B’ and hence (A’, B’) € R. And B = B’ implies B —* B'.
— A — A’ is a communication between C' or D and 7(t) or n(x).Q: This
case does not occur because n ¢ fn(C, D).

(t)) ~
, E[0])

SI
3

~—
—

19

e If (A,B) € R and B — B/, then there is a A’ such that A —* A’ and (A’, B’) € R:
We distinguish the following cases:

— B — B’ is a reduction within C, within D, or a communication between
C and D (in all cases not involving the argument of C,D): Then B’ =
vna.(C'n().Q{t/x}] | D'[n({t')]) for suitable contexts C’, D’ (satisfying all
the conditions required for C,D in the definition of R), and A — A’ =
vna. (C'() |)] | Dn(x).Q)).

— B — B’ is a communication between n().Q{t/z} and n(t'):

Then C, D are evaluation contexts.

Without loss of generality, we can assume that C, D do not bind any names
over their holes (analogous to the corresponding subcase of A — A’ above).
Then B’ = vna.(C[Q{t/z}] | D[0]).

Furthermore,

A —=* A= va.(Clun.(m(t) | 'm(t)] | D[Q{t/x}))
~ ~ (%)
~ va.(C[0] | D[Q{t/x}]) = va.(ClQ{t/x}] | D[0]) ~ B’
Here (%) uses that vn.(m(t)® | /a(t)) ~ 0 (see the corresponding subcase of
A — A" above). And (x*) uses[Lemma 3.2/([l). So A’ ~ B’, hence (A’, B’) € R.
Hence A —* A’ and (A, B') € R.
— B — B’ is a communication between C or D and 7i(t) or n(x).Q: This
case does not occur because n ¢ fn(C, D).
e If (A,B) € R and E is an evaluation context, then (E[A], E[B]) € R:
Then E = vb.(0|P) for some names b and some process P.

Without loss of generality, n does not occur in b or fn(P) (otherwise we rename n).
Thus with @ := ab and C’ := C|P, we have

E[A] = vnd .(C'[at)" | 'a(t)] | D[n(x).Q))
E[B] = vnd.(C'[n().Q{t/x}] | D[A(t')])
Hence (E[A], E[B]) € R.
Under the conditions of the lemma, we have (vn.C[n(t)] |

Dn(z).Q],vn.Cn().Q{t/z}] | DR{')]) € R where C,D,Q,n,t,t',x are as in the
statement of the lemma. Since R is a bisimulation, this implies

vn.C[A(H)] | Dln(w).Q) ~ vn.Cln().Q{t/x}] | D) = vm.Clm().Q{t/z}] | Dlm(t')])
O

Lemma 3.5 Let A, B,C be closed processes. If A =g B — C, then there is a closed
process B’ such that A — B’ =g C.

20

Proof. 1t is easy to see that — is the smallest relation satisfying the following rules:

STREQ fP=P —Q =Q, then P - Q

E-REPL E[\P] — E[P | 1P

E-COMM E[C(T).P| C'(2).Q] — E[P|Q{T/z}]if C =g C’
E-LET-THEN Eflet = D in P else Q] — E[P{M/z}] if D M
E-LET-ELSE Eflet z = D in Pelse Q] — E[Q]if AM s.t. D || M

Here in all rules F ranges over evaluation contexts with the following property: Let
E[R] denote the left hand side of the rule. Then all bound names in E[R] are different
from each other and from the free names in E[R]. (In a derivation of —, we can always
enforce this latter property by first using STREQ to alpha-rename the left hand side of
the reduction.) We say E[R] has no name conflicts.

For stating the next claim, we also need to introduce an asymmetric variant 2 of the
structural equivalence =. The difference is that in =, we are allowed to apply the rule
NEW-PAR in both directions, while in 2 we are only allowed to move restrictions up
(P | vu.QQ Zvu.(P | Q)), but not down (not: vu.(P | Q) Z P | vu.Q). More formally, 2
is the smallest transitive, reflexive (but not necessarily symmetric) relation closed under
a-conversion, and closed under application of evaluation contexts, and satisfying the
rules PAR-0, PAR-A, PAR-C, NEW-C, NEW-PAR from as well as the reversed
rule PAR-0-rev (but not NEW-PAR-rev). (By reversed rule we mean the rules with left
hand side and right hand side exchanged. E.g., PAR-0O-rev says P[0 2 P. Note that
PAR-C-rev and NEW-C-rev are not needed since PAR-C and NEW-C are symmetric.
And PAR-A-rev follows from PAR-C and PAR-A via (P|Q)|R 2 R|(P|Q) Z (R|P)|Q Z
QI(RIP) 2 (QIR)|P 2 PI(QIR).)

Also, we define Z 5 analogously to =g: Zp corresponds to a sequence of rewritings
using Z and =g, i.e., Zp:= (ZU =g)*.

Claim 1 For closed processes A, B,C, if A =g B 2 C, then there exists a closed process
B’ such that A Z2 B' =¢ C.

We show this claim by induction over the derivation of B 2 C. We distinguish the
following cases:

e «-conversion: Then B = C' up to a-conversion. Hence A =g B implies A =g C
since =g allows a-conversions. Thus A Z B* = C with B* := A.

e Closure under evaluation conterts: Then B = E[B] and C = E[C] for processes
B 2 C and an evaluation context E. And the induction hypothesis holds for
B Z C. Since A =g B = E|[B], we have that A = E*[B*o] for some evaluation
context E* =g F, some process B* =g B, and a renaming o that corresponds to
the alpha-renaming over the hole of E. Since B* =g B, the induction hypothesis
implies that B* 2 B’ = C for some process B’. Hence

A = E*|B*0] 2 E*[B'o] =g E|B'] =5 E[C] = C.

Thus A Z B’ =g C with B’ := E*[B'o].

21

e Reflerivity: Then B = C. Hence A 2 B* =g C with B* := A.

e Transitivity: Then B 2 S 2 C for some process S. And the induction hypothesis
applies to B 2 S and S 2 C. Since A =g B 2 5, by induction hypothesis, there
is a process B’ with A 2 B’ =g S. Since B’ =g S 2 C, by induction hypothesis
there is a process S* with B’ 2 S* =g C. Thus A 2 S* =g C, and the claim
follows with B* := S*.

e PAR-0: In this case, C = B|0 and A =g B. Hence A 2 B* =g C with B* := A|0.

e PAR-0-rev: In this case, B = C|0 and A =g B. Hence A = B*|0 for some process
B* =E C'. Then Aﬁ B* =E C.

e PAR-A: In this case, B = Bj|(B2|B3) and C = (B1|B2)|Bs. Since A =g B,
A = A;|(Az]A3) for some processes A; with A; =g B;, ¢ = 1,2,3. Then with

= (A1|A2)|A3, we have A,@ B* —E C.

e PAR-C, PAR-C': Analogous to PAR-A.

e NEW-(C': In this case, B = vnm.B and C = vmn.B for some names n,m and
a process B. Since A =g B, we have that A = vab.A for some names a,b and
a process A. (Not necessarily ab = nm, because =g allows a-conversion.) Thus
vab.A =g vnm.B. This implies vba.A =g vmn.B (by induction over the derivation
of vab. A =g ynm.B). Hence with B* := vba.A, we have that A & B* =g C.

o NEW-PAR: Then B = Bj|vn.By and C' = vn.(B;1|By) with n ¢ fn(Bj). Since
A =g B, we have A = Aj|va.As for some name a and processes Aq, Ay with
A1 =g B; and va.As =g vn.Bs. (Not necessarily a = n, because =g al-
lows a-conversion.) Let m be a fresh name, ie., m ¢ fn(A;, Ay, B1,Bs). Let
B* := vm.(A1|A2{m/a}). Since vn.By =g va.Ay and m ¢ fn(As, B2), we have
vm.Bao{m/n} =g vm.As{m/a}. Hence vm.(A;|Bo{m/n}) =g vm.(A1|A2{m/a}).
And using Ay =g By, we get vm.(B1|Ba{m/n}) =g vm.(A1|A2{m/a}) = B*. Fur-
thermore C' = vn.(B1|Bz) =g vm.(B1|B2{m/n}) since n,m ¢ fn(B1), m ¢ fn(B2).
Thus B* =g C. And A = Ai|va.As 2 Ailvm.Ax{m/a} Z vm.(A1|Az{m/a}) =
B*. Thus B* is a process with A 2 B* =g C.

This shows

Claim 2 If A 2y B, then there exists an S such that A Z S =g B.
This follows directly from

Claim 3 If B,C are closed processes and B — C' (derived using the rules listed at the
beginning of this proof), then for any closed A with A =g B there exists a closed B with

A—)BIEEC

This claim will then immediately prove the lemma. We show the claim by induction
over the derivation of B — C'. We distinguish the following rule applications:

e STREQ: Then B = B — C = C for some B,C, and the induction hypothesis
holds for B — C. Since A =g B = B, the induction hypothesis implies that
A — B’ =g C for some closed B’. Since C = C, we have A — B’ =¢ C.

22

e E-REPL: Then B = E[!B] and C = E[B | !B] where E is an evaluation context
and E[!B] has no name conflicts. We have A =g F[!B]. From this it follows that
A 2 E'[\B] where E’ results from E by moving all unprotected restrictions to the
top (no names in B need to be renamed because E[!B] has no name conflicts). By
[Claim 2, this implies that A 2 S =g E'[!B] for some S. Hence S = E"[!B'c] where
E" =g E' and B’ =g B and where o is a renaming that corresponds to the alpha-
conversions between E’ and E” over the hole. Thus A 2 S — E"[(B|!B)o] =g
F'[B|'B] = E[B|!B] = C and hence A — B’ =g C with B’ := E"[(B|'B)o].

e E-COMM: Then B = E[M(T).P | N(z).Q] and C = E[P | Q{T/x}] where E is
an evaluation context, M =g N, and B has no name conflicts. As in the E-REPL
case, we have A 2, E'[M(T).P | N(x).Q] where E’ results from E by moving
all unprotected restrictions to the top. By [Claim 2] this implies that A 2 S =g
E'[M(T).P | N(x).Q] for some S. Hence S = E"[(M'(T").P' | N'(z).Q")o] where
E'=gx E',M' =g M, T =g T, P =g P, N =g N, Q' =g Q, and o is as in the
case of E-REPL. Then

AZS — E'P'| QT [x}o] = E'[P | Q{T'/a}] < E'[P | Q{T/x}] = E[P | Q{T/z}] = C.

(Note that (x) also uses the fact that =g may also rewrite terms that are subterms
of destructor terms; this is needed if = occurs in a destructor term in @.)

Hence A — B’ =g C for B' := E"[P" | Q'{T"/x}0o].

e E-LET-THEN: Then B = E[let x = D in P else Q] and C = E[P{M/xz}| where E
is an evaluation context, D || M, and B has no name conflicts. As in the E-REPL
case, we have A Zp F'[let z = D in P else Q] where E’ results from E by moving
all unrestricted restrictions to the top. By [Claim 2| this implies that A 2 S =g
E'llet x = D in P else Q] for some S. Hence S = E”[(let x = D" in P’ else Q')o]
where B =g E', D' =g D, P’ =g P, Q' =g Q, and o is as in the case of E-
REPL. Then D' =g D and DM |} imply D'M |}’ for some M’ =g M. Hence
(let x = D' in P’ else Q') — P'{M'/xz}. Then

AZS — E'[P{M Jx}o] =g E'[P{M’/z}] £k E'|P{M/z}] = E[P{M/z}] = C.
(Here (x) again uses that =g rewrites destructor terms, see the case E-COMM.)
Hence A — B’ =g C for B’ := E"[P'{M'/z}0].

e E-LET-ELSE: Then B = Eflet z = D in P else Q] and C = E[Q] where E is
an evaluation context, VM. D) M, and B has no name conflicts. As in the
E-REPL case, we have A 25 E'[let x = D in P else Q)] where E’ results from
E by moving all unrestricted restrictions to the top. By [Claim 2 this implies
that A 2 S =g FE'[let x = D in P else Q)] for some S. Hence S = E’[(let x =
D’ in P’ else Q')o| where E” =g E', D' =g D, P' =g P, Q' =g Q, and o is as
in the case of E-REPL. Since D' =g D and VM. D {{ M, we have VM. D" |} M.
Hence (let z = D’ in P’ else Q') — Q’. Then

AZ S E'[Q'0) = E'lQ) = E[Q] = C.

23

Hence A — B’ =g C for B’ := E"[Q'0].

This shows [Claim 3l And from that claim the lemma follows. |

3.1 Relating events and observational equivalence

For stating below, we will need processes containing events. The variant
of the applied pi calculus presented in (which is used by Proverif for obser-
vational equivalence proofs) does not support events. When using Proverif for showing
trace properties defined in terms of events, a different variant of the applied pi calcu-
lus is used [Bla09]. We will call processes in that calculus event processes. Syntacti-
cally, event processes differ from processes as in only by an additional construct
event f(t1,...,t,).P which means that the event f is raised, with arguments ¢,...,¢,
(these are normal terms), and then the event process P is executed.

The semantics of event processes are formulated in [Bla09] in a different way from
the semantics used here. Fortunately, we will be able to encapsulate everything that we
need to know about that semantics in below, so we do not need to repeat
those semantics here.

Instead, we extend the definition of the internal reduction relation — to event pro-
cesses. — is defined as in [Definition 2.3] except that we add the following rule:

EVENT: event f(t1,...,ty).P — P

The semantics defined by — will be related to those from [Bla09] by [Cemma 3.6 below.
Finally, defines the concept of a trace property. We will only need trace
properties of a specific form, namely

end(z) = start(x) Ve =tV --- Vo =1,

Intuitively, an event process P satisfies a trace property end(x) = start(z)Va =t1V---V
x =ty if in any execution P|R — P, — ... — P,, we have that if one of the transitions
raises the event end(t), then t € {t1,...,t,} and in the same trace, the event start(t) is
also raised (for any adversarial R not containing events).

Formally, satisfying a trace property is defined with respect to the semantics from
H Instead of giving those semantics here, we present the following lemma which
summarizes seven fact about that definition. We will not use any other facts. The facts
can be verified by inspecting the semantics and definitions from [Bla09].

8Strictly speaking, the semantics described in [Bla09] does not allow expressions of the form = = t;
in trace properties. Such expressions are, however, supported by Proverif. Also, [Bla09) footnote 3 in
the full version] explains how to encode such equality tests in the trace properties supported by [Bla09].
In their notation, our trace property becomes the somewhat less readable trace property: end(z) =
(end(z) ~ start(z)) V (end(ti) ~ true) V --- V (end(tn) ~ true).

Also, the semantics described do not support equations (i.e., t =g t' iff £ = ' in their semantics).
However, Proverif supports these, so we assume the intended semantics of Proverif is that of [Bla09] with
the natural extension of equality tests to equality modulo =g.

24

Lemma 3.6 Let tq,...,t, be terms. Let p stand for the trace property start(x) =
end(x)Vae=tV---Va=t,. Let P be an event process.
(i) If P = P’ and P satisfies p, then P’ satisfies p.

(1) Assume P — P’ and P satisfies o and the reduction P — P’ does not use the
EVENT rule. Then P’ satisfies .

(113) Lett be a closed term. Assume P = C[event start(t).Q] where C is an event context
not binding fn(t) over its hole. Assume that P satisfies p. Then P’ := C[Q)] satisfies
eVar=t.

() Assume P = Clevent end(t).Q] where C is an event context. Assume that P
satisfies . Then P' := C[Q)] satisfies p.

(v) Assume P satisfies p and E is an evaluation context (not containing events) and
E does not bind fn(ty, ..., t,) over its hole. Then E[P] satisfies p.

(vi) Assume E is an evaluation event contexrt that does not bind any names over its
hole. Assume P = Elevent end(t).Q]. Assume that P satisfies p. Then t =g t; for
some 1.

(vit) If va.P satisfies o, then P satisfies .

We explain the intuitive reason for each fact:
@@ Structurally equivalent processes behave identically and thus raise the same events.

@) If P — P’ without raising an event, then for any event trace that P’ may produce,
P may produce the same by first reducing to P’.

@) P’ has the same event traces as P, except that some start(t)-events are removed.
If P" does not satisfy o V & = ¢, then there must be an event end(t') with ¢ # ¢
that is not preceded by a start(t')-event. But then also in a trace of P, there would
be an end(t')-event not preceded by start(t') (since the traces only differ in their
start(t)-events and start(t) # start(t')).

() P’ has the same event traces as P, except that various end(-)-events are removed.
(Since t is not necessarily closed, end(t) may be instantiated to different end(-)-
events.) If a trace of P’ does not satisfy g, this means there was an end(t’)-event
not preceded by a start(t') event. Then also in P the corresponding end(t’)-event
is not preceded by a start(t')-event, as P has the same start(-)-events, and more
end(-)-events.

(@) The semantics of satisfying trace properties are defined with respect to P running in
parallel with an adversary R not containing events. Thus the case of an evaluation
context running with P is already covered. (It is important that E does not bind
fn(ty, ..., t,) because otherwise the terms ¢y,...,t, occurring in the process would
be considered different from those in g.)

() There is a trace of P that consists only of an end(t)-event. That trace does not
satisfy end(t) = start(t). Thus it satisfies p only if p contains x = ¢ as one of its
clauses.

25

() va.P has the same traces as P, except that occurrences of a in the P-traces are
replaced by a fresh restricted name a’. Thus, if P does not satisfy g, then there
is a trace containing an end(t)-event without preceding start(t)-event such that
t & {t1,...,tn}. In the corresponding va.P-trace, we have an end(t{a’/a})-event
without preceding start(t{a’/a})-event. Since t ¢ {t1,...,t,} and a is fresh, also
t{a’Ja} & {t1,...,t,}. Hence the va.P-trace does not satisfy p, either.

Lemma 3.7 Let s be a name. Let P be a process containing s only in constructs of the
form (1(s,t)(t"))| P and (s,t)().P" (for arbitrary and possibly different t,t', P’).

Let plain®(P) denote the process resulting from P by replacing all occurrences
I(s,t)(t")|P" and (s,t)().P" by P'.

Let ev®(P) denote the process resulting from P by replacing all occurrences
(s, t)(t")|P" by event start(t).P" and (s,t)().P’ by event end(t).P’.

Assume that ev®(P) satisfies the trace property end(z) = start(x).

Then plain®(P) ~ vs.P.

Proof. We call a process P s-well-formed if it contains s only in constructs of the form
I(s,t)(t")|P" and (s,t)().P’" (for arbitrary and possibly different ¢,¢', P’). Given a multiset
T = {t; — t},...,t, — t,,} with ¢;,t; terms, we call an event-process P T-good if P
satisfies the trace property end(z) = start(x) Ve =tV -V =t,.

For example, the process P from the statement of the lemma is s-well-formed, and
ev®(P) is @-good.

We define the following relation R (up to structural equivalence):

R = {(ug.plaz‘ns(P), vas.(P [(s, t1)(#) | -+ | W0s, 8)(t0) | (s, un){ud) [+ | (5, um){urn)

P s-well-formed, s,a distinct names, ev®(P) is {t1,... ,tn}—good}

Here P,n,m,t;,t},, u;,u,,s,a refer to arbitrary values, not only to the values P,s from
the statement of the lemma.
We write short syncout®({t1 — t|,...,tn — tL};{ws — uj,...,up, — ul}) for

s, t) () |- 11y) () | (s un){u) [| (85 um) (ugy,)-
We now show that R is a bisimulation:

e If (A,B) € R, and A |y, then B |-
Then A = wva.plain®(P). Hence plain®(P) |y and a ¢ fn(M). Also, s ¢
fn(plain®(P)), so s ¢ fn(M). By definition of plain®(-), plain®(P) |a implies
P |y Since a, s ¢ fn(M), it follows B = vas.(P|...) L.

e If (A,B) € R, and B |/, then A |;:

Then B = vas.(P|syncout®(T;U)). Thus a,s ¢ fn(M) and P|syncout®(T;U) L.
Since all channels in syncout*(T;U) are of the form (s,-), we have
syncout®(T;U) ,l/ME Hence P ;. By definition of plain®(P) and since M does
not contain s, this implies plain®(P) |y. Hence A = va.plain®(P) .

“Here we implicitly use the fact that (s,-) #g M for any M not containing s (Cemma 3.1] ().

26

o If (A,B) € R, and A — A’, then there exists a B’ with B —* B’ and (A’, B’) € R:

Then A = va.plain®(P) and B = vas.(P|syncout®(T;U)). We call an event process
name-reduced, if it does not contain unprotected restrictions.

Without loss of generality, assume that P (and hence also ev®(P)) is name-reduced
(otherwise we could move the superfluous restrictions into the va).

Let ay := a and Py := P and T := 1. We first construct a sequence P, ..., Py
of processes and a sequence of lists of names a4,...,a;, and a sequence of sets
Ty,..., Ty such that Py does not contain unprotected inputs (s,-)().Q) or unpro-
tected outputs !(s,-)(-), and for all i = 0,..., k we have:

(a) vs.(P|syncout®(T;U)) —* va;s.(P;|syncout®(T;; U)), and

(b) ev’(P;) is T;-good, and

(c) plain®(P) = va;.plain®(F;).

(d) P; is s-well-formed.

For i = 0, these conditions are trivially satisfied. When constructing P; for i > 0,

we already have a process P;_; satisfying these conditions. We distinguish three
cases:

— If P,_1 does not contain unprotected inputs (s,-)(), we are done (k:=1i —1).

— If P;,_1 does contain an unprotected input (s, t)() that is not part of a subterm
of the form !(s,-)(-)|Q, then we can write P;_; as P;_; = vb.E[(s,t)().P'] for
some names b and some evaluation context E that has no restrictions over its
hole. Since (s,t)() is not part of a subterm of the form (s, -)(-)|Q, ev®(F) is
an evaluation context (!(s,-)(-)|@ would have translated to event start(-).Q).
Without loss of generality, bN fn(T;—1,U) = &.

Since ev®(Pi_1) = vb.ev’(E)[event end(t).ev®(P')] is T;_1-good
by (@), [Lemma3.6l[i) implies that evs(E)[event end(t).ev®(P’)]
is T;_1-good. Since F does not bind any names over its hole,
LCemma 3.61([d) implies that ¢ =g ¢* for some t* € T;_ ;. Thus
Pi_|syncout®(T;—1;U) = (vb.E|(s,t)().P'])|syncout(Ti—1;U) —*
(vb.E[P'])|syncout(T;—1;U). Since without loss of generality, b fn(T;—1,U) =
@, (vb.E[P'])|syncout(T;—1;U) = vb.P;|syncout(T;—1;U) with P, := E[P’].
Hence vs.P|syncout® (T, U)E;*ygifls.(Pi_l\syncouts(Ti_l; U)) —*
va;_1sb.Pi|syncout®(T;_1;U) = wva;s.P|syncout®(T;; U) with T; = T,
and a; := a;_,b. Thus (@) is satisfied by F;, a;, T;.

Since ev®(P,_1) = vb.ev®(E)[event end(t).ev®(P’)] is T;—1-good by (b)) and
thus T;-good, we have by [Lemma 3.6/(l) that ev®(E)[event end(t).ev®(P')]
is T;-good. Since E does not bind names over its hole, neither does ev®(E).
Thus by Lemma 3.6([y), ev®(E)[ev®(P’)] = ev®(P;) is T;-good. Thus () is
satisfied by P, a;,T;.

Since P;_; = vb.E|(s,t)().P'] is s-well-formed by (d)), so is P, = E[P']. Thus
(d) is satisfied by P;,a;,T;.

27

Finally, plain®(P;—1) = vb.plain®(E)[plain®(P")] = vb.plain®(P;). Since by
@ we have that plain®(P) = va, ,.plain®(P;_1), we have plain®(P) =
va;.plain®(P;). Thus (@) is satisfied by P;,a;, T;.

— If P,_ contains an unprotected output !(s,¢)(t') that is not part of a subterm
of the form !(s,-)(-)|Q, then we can write P;_1 as P;_1 = vb.F|[(s, t)(t')| P'] for
some names b and some evaluation context E that has no restrictions over its
hole. Since (s, #)(t') is not part of a subterm of the form !(s,-)(-)|Q, ev*(E) is
an evaluation context (!(s,-)(-)|@ would have translated to event start(-).Q).
Without loss of generality, bN fn(T;—1,U) = &.

— 0

We have P,_1|syncout®(T;—1;U) = (vb.E|!(s,t){t")|P'])|syncout(T;—1;U) =
vb.(E[l(s,t) ()| P'||syncout(T;—1;U)) = vb.(E[P']|syncout(T;;U)) with
T, = Ti—1 U{t — t'}. Here (x) uses that b N fm(T;_1,U) =
. Hence wvs.P|syncout®(T; U)E;*ugi_ls.(Pi_l]syncoutS(Ti_l;U)) —*
va;_18b.(E[P']|syncout®(T;; U)) = va,s.(Py|syncout®(T;; U)) with P; := E[P’]
and a; := a;_1b (remember that T; = T;_1 U {t — t'}. Thus (@) is satisfied by
P, a;,T;.

Since ev®(Pi_1) = wvb.ev’(E)[event start(t).ev®(P")] is T;—1-good by (),
we have by [Lemma 3.61(1) that ev®(E)[event start(t).ev®(P")] is T;_1-good.
Since E does not bind names over its hole, neither does ev®(E). Thus by
Lemma 3.61(), ev®(E)[ev®(P")] = ev®(P;) is T;-good. Thus () is satisfied
by P, a;, T;.

Since P;_1 = vb.E|[(s, t)(t').P'] is s-well-formed by (d), so is P; = E[P']. Thus
(d)) is satisfied by P;,a;,T;.

That (@) is satisfied by P;,a;,T; is shown as in the previous case.

Note that in the last two cases, the size of P, is smaller than that of P,_1, so
we eventually reach the first case. Hence the construction terminates and we
get a process Py that satisfies @)-(d) and that does not contain unprotected
inputs (s,-)() or unprotected outputs !(s,-)(-). We have A = va.plain®(P) g
vaay.plain®(P;). Thus A — A’ implies that vaa,.plain®(P;) — A’ and and
thus plain®(P;) — A” where A” is A’ with the restrictions vaa; removed. (Le.
A" =vaa;, . A".) Since Py, is s-well-formed by (d) and does not contain unprotected
inputs (s,-)() or unprotected outputs !(s,-)(-), by inspection of the definition of
plain®, ev®, and —, it follows that P, — P’ and ev®(P;) — ev®(P’) for some
s-well-formed P’ with plain®(P’) = A”. The reduction ev®(P;) — ev®(P’) does
not use the EVENT rule. Since ev®(Py) is Tx-good by (b)), from [Lemma 3.6 ()
we have that ev®(P’) is Ty-good. Let B’ := vaays.(P'|syncout®(Ty;U)). Then

@
(A", B") = (vaay,.plain®(P'),B’) € R. Finally, B = vas.(P|syncout®(T;U)) —*
vaays.(Pg|syncout®(Ty; U)) — vaays.(P'|syncout®(Ty; U)) = B'.

e If (A,B) € R,and B — B’, then there exists an A’ with A —* A’ and (A’, B’) € R:

28

We have A = va.plain®(P) and B = vas.(P|syncout®(T;U)) for some s-well-formed
P and T-good ev®(P).

We distinguish three cases for B — B”:

— B — B’ is a reduction within syncout®(T;U):

In this case, the reduction of the form E[!(s,t)(t")] — El[(s,t){t")|'(s,t)(t)] for
some ¢,t'. Thus B’ = vas.(P|syncout®(T;U U {t — ¢'})). Then A = A’ :=
va.plain®(P) and ev®(P) is T-good. Hence A —* A’ and (A’,B’) € R.

— B — B’ is a COMM reduction between P and syncout®*(T;U):

Then for some terms ¢, ¢, some process , and some evaluation context F, we
have P = E[(s,t)().Q] for some t,t', and B’ = vas.(P'|syncout®(T;U")) with
P’ := F[Q] and U’ with U = U’ U {t — t'}. Since plain®((s,t)().Q) =
plain®(Q), we have A = A’ := va.plain®(P"). Furthermore, ev®(P) =
ev®(E)[event end(t).ev®(Q)] and ev®(P’) = ev®(F)[ev®(Q)]. Thus by
[Cemma 3.6 (), the fact that ev®(P) is T-good implies that ev®(P’) is T-good.
Hence A —* A’ and (A, B') € R.
— B — B’ is a reduction within P.

Thus P — P’ for some P, and B’ = vas.(P'|syncout®(T;U)). Since P is
s-well-formed, we have P = E[Q] — E[Q'] = P’ for some evaluation context

E and process @, such that @ is of the form !(s,¢)(t')|Q1, or Q is a redex
not of the form !(s,-)(-), or Q@ = M(N).Q|M'(x).Q with M #g (s,-). (We
cannot have a reduction on a channel (s,-), since s-well-formed terms have
outputs on such channels only below bangs.) Without loss of generality, we
can assume that all unprotected occurrences of (s, t)(t') in E are not below

a restriction (otherwise we could move these restrictions from F to va).

Let E* be E with all unprotected occurrences of !(s,t)(t') removed (for arbi-
trary ¢,t’). Let T* be the multiset of the pairs (¢ +— t') from these occurrences.
Then E[Q] = E*[Q]|syncout®(T*;). Since ev®(P) = ev®(F[Q)]) is T-good,
and since ev®(E*[Q]) results from ev®(P) by removing event start(t) for all
(t —) € T*, by [Lemma 3.61() we have that ev®(E*[Q]) is T'U T*-good.

We now distinguish on the form of Q:

£ TEQ =105, (1] @Q1-
Then B’ = vas.(E*[Q1]|syncout*(T";U")) for T := TUT* U {t —
t'} and U == UU{t — '}, and A" := was.plain(E*[Q1]) =
vas.plain(E*[!(s, t)(t")|@Q1]) = A. And since ev®(E*[Q]) =
ev’s(E*)[event start(t).ev®(Q1)] is TUT™*-good, we have that ev®(E*[Q]) =
evs(E*)[ev®(Q1)] is T'-good by [Lemma 3.6l(l). Thus A —* A’ and
(A',B") e R.

* If Q is a redex, or Q@ = M(N).Q1|M'(z).Q2 with M =g M’ and M #p
(s,-):
Then B’ = vas.(P'|syncout®(T';U)) with P' = E*[Q'] and Q — @’ and
T :=TUT* And A — A" := va.plain(P’). And ev®(Q) — ev®(Q').

29

Since E* is an evaluation context and does not contain unprotected
I(s,t)(t'), we have that ev®(E*) is an event evaluation context. Hence
ev’(E*[Q]) = ev®(E*)[ev®(Q)] — ev®(E*)[ev®(Q")] = ev®(P’), not us-
ing the EVENT rule. By [Lemma 3.6l) and using that ev®(E*[Q]) is
T'-good, this implies that ev®(P’) is T'-good, too. Thus A —* A’ and
(A',B") e R.

e If (A,B) € R, and F is an evaluation context, then (E[A], E[B]) € R:

We have A = va.plain®(P) for some s-well-formed P. And B = vas.(P |
syncout®(T; U)) for some sets T, U. And ev®(P) is T-good. Without loss of general-
ity, a, s do not occur in E (neither bound nor free). Let vb.E’ be E with all restric-
tions over the hole moved up into b. Then E[A] = vb.E’'[A] and E[B| = vb.E'[B].
Since P is s-well-formed, and E and hence E’ does not contain s, E'[P] is s-well-
formed.

Since E does not contain a, s, we have that abs are distinct names.

Since ev®(P) is T-good, by [Lemma 3.6l(@) we have ev®(E’[P])) = E'[ev®(P)] is T-
good. (We use the fact that E’ does not bind the fn(T") as they have been moved
into vb.)

Thus (vab.plain®(E'[P]), vabs.(E'[P]|syncout®*(T;U))) € R with E’[P] instead of
P and ab instead of a.

By definition of plain®(-), E[A] =
vab.plain®(E'[P]). And E[B| = vb.F'|B]
vabs.(E'[P]|syncout®(T;U)).

Since R is closed under structural equivalence, this implies that (E[A], E[B]) € R.

] = vb.E'vaplain®(P)] =
vb.Elvas.(P|syncout®(T;U))] =

Since R is a bisimulation, and (plain®(P),vs.P) € R (using P, s as in the statement
of the lemma), we have plain®(P) ~ vs.P. O

3.2 Unpredictability of nonces

Lemma 3.8 (Unpredictability of nonces) Let C be a context not binding the vari-
able x and let P,Q be processes. Then vr.Clif x =r then P else Q] & vr.C[Q)].

Proof. In the following, a multi-hole context is a context C' with zero, one, or more holes.
C[P] means C with every occurrence of the hole replaced by the same process P.
We define the following relation R:

R = {(I/T’.C[if T = r then P else Q) VT.C[Q])}
up to structural equivalence. Here C ranges over multi-hole contexts, T' over terms,

r ¢ fu(T) over names, and P, () over processes.
We show that R is a bisimulation:

30

e If (A,B) € R and A |, then B —*|:

Immediate since “if T'= r then P else)7 does not have unprotected outputs.

o If (A,B) € R and B |y, then A —* |

If the output on M is in C, A |ps. Otherwise the output is in an unprotected
instance of @ in vr.C[Q] = B. Since r ¢ fn(T), we have T #g r by [Lemma 3.1] ()
and hence (if T'=r then P else Q) — Q. Then A — A’ where A’ results from
replacing one instance of “if T'=r then P else Q” by Q. Then A’ | ;.

e If (A,B) € R and A — A’ then there is a B’ with B —* B’ and (4', B') € R:

Then A = vr.C[if T = r then P else Q] and B = vr.C[Q)]. If the reduction A — A’
takes place in C, then there is a corresponding reduction B — B’ and (4’, B’) € R.

Thus we can assume that one of the “if T'=r then P else @)” is being reduced in
A. Since T #g r by [Lemma 3.7I(), that subprocess reduces to Q. Thus A" =
vr.C'[if T =r then P else Q] where C’ is C' with one of the holes replaced by Q.
Then B’ := B = vr.C|Q] = vr.C'[Q]. Hence B —* B’ and (4',B’) € R.

e If (A,B) € R and B — B’ then there is an A" with A —* A" and (A’, B’) € R:

Then A = vr.C[if T = r then P else Q] and B = vr.C[Q]. As before, we have
(if T'=r then P else Q) — Q. The reduction B — B’ may involve C and up to two
instances of Q. We can thus write B as B = C"[Q] where C” results from replacing
in C the holes corresponding to these instances of (). These instances of () are not
protected, so the holes we have replaced by () are not protected, either. Thus A —*
C"[if T = r then P else Q] =: A”. Then the reduction B = C"[Q] — B’ involves
only C”. Hence B’ = C'[Q)] for some C’, and A” — C'[if T = r then P else Q] =:
A’ Thus A —* A" and (4", B’) € R.

e If (A,B) € R and E is an evaluation context, then (E[A], E[B]) € R:

Then A = vr.C[if T =r then P else Q] and B = vr.C[Q]. Without loss of gen-
erality, r ¢ fn(E),bn(F). Hence E[A] = vr.E[C[if T =r then P else Q]] and
E[B] = vr.E[C]Q]]. Hence (E[A], E[B]) € R (with E[C] instead of C).

We can now show the lemma. Let C,P,Q,r be as in the lemma. Let o be a
substitution closing vr.C[if z = r then P else Q] and vr.C[Q]. Without loss of gener-
ality, r ¢ fn(o) (otherwise we rename r and change C, P, @ accordingly). In particular,
o(x) will be some closed term T with r ¢ fn(T). Then C[if x = r then P else Qo =
C'lif T = r then P’ else Q'] and C[Q]o = C'[Q’] where C’, P!, Q" are the result of apply-
ing o to C, P,Q. (In the case of P, Q, restricted to those variables not bound by C.) And
(C'[if T =r then P’ else Q'],C'[Q']) € R. Thus C'[if T = r then P’ else Q'] ~ C'[Q’].
Since this holds for any closing o, we have C[if x = r then P else Q] & C[Q]. O

31

4 Symbolic UC

Intuition. We start by presenting the intuition that underlies the original UC frame-
work [Can01] and thus also our work. The basic idea is to define security of a protocol 7
by comparing it to a so-called ideal functionality F. The ideal functionality is a machine
that by definition does what the protocol should achieve. For example, if the task of the
protocol is to transmit a message m securely from Alice to Bob, then the functionality is a
trusted machine that expects a message m from Alice over a secure channel, sends to the
adversary that such a message was received (but does not send the message itself), and
then after the adversary allows delivery, forwards the message to Bob. (In the applied pi
calculus, this functionality would be netscstart().104(x).(n€lnorify () | n€t deliver()- 105 (z))
where the net. -channels belong to the adversary; see below.) In a sense,
the functionality is an abstract specification of the protocol behavior, and the protocol is
supposed to be a concrete instantiation of that specification using crypto, in a way that
preserves the security properties of the specification.

So how to model that a protocol 7 is as secure as a functionality F? The basic idea
is to ensure that any attack on 7 is also possible on F. Since by assumption F does not
allow any attacks, this implies that = does not allow any attacks either, so 7 is secure. To
model that any attack on 7 is possible on F, we require that for any adversary attacking
m, there is a corresponding adversary (the “simulator”) attacking F that performs an
equivalent attack. And what do we mean by equivalent? Any “environment” that can
observe the overall protocol outcome (inputs and outputs), and that can talk to the
adversary (i.e., it learns what secret information the adversary might have obtained),
cannot distinguish between the two attacks. In other words, for any adversary A, there
is a simulator S such that for all environments Z, we have that 7 + A + Z (the protocol
running with A and Z) and F + S + Z are indistinguishable from Z’s point of view.
Notice that we do not wish to allow Z to observe the internal protocol communication —
doing so would require that m and F work the same way internally, but we only want that
the two have the same “observable effects”, we do not care about their inner workings.
Due to this, in a formal definition, we need to distinguish between the protocol-internal
communication channels (net-channels), and the protocol’s interface (io-channels). Only
the latter is accessible to the environment.

Formal definition. To formalize the above intuition in the applied pi calculus, we
first formalize the distinction between channels that make up the protocol’s input/output
interface, and those that make up the protocol’s internal channels. We partition the set of
all names into two sets IO and NET (both infinite). We will then require adversaries and
simulators to only communicate on NET channels. (We do not forbid the environment
to access NET channels. But we will give the adversary/simulator the ability to rename
and hide NET channels, and thus effectively protect the protocol’s NET channels from
the environment.)

In order to keep the distinction between NET-channels and IO-channels, we also want
to avoid that NET-channels are transmitted to the environment (we use this in a few

32

places in our proofs):

Definition 4.1 We call a process P NET-stable if every name n € NET N fn(P) in P
occurs only in channel identifiers (i.e., in particular, P does not send n to the environ-
ment).

Note that there is no restrictions on the bound names. Thus a NET-stable adversary
is free to share arbitrary fresh names with the environment and to use them as channels.

We now define the concept of an adversary. Essentially, an adversary is just a process
A that is intended to interact with the protocol (or functionality). Since the adversary
connects to the protocol over some NET-names, the specification of the adversary ad-
ditionally includes a list of NET-names n of the protocol that will be accessed by A
(and are thus private between A and the protocol). Finally, an adversary/simulator
sometimes needs to rename NET-channels of the protocol/functionality to avoid name
clashes. Since NET-channels are protocol internal and not part of the externally visible
interface, it should not matter whether the same name is used in protocol and functional-
ity or not. This is achieved by letting the adversary rename NET-names, we model this
by specifying a renaming ¢ as part of the adversary.

Definition 4.2 An adversary is a triple (A, ¢, n) where A is a closed NET-stable process
with 10 N fn(A) =0, ¢ : NET — NET a bijection and n a list of names n C NET.

We can now state our security definition. Both protocol and functionality are modeled
by processes P and @, respectively. An adversary (A, p4,n4) connecting to P is modeled
as vny.(PpalA), as we would expect from the meaning of ¢ and n explained above. To
model that P emulates @), we would require that vny.(PpalA) and vng.(Qes|S) are
indistinguishable for any environment for a suitable simulator (S, ¢g,ng). We do not
need to specify the environment explicitly because we have the notion of observational
equivalence: vny.(PpalA) = vng.(Qps|S) means that no context can distinguish the
left and right hand side. The following definition captures this, except that we make one
simplification: Instead of quantifying over all adversaries (A4, ¢4,n4), we fix A :=0, ¢4
the identity, and n4 the empty list, so that vn4.(Ppa|A) = P. (Such an adversary, that
essentially just leaves all NET-channels accessible to the environment, is usually called
a dummy adversary.) This definition is often technically much simpler to handle, and
[Lemma 4.4 below guarantees that it is equivalent to the more natural definition that
quantifies over all adversaries.

Definition 4.3 Let P and Q be processes. We say P emulates Q (written P < Q) iff
there exists an adversary (S, ¢, n) such that P & vn.(Qp|S). (S, p,n) will often be called
simulator.

We use & instead of &~ to get a more general definition, allowing non-closed P,). For
the applications presented in this paper, the special case using &~ (which is equivalent to
our definition restricted to closed processes) is sufficient. (Note however that we would
still use & to state various technical lemmas more conveniently.)

33

Note that there is no formal distinction between protocols and functionalities. Indeed,
it can sometimes be convenient to compare two protocols P, (). Furthermore, note that
< is weaker than &: P & @ entails P < @ (and @ < P) with the simulator (0, id,).

As observed in there are several approaches to define simulation based se-
curity. The following Lemma shows that our definition (resembling strong simulatability)
is equivalent to the two alternatives: black-box simulatability and universally-composable
simulatability (the latter being the definition that corresponds directly to the intuition
given at the beginning of this section).

Lemma 4.4 For processes P, () we have that the following are equivalent:
(i) strong simulatability: P < Q
(i1) black-box simulatability: (S, 0s,ng) Y(A,pa,ny) vng.(PpalA) ~
v (vns.(Qps]S))palA)
(i11) universally-composable simulatability: Y(A,pa,n,) 3(S, ¢s,ng) vns.(PpalA) &

vng.(Qps|S)
where all triples are adversaries according to|Definition 4.4
Proof.

® (III) = (Iﬁ]):
P <Q=3(S ¢s,ng) P&vng(Qpsl|S)
8V bijections 4 Poa & (vng.(Qps|S))ea

V(A pa,ny) vig.(PoalA) N vng.(vng.(Qps|S))palA)

(*) since & is closed under renaming and (#x) since & is closed under the application
of evaluation contexts.

e () = (@i): Let (S,¢s,ng) be the simulator from (i), (A4, ¢a,n4) be an adversary
and ¢ a bijection on names such that ng(@opa)Nfn(A) = @ and ¢ is the identity
on the free names of Q(¢4 o ps) and Sy, (this ¢ can be used as a-conversion in
step three below). We observe

vng-((vng.(Qes|S))palA)
= vny.-(vngpa-(Q(pa o ¢s)|Spa)lA)
= vny.(vng(popa).(Q(popaops)S(popa))ld)
= vny.vng(p o pa)(Q(p o paocps)|S(popa)lA)

and thus (Sa,ng,,9s,) = (S(p o pa)lAd,ny Ung(p o pa), (popaops)) is an
adversary such that

vny.(PoalA) R vng, (Qes,|Sa)

e () = (@) We construct the simulator from the last step for the adversary (0, &, id)
and have ().

34

O

Lemma 4.5 (Reflexivity, transitivity) Let P,Q, R be processes. Then P < P. And
if P<@Q and Q < R, then P < R.

Proof. P < P follows directly from by setting S := 0, ¢ as the identity,
and n = .

Assume now that P < @ and Q < R. Then there are processes S1,S59 with 10 N
fn(S1) =10 N fn(S2) = @, bijections ¢1, ¢y : NET — NET, and lists of names n;,ny C
NET such that P & vn;.(Qe1]S1) and Q & vn,.(Rp2|S2). Without loss of generality we
can choose ny such that nyp1 N fn(S1) = @. It follows

P & vng . (Qe1]S1)

()
& vny.((vng.(Rp2|S2))e1]S1)]

(%)

= vny.((vngp1-(R(p1 0 02)]S201))[51)

=
= vy .vngpr.(R(p1 0 @2)]S201|51)

Here (x) follows since & is closed under the application of evaluation contexts and under
renaming of free names.

And (xx) follows since for any process R, we have (vny.R)p1 = vngp1.(Req).

And (xxx) follows since nyp1 N fn(S1) = @.

Thus, choosing n := n;Unyp1, ¢ := p10pa, and S := Sap1|S1, we get P & vn.(Rpl|S).
Hence P < R. O

Corruption. So far, we have not yet modeled the ability of the adversary to corrupt
parties. There are two main variants of corruption: static and adaptive corruption. In
the case of static corruption, it is determined in the beginning of the protocol who is cor-
rupted. For adaptive corruption, corruption may occur during the protocol and depend
on protocol messages. Modeling static corruption is quite easy in our model: When a
party X is corrupted, we simply remove the subprocess Py corresponding to that party
from the protocol P, make all NET-names occurring in Px public, and — in the case of a
functionality — additionally rename all IO-names of Py into NET-names. For example,
if P = vnetinets.(P4|Pp|F) where net; occurs in P4 and Pp and nets only in Ppg, and
F has IO0-names iop4, iopp then corrupting A leads to P’ = vnety.(Pg|F{netpa/iopa}).
And a functionality G with IO-names ioy4, iop becomes G{net/ioa}.
So, if we want to verify that a P emulates G for any corruption, we need to check:

e Uncorrupted: P < G.
e Alice corrupted: vnety.(Pg|F{netpa/iorpa}) < G{neta/ios}.

e Bob corrupted: Pa|F{netrp/iorp} < G{netp/iop}.

35

An example is given in in the case of UC secure commitments.

Modeling adaptive corruptions is more complex. For this one would need to introduce
special parties that react to a special signal from the environment and then switch into
a corrupted mode. We do not follow that approach here.

5 Composition

One of the salient properties of the UC framework is composition. Assume a protocol
7 UC-emulates a functionality F. And p is a protocol using F. Then p™/7 (which is p
with F replaced by m) UC-emulates p. And hence, by transitivity, if p emulates some
functionality G, p“/ F UC-emulates G.

In our context, ideally we would like a composition theorem such as P < @ =
C[P] < C|Q)] for arbitrary contexts C. Unfortunately, the situation is not as simple.
A simple observation is that if C' may contain NET-names, then composition will not
work: For example, assume P < @), and P is a protocol using some NET-channel net to
implement an ideal functionality @) (which does not use net). And C = O|R receives on
a NET-channel net and outputs the received messages on an IO-channel j0. Then C[P]
will output protocol-internal messages on io (observable to the environment), while C[Q)]
will not (since the functionality @ will not use the channel net). Hence C[P] £ C[Q].
(We give a formal analysis of the various cases in which the composition theorem does
not hold in [Appendix A])

Thus a first condition on C' is that it may not use the same NET-names. In fact,
we show below (Theorem 5.37) that if C'is an evaluation context binding only I0-names
and not using any of the NET-names of P, Q, then P < @ = C[P] < C[Q] holds.

This already allows for a large range of composition operations. (In particular, we
can connect different protocols through their interfaces securely by composing them in
parallel, and restricting the IO-channels through which they are connected.) But one
important operation is missing, namely concurrent composition. Concurrent composition
means that if P < @, then P’ < @’ where P’ consists of many instances of P and Q’
analogously. Such a result is important in many cases, e.g., if P is a single session key-
exchange, but an embedding protocol needs a large number of keys. The most obvious
way to model this in our setting would be a theorem stating P < Q = P < !Q.

Unfortunately, such a theorem cannot hold, either. The intuitive reason is as follows:
When trying to construct a simulator for !Q, then this simulator will not be able to
distinguish messages from different instances of Q). The simulator will then be unable to
even decide whether he talks to a single instance or several. For example:

P :=vnm.(io1(n) | ioz(z).if z = n then nety(m)
| iog(z).if © =n then netz(m))

Q :=vn.(io1(n) | iog(x).if © = n then nety(empty)
| i03(x).if & = n then nets(empty))

Here we have P < @) because a simulator receiving empty on nety or nets just has to
replace it by some fresh name m. However, we do not have !P < !Q). Depending on

36

the messages the environment sends on io09, | P will output either the same name m on
neto, nets, or different names m,m’. However, a simulator interacting with !Q) in both
cases gets empty, empty on neto, nets. The simulator then does not know whether he
should change this into m, m or m,m’ for fresh m,m’. Thus the simulator fails. (The
formal argument is in [Appendix A])

So we cannot have a theorem stating P < Q = P < (). Does this mean con-
current composition is not possible? No, just that ! is not the right operator to model
it. In the computational UC framework, composition also does not involve a number of
indistinguishable instances. Instead, each instance of P and @ is given a unique session
id, and all communication is tagged with that session id so that it can be routed to the
right instance. In our setting, one possibility to achieve this is to define an operator !!
[Che66] such that !'P behaves like an unlimited number of instances of P, where each
instance is tagged with a unique session id sid. I.e., each channel C' in P is replaced by
(sid,C)

The question is how to define ! P. The applied pi calculus does not have any construct
that conveniently allows to perform infinite branching with different ids. Thus, we have
to work around this restriction by introducing a more elaborate construction. As a first
step, we define the tagged version P((M)) of the process P:

Definition 5.1 Let P be a process, and let M be a term. We write P(M)) for P with
every occurrence of C(x) replaced by (M, C)(z) and every occurrence of C(T) replaced
by (M, C)(T). (If M contains bound variables or bound names from P, we assume that
these bound variables/names are first renamed in P.)

Now we have to somehow define I!P as P((s1))|P((s2))|... where s1,s9,... range over
some infinite set SID of session ids. Using product processes (see [Section 2.2)) this is
easy: !P := [cqp P((x)) does the job. However, product processes are a nonstan-
dard extension of the applied pi calculus, but we wish to stay compatible with existing
variants (in particular, to be able to use Proverif for verification). Thus, instead of
using [[,cqp P((7)), we define a suitable context C such that C[P((x))] behaves like
[Licsip P((z)). Then we can define !!P := C[P((x))]. Of course, depending on the partic-
ular set SID we choose, a different context C will be needed. Instead of fixing a particular
one, we thus give a general definition what contexts are suitable for a given set SID, and
from then on, just assume an arbitrary such context.

Definition 5.2 (Indexing context) Given a set S of terms, a variable x (will be used
for tagging), and names n, we call a closed context Cy ,, with bn(Cy) = n and fn(Cypn) =
0 (not containing indezed replications) an S-indexing context iff for all processes P with

'9One might instead consider tagging the messages sent over the channel with sid. This, however, does
not work as well: One would need a specific multiplexer process that given a message (sid,T") discovers
the corresponding instance of P and delivers to it. This might be possible, but is probably considerably
more complicated than the approach we take below.

37

z & bu(P) L and nN fn(P) = 0 we have

ConlP(2)] ® [] P(2)

€S

In the following, we fix a set SID of terms containing no names or variables. The set
SID will represent the set of all session IDs. We assume that id = id’ entails id = id’
for id,id" € SID (different IDs are never equivalent by the equational theory).

Note that not for every set SID a SID-indexing context exists. For example, if SID is
not semi-decidable (but the equational theory is), then there is no SID-indexing context.
One might be concerned that our definition of SID-indexing contexts cannot be fulfilled.
The following definition shows that this is not the case, at least if we use suitably encoded
bitstrings as SIDs.

Definition 5.3 Assume that a nullary constructor nil and unary constructors zero and
one are part of our symbolic model. Let SID ;s be the set of all terms built from nil, zero
and one. Assume furthermore that for id,id" € SIDy;, in our symbolic model id =g, id’
entails id = id’. Let

Cf,]f’”"s :=va.(a(nil)|la(x).(@(zero(z))|[a(one(z))|0))

Intuitively, Cﬁfé) vits ig a factory with parameters z and a for tagged instances of P
that realizes the abstract construction of [],.q/p, P(@)). We now show that Cfff bits
actually is an SID p;s-indexing context. Towards this goal we first define an intermediate
representation of Cfff bits |

Definition 5.4 Let P be a process. We write P™ for n parallel instances of P (P|...|P).
We define the following functions on the set of processes:

Gz,0(P) :=a(z).(a(zero(z)) | a(one(z)) | P)
g;},a(P) ::(Gz,a(P))n ‘ !Gz,a(P)
Ce? oM (P) :=Soesin P | va.(Ssegnala) | G o(P))

where YgerTP for a finite set of terms T = {Ty,...,T;} is syntactic sugar for
P{T;/z}|...|P{T;/z} (this is only well-defined up to structural equivalence), sID C
SID, gID C SID and n € N.

Intuitively, sID (spawned IDs) contains the ids for all instances of P, that have
already been tagged but are still formally a part of Cﬁff vits (i.e., “are still in the factory”).
gID is the foundation for the ids yet to be generated. These ids are the elements of the
span of gID which we will introduce in the following definition. The last parameter n
exists mainly for technical reasons and counts the number of currently active generator
instances G*%(P).

"' P may have z € fu(P) but we forbid 2 € bv(P) to avoid technicalities in the definition of P((z)) due
to the shadowed z.

38

Definition 5.5 (Span) Let S C SIDyys be a set of IDs. We call (S) = S U
{en(...ca(c1(s))...) : s € S,¢; € {zero, one}} the span of S (note that (S) C SID ;).

The following definition bridges the gap between Cg{LD’gID’") (P((z)) and [[,cq P(x)).
Have in mind that S denotes the set of ids that are yet to be used by the product process
for tagging and we have S = SIDy;, at the beginning.

Definition 5.6 (S-valid) Let sID C SIDy;s, gID C SID ;s and S C SID ;s be sets of
ids and sID and gID be finite. We call Céf(]lD’gID’n) S-valid if sID = @ and gID = {nil}
or if

(i) sID C S

(i) gID = {f(x) : x € G, f(z) & G, f € {zero,one}} where G := (SIDyys \ S) U sID
(intuitively, G is the set of ids already generated)

(iii) (gID) = S\ sID

Lemma 5.7 Let S C SIDy;s and CS(ILD’QID’") be S-valid where n > 1. Then for any
id € gID we have that Céf(]lD DY) o S walid where sID' = sID U {id} and gID" :=

gID \ {id} U {zero(id), one(id)}.

Proof. Due to [Definition 5.6] point [l we have that gID N sID = @ and gID C S. We
check the three points of [Definition 5.6 for sID’ and gID':

(i) id € gID C S and sID C S entail sID’ = (sID U {id}) C S

(ii) For aset G C SIDy;s we define M(G) :={f(x) : x € G, f(z) € G, f € {zero, one}}.
By assumption we have gID = {nil} or gID = M(G) for G := (SIDp;s \ S) U sID.
The first case leads to sID’ = {nil} and gID" = {zero(nil), one(nil)} for which
this point can easily be verified. For the second case we define G’ := G U {id}.
id ¢ M(G') since id € G'. f(id) € M(G') for f € {zero, one} iff f(id) & G'. We
assume towards contradiction that f(id) € G'. Then f(id) € G and by definition
of G f(id) € (SIDpys \ S) U sID. However

o f(id) € (SIDyys \ S) entails f(id) ¢ S and thus f(id) & (gID). This contra-
dicts f(id) € (gID) (which holds since id € gID).
e f(id) € sID entails f(id) ¢ (¢gID) and leads to a contradiction analogously.
All together we have f(id) € G and hence M(G') = M(G) \ {id} U
{zero(id), one(id)} = gID’.
(iii) (gID'") = (gID\{id}U{zero(id), one(id)}) = (gID)\{id} = S\sID\{id} = S\gID'.

O

To show that Cff(f) vits g a SIDp;s-indexing context (see [Lemma 5.10) we first show

P9I (p((2) N va. [1,eg P(() for every S-valid ¢S50,

39

Lemma 5.8 Let P be a process and M be a term. If Cg({fiD’gID’n)(P((:c))

ezactly one id € sID such that P((id)) Tu .

) T there is

Proof. 1t is easy to see that C(SID 91D, n)(O) never communicates on a channel (note that
a is bound). Hence for C(SID oD, n)(P (z))) Tam we need one of the tagged instances of P

in Cg(:éD’gID n)(P((z))) to communicate on M, i.e., P((id)) s for some id € sID requiring
M =g (id,). Analogously, for any id" € sID w1th P((id") Ty we have M =g (id’,0).
Due to [Definition 2.5/(F) (natural symbolic model) thls entails id =g id’ Wthh leads to
id = id" by definition of SIDyys (sID C SIDpys). Thus, the ID id with P((id)) Ju is
unique. [

Lemma 5.9 Let P be a process with at most one free variable, which we call x if existent,
and x & bv(P). Let a & fn(P) be a name. Then

A ENET | ()

2ESID s

Proof. We define the relation

R= =~ U{ECS P (P(2),E[]] P(«)]) : for any n >0, S C SIDyys,
zeS

evaluation context &, process P and Cz(jﬁD 9ID:n) S valid}

closed under structural equivalence. Then we show that R C ~. Towards this goal we
show that R and R~! are simulations. We start with R:

o EICEP I (P((2)] Las: TF E[0] Lar we obviously have E[[[,cq P(«)] {a. Oth-
erwise Cg(:éD’gID’n)(P((:c))) Iy In this case, according to [Lemma 5.8 there is
a distinct id € sID such that P((id)) Ly and, since E[CEIP9P™ (P(@))] Lur,

E[P((id)] Lu. On the other hand, due to the S-validity of C*22-9"P™) gD C
S. With id € S we have J[,cq P(z) — P(id)|[],cs\ figy P(2)) and hence

EMMTues P(@)] —Lar.
o £[CEIP9IDM (P ()] — (E[CEEP9P™) (P((2)))]): We distinguish three cases

1. — does only affect C(SID’QID ")(P((ac))) up to structural equivalence. In
this case we have £[0] — £'[0], &£[[[,cq P(z)] — &'l eq P(z))] and

&SP (P (), €' Tes P(2))]) € R.

2. — is a COMM reduction that interferes with £ and CQ(E%D’QID’")(P((JJ))). Due
to [Lemma 5.8 we find a distinct id € sID such that

[P (P (@)] — €'[P (i) |cEiP\ 9P (P(a))]

40

Analogously to the case for & [Céf(]LD’gID’n)(P((x)))] lm we spawn a properly
tagged instance of P from [], ¢ P((x)). With £[0] := £'[P((id))'|0] we have

EleiP) el T P(@)) eR
zeS\{id}

since Cg(f{lD\{id}’gID’n) is (S'\ {id})-valid.
3. — does only affect £ up to structural equivalence. In this case we have
Cg(:éD’gID’n)(P((:c))) — Cg(:éD’gID’n)(P((:c)))'. We distinguish three cases:
— — is a REPL reduction and spawns a new instance of G, (see
. In this case C& Y™™ (P((2)) — CE ™" (P((2)
and (£[Ce” """ V(P ()], E[Les P())) € R
— — is a COMM reduction on channel a (@a(id)) (note that this requires
n > 1). In this case id € ¢gID C S and Cg(:éD’gID’n)(P((x))) —
CLIP9lln=1) (P (1)) where sID' := sID U{id} and gID’ := gID\ {id}U
{zero(id), one(id)}. By [Lemma s we see that CI2 9" =D (p (1)) is
still S-valid. Hence (E[CSE” 9™ " (P (@)], [es P(2)]) € R-
— — is a reduction of one of the P-instances P((id)) (id € sID) (note that

due to and a ¢ fn(P) only one instance can be affected). In
this case we proceed analogously to case 2.

e Obviously R is closed under the application of evaluation contexts.

We continue by showing the three points of observational equivalence for R~!:
o 1 es P(«)] Lo iff E[0] Las. Therefore E[CEL ™™ (P((x)] Lar.

o El[l,es P(@)] = €l es P(@)]): U wehave E[[[, e P(2)] = E'[[1,es P(z)] we
have (£'[T,es P(2)], S ™(P((2))]) € R7L. Otherwise — is an IREPL
reduction: [, cq P(#)) = P(id)|]],es (iay P() with id € S. On the right side

of the relation we have £[CSI9P™ (P((2))]. Since CSEP9P™ (p((2)) is S-valid,
we have that id € sID or id € (¢ID).

If id ¢ sID, i.e., id € (gID), id is of the form id = ¢(...ci(idy)...) for some
idg € gID, some | € N and ¢; € {zero, one} for i € {1,...,1}. We write id; for
¢i(...a1lidp)...) for i € {1,...,1}, G = zero if ¢; = one, ¢ := one otherwise and

id; for G(c;_1(...c1(idp) . ..)). The reduction 20), denotes a REPL reduction that

spawns an instance of G o (see [Definition 5.4) and a following COMM reduction

a(id
on channel @ with message id; € gID. The application of the sequence M)

LON E[CQ(E%D’QID’")(P((JJ)))] for some 0 < k < [yields a process that is

structurally equivalent to S[Cg(:éD'“’gIDk’n)(P((:c)))] with sIDy := sIDU{idy, ..., idy}
and gID,, := gID \ {idp} U {id;, ..., id,_; } U {zero(idy), one(idy)}. For each step

41

k ~» k + 1 the S-validity of C(SIDk’gID’“’ " s guaranteed by We define
sID" := sID; and gID' := ¢gID,; and have that id € sID’.
Otherwise, if id € sID, we define sID' := sID and gID' := gID.

With id € sID’ and &'[0] := 5[P((id))|D] we have that

TP [Pkl (p((2)]) € R
IES\{Zd}

since Céng,\{id}’gIDl’n) is (S'\ {id})-valid.
e Obviously R~ is closed under the application of evaluation contexts.
Since C%"0) ig SID,-valid the Lemma holds. 0

Lemma 5.10 Cfﬂ?bits 18 an SID p;s-indexing context.

Proof. Let, according to[Definition 5.2] P be a process and z be a variable with z & bu(P).
We pick a name a with a ¢ fn(P). We claim

IDpits ~y
i I Pe)
:L'ESIDbitS

We have to show Cfff“ts [P(z)]lo =~ (I,esp,,, P(@)o for all closing substitutions o.
W.lo.g. a € o and o(x) = x and thus it suffices to show

ciyveP(a)ol~ I (P(@)o) (3)

:L'ESID bits

Note that Po is a process with at most one free variable, denoted z. Furthermore
z & bu(Po), a & fn(Po) and CSPvn [P((z))o] = CL™H0 (P ((2))o) by Definition 5.4
By we have (B]) which concludes our proof. (]

We stress that C; SID bits ig just one example of an indexing context. From now on SID is
an arbitrary but ﬁxed set of indexes and C; SID an arbitrary but fixed SID-indexing context
according to [Definition 5.2l All our results then hold independently of the particular
choice of SID.

We can now finally define !!P:

Definition 5.11 (Indexed replication) Let P be a process. We define I, P :=
CEIED[P((JU))] for some arbitrary n with n N fn(P) = 0. We write P for 1, P with
2 & (fo(P) U bu(P)).

Notice that our definition is a bit more general, we can even write !, P, in this case P

will have access to the sid via the variable z. We need this added flexibility in Section 8.3]
for the protocol KE*.

Note that since Cfﬁ? [P(z)] ™ [],eq P((x)) by definition, we can actually think of
. P as being defined as [],.g P((x)). Our definition, however, has the advantage that
1. P is actually a process in the original calculus, the concept of product processes was
only used as a tool for defining !!.

42

On real-life implementations of !!. When implementing a process !!P in real life
(i.e., in software for actual deployed protocols), a process such as !l¢(z). P’ is probably best
implemented by a process that listens on ¢ for messages of the form (sid,m). Whenever
such a message is received, a new instance of P’ with session id sid is spawned, and all
further messages with that sid are routed to that instance of P’. On the other hand,
a process such as !I¢(M).P’ cannot be implemented, because such a process would non-
deterministically send (sid, M) for all possible sid. A process !!(A|B), where A and B
correspond to processes run on different computers, does not immediately make sense,
because if, e.g., A receives a message that spawns a new instance, B would have to
spawn a new instance, too, without communication between A and B. Fortunately, we
show in [Lemma 5.30] below that !!(A|B) & !!A | I!B; then A and B can spawn instances
independently.

Properties of !l. The following four lemmas state several important properties of !!.
We will need these to prove the composition theorem below. Lemmas[B.12] 5.13], and
also hold for ! instead of !!. But is specific to !, and is crucial for enabling
the composition theorem.

Lemma 5.12 Let P be a process and ¢ : N — N be a permutation on names. Then
(N, P)p =1, (Py) for all variables x & bu(P).

Proof. Pick names n with n N fn(P) = 0 and ¢(n) N fn(P) = 0. Note that (1, P)p =
CffﬁD [P((z))]p. Therefore (I1,P)p = CffﬁD [P(z)]p = C;z{OD(n) P((x)p] = N, (Pyp) since
p(n) N fn(P) =0. - O

Lemma 5.13 Let P, Q) be processes. Then P & @Q = !, P & !, Q for all variables
z & bu(P)Ubv(Q).

This lemma was surprisingly hard to prove. Before we proceed to the proof (for which
we have to develop a number of auxiliary concepts and definitions first) We very roughly
sketch the proof idea here: The main thing to show is that P ~ Q = P(M)) =~ Q(M))
for arbitrary fixed M. To show this, we define an operation untag that maps P((M)) to
P, i.e., removes the tag M from all channels. Then we wish to prove that the following
relation is a bisimulation: ~g_, := {(P, Q) : untag(P) =~ untag(Q)}. Once we have that,
we see that P((M)) ~s,, Q(M)) and hence P(M)) ~ Q(M)). Unfortunately, ~s_, is
not really a bisimulation. A bisimulation must be closed under evaluation contexts, even
under contexts in which not all channels are tagged with M. To solve this problem, we
tweak untag in such a way that non-tagged channels C' are mapped to specially marked
channels (using a special name ng;q)which can then be mapped back to C' when tagging
again. And we need to tweak the notion of a bisimulation slightly, so that ~s_, only
needs to be closed under evaluation contexts on which our operation untag works properly.
These tweaks lead to an unexpectedly complex proof of [Lemma 5.3l

Before we prove [Lemma 5.13] (on [page 50]), we will need to develop a number of tools

and lemmas.

43

Definition 5.14 A set S of closed processes is n-complete for a name n iff for any
closed process P with n & fn(P) U bn(P), there is a closed process S € S such that
P~S.

Definition 5.15 (S-n-observational equivalence) Let S be a set of closed processes
and n be a mame. An S-n-simulation R is a relation on closed processes P,) with
n ¢ (m(P)U(Q)Ubn(P)Ubn(Q)) such that (P, Q) € R implies

(i) if Plum then Q@ ="l
(it) if P — P with n & fn(P") U bn(P’) then Q@ —* Q' and (P', Q") € R for some Q'

(iii) (vs.(S|P),vs.(S|Q)) € R for all closed S € S and names s C N with n & (fn(S)U
bn(S)Us).

A relation R is an S-n-bisimulation if both R and R~ are S-n-simulations. S-n-
observational equivalence (x3%) is the largest S-n-bisimulation.

Intuitively ~% is like observational equivalence on processes that do not contain n
where the environment is restricted to be a process from S. It is easy to check that
the transitive hull of ~% satisfies the conditions (i), (@) and (i) from above. Hence ~%
contains its own transitive hull and thus is indeed an equivalence relation.

Lemma 5.16 If a set of processes S is n-complete and n & (fn(S)Ubn(S)) for all S € S,
then P =% Q < P ~ @ for all closed processes P, Q with n & (fn(P)U fn(Q)U bn(P)U
bn(Q)).

Proof.
Let P, Q € {(P, Q) : P, Q closed processes with n & (fn(P)Ufn(Q)Ubn(P)Ubn(Q)}.

P~ Q= P=% Q. Weshow that observational equivalence restricted to processes that
do not contain n is an S-n-bisimulation. Points () and (@) of [Definition 5.T5] follow
directly from points ([l) and (@) of observational equivalence (see [Definition 2.4). It
remains to show that for P — P’ with n & fn(P’) U bn(P’) we can find a sequence of
corresponding internal reductions for). Since P ~ @ we find a sequence @ =: @1 —

.. — Q=: Q' with P’ = @’. However, we do not necessarily have n & fn(Q’) U bn(Q")
since this is not a requirement for observational equivalence. Fortunately, we we will see
that we can find a process Q' with Q —* Q', P’ ~ Q" and n & fn(Q’) U bn(Q’). For
this, we transform the sequence Q; — ... — @ to a sequence Q; — ... — Qp with
Qi =g Q; and n & fn(@z) U bn(@z) for i € {1,...,¢}: First, we set Q1 := @ and in
particular have Q; =g @ and n & fn(Q;) U bn(Ql) For i € {2,...,¢} we define Qi as
follows: By [Lemma 3.5 since QZ 1 =5 Qi1 — Q;, we find Q w1th Qi1 — Q =g Q.
W.lo.g. we can assume n & bn(Q) since — and =g allow for renaming of bound names.
We distinguish two cases:

44

e n & fn(Q): Then Q; := Q meets our requirements.

e n € fn(Q): Since Qi1 — Q and n ¢ fn(@i_l), the free occurrences of n can
only be the result of a destructor evaluation (LET-THEN, [Figure 3)). Let D denote
the corresponding destructor term with D |} 7. By [Definition 2.5l) (natural
symbolic model) and since n ¢ fn(D) we find a term 7" with n ¢ fn(T") such that
Dy T" and T =g T'. Then Q; := Q{T/ T’} meets our requirements.

Finally, Q¢ does not contain n and Q = Q; —=* Q =g Q = Q ~ P'. Hence
(P, Q) e~N{(P,Q): P, Q closed processes with n & (fn(P)Ufn(Q)Ubn(P)Ubn(Q)}
and thus observational equivalence restricted to processes that do not contain n fulfills

[Definition 5.151 ().

s Q@ = P~ Q. We first introduce a bisimulation ~, and then show P =% Q =
P=x, Q= P~ Q: Let p: N = N\ {n} be a bijection on names. We define

rei={(P,Q): Pp =g Qv}

We claim that ~,, is a bisimulation: It is easy to verify that ~, satisfies points ({l) and
) of Definition 2.4 (both follow stralghtforwardly by [Definition 5.T5)). For point (i)
we have to show C[P] ~, C[Q], i.e., C[Ply =% C[Q]p, for all evaluation contexts C and
P =, Q,ie, Pp =% Qp. For any evaluation context C we have C[O] = vn.(C|0) for
some process C and names n C N. Due to the completeness of S we find an evaluation
context C[] := vnep. (C\D) such that Cyp ~ C with C € 8. Since n is not in the
range of ¢ and n ¢ (fn(C) U bn(C)) for C € S we have C[Py] A2 C[Qgp]. Furthermore
C[Py] ~ C[P]¢ and hence (both sides do not contain n) C[Py] AL C[P]go (analogously for
Q). Altogether we have C[P]p ~% C[Py] A 5[@90] ~¢ C[Q]p. Since =, is symmetric
by definition this closes the proof of our clalm that ~, is a bisimulation.

We have that P ~% @ entails P ~, () by definition of ~,. Furthermore P ~, @
entails P &~ () since = is the largest bisimulation. Hence P ~% @) entails P ~ @. This
closes the second part of our proof. O

In the following we fix a name ngy and closed term Mg,y with ngg & fn(Mgq).

Definition 5.17 (Sid-sensitive processes) Sy, the set of sid-sensitive processes, is

the set of processes following the grammar from [Figure J|

Definition 5.18 (S,4-transformation) We define the function ® : P — ®(P) = S,
which maps a closed process P with ngg € P to a sid-sensitive process S € Sgq, as
follows:

1. For each protected occurrence of an input C(z).P" in P we replace C(z).P’ by

if Mgiq = fst(C) then (let y = snd(C) in (Mgyq,y)(z).P') else C(x).P’

2. For each occurrence of an output in P we proceed analogously.

45

P.Q:=0
(Mgiq, C)(z).P
(Msid, C)<T>P
C*(z).P
C*(T).P
if Mg = fst(C) then P else C(z).Q
if Mg = fst(C) then P else C{T).Q
PlQ
P
va.P
let z =D in P else @

Figure 4: Syntax of sid-sensitive processes. M, is the fixed term. C, T range over all
terms with ngg € fn(C) and ngg & fn(T), C* over all terms with ngg & fn(C*) such
that there is no substitution o with C*o =g (M4,) for some term 0. D is a destructor
term with ngg &€ fn(D) and a # ngqg is a name. Note that in the if-constructions both
occurrences of C stand for the same term.

Lemma 5.19 Sg;q is ngg-complete.

Proof.

e Claim 1: For all processes P we have

if Mgq = fst(C) then (let y = snd(C) in (Mgq,y)(z).P) else C(z).P & C(z).P
()
(analogously for outputs). Proof: Let o be a closing substitution for [Equation 4]
We remember that

if Mgiq = fst(C) then (let y = snd(C) in (Mgq,y)(z).P) else C(z).P
is just syntactic sugar for
let z = equals(Mgq, fst(C)) in (let y = snd(C) in (Mgq, y)(z).P) else C(z).P

By definition of equals we have equals(Mgq, fst(C))o || Mgq iff fst(C)o || Mgyq.
We distinguish two cases:

— If fst(Co) | M4, then by Definition 2.5](w) (natural symbolic model) we have

46

that (Mg, C2) =g Co for all Cy with snd(Co) |} Ca. Hence

if M4 = fst(Co) then (let y = snd(Co) in (Mgq,y)(z).Po) else Co(z).Po
R if Mg = fst((Migs C3)) then
let y = snd((Msia, C2)) in (Msia, y)(z).Po
else

(Msia, Co)(z).Po
X et y = snd((Msig, C2)) in (Myia, y)(z).Po
(Miq, Co)(z).Po
~ C(x).P

(¥) by Lemma 3.2 ({¥)) and (x*) by [Lemma 3.2 (&) -
— If fst(C)o {f Mgiq, then the claim follows by [Lemma 3.2] ().

Qi

e Claim 2: P & ®(P). We prove this by structural induction on P. Since ® does
only affect in- and outputs we can focus on those: If P = C(z).P’ then

P = C(z).P
N C(2).0(P)

(%)
& if Mg = fst(C) then (let y = snd(C) in (Mg, y)(z).P") else C(x).P’
— &(P)

where (%) holds by the induction hypothesis and (**) by Claim 1.

For any closed P we have P & ®(P) by Claim 2. ®(P) is closed since P is closed and
hence P ~ ®(P). For P with ngy & (fn(P) U bn(P)) we have ®(P) € Syq. Thus Syq is
ngg-complete. O

Lemma 5.20 For closed S € Sgq and S — S" with ngg & fn(S") U bn(S") we have
S’ e Ssid-

Proof. First, we observe that all processes not containing ngg and being structurally
equivalent to a sid-sensitive process are sid-sensitive as well. Furthermore C[P], where C
is an evaluation context and P a process, is sid-sensitive iff C[0] and P are sid-sensitive.
In all cases w.l.o.g. ngqg € fn(C) U bn(C) because = does not introduce free names and
bound names are w.l.o.g. not ngy. We have the following cases:

e REPL: S =([!P] — C[P|!P] = S'. |P is sid-sensitive, hence P and P|!P are.

e COMM: S = C[C(T).P|C(z).Q] — C[P|Q{T/z}] = S'. Q is sid-sensitive and
nsig € fn(T) since ngq & fn(S) U bn(C). We can easily check the grammar of sid-
sensitive processes from to see that a substitution {7 /z} with ngq & T
applied to a sid-sensitive process yields a sid-sensitive process. Therefore Q{7 /z}
and P|Q{T/z} are sid-sensitive.

47

P.Q:=0
C(z).P
C(T).P
(nsia, C*)(z).P
(i, C7)(T). P
if Mg = fst(C) then P else (ngq, C)(z).Q
if Myq = fst(C) then P else (ngq, C)(T).Q
PIQ
P
va.P
let z =D in P else @

Figure 5: Syntax of ng;4-good processes. Mg, is the fixed term. C, T range over all
terms with ngq & fn(C), ngq € fn(T). C* ranges over all terms with ngg & fn(C*) such
that there is no substitution o with C*o =g (M4, T') for some term T. D is a destructor
term with ngg & fn(D) and a # ngqg is a name. Note that in the if-constructions both
occurrences of C stand for the same term.

e LET-THEN: S = C[let z = D in P else Q] — C[P{T/z}] = S’ for some term T
with D |} T and ngg & fn(T) since ngg € fn(S") U bn(C). Analogously to the
argument in the COMM case, P{T/z} is sid-sensitive.

e LET-ELSE: Here, according to the grammar of sid-sensitive processes from
we distinguish three cases:

— S = C[if My = fst(C) then P else C(z).Q] — C[C(z).Q] = S'. C is closed
since S is closed. Mgy = fst(C) is false, i.e., there is no term M such
that equals(Mgyq, fst(C)) | M. Therefore fst(C) {{=p Msyqy. This implies
C #g (Mg, X) for all terms X by [Definition 2.5]([) (natural symbolic model).
Hence C(z).Q is sid-sensitive (matching the C*(z).P rule).

— S = C[if Myq = fst(C) then P else C(T).Q] — C[C(T).Q] = S’. Analo-
gously to the previous case.

— S=Cllet z =D in Pelse Q] - C[Q] = 5’. Q is sid-sensitive by definition.

This concludes our proof. [

Definition 5.21 (ngg4-good) A process P is ngq-good if it follows the grammar from

Figure 3

48

Definition 5.22 (tag) We define the function tag on terms:

tag((nsia, C)) :==C
tag(C) :=(Ms;q, C) otherwise

Let P be an ngq-good process. Then we write tag(P) for the process that results from
replacing any channel identifier C' by tag(C) in P.

The function tag adds a tag My, to all channel identifiers in a process. We will see
that tag returns a sid-sensitive process. We will need that tag is a bijective mapping
between ng;4-good processes and sid-sensitive processes. The special name ng;y is needed
to cover the corner cases when constructing that bijection.

Lemma 5.23 Let P be an nggq-good process. Then tag(P) € Ssiq.

Proof. We do a structural induction over the grammar of ngg-good processes from

Assume that tag(P’) and tag(Q') are in Sg;q.

e For the communication on a channel C with ngg € fn(C) we have tag(C(z).P’) =

(Mgiq, C)(z).tag(P’) which is obviously in Sgq. tag(C(T).P’) analogous.

e For the communication on a channel C = (ngg,C*) we have
tag((ngiq, C*)(x).P") = C*(z).tag(P"). C*(x).tag(P’) is in Sgq since, by
definition of ng4-good, there is no substitution o with C*o =g (M4, T') for some
term T. (ngq, C*)(T).P’" analogous.

e For the first pair of if statements we have that

tag(if Mg = fst(C) then P’ else (ngq, C)(7).Q")
= (if Myq = fst(C) then tag(P') else C(z).tag(Q"))

is in Syiq since ngq & fn(C). Analogous for (ngg, C)(T).Q" in the ELSE branch.
Checking the remaining rules from is a straightforward task. O

Definition 5.24 (untag) We define the function untag on terms:

untag((Msa, C)) :==C
untag(C) :=(ngq, C') otherwise

Let P be a sid-sensitive process. Then we write untag(P) for the process that results from
replacing any channel identifier C' by untag(C).

Lemma 5.25 Let P € Sy be a sid-sensitive process. Then untag(P) is ngq-good.

Proof. Analogous to the proof of [Lemma 5.23] a straightforward structural induction
shows this Lemma. We quickly sketch the interesting cases:

49

e untag((Mgq, C)(z).P") = C(z).untag(P') matches rule C(z).P from
(note that ngq & fm(C)). (Mgq, C){T).P" analogous.

e untag(C*(x).P") = (ngig, C*)(z).untag(P"): untag(C*) = (ngaq, C*) since there is
no substitution o with C*o =g (Mg,) for some term . The expression matches
rule (ngq, C*)(z).P from [Figure 5 C*(T).P analogous.

e For the first if-rule we distinguish two cases:

— C # (Mgq4,0). Then

untag(if Mgq = fst(C) then P else C(x).Q")
= (if My = fst(C) then untag(P') else (ngq, C)(z).untag(Q"))

matches rule (if Mg = fst(C') then P else (ngq, C)(z).Q) from [Figure 5
- C = (Msida Cl) Then

untag (if Myq = fst(C) then P’ else C(x).Q’)
= (if Myq = fst((Mgq, C")) then untag(P') else C'(z).untag(Q"))
= (let y = equals(Myq, fst((Msq, C"))) in untag(P’) else C'(z).untag(Q"))

Nsid ¢ f(C") since ngy ¢ n(C). Hence

C'(z).untag(Q') is ngg-good. The process (let y =

equals(Msg;q, fst((Msq, C'))) in untag(P’) else C'(z).untag(Q’)) matches rule

(let z = D in P else Q) from with D = equals(Mg;q, fst((Msq, C'))).
Analogous for C(T).Q’ in the ELSE branch.

U

Lemma 5.26 Let P be an ngq-good process. Then untag(tag(P)) & P.

Proof.
We prove this lemma by structural induction over P according to the grammar from

e P = (C(x).P" where C is a channel identifier with ngy ¢ C: Then C # (ngq, C')
for some term C’ and thus tag(C) = (Mg, C). Hence untag(tag(C)) = C and
untag(tag(P)) = untag(tag(C(z).P")) = C(z).untag(tag(P’)) & C(z).P' = P by

Y

the induction hypothesis and since & is closed under the application of contexts

(Cemma 2.7). P = C{(T).P’ analogously.

o P = (ngq, C*)(z).P’ for some term C* with ngy & fn(C*) and C*o #g (Mg, C*)
for all substitutions ¢ and terms C*. Certainly tag((ngq, C*)) = C*. By assump-
tion C* # (Mg, C*) and thus untag(tag((ngq, C*))) = untag(C*) = (ngq, C*).
The rest of this case, as well as the case for P = (ngq4, C*)(T).P’, is analogous to
the previous case.

o P = if My, = fst(C) then P’ else (ngq, C)(2).Q" where ngg & fn(C): Clearly
tag((nsia, C')) = C. We now distinguish two cases for C:

20

— C = (Mg, C") for some term C’. Then untag(C) = untag((Mgq, C")) =
C" # C. This is the reason why we cannot have untag(tag(P)) = P in
general. However,

untag(tag(P))
= untag(tag(if Mgy = fst(C) then P’ else (ngq, C)(2).Q"))
— if Moy = fot((Maig, O')) then untag(tag(P")) else untag(tag((nua, O)(x).Q'))

*

(%)
~ untag(tag(P')) X P’

*

Nif Mgq = fSt((Msida Cl)) then P’ else (nsida C)(x)QI
=if Mg = fst(C) then P’ else (ngq, C)(2).Q" = P

In both cases (%) holds by [Lemma 3.2(wil) and [Definition 2.5[({vl) (natural
symbolic model). (xx) holds by the induction hypothesis.

— Otherwise untag(C) = (ngq, C') and it is easy to see that untag(tag(P)) = P.
P =if My = fst(C) then P’ else (ngq, C){(T).Q" analogously.

The missing cases for parallel composition, bang, name restriction and let-statement all

work straightforwardly.
O

Lemma 5.27 Let P be a sid-sensitive process. Then tag(untag(P)) = P.

Proof. Since tag and untag do only modify channel identifiers we show tag(untag(C)) =
C for the different kinds of channel identifiers that are allowed in an sid-sensitive process

by [Figure 4

e (is a channel identifier with C' = (M4, C") for some term C’ with ngy & fn(C’):
Then untag(C) = C" and tag(C') = (Mgq, C') = C since ngq & fn(C). Hence
untag(tag(C)) = C.

e (' is a channel identifier C* with ngq ¢ fn(C*) and C*o #g (Mgq, C*) for all
substitutions o and terms C*. Then tag(untag(C)) = tag((nsq, C*)) = C* = C.

e (' is a channel identifier with ngg & fn(C) in the ELSE-branch of (if tag = fst(C)).
We distinguish two cases:

— C = (Mgyq, C") for some term C’. Then untag(C) = C’ and tag(C’) =
(Msia, C') since ngq & fn(C") € fn(C).
— Otherwise untag(C) = (nsq, C) and tag((ngq, C)) = C.

In both cases we have untag(tag(C)) = C.

o1

Definition 5.28 We define a relation ~s,,:= {(P,Q) : P,Q € Ssd,untag(P) ~
untag(@Q)}.

Lemma 5.29 Assume that ~s_, is an Ssq-bisimulation and P ~ Q for closed ng;q-good
processes P and Q. Then tag(P) ~ tag(Q).

Proof. Note that tag(P) and tag(Q) are sid-sensitive processes by [Lemma 5.23] and thus
do not contain ngy. We have
P ~ Q =untag(tag(P)) ~ P ~ Q ~ untag(tag(Q)) (by Lemma 5.26))
=tag(P) ~s,, tag(Q)
=tag(P) ~g™ tag(Q) (since %gz’jl is the largest Sg;q-bisimulation by [Definition 5.15))
) ~ tag(Q) (by Lemmas EI6 I3

=tag(P
(]

Lemma 5.30 Let P be a closed ngq-good process with P =g Q — Q' for some closed
processes @), Q'. Then there is a closed ngq-good process P’ such that P — P’ =g Q'
and tag(P) — tag(P').

Proof. According to[Lemma 3.5 we find a closed process P’ such that P — P’ =g Q' (this
holds for any P, not just for ngg-good ones). Now we show that if P is additionally ngqg-
good, there is a closed ng4-good process P’ with P — P’ =g P’ and tag(P) — tag(P')
which proves the Lemma.
First, we make some general observations: For P — P’ we find an evaluation context
C and processes R, R’ such that P = C[R] — C[R'] = P’ and R — R’ is a direct
application of one of the rules for internal reductions from [Figure 3] Furthermore, it is
easy to verify that any process A with P = A and ngg & bn(A) is also ngg4-good and
tag(P) = tag(A). Additionally, C[R] is ngg-good iff C[0] and R are ng4-good. Hence,
w.l.o.g. (since = allows for renaming of bound names), we can assume C[0] and R to be
nsig-good. Since tag(C[R]) = tag(C)[tag(R)], it remains to show that R’ is ng4-good and
that tag(R) — tag(R’). We will be able to show this for the REPL, the COMM and the
THEN-ELSE rules and have that P’ := C[R'] = P’ = Q' in these cases. In the LET-
THEN case however, the destructor evaluation might introduce a term T containing a
free occurrence of ngy. Fortunately, replacing T with an equivalent term T will solve
the problem and we have that P’ := C[R'{T/T'}] =g P’ = Q' for R'{T/T’} being
Ngig-good. In detail:
e REPL: R — C[R|!R] = P’ where w.lo.g. C[‘R] and therefore C[R|!R] are ng;q-
good. We set P’ := C[R|!R] and have tag(P) = tag(C[!'R]) = tag(C)['tag(R)] et
tag(C)l1ag ()| ag(R)] = tag(C[R|'R]) = tag(P

). £) by the REPL rule.
e COMM: Analogously to REPL P = C[?(T> R|C(z).R] — C[R|R{T/z}] =
where ¢ =g C and w.lo.g. C[C(T).R|C(z).R] and C[R|R{T/z}] are ngq- good.

We observe

tag(C(T).R) = tag(C)(T).tag(R) and tag(C(z).R) = tag(C)(x).tag(R)

02

by [Definition 5.221 Analogously to REPL we have to show
tag(C)[tag(C)(T).tag(R)|tag(C)(x)-tag(R)] — tag(C)[tag(R)|tag(R){ T /x}]
Note that tag(R){T/z} = tag(R{T/z}) since ngq & fn(T). Hence it is necessary

and sufficient to show tag(C) =g tag(C). Now we distinguish two cases to show
tag(C') =g tag(C): .
— C = (ngiq, C") for some term C’. By assumption we have C' =g C and hence
C =g (nsq, C"). By the grammar of ngg-good processes we have
Ngid & fn(@) or C = (ngig, C*) for some C*. [Lemma 3I() above excludes
the first case and leaves us with C' = (nq, C*). By[Definition 2.5 () (natural
symbolic model) we have €’ =g C* and hence tag(C) = C* =g C' = tag(C).
— C # (ngq, C") for any term C’. By the grammar of ngg-good processes
(Figure b)) we then have ngy & fn(C). C = (ngq, C') for some term C’ leads
to C' =g (ngq, C') which contradicts [Lemma 3.J]([). Hence (again by the
grammar of n4-good processes) Ngq & fn(C’) Thus tag(C) = (Mg, C) =g
(Myia, ©) = tag(C).) ~
e LET-THEN: P = Cllet z = D in R else R| — C[R{T/z}] = P’ with D | T. By
[Definition 23 (natural symbolic model) we find 77 with ngg & 7', D |} T’
and 7" =p T. Hence we have

P =C[let z =D in R else R] — C[R{T'/z}] =: P’
and P’ =5 P/ = Q'. Altogether

tag(P) = tag(C[let z = D in R else R])
= tag(C)[let z = D in tag(R) else tag(R)]
tag(C)[tag(R){ T"/x}]
)

o

)

O)[tag(R{T'/x})]
P')

(

tag(

tag(
(%) since ngq & fn(T").

e LET-ELSE is not affected by tag and the proof is analogous to that for the REPL
rule.

O

Lemma 5.31 Let P be a closed sid-sensitive process and P’ be a closed process with
nsig & fn(P’). Then there is a process P* with untag(P) — P* and P* ~ untag(P’).

Proof. The rest of this proof is partially analogous to that of [Lemma 5.30l Similarly, we
can focus on the rules from directly. The main difference is that, for some sid-
sensitive process R and term T with ngg & fn(T), untag(R){T/z} # untag(R{T/x}).
Instead, we only have untag(R){T/z} & untag(R{T/x}) (we are going to prove that
first). Therefore the COMM rule and the LET-THEN rule, where substitutions occur,
have to be handled differently. The arguments for the REPL rule and the LET-ELSE
rule are analogous.

o3

Claim: If R is a sid-sensitive process, untag(R){T/z} & untag(R{T/z}) for all
T with ngq & fn(T). For all channel identifiers C = (M4, C') and C' = C* accord-
ing we obviously have untag(C){T/z} = untag(C{T/x}) for all substitutions
{T/z}. However, in the ELSE-branch of (if My, = fst(C)), C can be an arbitrary
term with ngg & fn(C). If C = (Mgg, C") for some term C’', untag(C){T/z} =
untag(C{T/z}) holds. Otherwise, for a substitution {7/z}, we distinguish two cases:

o C{T/z} # (Mgq, C') for all terms C’. Then untag(C){T/x} = (nsiq, C{T/z}) =
untag(C{T/x}).

e Otherwise C{T/z} = (Mg, C’") for some term C’. Then untag(C){T/z} =
(nsig, C{T/z}) # C" = untag(C{T/z}). Since fst(C{T/z}) || M4 the ELSE-
branch of R will never be executed and we, analogously to the proof of [Lemma.5.26]
replace (ngiq, C{T/z}) by C' to have untag(R){T/z} & untag(R{T/z}).

Note that P’ is sid-sensitive by [Lemma 5.20]
We now handle the COMM rule and the LET-THEN rule:

e COMM: Analogously to we have to prove untag(C) =g untag(C)
where C' and C are the channel identifiers used for communication. By the gram-
mar of sid-sensitive processes from all channel identifiers which occur
unrestricted are either of the form (a) (M, C') for some term C’ or (b) C* such
that C*o #g (Mg, C') for all substitutions o and all terms C’. We distinguish
two cases

— C = (Mg, C"). C cannot be of form (b) since C' =g C. Hence C' = (M4, C")

and ¢’ =g C by Definition 2.5({) (natural symbolic model). Therefore
untag(C) = C" =g C" = untag(C).

— Otherwise, C' is of form (b). Then C cannot be of form (a) since C =g C.
We thus have untag(C) = (nsiq, C) =g (nsiq, C') = untag(C).
We find

P =C[C(T).R|C(z).R] = C[R|R{T/z}| = P’
=untag(P) = untag(C)[untag(C)(T).untag(R)|untag(C)(z).untag(R)]
™ untag(C)[untag(R)|untag(R){T/z}] =: P*

(%) since untag(C) =g untag(C). Due to the claim above P* ~ untag(P’) which
proves the COMM case.

e LET-THEN: We have P = Cllet + = D in Relse R] — C[R{T/z}] = P'. In
contrast to [Lemma 5.30] the evaluation of the destructor may not lead to a term
T with ngg € fn(T) here if z € fu(R) since we required P’ to be sid-sensitive.
(Otherwise, if z ¢ fu(R), we obviously have untag(R){T/z} = untag(R{T/z}).)

54

Thus

untag(P) = untag(C)[let = D in untag(R) else untag(R)]
— untag(C)[untag(R){T/x}] =: P* ~ untag(C[R{T/z}]) = untag(P’)

(*) due to the claim above. This proves the LET-THEN case.

Since untag dos not affect the REPL and LET-ELSE cases these can be handled exactly
like the REPL case in the proof of [Lemma. 5.30l O

Lemma 5.32 ~g_, 15 an Syiq-ngiq-bisimulation

Proof.
Let (P, Q) € ~s,,,- We show the three points of an Sy;q-ns4-simulation.

e P |c: We have P |¢ iff P | for a channel identifier C =g C which occurs in
P and thus follows the grammar from [Figure 4 Since P ~gs_, Q: untag(P) ~
untag(Q) holds by definition. Since P |; we have untag(P) Vuntag(é @nd thus

untag(Q) =: O — ... > O ¢umag(é) for some n € N and processes @, i €
{1,...,n}. By Lemma 525 Q; = untag(Q) is ng4-good. By [Lemma 5.30 we get
a sequence of ngg-good processes @ — ... — Q) with Q] = @i, Q! =g @Q;

and tag(Q]) — ... = tag(Q.). Since Q! = Q1 = untag(Q) we have tag(Q]) =
@ by Lemma 5271 Furthermore, Q) =g Q» ¢umag(&) implies Q! iumag(é) (see

~

[Footnote 7) and tag(Q)) Vtag(untag(ey- Since C'is a term according to
we have tag(untag(C)) = C (=g C) (see [Lemma 5.27). Hence Q = tag(Q]) —*

tag(Qy,) Lo

e P — P'with ngg & fn(P")Ubn(P’): According to[Lemma 5.31]we find P* such that
untag(P) — P* ~ untag(P'). Since P ~s_, Q we also have untag(Q) =: Q1 —
.= Qn ~ P*. Analogously to the previous part we find some ng;4-good Q,’L such
that Q —* tag(Q.,) and Q! =g Q,. By [Lemma 5.26 we have untag(tag(Q.)) ~ Q!
(Q! is closed). Thus untag(tag(Q!)) ~ Q! =g Q. ~ P* =~ untag(P') which

implies untag(tag(Q))) ~ untag(P’) since =g entails ~ by [Lemma 3.2([v]). Hence
Q —* tag(Q),) and P' ~g_, tag(Q},).

o Assume P ~g_, @ and let R € S5q be a process and a names. We have
untag(P) ~ untag(Q) by definition of ~s_, and = is closed under the application
of evaluation contexts. Hence untag(va.(P | R)) = va.(untag(P)|untag(R)) =~
va.(untag(Q)|untag(R)) = wuntag(va.(Q|R)). Thus, by definition of ~g
va.(P|R) ~s,, va.(Q|R).

sid?

Since ~g,,, is symmetric it is an Sg;q-n4-bisimulation.

25

Lemma 5.33 Let P and @ be closed processes and M be an arbitrary closed term. Then
Pr Q= P(M)=~= Q(M).

Proof. Fix a name ngg & (fn(M)U fn(P)Ubn(P)Um(Q)Ubn(Q))and Mgy := M. Re-
member that all lemmas in this section were proven for an arbitrary fixed My with ngg &
fn(Mgq). Now P, @ are ngg-good and P((Mgg)) = tag(P) and Q(Msq)) = tag(Q). By
Lemmas EZIEEZ tag(P) ~ tag(Q). Hence P(M) = P(My) ~ Q(Mya) = Q).
O

Lemma 5.34 Let P and @) be processes and M be a term with fo(M)N(bv(P)Ubv(Q)) =
@. Then PR Q = P(M) & Q(M)).

Proof. For all closing substitutions ¢ we have P & () = Po ~ Qo. By [Lemma 5.33] we
have Po(Mo)) ~ Qo(Mo)) for the closed processes Po and Qo and the closed term
Mo. This entails P(M))o ~ Q(M))o since fu(M) N (bv(P)U bv(Q)) = &. Therefore
P(M)) & Q(M)). 0
Proof of [Lemma 513 By [Lemma 5.34 P((z)) & Q((z)). According to [Definition 5.11]
N, P = C’;I%[P((x))] for some names np N fn(P) = @ and !, Q = Cg}%[Q (z))] for
some names ng N fn(Q) = &. Let n be names such that n N (fn(P) U frn(Q)) = @ and
|n| > max(\@ |ng|). We have

M, z,n (,:) z,n R
Csip [P(@)] = CyipP(2)] R Cyip Q)] = Cip [Q(()]
(*) since P((z)) & Q((z)) and & is closed under the application of contexts (Lemma 2.7]).
Therefore I, P &1, Q. O
Note that [Cemma 5.13] also implies P & Q = '1P & 1Q.

Lemma 5.35 Let P be a process and n be a name that occurs only in channel identifiers
in P. Then vn!\, P & vn.P for all variables x ¢ bv(P).

Proof. First, we observe that instances of P with distinct tags cannot communicate with
each other. This can be formalized by the following

Claim. Let id,id’ € SID be distinct IDs and P, @ arbitrary processes. Then
P((id)) —*c and Q((id") —*L¢ for terms C,C’ implies C #p C’. Proof: By

every channel identifier in P((id)) is of the form (id, X) for some term
X. Analogously, every channel identifier in Q((id")) is of the form (id’, Y). Towards
contradiction we assume C' = (id, X) =g (id’, Y) = C’. Then, by [Definition 2.5 (i)
(natural symbolic model), we have id =g id'. However, id #g id’ is required for all pairs
of distinct IDs id, id’ € SID. This proves the claim.

o6

It is now easy to check that

R = {(Clvn.(P1((idy)| ... |Pe((ide)| T P(Clyn.Py((idy)] ... [vn.Py(idp)|] vn-P(x)]) :
z€eS z€eS
Py, ..., Py processes where n occurs only in channel identifiers,

idy,...,id; C SID \ S are distinct, S C SID and C evaluation context}

is a bisimulation and thereby prove the lemma. Although the P; in R are formally
arbitrary processes that contain n only in channel identifiers, they intuitively allow to
represent the running instances of P. Note that the claim above holds for any pair
P;((4d;)), Pj((id;)) with ¢ # j. Intuitively, since n occurs only in channel identifiers and
thus is never transmitted, no context can tell the difference between a private n that is
shared among all instances and an n individual n for each instance. O

Lemma 5.36 Let P and Q) be processes. Then 1.(P|Q) & I, P, Q for all variables
z & bu(P)Ubv(Q).

Proof. We use the semantics of product processes (see [Definition 2.9) for this proof. By
[Definition 5.2 and Definition 5.11] we have !'; R & [[,cg;p R((x)) for any process R. Let
o be a closing substitution for !!, P and !, @ (i.e., fu(P((z))o), fo(Q(z))o) C {z}). Wi

set I[Ip(X) = [[,ex P((z))o for arbitrary X C SID and Y p(X) == > cx P((ac))a =
P((x1))o|...|P((z()o for finite X = {z1,..., 20} C SID. Analogously IIo(X), > o(X)
and pg(X) := [[,ex (P(2)c|Q((z))o). We then define the relation R:

R:=A{(CD>_(Sp) | D (Sq) | Tlpq(Skq)l, CMp(Spq U Se) | TIo(Spe U Se))) :
P Q
C evaluation context, Sp, Sg, Spg C SID,Sp N Spg = 0,59 NSpg = 0}

closed under structural equivalence. Note that

(H (P(2)o|Q(= H P(z)o | H Q((a:))a) ER

x€SID zESID x€SID

for Sp:=0, Sg := 0 and Spg := SID which proves this lemma if R C~. Therefore, we
show the three points of a simulation for R and R~! respectively. First, we show that
R is a simulation. For (A, B) € R:
1. A |o: Product processes do not emit on channels. Three cases remain:
(a) If C[0] ¢, then B |¢.
(b) If P((id))o | ¢ for some id € Sp, then B can spawn the instance P((id))o from
IIp(Spg U Sp) and then emit on C. Hence B — /.
(c) Analogously for Q((id))o |¢ for some id € Sg.
Hence A | ¢ entails B —*] ¢.
2. A — A’: We distinguish two cases:

o7

(a) — follows the IREPL rule: Then — spawns a new instance with id id from
ITpq(Spq): We set C'[0] := C[P((id))o | Q((id))o | O] and Sp == Spq \ {id}.
Hence we have A — C'[3°p(Sp) | 220 (Sq) [I1pq(Spg)]- Additionally, we ob-
serve B = C[HP(SPQUSP) ‘ HQ(SPQUSQ)] —— C/[HP(S};.QUSP) ’ HQ(SJDQU
Sg)] by spawning P((id))c from IIp(Spg U Sp) and Q((id))oc from
o (Spq U Sg). We have (C'1p(Sp) | 30(Sq) | Trq(Sho)l C'lILp(Sh U
Sp) | g(Spo U SQ))) € R.

(b) — follows a rule from [Figure 3} Then we distinguish two cases:

i.

ii.

If we have C[0] — C'[0], — translates canonically to C in B — B’ such
that (A", B’) € R.

Otherwise, — affects instances from > p(Sp) | > o(Sq). We re-
move the ids of the affected instances from Sp and Sg yielding
sets Sp and Sp; and define a context C' (including the affected in-
stances) such that A — C'[3 p(Sp) | 22o(Sp) | Hpg(Spg)l. We now
spawn the corresponding instances in B first and then mimic — ex-
actly yielding B —* C'[llp(Spq U Sp) | Lq(Spq U Sp)]. We have
(C1321(5)) | SolSy) [Mro(Srall.CMr(SpqUS} | To(Srous) &

3. By definition R is closed under the application of evaluation contexts.
Now we show that R~! is a simulation. For (4,B) € R™!:
1. A ¢ Since product processes do not emit on channels we have C[0] ¢ and thus

Ble.

2. A— A

We distinguish two cases:

(a) — follows the IREPL rule: We distinguish four cases:

1.

ii.

iii.

v.

A new instance P((id))o is spawned from IIp(Spg U Sp) with id €
Sp: We define the context C'[0] := C[P((id)o | O], S% = Sp \
{id} and have A — C'[IIp(Spg U S%) | Hg(Spg U Sg)] and B =
C'2p(Sp) | 22(5¢) [TIpq(Spe)]- Hence (C'[Ip(SpUSE) [Tg(SpeU
S CISp(Sh) | 30(S0) | Mrg(Spq)] € R

A new instance Q((id))o is spawned from Il (Spg U Sg) with id € Sg:
Analogous to the previous case.

A new instance P((id))o is spawned from IIp(Spg U Sp) with id € Spg:
We define the context C'[0J] := C[P((id))o | O], Spq = Spq \{id}, S; ==
Sq U {id} and have A — C'[lIp(Spg U Sp) | Llg(Shg U Sp)]. Note
that Spg U Sq = Spg U Sp. In B we spawn P((id))o | Q((id))o from
IIpq(Spq) and have B — C'[3-p(Sp) | 2-o(Sg) | Hpq(Shg)l- Hence
(€' (SpquSe) | Tg(SpuS).C S p(Sr) | Lo() | TralSho)l €
R~

A new instance Q((id))o is spawned from I1o(Spg U Sg) with id € Spg:
Analogous to the previous case.

(b) — follows a rule from [Figure 3} Then we basically have C[0] — C’[0] which
translates canonically to C in B — B’ such that (4’, B") € R.
3. By definition R is closed under the application of evaluation contexts.

o8

This shows that R is a bisimulation and hence R Cx. |

Alternative definitions of !!. Of course, our definition of !! P is not the only possible
definition of a replication with session ids. For example, one might try to define !!P in
such a way that an instance of P is spawned for arbitrary terms as sessions id, not only
terms in some fixed set SID. In particular, a fresh name could then be used as session id
which is not possible with our modeling. (Then, of course, the set of processes to which
' may be applied should be restricted to processes which wait for an input before doing
anything. Otherwise processes could spawn spontaneously that use some other process
fresh names as session ids.)

Any definition of !! that satisfies Lemmas B5.12], 5.13] 5.35] and would lead to the
same composition theorem. (If that definition !! is applicable only to a certain set P of
processes, we additionally need that P is closed under parallel composition, restrictions,
renaming, and !!, and that the definition of < (Definition 4.3)) is with respect to simulators
in P.)

Y

The composition theorem. We can now state and prove the composition theorem.
It says that if P < @, we can restrict the IO-names, compose in parallel with processes
that have disjoint NET-names, rename names (as long as NET- and IO-names are not
interchanged), and perform concurrent composition.

Theorem 5.37 (Composition Theorem) Let P, Q) be processes with P < Q. Then
(i) For any list of names io C 10 we have vio.P < vio.Q.
(11) For any process R with (fn(R) N (fn(P)U fn(Q))) C 10 we have P|R < Q|R.
(113) For any permutation 1 : NET — NET we have Py < Q and P < Q.
(iv) For any permutation ¢ : 10 — 10 we have Py < Q1.
(v) If Q is a NET-stable process, !\, P <!, Q for all variables x & bv(P) U bv(Q).

Proof. In the following, let (S, ¢, n) be as in [Definition 4.3] (They exist because P < @.)

i (%)
(i) PRvn(QplS) 2 vio.P & viovn.(Qp|S) & va.((vie.Q)elS)
(%) since & is closed under the application of evaluation contexts.
(*x) since neither S nor ¢ contain names from IO

(ii) W.lo.g. we can assume fn(R) Nn = 0 and that ¢ is the identity on (fn(R) U
bn(R)) N NET. These assumptions guarantee (x) in the upcoming equations. P &
(*)
vn.(QplS) = PIR 8 vn.(Qe|S)|R X vn.((QIR)¢|S)
(i) P & vn.(Qp|S) = Py & (vn.(Qp|S))Y = vn.(Q(v o ¢)|Sv). Therefore, with
(S1,v o p,n1p) as simulator, we have Py < Q. With (S,¢ o~ !, n) we have
P < Q.

(iv) P & vn.(QplS) = PY & (vn.(QvlS))Y = vn.(Q(p o ¢)|S) since S, ¢ and n do
not contain IO names and thus are not affected by ¢ : 10 — 10.

29

(v) Note that Q¢ is NET-stable since @) is NET-stable. Then P & vn.(Q¢|S) entails

P vn(QplS) (byLemma513)
A vn!ly(QplS) (by Lemma 535 since Qy|S NET-stable)

~vn.(:(Qe)!;S) (by [Lemma 5.30)
=vn. (" Q)p":S) (by[Lemma 5.12)
Thus (1,5, ¢, n) is a proper simulator for !I, P <!, Q. O

6 Property preservation

Besides secure composition, the second salient property of the UC framework is the fact
that security properties of the ideal functionality F automatically carry over to any
protocol emulating F. For example, a secure channel functionality that takes a message
m from Alice and gives it directly to Bob will obviously have the property that m stays
secret. Then, if 7 UC-emulates F, any message given to 7 will also stay secret. A similar
property preservation law holds in our case, the following theorem formalizes it:

Theorem 6.1 (Property preservation) Let P,Q be NET-stable processes with P <
Q. Let Ey and E be contexts whose holes are protected only by parallel compositions (]),
restrictions (v), and indezed replications (). Assume that Ey, Es do not contain NET-
names (neither bound nor free). Assume that the number of !, (possibly with different
x) over the hole is the same in E1 and Es.

If B1[Q] R E»[Q)], then Ey[P] N E»[P].

Proof. Let b denote the number of !!, over the hole of Eq, Ey. We write NS for b > 0
applications of !l to S.

Since P < @, there are S, p,n with P & vn.(Qy|S) and S closed and NET-stable,
and 10 N fn(A) = 0, ¢ : NET — NET a bijection and n a list of names n C NET.
Without loss of generality, we can assume that n N fn(Ey, Ey) = nNbn(Ey, F2) = 0. For
i =1,2, we have

E[P] % Eilvn.(QplS)]
X vn.Ei[(Qp|9)
(ii)
N un.(E;[Qg]|1bS)
E . (E:[QleS).

Here (f) uses [Cemma 2.7

And () uses that the names n do not occur in Ej;, the rules NEW-C and NEW-PAR
from [Figure 2] and [Lemma 5.35lfor swapping !l in E; and the names n (the preconditions
of are fulfilled because n are NET-names and thus do not occur in E;).

60

free netscstart, netnotify, netdeliver, nl, n2.
fun empty/0.

let FSC = in(netstart,y); in(ioA,x);
(out(netnotify,empty) | in(netdeliver,z); out(ioB,x)).

process new ioA; new ioB; out(ioA,choice[n1,n2]) | in(ioB,z) | FSC

Figure 6: Proverif code for showing F1[Fsc] ~ Fa[Fsc] in [Lemma 6.3 (prop-pres.pv,

see [BUL3]).

And ([I) uses that the names in E; (IO-names only) and the names in S (NET-names
only) are disjoint, as well as for moving S over a !! in F;. (Lemma 5.36]
guarantees !, (R|S) ~ I, R|!1,S, this is why S accumulates on !!, for each !l over the
hole of E;. Since S is closed, we can drop the z from !!,.)

And (v)) uses that E; does not contain NET-names (bound or free) while ¢ is a
substitution on NET-names.

Y

Furthermore, since & is closed under renaming of free names, and under applica-
tion of contexts (Cemma 2.7), from F;[Q] & E»[Q)] it follows that vn.(E1[Q)e|!!"S) &
vn.(E>[Q]e[!'’S) and hence F)[P] & Fy[P). O

Thus, any security property that can be expressed by an indistinguishability game
of the form “FE,[P] & Es[P]” with E;, Es as in the theorem will carry over from the
ideal functionality @ to the protocol P, given P < (). Note that even many trace based
properties can be expressed in such a way. E.g., if we want to say that E;[P] does not
raise an event bad (modeled by emitting on a special channel), we just define Es to be
like Eq, but without the event. Then F,[P] & E3[P] implies that E;[P] does not raise
the event.

Example: Strong secrecy. We illustrate the use of this theorem with an example.
Consider the secure channel functionality:

Definition 6.2 (Secure channel)
-FSC = netscstart()-iOA (x)-(netnotifyo ‘ netdeliver()-ioB <.%'>)
We want to show:

Lemma 6.3 If P < Fgc, then P has strong secrecy in the following sense: We have
Py ~ Py where P; := viogiog.ioa(n;)|iog()|P.

Proof. Let E; := viogiop.ioa(n;)|iog()]0. We use Proverif to show that E)[Fsc]| ~
E>[Fsc]. The Proverif code is given in By [Theorem 6.1 (and using that ~
and & coincide for closed processes), we have Py = E1[Fsc| =~ Ex[Fsc] = Ps. O

Anonymity properties are modeled very similarly, except that instead of different
payloads nq, ng, different user ids are provided to the two processes.

61

Example: Unlinkability. The next example is strong unlinkability [ACRRI0]. This
property requires that the adversary cannot distinguish whether every user runs only one
session of a protocol, or whether every user runs many sessions. Formally: !vid.\vsid.P =
lvid.vsid.P if we assume that P contains free names id, sid for the user id and the
session id. At a first glance, such a property seems to be excluded by the restriction of
[Theorem 6.1lthat E, F> may not have a ! over their hole. This is, however, not the case
if protocol P (and the functionality @) are modeled suitably, namely if P is already a
multi-session protocol. For example, if P expects a pair of user id and session id on an
[O-channel init for each session to be run, then strong unlinkability can be expressed as
follows:

Definition 6.4 A protocol P has strong unlinkability iff
vinit.(P|lvid.\vsid.init((id, sid))) ~ vinit.(P|\vid.vsid.init((id, sid))).

Then [Theorem 6.1 guarantees that if QQ has strong unlinkability and P < Q, then P has
strong unlinkability.

Notice that if we model a different session id mechanism, we also need a different
definition. For example, if P and Q are constructed using the !! operator, session ids
will be part of the channel name (we would have channels such as (sid, (id,init))). The
variant described above seems most realistic for unlinkability, though, because !! includes
session ids in the clear in all network-messages, so constructing unlinkable protocols by
concurrent composition of individual sessions using !! does not seem to work well.

In we show that the various restrictions in [Theorem 6.1] are necessary.
In particular, property preservation for contexts E7, E» having a ! over their hole (instead
of a !) does not hold. The reasons are similar to those that forbid ! in the composition
theorem (cf.[Section Bl). This is another indication that an operator like !! is more natural
in this context.

7 Relation to Delaune-Kremer-Pereira

DKP-security. As mentioned in the introduction, Delaune, Kremer, and Pereira
[DKP09] have already presented a variant of the UC model in the applied pi calculus.
In this section, we describe the differences between their and our model, and why these
differences are necessary to achieve stronger security results.

In [DKP09], security is defined as follows:

Definition 7.1 (DKP-security) Let < (observational preorder) be the largest simula-
tion (not bisimulation).

Let P,Q be processes. Then P <5° Q iff there exists a simulator S (a context) such
that P < S[Q].

Here a simulator S is an evaluation context subject to certain conditions, see [DKP09],
notably that it only binds NET-names.

62

Notice that in this definition, the main difference to our definition is that P and S[Q)]
do not have to be observationally equivalent, but only observationally preordered. (Also,
the notion of the simulator S is somewhat different from ours, but not in essence.) The
effect of this is that the simulator may introduce additional non-determinism. For exam-
ple, in our model, if the protocol P can take one out of two actions, the simulator needs
to simulate the appropriate action, he thus needs to figure out which of the two actions
is taken. With respect to DKP-security, the simulator can just non-deterministically
choose which action to take; the observational preorder takes care that the right action
is taken in the right situation. This makes simulators for DKP-security much easier to
construct and DKP-security into a considerably weaker notion.

DKP-security satisfies similar laws as our notion. In particular, is reflexive and
transitive and it satisfies a composition theorem (which differs from ours mainly in that
P <55 Q = P <55 1Q holds, no need to introduce !!). They do not state a property
preservation theorem. We believe, though, that their DPK-security supports property
preservation for certain kinds of trace properties

<SS

The problem with observational preorder. We explain why we believe that a
definition based on observational preorder instead of equivalence does not give sufficient
security guarantees. We illustrate this by the following example. Consider a simple
functionality that is supposed to model an insecure but anonymous channel:

Fanon = 104(x).net(z)|iog(x).net{x)

Obviously, this functionality preserves anonymity about whether Alice or Bob
sends a message (i.e., whether an input on ‘o4 or idop occurs). Formally:
V504108 .(10A(T)| Fanon) =~ viogiop.(i0g{T)| Fanon). (In fact, we even have =.) Now
consider a naive protocol in which Alice and Bob send their message over distinct chan-
nels neta, netg. Formally:

P :=ioy(x).neta(z)|iog(z).netp ()

Obviously, P does not provide anonymity, it is easy to see that viogiog.(ioa(T)|P) %
vioaiop.(iop(T)|P). Consequently (Theorem 6.0]), we have P £ Fgpon as we would
expect since P gives less security than Fanon.

On the other hand, with respect to DKP-security, P is considered as secure as Fanon,
i.e., P <5 Funon. We use the following simulator: S := net(z).nets(x) | net(x).nelp(z) |
O. Then P =< S[Funon| because S relays messages sent on net onto netq or netg, and
the definition of < makes sure that the message is non-deterministically delivered on the
right channel nety or netz. Hence P <55 Fopon.

Lemma 7.2 (with non-rigorous proof) P <55 F,,,..

12probably a law of the following kind holds: Assume P <%° Q. Let ¢ ¢ fu(P,Q), and E be a context
satisfying certain properties. Then E[Q] f.== E[P] f.. Compare with [Theorem 6.1] which can deal
with indistinguishability properties.

63

Proof. In this proof, we assume that also holds for the calculus from [DKP09].
Since that calculus is somewhat different from ours, this makes the present proof non-
rigorous. (However, probably the proof of can be easily adapted to the
calculus of [DKP09].)

Then we have

P vnet.(ioa(z). net (x)|net (). et (z))
| vnet.(iog(z).net{x)|net(z).netp(x))
2 ioa (). mel (z) |net(x).nela ()
| iop(x).net(x)|net(x).netg(x)
= S[Fanon] with S := net(z).neta(z) | net(z).netg(x) | 0.

Here (x) uses two applications of [Lemma 3.3] (in the reverse direction), the first with
n = net, t := x, x := x, and Q := neta(z), and the second with n := net, t := z, z := x,
and @ := netp(z). And (xx) uses that ve.P < P (|[DKP, Lemma 8§]).

Since ~ implies < and =< is transitive, we have P < S[Fyu0n]|. Furthermore, S is a
valid simulator for DKP-security. Thus P <5 Funon. O

Thus, the security of a protocol in the sense of [DKP09] does not imply that the
protocol has the same anonymity properties as the ideal functionality. The same probably
holds for other equivalence properties such as strong secrecy etc. We consider this a strong
restriction of the notion and thus believe that a symbolic analogue to UC security should
use observational equivalence or a similar notion of equivalence.

Why observational preorder? The reader may wonder why [DKP09| use observa-
tional preorder instead of observational equivalence, in particular since observational
equivalence is the more direct analogue to the indistinguishability in the computational
UC framework [Can0I]. We explain the reasons as we understand them (this is based
both on explanations in and on our own insights while working on the current
result), and due to what definitional decisions we managed to get around those reasons:

e It is not possible to model “relays”. That is, if we have a process P that outputs
on a channel ¢, then as a technical tool we might wish to construct a process
R (a relay) that forwards all message on ¢ to another channel ¢/, i.e., we want
ve.(P|R) =~ P{c/c}. Unfortunately, such a relay does not seem to exist in the
applied pi calculus. R :=!c(z).c (x) does not work. Consider, e.g., P := ¢&(n).a(n).
Then ve.(P|R) J, but P{c'/c} V.. With respect to <, however, we can have relays
(P{c/c} < ve.(P|R)).

Why are relays important? One reason is whether a dummy adversary exists. Such
a dummy adversary is an adversary that forwards all messages on NET-channels
from the protocol to the environment and vice versa. (So, essentially, a relay.) The
existence of the dummy adversary is used implicitly or explicitly in most struc-
tural theorems (reflexivity, transitivity, concurrent composition). In fact, it seems

64

that when using observational equivalence in [DKP09], one would not even have
reflexivity.

We get around this problem by using a slightly different definition of adver-
saries/simulators (Definition 4.2). In our setting, a dummy can be trivially con-
structed as (0,¢,) where ¢ just renames the protocol’s NET-channels to the
NET-channels that the environment expects the messages on. This simple trick
obviates the need for using relays in the construction of the dummy adversary.

The second problem is that one does not get a composition theorem that guaran-
tees P <5 @ = !P <55 1Q when using observational equivalence. However, we
believe that this is a natural limitation because we can show that property preser-
vation does not even hold for equivalence-based security properties that replicate
the protocol. Thus we cannot expect to get such a composition theorem and simul-
taneously have property preservation for equivalence properties. We get around
this problem by defining a different notion of concurrent composition, using the !!

operator (see [Section D).

Finally, the non-existence of relays is a problem when proving the security of con-
crete protocols P < F: A typical thing a simulator has to do is to take a message
m on a NET-channel and somehow rewrite it (e.g., to enc(k,m)) before sending
it on to the environment. This, of course, is a generalization of the concept of a
relay. Thus, if relays are impossible, we can hardly expect to construct sensible
simulators. This, however, is not true if we pay some attention in the definition of
the functionality and obey the following guideline:

Guideline: When designing a functionality, use different names for all
NET-channels and, whenever sending something on a NET-channel C,
use C(T)| P’ instead of C(T).R.

In these cases, R :=!c(z).c/(x) will usually work as a relay (e.g., ve.(P|R) ~ P{c/c}
for P :=¢(n)|a(n)).

8 Example: Secure channels

In this section we apply symbolic UC hands on. We illustrate how our results from
can be usefully applied in practice to construct a secure channel from the
widely known NSL protocol and a PKI. Furthermore, when extending the secure channel
to multiple sessions, we present an example for a joint state, i.e., multiple instances of
one protocol that jointly use one instance of another functionality. While the original UC
model of Canetti [Can0I] requires an additional theorem to handle joint states [CRO3],
we can directly use !! in our case. We used Proverifld for our proofs as much as possible
to show how it helps with the verification of various properties in the context of symbolic

13Version 1.86pl4

65

fun senc/3. (* senc(key,msg,rand) *)
reduc sdec(k,senc(k,m,r)) =

fun empty/0.

fun hash/1.

fun pk/1.

fun sk/1.

fun penc/3. (* penc(pk,msg,rand) *)
reduc pdec(sk(k),penc(pk(k),m,r)) =
reduc pkofsk(sk(k)) = pk(k).

reduc pkofenc(penc(p,m,r)) =

Figure T7: Key-exchange example: Proverif code for the symbolic model
(secchan-model.pv, see [BU13|)

In this section, we only consider an example where we assume all parties to be honest
(as the goal of secure channels is to protect from an outside adversary). For an example
with corruption, see

We first define the symbolic model used in this section. The constructors are
penc/3, pk/1, sk/1, senc/3, (-,-), hash/1, and empty/0, representing public-key encryp-
tion, public and secret keys, symmetric encryption, pairs, hashing, and empty messages,
respectively. Encryption has a third argument modeling randomness used for encrypt-
ing. More specifically, penc(pk(k), m,r) models a public key encryption using key pk(k),
plaintext m, and randomness r, and senc(k, m,r) a symmetric encryption using key k,
plaintext m, and randomness r. We believe that senc without the additional random-
ness argument r would also work in our setting. However, we introduce this additional
nonce to help Proverif, which can then better distinguish ciphertexts (e.g., the proof
of secchan-sc2.pv fails without r due to Proverif’s overapproximation technique). We
have no equations in our theory.

Furthermore we have the destructors pdec/2, sdec/2, pkofsk/1, and pkofenc/1, mod-
eling public-key decryption, symmetric decryption, extraction of a public key from a
secret key, and extraction of a public key from a ciphertext. (The latter two are not
needed in our protocols, but we provide them to make the adversary more realistic.) The
behavior of the destructors is specified by the following rewrite rules:

pdec(sk(x), penc(pk(x), y, 2
sdec(x, senc(x,y, z

pkofsk (sk(x
pkofenc(penc(z,y, z

) =
) =
) —>pk()
z)) =

~— ~— ~— ~—

The Proverif code for this symbolic model is given in

66

8.1 Key exchange using NSL

With the symbolic model set up we next show how to tailor a UC-secure key exchange
from NSL using a PKI functionality Fpgr. Towards this goal we model the ideal key
exchange functionality Fxpg, the PKI Fpgr and the NSL protocol based on Fpgr as
follows:

Definition 8.1 (Key exchange functionality)
-FKE = Vk.netdem().z'oka(k> ’ netdelB().@(@
Definition 8.2 (Public key infrastructure functionality)

Fpkr = Vkakb-iOpkeA«Sk(ka)’pk(k:a)’pk(kjb)»
| i0pkeB((sk(kb), Pk (Ka), pk(kp)))
| netpre ((Pk(ka), Pk (kb))

Definition 8.3 (Needham-Schroeder-Lowe)

NSLA := iopkea(Tsks _ Tpryy)) - VNa.UT1.
net psa{penc(Tpr ,, na, 1)) -netnsa(Te).
let (=ng,zp,,=B) = pdec(zg, xc) in
vry.nelpga(penc(Tpk,, Tn,,72))-
10kq (hash((ng, Tn,)))
NSLp := i0preB ((Tsks Tpr 4> _))-nelngp(Te).
let xp,, = pdec(xg,c) in
vny.vr.netpap (penc(Tpk (Tng, 1, B),7)).
netnsp (zh).if ny = pdec(z 4, x.) then
iogp(hash((xn,,np)))
NSL := ViopkeAiOpkeB-(NSLA ‘ NSLB ’ ./T"PK])

The differences to the original NSL protocol [Low95] are: The original protocol in-
cludes A’s identity in the first message, and the original protocol does not specify what
to do with the nonces ng,, ny, while we use them to derive a key hash((ng,np)). Also,
[Low95] also presents an extended version of the protocol that explicitly communicates
with a server S for getting the keys for Alice and Bob. We could get this extended
protocol by proving that this retrieval protocol implements Fpgy, and then composing
our NSL protocol with the retrieval protocol.

We can now state the first result of this section, namely that the NSL is a UC-secure
realization of Fgg.

Lemma 8.4 NSL < fKE-

67

Proof. Let NSL; be NSL4 without the initial ioprea((€se; _,@pry)). NSLp anal-
ogously. And NSLy := NSL;{netgeia/ioka, sk(ka)/xsk, pk(kp)/xpr, } and NSLG :=

NSLz{net gein /iokp, sk(kp)/z sk, pk(ka)/Zpk, }-
We have

NSL = viopeaioprenkakp- (10 prea(Zsks s Tpiy)).NSLy | i0pken (g, Tpiy, _))-NSLg
| i0pkea((sk(Ka), Dk (Ka), Pk (kb)) | i0pken ((sk (kb), Pk (Ka), pk (kb)) | netphe((pk (ko), pk (kb))
R vkoky. (let (zag, Tphy) = (5k(ka), ph(ka), pk(ky)) in NSL)y
| let (o, Tpryr) = (5k(Ks), pk(Ka), pk(kp)) in NSLp | net pre ((pk (ka), pk(Ks))))
X kg (NS {5k (ko) /25t DR (k) /iy } | NSUg {5k (Kp) /2 sk P (Fa) /i, }
| netpre ((Pk (ka), Pk (k))))
R unet gaanet gopkaks. (NSL | NSL% | net ke ((pk(ka), pk(kp)))
| net gea(x).ioge () | netdelB(x).@@:))
R wnet gaianet geipkaky- (NSUy | NSUp | mefye ((ph (Ka), ph (kb))
| vk.(net geia (x).10ka (%) | net geip(2).i0(x))) =: NSLy

Here (@) uses two consecutive applications of [Lemma 3.3] the first with n := i0pkea
and C' := O and t := (sk(kq), pk(ka), pk(ks)), and the second with n := iopr.p and
C =0 and t := (sk(ky), pk(ka), pk(kp)). Remember also that ioppes ((Tsk, _, Tpry)) is
syntactic sugar for ioppea(z).let (g, _, Tpry) = .

And () uses two consecutive applications of [Lemma 3.21(@) and the fact that ~
closed under evaluation contexts.

And ([vidl) uses two applications of (both in the opposite direction), the first
with n 1= netgeia, Q := 1o0ga(x), and t := H((ng, Tn,)), and the second with n := net 4¢p,
Q :=iog(x), and t := H((zp,,ns))-

And (i) uses [Lemma 32 () to add vk.

Using Proverif, we can show the following observational equivalence:
(*)
NSL; = VnetdelAnetdelBkak:b.(NSL ’ NSL’ ‘ netpke((pk(ka),pk(kb))> ’ -FKE)
= VnetdelAnetdelB.(fKE]S)

for S := vk k:b (NSL INSLE [net e ((pk (ko), pk(kp)))). The Proverif code for checking (x)

is given in
Hence NSL < fKE. O

8.2 Secure channel from key exchange.

Next, we realize a secure channel. Since we already have a realization of a secure key
exchange at hand, we realize the secure channel SC from the idealized key exchange Fxg.
Later we replace Fxg by NSL. We model Fg¢ and SC based on Fig as follows:

68

free B, netnsla, netnslb, netpke.
free ioka, iokb.

let A =
new na;
new ri;
out (netnsla,penc(pk(kb),na,rl));
in(netnsla,xc);
let (=na,xnb,=B) = pdec(sk(ka),xc) in
new r2;
out (netnsla,penc(pk(kb),xnb,r2));
out (netdela,hash((na,xnb))).

let B =
in(netnslb,xc);
let xna = pdec(sk(kb),xc) in
new nb;
new r;
out (netnslb,penc(pk(ka), (xna,nb,B),r));
in(netnslb,xc2);
if nb = pdec(sk(kb),xc2) then
out (netdelb,hash((xna,nb))).

let KE =
new k;
(in(netdela,x) ;out (ioka,choice[x,k])) |
(in(netdelb,x) ;out (iokb,choice[x,k])).

process

new netdela; new netdelb;
new ka; new kb; (A | B | out(netpke, (pk(ka),pk(kb))) | KE)

Figure 8: Key-exchange example: Proverif code for analyzing NSL (secchan-nsl.pv, see

[BUL3]). (Has to be prefixed with the code from [Figure 7})

69

Definition 8.5 (Secure channel)

Fsc = n€tscstart()-iOA(x)-(nEtnotifyo | ne}fdeliver()-@<x>)
Definition 8.6 (Secure channel protocol)

SCy 1= i0gq(xp).104 (2, vr.netg(senc(xg, Tm, 1))

SCp := iogy(zy).netg(x.).let xy,, = sdec(xg,x.) in t1op{Ty,)
SC :=viogiokp.(SCa|SCB|FrE)

Lemma 8.7 SC < Fg¢.

Proof. We have:

SC = m’okaiokbk.(z’oka(xk).ioA(xm).m".netA(senc(wk,xm,r)> | iogp(zk).netp(x.).

let @, = sdec(xy, zc) in 105 (Tm) | netgea(). 10k (k) | netdelB().M%»

(%) . —_—
~ vk.(net gera().i04 (2,).vr.neta (senc(k, zm,) | netgas().netp(z.).

let zp, = sdec(k, z.) in iog(zm))=: SC;

Here (x) uses two consecutive applications of [Lemma 3.3l the first with n := iog, and
C := netgea().0 and t := k, and the second with n := iog, and C := net45().0 and
t := k. (And it uses[Lemma 2.7 so that we can apply [Lemma 3.3]to a subprocess instead
of the whole process.)

We show next:

SCi ~ vsk.(netgen().i0a(wm).vr.(1(s, senc(k, am,) (xm) | neta(senc(k, zm,r))) |

netgep().netp(xc) let a2y = sdec(k, xc) in (s, zc)(x,).108(Tm)) =: SC;

By [Lemma 3.7] to show the above it is sufficient to show that the trace property end() =
start() holds in the following event process:

vk.(netgeia().i04(xm).vr.event start(senc(k, xp,,r)).neta(senc(k, zm,r)) |

net gep().netp(xc) let 2y = sdec(k, x.) in event end(x.).iop(Tm)).

We show this trace property using Proverif, the required code is given in

Note: We could also have shown an analogous observational equivalence with s instead
of (s, senc(k, xy,r)). Then, however, Proverif fails on the code given in[Figure 10]because
it does not see there is only one message x,, sent over the channel. Thus, it believes that
different z,, could be confused. Adding x. to the channel name helps Proverif to see that
Zm 18 unique (since z. already determines x,,).

Since we send the message x,, directly to Bob via the channel (s,-) (who receives
it as 2/), we can let Bob output the message x, received over that channel instead of

M his definition was already given in [Section 6] (Definition 6.2) and is repeated here for convenience.

70

free ioa. (* A-input of F_SC *)

free iob. (¥ B-output of F_SC *)

free neta. (* A-end of insecure channel in P_SC *)
free netb. (* B-end of insecure channel in P_SC %)
free netdela, netdelb.

query ev:end(x) ==> ev:start(x).

let PA =
in(netdela,x);
in(ioa,xm) ;
new r;
event start(senc(k,xm,r));
out (neta,senc(k,xm,r)).

let PB =
in(netdelb,x);
in(netb,xc);
let xm=sdec(k,xc) in
event end(xc);
out (iob,xm) .

process

new k;
PA | PB

Figure 9: Key-exchange example: Proverif code for analyzing the trace property of SC

(secchan-scl.pv, see [BUI3|). (Has to be prefixed with the code from [Figure 7})

71

free ioa. (* A-input of F_SC *)

free iob. (* B-output of F_SC *)

free neta. (* A-end of insecure channel in P_SC %)
free netb. (* B-end of insecure channel in P_SC *)
free netdela, netdelb.

let PA =
in(netdela,x);
in(ioa,xm);
new r;
(tout((s,senc(k,choice[xm,empty],r)),xm)) |
out (neta,senc(k,choice [xm,empty] ,r)).

let PB =
in(netdelb,x);
in(netb,xc);
let xm=sdec(k,xc) in
in((s,xc) ,xm2);
out (iob,choice[xm,xm2]) .

process
new s;
new k;
PA | PB

Figure 10: Key-exchange example: Proverif code for analyzing the observation equiv-
alence in SC (secchan-sc2.pv, see [BUIL3|). (Has to be prefixed with the code from

Figure 1)

using the decrypted value x,,. Since then the plaintext of the ciphertext z. is then not
used any more, we can encrypt empty instead of z,, (as the adversary cannot tell the
difference). Formally, we show the following observational equivalence:

SCo = vsk.(net geia().i04(xm).vr.(I(s, senc(k, empty, r))(xy) | neta(senc(k, empty,r))) |

netgep().netp(xe)let z,, = sdec(k,z.) in (s,x.)(z),).i0p(z},)) =: SCs.

We show this observational equivalence using Proverif, the required code is given in

Then we move the restriction wvr to the top and replace the channel
(s, senc(k, empty,r)) by s:

SCs s kEr.(netgea()-ioa(xm)-(1(s, senc(k, empty,r)){(xm) | neta(senc(k, empty,r))) |

net o ().netg(x.).let ., = sdec(k,z.) in (s,x.)(z),).i05(z},))

72

free ioa. (* A-input of F_SC *)

free iob. (* B-output of F_SC *)

free neta. (* A-end of insecure channel in P_SC %)
free netb. (* B-end of insecure channel in P_SC *)
free netdela, netdelb.

let PA =
in(netdela,x);
in(ioa,xm);
(tout(choice[(s,senc(k,empty,r)),s],xm)) |
out (neta,senc(k,empty,r)).

let PB =
in(netdelb,x);
in(netb,xc);
let xm=sdec(k,xc) in
in(choice[(s,xc),s],xm2);
out (iob,xm2) .

process
new s;
new k;
new r;
PA | PB

Figure 11: Key-exchange example: Proverif code for analyzing the second observation
equivalence in SC (secchan-sc3.pv, see [BUIL3]). (Has to be prefixed with the code from

[Figure 7)

(g)I/Sk?T-(netdelA()-iOA($m)'(!§<xm> | neta(senc(k, empty,r))) |

net gup().netg(x.).let z, = sdec(k,xz.) in s(z},).i0p(z),)) =: SC4

Here (x) follows from [Lemma 3.2([), and (xx) is proven using Proverif. The required
code is given in
We continue:
() . e —_—
SCy = vnet getiver k. (net gera().104 (xm).(net getiver ()-105 (x) | neta(senc(k, empty,r))) |
netgep().netp(x.).let x,, = sdec(k, zc) in net gepper ()

~ vnet geiper BT netnotify-(netdelA()-ZOA (xm)-(netdeliver()-ZOB <xm> | netnotify<>) |
netgeip().netp(xe).let xy, = sdec(k, xc) in netgepiver () | netpotiy ()-neta(senc(k, empty,r)))

= vnel deliver netnotify-(}—SC{netdelA/netscstart}|S)
with S := vkr.net gop().netg(x.).let x,, = sdec(k,z.) in net gepper ()

73

| netnotify()'ndA@enc(kj’ empty, T)>

Here (x) uses [Lemma 3.4 with Q := iop(2))), x := 2!, n:= s, and m = net geriper-

And (*#) uses with Q := neta(senc(k, empty,r)), n = netnoyp, t =
empty.

So SC = vn.(FscolS) for o := {netgea/netsesiare} and n = netgetiver netpotify-
Hence SC < Fg¢. O

With NSL < Fgp (Lemma 8.4) and SC < Fs¢ (Lemma 8.7) at hand we can now
use the compositional capabilities of UC: We define an evaluation context C[O] :=
Viokq10kp-(SCA|SCp|0) where SCy and SCp are the processes from [Definition 8.6l Since
C meets the requirements of [Theorem 5.37 NSL < Fgp implies C[NSL] < C[Fkg]|. Since
C[Fkg] = SC and SC < Fg¢ we have, by transitivity of < (Lemma 4.5]), C[NSL] < Fgc.

We did construct a secure channel from a PKI using the NSL protocol. More interest-
ing than this result is the way we achieved it: We did not have to analyze the complete
system C[NSL] in one piece but could replace the NSL protocol with an idealized func-
tionality. This illustrates two striking advantages of the UC approach:

e The fact that NSL realizes an ideal key exchange can be re-used for security proofs

of further systems.
e We cannot only plug NSL into C but any protocol that realizes a secure key exchange
(e.g., if no PKI is available and thus NSL is not an option).

Instead of one monolithic security proof for C[NSL] we end up with smaller proofs and
results which can be used flexibly. Furthermore, to split the security analysis of a complex
system into smaller parts might be the only feasible option to tackle it at all.

8.3 Generating many keys from one

While the example until now illustrates composition and the power of UC, C[NSL] only
realizes a single-use secure channel. To transfer multiple messages, we could just use
concurrent composition to have !!IC[NSL] < !lFgc. However, the resulting protocol uses
one instance of NSL per message, and — since NSL contains Fpgy, another PKI for each
message that is sent. This is clearly unrealistic. To get rid of this overhead we want to
have all the instances of SC to jointly use just one key exchange Fgp, i.e., we want to
use the previously mentions joined state technique here. Towards this goal we model a
wrapper protocol KE* which uses one key exchange to emulate multiple key exchanges
(from a key k it derives session keys hash((sid, k)) where sid is the session id). Formally,
we define KE* as follows and then show KE* < | Fgp.

Definition 8.8

KEY := 10}, (2r) s, 10ka (hash (2 sia, xk)))
KEg := 0y (z) N, i0k (hash (T sid, Tx)))
KE* := vio},i0%,-(KEY | KEG | Frg)

where Fip = Frp{io},/10kq, 105,/ 10k }.

74

Lemma 8.9 KE* < !| Fgg.

Proof. Let S := netgea().net!, () | netgen().!!net), 5(). Here we use the shorthand
t() for t(empty). Let n := nety, net, 5. Let o := {net!,,,/netien, net),z/netgep}.
We have

KE* & vk.net geia()\a,,, 10k (hash(2sia, k))) | net e ()Ne,,, 0k (hash((zsia, k)))

(i) -
R vk.netgeia()- e vnetea-(netly, () | netyea()-iok, (hash((gia, k))))

| net gein () o syt (nelly () | netlys().505 (hash (2, k))))

Gii) -
R vk.vnetypnet gun()-(egg el () | e netien()-i0k (hash((zsia, k))))

| vnetlyupnet gan().(Nay nety 5 O | Ve, netp (). iog (hash (2, k))))

(

() _

~ vk.vnetygs-(netgeia () Neg et () | e, netea)ik (hash (25, k))))
(

| vnetlyp.-(net e () Ny, ety 5 () | Ve, netlep (). iog (hash (2, k))))

(
Zon (v Mo, (nettyen()-ioga(hash ((zsia, k))) | nettyes ()-iom (hash (x4, k)))) | S)

(v1) _—
vn. (g, Vk.(nete()-i0ka(k) | netyep()-iom (k) | S)

=vn.(NFggo|S)

Here ([l) uses two application of [Lemma 3.3 the first with C' := netgea().0, n = i0},,
and t := k, the second with C' := netqp().0, n = io},, and t := k. (And it uses
LCemma 2.7 so that we can apply [Lemma 3.3 to a subprocess instead of the whole pro-

cess.)
And (@) wuses Lemma3d with C := O to show iog,(hash((z4a,k))) R
vnet!, 4.(net!, () | netl4().i0ka(hash((zsiq, k))) and iog(hash((xsq,k))) &

vnet!, 5. (net!,, 5 () | net’y,,5().i0k (hash((zsq, k))).

And (i) uses Cemma 3.2/({) and [Cemma 5.36] and [Cemma 5.35

And () uses the following claim (proven below) twice. First with n := net! ,,
m = netgeia, Q = i0ka(hash((zgq4,k))). Then with n := net’,;5, m = netgap, Q =

iogy (hash((sia, k))).

Claim 4 For names n,m, and for any process Q, we have vn.m().(,7n() | 1,n().Q) ~

(Intuitively, this claim holds because !!,n().Q) cannot perform any observable actions
until I;72() is executed. So it makes no difference whether both !!;n().Q and !, 7() wait

for the input on m to occur, or whether only !!,n().Q waits for it.)
And () follows from the definition of = and [Lemma 5.30]
Finally, () follows from the following claim (proven below):

Claim 5 For any process P, we have vk, P{hash((z,k))/k} ~ !, vk.P.

i)

Thus we have derived KE* =~ vn.(\Fxg o | S). This shows KE* < I Fkp. It remains
to show the two claims.

To show [Claim 4] consider the following relation:

x€SID x€SID
En.(m().] 701 [»0-Q) | Zn()-Q((w)))]} U~
2€SID 2€SID\S zeS

up to structural equivalence. Here F ranges over evaluation contexts, and S over finite
subsets of SID. n,m, @ are from the statement of the lemma.) _¢ P stands short for
P{sy/x}|...|P{sp/x} with § =: {s1,...,s:}. Le, > g is almost the same as [], g,
except that) __g is syntactic sugar (and only makes sense for finite S) while [[g is a
proper construct in the syntax of product processes.

We show that R is a bisimulation:

e If (A,B) € R and A |, then B |;:

In the case A ~ B, the statement is immediate. We can thus assume A =

Elvn.m()-(Moesip 70 | Thesipn0-Q(@)] and B = Blvn.(m(). [Lesma) |
Mocsims n0-Q(@) | ,es n0).Q()):

In the argument to E, there are no unprotected outputs. Thus the output on M
is in E and thus B | trivially follows.

e If (A,B) € R and B |, then A |5 Analogous to the previous case.
o If (A,B) € R and A — A’, then there is a B’ with B —* B’ and (A, B") € R:

In the case A =~ B, the statement is immediate. We can thus assume A =
|

Elvnm().(ILeesip 70 | Teesm n0-Q(@)] and B = Elyn.(m(). [T csp 70
[Locsins n0-Q(x)) | Xopes n()-Q(2)]-

If A — A’isareduction within E, then let B — B’ be the corresponding reduction,
and then (A’, B’) € R.

Otherwise, A — A’ is a communication on m between E and the input m() in its
argument, hence A’ = E'[vn.(I],cqp () | [Liesip n()-Q(2))]- And B — B’ :=
E'lvn(ILesin 70 [Hoesmys 70-Q(2) | Xpes n0)-Q()]-
From [Cemma 3.2 (i), we have A’ ~ B’, hence (A, B') € R.

e If (A,B) € R and B — B’, then there is a A’ with A —* A" and (A’, B’) € R:

In the case A ~ B, the statement is immediate. We can thus assume A =

Elvn.m()-(Moesip 70 | Thesipn0-Q(@)] and B = Blvn.(m(). [Lesmal) |
Mocsimns n0-Q(@) | ,es n0).Q()):

If B — B’ is a reduction within E, or if B — B’ is a communication on m between
E and m() in its argument, then the reasoning is as in the previous case.

76

Otherwise, we have that B — B’ is a reduction of the second product, i.e. B' =

Elnm0) Taesip) | Toesmns 10-Q(w) | Saes n0.Q(x))] with 8" = §\
{t} for some t € SID \ S. Then (A’, B') € R with A" := A.
o If (A, B) € R, then (E[A], E[B]) € R:

Immediate from the definition of R.

The statement of the claim is equivalent to

Pri=vmm().([] 701] »0-Q@) = vn(m(). T 7)1] n0-Q() =: P.

x€SID x€SID x€SID x€SID

And this follows from the fact that R is a bisimulation since (P;, P») € R. Thus[Claim 4]

is shown.

To show [Claim 5|, consider the following relation:

R = {(Vﬂk.QO‘ | H P{hash((z,k))/k}, vnk,.Q | H Vk.P)}

€S z€eS

up to structural equivalence. Here k ¢ fn(S) is an arbitrary name, S C SID is a set of
terms, o is a (finite) substitution mapping names to distinct (with respect to =g) terms
hash((t,k)) with ¢t € SID\ S, k, = domo, k, N fn(P,S) = &, n is a list of names, and
@ is an arbitrary process with k ¢ fn(Q).

We show that R is a bisimulation:

e If (A,B) € R and A | then B |-
Since k and k, are bound names, we have that M does not contain either of them.
But only terms containing k or kg are different in A and B. Thus B | ,y.

o If (A,B) € R and B |y then A |-

Analogous.

o If (A,B) € R and A — A’, then there is a B’ with B —* B’ and (A, B") € R:

If the reduction is [[cqP{hash((x,k))/k} — P{hash((t,k))/k,t/z} |
[L,cg P{hash((z,k))/k} with S := S\ {t}, then we have B —* B’ and (A', B') €
R with B' := vnk,,.Q | P{ki/k,t/x} | [[,cq vk.P and o' := o U {k; — H((t,k))}
for some fresh name k;. Notice that the terms in the range of ¢’ are still distinct
because S C SID contains only distinct terms, and t € SID \ S.

If the reduction is a reduction of Qo — ', then it is easy to see (by checking,
in particular, for all destructors that f(t1,...,t,)0 = f(ti0,...,t,0)) that Q —
Q'o~!. From this it follows that B —* B’ and (A4, B) € R with B' := vnk,.Q'oc~ " |
[l esvk.P.

7

e If (A,B) € R and B — B/, then there is a A’ with A —* A" and (A’, B’) € R:
If the reduction is [[g vk.P — vk.P{t/x} | [],cq vP with S" := S\ {t}, then we
have (A, B') € R with A’ := vnk.(Q | P{H((t,k))/k})o | [I,esq P{H((z,k))/k}
and B = vnk,,.Q | P{ki/k} | [],cq vk-P and o' := oU{k; — H((t,k))} and some
fresh name k;. Notice that the terms in the range of ¢’ are still distinct because
S C SID contains only distinct terms, and ¢ € SID \ S.

If the reduction is a reduction of @ — @', then it is easy to see (by checking, in
particular, for all destructors that f(ty,...,t,)o = f(t10,...,t,0)) that Qo — Q'c.
From this it follows that (A, B) € R with A" := vnk.Q'c | [[,cg P{hash((x, k))/k}.

e If (A,B) € R and E is an evaluation context, then (E[A], E[B]) € R:

Then A = vnk.Qo | [,cq P{hash((x,k))/k} and B = vnk,.Q | [[,cqvk-P.
Without loss of generality, k,k, ¢ fn(E) U fn(E). (Otherwise we could replace
k,k, by other names in A, B.) There is a process)’ and a list of names n’ such
that E[P] = vn/.(P|Q’) for all P. Then

(E[A], E[B]) = (v0'nk.(Q|Q")o | [[P{hash((x,k))/k}, vn'nk,(QIQ) | [[vk.P) eR.

TES z€S

Since (vk.[[,csmp Pihash((x,k))/k}, [1 cqmp vE-P) € R, we have

vkl P{hash((@,k))/}) = vk.T],cqm P(@){hash((,k)/k} = TLesp vk-Pla) ~
Nvk.P. This shows [Claim 3l O
Analogously to the single session case we define a suitable context C* by replacing

Flep in KE* with O and have
C*INSL] < C*[Fkp) = KE* <! Fkp
Furthermore, !SC &~ viog,iokp.(!1SCA|'SC|"FkE) (by Lemmas B.35]5.36). Hence
Viogqi0ky-(11SC4|'SCR|C*[NSL])

< Viogg 1ok (NSCA|'SC N FrE)
< NSC <N Fse.

Finally, we have a protocol which realizes multiple secure channels while invoking the
NSL protocol and using only one PKI.

9 Virtual primitives

In this section, we present a technique for deriving security of protocols in the symbolic
UC model that is specific to the symbolic model. No analogue in the computational
world seems to exist. The idea is the following: When constructing UC secure pro-
tocols, it is often necessary to include specific “trapdoors” that allow the simulator to
extract or modify certain information. For example, when constructing a simulator for

78

a commitment scheme, we need to include in the protocol some way for the simulator
to extract the value of the commitment when given a commitment by the environment
(extractability), or to change the content of a commitment when producing a commit-
ment for the environment (equivocality), see [CF01]. These additional trapdoors often
make the protocols more complex, and they often also need more complex cryptographic
primitives. A simple commitment protocol in which the committer just sends hash(m,r)
for message m and randomness r is not UC secure because the simulator cannot extract
or equivoke. Instead, one would need to assume a special hash function that takes an
additional parameter crs (the common reference string) hash(crs,m,r) in such a way
that given a suitably chosen “fake” crs, one can find collisions in hash or extract m from
hash(crs,m,r). With such a hash function, one can construct a UC secure commitment
relatively easily (see below). However, now our protocol uses a consider-
ably more complex primitive than a simple hash function. And certainly common hash
functions such as SHA-3 do not have these properties.

This leads to a strange situation: We have a protocol that we can only prove secure
using a hash function that has additional weaknesses (namely that given a “bad” crs, one
can cheat). One might be tempted to state that if the protocol is secure for such weak
hash functions, it should in particular be secure for good hash functions. Unfortunately,
such reasoning does not work in the computational setting: We cannot just remove the
existence of trapdoors from the hash function — if we do so, we have a completely different
hash function and our security proof makes no claims about that function.

In the symbolic world, things are different. Here it turns out that we can indeed
first analyze a protocol using a hash function with trapdoors, and then remove these
trapdoors in a later step, still preserving security. We call this approach the “virtual
primitives” approach, because we use primitives (in this example a hash function with
trapdoors) that do not need to actually exist, and that are removed in the final protocol.

In a nutshell, the virtual primitives approach when trying to realize a functionality F
(e.g., a commitment) works as follows:

e First, identify a symbolic model M, containing cryptographic primitives (e.g. a

hash function) that should be used in the final protocol.

e Extend M,y by additional constructors, destructors, or equality rules, call the
resulting model M ;+. The extension M+ should be “safe” in the sense that in
Mt an adversary will have at least as much power as in M, (this will be made
formal in [Section 9.2]).

e Design a protocol P. Show that P emulates F with respect to M y;¢.

e Compose P with other protocols, leading to a complex protocol C[P] < C[F] < G
(with respect to M ;¢) where G is some desired final goal, e.g., some crypto-heavy
voting protocol.

e Property preservation guarantees that any property g that holds for G also holds
for C[P] (with respect to My;). Since M only makes adversaries stronger, o
also holds for C[P] with respect to M eq.

e Summarizing, we have constructed a protocol C'[P] in a modular way such that C[P]
uses the symbolic model M, (without any trapdoors) and has all the security

79

properties of the functionality G.

The virtual primitive approach is not limited to commitments. But in the following
sections, we illustrate it in the case of a commitment protocol. Note however, that the
main theorem that allows us to conclude that M;¢-security implies M .4-security is
formulated for general safe extensions.

A few words are in order why the virtual primitives approach works in the symbolic
setting. What is the specific property of the symbolic model — in contrast to the com-
putational one — that makes it possible? In our interpretation, this is due to the fact
that a primitive (like hashes) in the symbolic world is a concrete object (i.e., a particular
constructor with certain reduction rules and equalities) while in the computational world
it is a class of objects (hash functions) that are described by some negative properties
(“functions such that the adversary cannot...”). Therefore in the symbolic world, it is
possible to formally compare executions using different kinds of a primitive (e.g., hashes
with and without trapdoors); executions in one setting can be mapped into executions in
the other setting by rewriting the terms sent around. In contrast, in the computational
setting, this is not possible: a security result for hash functions with trapdoors has no
implications for hash functions without trapdoors — these two are completely different
mathematical functions on bitstrings, and it is not possible to rewrite an execution that
uses one hash function into an execution using another (in particular if the adversary
makes his actions depend on individual bits of the hashes). This difference between the
symbolic and the computational setting seems to be the reason why virtual primitives
work in the symbolic setting.

Related approaches in the computational model. Although virtual primitives
as described above are restricted to the symbolic setting, somewhat related techniques
do exist in the computational model. [PS04, BS05] show how to circumvent UC im-
possibility results (such as the impossibility of OT, commitment, or general multi-party
computation without trusted setup) by giving the simulator additional power. Namely
the simulator is allowed to run in (slightly) superpolynomial time. This is in some sense
similar to giving the simulator access to additional constructors/destructors for extrac-
tion/equivocation as we do. Yet, there are three crucial differences to our setting: First,
they can only use primitives that can actually exist computationally. For example, even a
superpolynomial-time simulator cannot invert a fixed-length hash function, as part of the
input is information-theoretically lost. In contrast, we can add arbitrary properties to,
e.g., hash functions by introducing new equations in the symbolic model. Second, their
final protocols have to use whatever primitives have been introduced for proof purposes;
it is not possible to remove additional properties in the end as done in our approach.
Third, their protocols involve advanced cryptographic techniques which makes the pro-
tocols considerably more involved and, consequently, inefficient. On the other hand, of
course, protocols designed with our techniques are only proven secure in the symbolic
model but lack a proof in the computational model — we believe therefore that our and
their approaches are incomparable with respect to their advantages and disadvantages.

80

fun hash/2.

fun empty/0.

fun fake/3.

fun fakeH/2.

fun crseqv/1.

fun crsext/1.

equation hash(crseqv(n), (m,fake(n,m,r))) = fakeH(n,r).
reduc extract(n,hash(crsext(n),(m,r))) = m.

Figure 12: Virtual primitives example: Proverif code for the symbolic model
(virtprim-model.pv, see)

9.1 Realizing commitments

For simplicity, we formulate a commitment functionality where the adversary is not
informed that a commitment takes place (when both Alice and Bob are honest). Of
course, such a functionality can only be realized if we assume perfectly secure channels
between Alice and Bob that do not even allow the adversary to notice or block messages.
If our protocols were to use secure channels where the adversary can notice and block
communication, we would instead realize a somewhat weaker functionality which notifies
the adversar (the resulting changes in the proof are orthogonal to the issues of this
chapter).

Definition 9.1 (Commitment) Fcoum = 10 coma(Tm)- (10 comb ()90 opena ()-10 opend (Tm)) -

Symbolic model. The symbolic model M,y has constructors hash/2, empty /0, and
(,) (pairs) — f/n means f has arity n —, has destructors fst, snd, has no equalities, and
has the rewrite rules for fst, snd, equals prescribed by This model M, is
quite standard and does not use any cryptography except hash functions (hash is binary
for convenience only).

As explained above, to construct UC-secure commitments, we need additional “trap-
doors” in our equational theory. Let M+ be the symbolic model M,y with the follow-
ing additions: Constructors fake/3, fakeH /2, crsequ/1, crsext/1, destructor extract/2,
equation hash(crsequ(zy,), (Tm, fake(xy, Tm, x,))) =5 fakeH(x,,x,), and rewrite rule
extract(xy,, hash(crsext(xy), (Tm, xr))) = T

The Proverif code for this symbolic model is given in
Notice that if we have a CRS c¢rsequ(n) and know n, we can open fakeH (n,r) to

arbitrary values. Similarly, if the CRS is crsext(n) and we know n, we can extract m
from hash(crsext(n),(m,r)). These two facts allow us to construct a simulator that does
equivocation and extraction.

lsNamQIYy Fceom = iocoma(mm)-(nEtcomao|n€tcomb ()Aiocomb <>|ioopena ()A(netopena <>|netopenb()-
ioopenb <xm>))

81

Note that we introduced two different CRS-constructors for faking, crsext
and crsequ. It would be tempting to use only one of them, i.e., use the
equation hash(fakecrs(x), (y, fake(z,y,2))) =g fakeH(x,z) and the reduction rule
extract(xz, hash(fakecrs(x), (y,z))) — y. But then we would have for any terms k,m,r
that extract(k, fakeH (k,r)) =g extract(k, hash(fakecrs(k), (m,r))) — m, so by comput-
ing extract(k, fake(k,r)) the adversary can derive any term m, thus the adversary will
know all secrets. This is clearly not a sensible symbolic model.

The commitment protocol. The protocol we construct uses a crs, so we first need to
define the crs functionality Forg that gives a random non-secret value k to Alice, Bob,
and the adversary.

Definition 9.2 (Common reference string) Fors := vk.10crsq(k) | 10crsp (k) | neters (k).

Our protocol is then as expected. To commit to a message x,,, Alice fetches the crs
Zers, picks a random r, and sends h := hash(xrs, (Tm, 7)) to Bob. To unveil, Alice sends
(Zm, 1), so that Bob can check whether h indeed contained these values. We call Alice’s
part of the protocol COM4 and Bob’s part COMp.

Definition 9.3 (Commitment protocol)

COM 4 :=i0¢rsa(Ters)-10 coma (Tm)-
vr.(nety(hash(acps, (Tm,7)))
’iOOPGHa()-M<(xm7T)>)
COMp = ioc,«sb(aﬂcrs).netl(wh).(m<>\net2((xm,xr)).
if xp = hash(zers, (Tm, x,)) then m<xm>)
COM := V00 ¢p5q 00 crspnetineta.(COM 4 |COMp|Fors)

To show that COM is a secure commitment protocol, we need to show the following
lemma (cf. also the discussion on how to model corruptions in [Section 4)):

Lemma 9.4 With respect to M i, we have
(i) Uncorrupted case: COM < Foon -
(ii) Alice corrupted: viog.(COMp|Fopg{ ey < Foopy { Lebeoma Lt‘”"e"“}

10crsa 10 coma 10 opena

(ii1) Bob corrupted: vio rsq. (COMA|fCRS{net”Sb}) < Feoy {Bileomn Melopensy

10comb 10 openb

In the proof, we show the various observational equivalences by a sequence of rewriting
steps on the protocol, interspersed with automated Proverif proofs for the steps that
actually involve the symbolic model (i.e., we do not have to manually deal with the
complex symbolic model M ;).

We split this lemma into the following three lemmas:

Lemma 9.5 (Commitment — uncorrupted case) COM < Feou.

82

Proof.

COM = vi0crsqi0crspnetineto k. 10 crs (k) | 10crsp (k) | neters (k)
| iocrsa(xcrs).iocoma(xm).(netl(hash(xm, (T, 1)) | z'oopem().@«wm,r)))
| 10 crsh (T ers)-netr (zh). (10 comp () | neta((x),, 7).
if 2, = hash(zcrs, (2], 2r)) then 10 gpens (2,))

(1) _
~v mnetinetokr. netes(k)

| zocoma(xm).(neh(hash(kz, (T, 1)) | ioopena().m«wm,r)))

| nety(zn). (10 coms () | neta((z),, zr)).
if zp, = hash(k, (x;,,) then i0opens (27,))

(i)y neto kr. neteps(k)

| Zocoma(xm)-(zocombo | netZ((. xr))
if hash(k, (xm, 7)) = hash(k, (x],,2)) then 10,pens (2,)

| 50 opena ()-net2((Tm, 7))
(2)1/net2 kr. netes(k)

| 10 coma (xm).(zocomb () | neta(ximp).let (@, x,) = z in
if hash(k, (xm,r)) = hash(k, (z,,,2,)) then 10,pens (),)

| z'oopem().netg((xm,r)>)

Xk net crs (k)

| zocoma(aﬂm).(iocgmb () | 10openal). let (20, 2) = (Tm,T) in
if hash(k, (@, 7)) = hash(k, (z),, ©,)) then i0spens (z7,))

) R . - . —
~vkr. netcrs<k3> | ZOcoma(xm)-(ZOCombo | Zoopena()- Z00penb<xm>)

= Fooum | S with S :=vkr.net.s(k)

Here (1) uses two invocations of [Lemma 3.3l one with n := i0¢psq, t := k, and = := s,
and one with n := 0., t : =k, and x := xops.

And (@) uses one invocation of [Lemma 3.3 with n := net;, * := x5, and t :=
hash(k, (., T)).

And () uses the fact that ¢(p).P is syntactic sugar for ¢(z).let p = zin P for a
pattern p and a fresh variable z.

And () uses one invocation of [Lemma 3.3l with n := nety, = := Xy, and t :=
(Tm, 7). (And it uses [Lemma 2.7, so that we can apply to a subprocess
instead of the whole process.)

And (@) uses several invocations of [Lemma 3.2(¥) to evaluate the let- and the if-
statement.

So COM = Feou | S for some S with IO N fn(S) = @. Hence COM < Feou. O

Lemma 9.6 (Commitment — Alice corrupted)
viocrsy(COMB| Fos { ek }) < Foop { Hobemma, Fone)

10crsa 10coma ' 10opena

83

free netcrs,netcrsa,netl,net2,iocomb,ioopenb.

process

new k;

out (netcrsa,choicelk,crsext(k)]) |

out (netcrs,choicelk,crsext(k)]) |

in(netl,xh);

out (iocomb,empty) |

in(net2, (xm,xr));

if xh = hash(choicel[k,crsext(k)], (xm,xr)) then
out (ioopenb, choice [xm,extract (k,xh)])

Figure 13: Virtual primitives example: Proverif code for corrupted Alice

virtprim-acorr.pv, see . (Has to be prefixed with the code from [Figure 12|
P p

Proof. We have

VZOcrsb (COMB|-7:CRS{ L })

10crsa

R Uk et oraa (k) | Metors (k) | nety(n)-(1000ms O]
neto((Tm, xr)).if xp, = hash(k, (T, z,)) then i0pens <xm>)

(11) - S
~ vk.net orsq (crsext(k)) | net o (crseat(k)) | neti(zn). (10 coms ()|

nets((Tm, x,)).if zp = hash(ersezt(k), (xm, x,)) then o pens (extract(k, zp)))

(k)
Gy _ N
~ vk.net orsq (crsext(k)) | neteps(crsext(k)) | net1(xh).ynetopena.(wcomb<>|netopena().zoopenb(eztmct(k,xh)>|
(k)

(iv) __ - -
~ vnetopena k-nelorsa (crsest(k)) | netons(crsext(k)) | nety(zn). (40 comb ()| n€t opena ()-10 opens (extract (k, x3))

(
(
(
neto((Tm, xr)).if 5, = hash(crsext(k), (T, z,)) then Netopena())
)
nety((Tm,) if @, = hash(crsext(k), (Tm, 2y)) then netopenq ()

Y Vet coma M€t openak-ne€tcrsq (crsext(k)) | net s (crsext(k)) | netl(wh).(netcoma<e$tmct(k,xh))]
nety((Tm, xr))if p = hash(crsext(k), (T, y)) then netopenq ()]
net coma (.T;n) (iocomb <>|netopena() ioopenb(. >)

= vnet coma Net opena - (Foon { Lekeeme Delopene }S) for some S with IO N fn(S) = @.

10coma ’ 7foopena

Here () uses [Lemma 3.3 with n := i0¢psp, C := vk.netersq (k) | netes(k) | O, x := xeps,
and t := k.

And (i) is shown using Proverif, the required code is given in[Figure 13} Note that in
the rhs of (), we have replaced all occurrences of the CRS k by crsext(k), and instead
of outputting x,, in the end, we output extract(k,xy).

And (@) wuses [Lemma 33 (in the opposite direction) with n :=
Netopena, @ = 10gpenp(extract(k,zp)), and C = i0comp()|neta((xm,zr)).

84

if xp, = hash(crsext(k), (xm,x,)) then 0. (And it uses [Lemma 2.7] so that we can
apply to a subprocess instead of the whole process.)

And () uses Lemma 32() to swap vnetopeng and nety(zy). (And to
apply [Lemma 3.2/([) to a subprocess.)

And (@) uses (in the opposite direction) with n = neteoma, © := 2},
t:= extract(k, zp), and Q := 10 comp ()| 1€t opena()-10 opent (Thy)) -

So we have 110 crgp. (COMB‘fCRS{ Zitccrzza }) R vnelcoma netopena (-FCOM{%7 Zii(;iz;a }’S)
for some S w1tth I0 N fn(S) = @. Hence Viogpsp. (COMBU‘—CRS{%Z:;“ b <
tcoma TElopena
fCOM Y’Liicoma ’ 7;Qopl;na } D

Lemma 9.7 (Commitment — Bob corrupted)
V10 crsq - (COMA|]:CRS{”5tcmb 1 <]:COM{netcomb netopent \

20 crsh 10 comb /Loopenb

Proof. We have

V'locrsa (COMA’-FC’RS nEtCMb })

% l/k.netcrsb%) | neters(k) | iocoma(xm).yr.(netl(hash(k‘, (azm,r))>|z'00pem().net2<(xm,r)))
~ vk.net .5 (ersequ(k)) | netqrs(ersequ(k)) | i0coma(Tm)-vr.

(MUakeH(k, 7")>|i00pena()-n€t2<(xma fake(ka L, T))>)
(i)

~ vk.net s (crsequ(k)) | neteps(crsequ(k)) | i0coma(Tm)-vr.

z/netopenb.(netl(fakeH(k:,7")>]ioopena().netopenb(xm>|netopenb(m;n).net2<(, fake(k, m,r))))

(ié)unetopenb kr.net sy (crsequ(k)) | neteprs(crsequ(k)) | 10 coma(Tm)-
(net1<fakeH(/<:,7")>]ioopem().netopenb<xm>]netopenb(x;n).net2<(, fake(k, m,r))))
(v

R VM€t comp M€t openy k T.1€t crsp (crsequ(k)) | neters(crsequ(k)) | 10 coma(m,)-
(10 opena ()- €L opent (Tm.) M€ comb ()) ’
netcomb().(WtﬂfakeH(k 7)) |net opens (27,). neta((,,, fake(k, m,r))))
= ynetcombnetopenb.(}'COM{m Mt"”e””}|S) for some S with 10 N fn(S) = 2.

10comb ’ 10 openb

Here (i) uses Lemma 3.3l with n := 10¢psa, C 1= vk.net g (k) | netes(k) | O, x = 2o,
and ¢t := k.

And (@) is shown using Proverif, the required code is given in [Figure 14} Note that in
the rhs of (i), we have replaced all occurrences of the CRS k by crsequ(k), and instead
of sending the hash value hash(k, (x,,,7)) we send fakeH (k,r) which does not depend
on Zp,, and in the end, instead of sending the randomness r, we send fake(k,x,,r).
Intuitively, this replacement is indistinguishable because our symbolic model contains
the equation hash(crsequ(k), (m, fake(k,m,r))) =g fakeH (k,r).

And () uses [Lemma 3.3 (in the opposite direction) with n = netpeny, © := 2,
t =T, Q = neto((al,, fake(k,x},,r))), and C := nety (fakeH (k,7)) | i00pena()-0. (And

85

free netcrs,netcrsb,netl,net2,iocoma,ioopena.

process

new k;

out (netcrs,choicelk,crseqv(k)]) |

out (netcrsb,choice[k,crseqv(k)]) |
in(iocoma,xm) ;

new r;

out (netl,choice[hash(k, (xm,r)) ,fakeH(k,r)]) |
in(ioopena,x);

out (net2, (xm,choice[r,fake(k,xm,r)]))

Figure 14: Virtual primitives example: Proverif code for corrupted Bob

(virtprim-bcorr.pv, see [BUL3|). (Has to be prefixed with the code from [Figure 12])

it uses[Lemma 2.7], so that we can apply [Lemma. 3.0 to a subprocess instead of the whole
process.)

And () uses [Lemma 32[) to swap vr and vnetopeny With 0come(2m). (And
to apply [Lemma 3.2/({) to a subprocess.)

And (W) uses (in the opposite direction) with n = netooms, t := empty,
and Q := nety (fakeH (k,r)) | netopens (2),).neta((z),, fake(k, x,,7))).

So we have 110 ¢psq.(COMA| Fopg { Belersb 1) Vet comp M€t opend - (Foon { 2tcoms mt"”e"b}] S)

20 crsh 10 comb 20 openb

for some S with 10 N fn(S) = @. Hence viogs,. (COMA’fCRS{netcmb}) <

net
fCOM{ nel comb openb)]

10 comb 10 openb

9.1.1 A note on adaptive corruption

We have only modeled static corruption in our examples, i.e., it is fixed in the be-
ginning of the execution which parties are corrupted. If we were to model adaptive
corruption where parties may be corrupted during the protocol execution, we would
face an additional challenge (besides the fact that the descriptions of the processes
would be much more complex): Since the simulator may have to provide the CRS
before he knows whether Alice or Bob will be corrupted, he will not know whether
he should use crsequ(k) or crsext(k) as CRS. And on we explained why we
cannot just replace both crseqv and crsequ by a single constructor fakecrs because
then the adversary would be able to deduce any term. However, this problem can
be solved using the conditional destructors supported by Proverif 1.87: we can make
sure that the rewrite rule extract(z,, hash(crsext(zy), (Tm,xy))) — X, only triggers
if hash(crsext(xy,), (Tm,x,)) #g5 fakeH (M, M') for all M, M’. The resulting symbolic
model is shown in We can show Lemmas [@.5] [0.6] and [@.7] also using this sym-
bolic model by replacing all occurrences of crsequ and crsext in the simulators by fakecrs.
Proverif still shows all the necessary equivalences. Although this does not show adaptive

86

(* Needs proverifl.87 beta *)

fun hash(bitstring,bitstring):bitstring.

const empty:bitstring.

fun fake(bitstring,bitstring,bitstring) :bitstring.
fun fakeH(bitstring,bitstring) :bitstring.

fun fakecrs(bitstring) :bitstring.

equation forall n:bitstring,m:bitstring,r:bitstring;
hash(fakecrs(n), (m,fake(n,m,r))) = fakeH(n,r).

fun extract(bitstring,bitstring):bitstring

reduc forall n:bitstring,r:bitstring;
extract(n,fakeH(n,r)) = empty

otherwise forall n:bitstring,m:bitstring,r:bitstring;
extract(n,hash(fakecrs(n),(m,r))) = m.

Figure 15: Virtual primitives example: Proverif code for the symbolic model when using
fakecrs constructor (virtprim-model-x.pv, see [BUI3|) Note that we use the typed
Proverif syntax here because Proverif 1.87 does not support conditional destructors in
the untyped syntax.

security, it shows that the simulator does not need to choose the CRS depending on who
is corrupted, giving hope for the adaptive case. We leave that case for future work.

9.2 Removing the virtual primitives

In this section, we will consider different symbolic models. Since the relation symbols
—,,~,], =g etc. do not explicitly specify the symbolic model, we use the following
convention: When referring to a symbolic model M;, we write —;, l;, ~;, 1%, =g, etc. We
say a term (or destructor term) is an M-term (or M-destructor term) if it contains only
constructors (and destructors) from M. We call a process an M-process if it contains
only M-terms and M-destructor terms.

We have now shown that COM is a secure commitment protocol with respect to M ;.
However, we would like to deduce security of protocols using COM with respect to M eq;-
For this, we first need to formalize what it means that M. is a safe extension of M .-

Definition 9.8 (Safe extension) We call a symbolic model My = (¥1,E1,R1) a safe
extension of a symbolic model My = (39, Eg, Ra) iff the following holds:
(i) X1 2 s,
(1) If D is an My-destructor term, and M is an My-term, and D |1 M, then there
exists an Mo-term M' =g, M with D {5 M'.
(113) For all Ms-destructor terms D and Mso-terms M, we have D o M = D {1 M.

87

(iv) For all Ma-terms M, M’ we have M =g, M' < M =g, M'.
The following lemma is relatively easy to show:

Lemma 9.9 M is a safe extension of M.

Proof. Obviously, Yy 2 Yyeq. So [Definition 9.8/({) is satisfied.

We show that [Definition 9.8| () is satisfied: Let D be an M.y -destructor term and
M be an M ;4-term. Since M, contains no destructors, D is an M .-term. Thus
D yirt M implies D = M. This implies that M’ := M is an M eq-term and D |, M'.

We show that [Definition 9.8I(i) is satisfied: Let D be an M.y -destructor term and
M be an M ¢y-term. Since M, contains no destructors, D is an M .-term. Thus
D | yire M implies D = M which implies D {,eq; M.

We show that [Definition 9.8|(v)) is satisfied: For Meq-terms M, M’ obviously
M =g, M' implies M =g, , M’'. We show the opposite direction: The only equa-
tion in FE;¢ (namely hash(crsequ(k), (m, fake(k,m,r))) =g fakeH (k,r)) only allows us
to rewrite terms containing crsequ or fakeH. Since M, M’ are M.q-terms, they do not
contain these constructors. Hence M =g, M’ only if M = M'. So M =p,,, M’ implies
M =g, M. O

The following theorem justifies the above definition of safe extensions:

Theorem 9.10 Assume that M1 is a safe extension of My. Then for all Ma-processes
P, P we have P ~1 P' = P ~y P'.

Proof. We first show some auxiliary claims:

Claim 1 For all My-processes P, P', we have P —9 P' = P — P’.

We show this claim by induction over the derivation of P —9 P’. We distinguish the

following cases:

e Closure under structural equivalence: In this case P —9 P’ has been derived from
P =P -y P = P for My-processes P, P’, and the induction hypothesis implies
P —, P'. Thus P =P —; P’ = P’ which implies P —; P’. The claim follows.

o (Closure under evaluation contexts: In this case P —5 P’ has been derived from
P = E[P], P' = E[P'], and P —5 P’ for some My-processes P, P’ and some
Mo-evaluation context F. The induction hypothesis implies P —, P'. Hence
P = E[P] -, E[P| =P

e REPL: Tn this case P =!P and P’ = P|!P. Hence P —; P'.

e COMM: In this case P = C(T).P | C'(z).Q and P’ = P | Q{T/xz} and C =g, C".
Since P is an My-process, C,C’ are My-terms. Since M is a safe extension of
Ms, C =g, C" implies C =g, C'. Thus P —; P’. The claim follows.

e LET-THEN: In this case P = (let z = D in P else Q) and P/ = P{M/z} for
some Mo-processes]5, Q, and some My-destructor term D and Mo-term M with
D llo M. Since P is an Msy-process, D is an Mo-destructor term. Since My is a
safe extension of My, D llo M implies that D |l; M. Thus P —; P’. The claim
follows.

88

LET-ELSE: In this case P = (let z = D in P else Q) and P’ = Q and for all
Ma-terms M we have D |fo M. Since P is an Ma-process, D is an Msy-destructor
term. If we had D |}y M for some Mi-term M, we would have D |5 M’ for some
Mo-term M’ since M is a safe extension of My. This contradicts D Jfo M for all
Mo-terms M. Thus D }f; M for all Mi-terms M. Hence P —; P’. The claim
follows.

Claim 2 For all My-processes P, and all M1-processes P" with P —1 P", there exists
an Mo-process P’ such that P —9 P’ =g, P".

We show this claim by induction over the derivation of P —; P”. We distinguish the
following cases:

Closure under structural equivalence: In this case P —; P” has been derived
from P = P —; P" = P for M;-processes P, P”, and the induction hypothesis
(Claim 2) holds for P —; P”. Since structural equivalence does not rewrite terms,
the fact that P is an My-process implies that Pisan Mo-process. Thus P, P
implies together with the induction hypothesis that P —y P’ =g, P’ for some
May-process P'. Thus P = P —5 P’ which implies P —5 P’ and we have P’ =p,
P = P" which implies P’ =g, P”. The claim follows.

Closure under evaluation contexts: In this case P —; P” has been derived from
P = E[P], P" = E[P"], and P —; P" for some M,-processes P, P"” and some
M-evaluation context E. And the induction hypothesis holds for P —; P”. Since
P is an My-process and P = E[P], we have that P is an My-process and E and
Ms-evaluation context. Thus by induction hypothesis, there exists an Mo-process
P’ such that P —y P’ =g, P”. Let P' := E[P']. Obviously P’ is an My-process.
And P = E[|P] —, E[P'] = P' and P" = E[P"] =g, E[P'] = P'. The claim
follows.

REPL: In this case P = P and P” = P|!P. Since P is an Ma-process, so is P,
and hence also P’ := P” is an Ma-process. Then P —5 P’ and P” =g, P’ and the
claim follows.

COMM: Tn this case P = C(T).P | C'(x).Q and P" = P | Q{T/z} and C =p, C".
Since P is an May-process, C,C" are M-terms and P, Q are Mo-processes. Since
My is a safe extension of My, C' =g, C’ implies C =g, C'. Thus P —5 P"”. With
P’ := P”, the claim follows.

LET-THEN: In this case P = (let # = D in P else Q) and P" = P{M/xz} for
some M -processes]5, Q, and some Mj-destructor term D and M-term M with
D |y M. Since P is an My-process, P,Q are Ma-processes and D is an Mo-
destructor term. Since M is a safe extension of My, D |}; M implies that D | M’
for some Mo-term M’ =g, M. Let P' := P{M/xz}. Then P" = P{M/z} =p,
P{M’/m} = P’ and P —9 P’. The claim follows.

LET-ELSE: In this case P = (let z = D in P else Q) and P” = Q and for all M-
terms M we have D |f; M. Since P is an My-process, P,Q are My-processes and
D is an Mo-destructor term. Since M is a safe extension of Mo, for all Ms-terms

89

M, D {f; M implies that D {fo M. With P’ := Q = P”, we thus have P” =p, P’
and P —9 P’. The claim follows.

Claim 3 For all My-processes P, and all My-processes P" with P —7% P", there exists
an Ma-process P' such that P —% P’ =g, P".

Proof. To show this claim, we show that for all n > 0, all Msy-processes P, and all M-

processes P’ with P —7 P”, there exists an Ma-process P’ such that P —3 P’ =g, P”.

Here —" means exactly n applications of —. We show this by induction over n. For n = 0,

the statement is trivial. Assume the statement holds for n, we show it for n+1: We have

P =" P" hence P —7 P” —; P" for some M-process P”. By induction hypothesis

1 1

there exists an May-process P’ with P —3 P’ =g, P”. Since P’ =g, P" —1 P", by

we have P’ —; P, =, P” for some M;-process P,. Since P’ is an M-
1
process and P’ —; P, by[Claim 2] there is an My-process P’ such that P’ —o P’ =g, Ps.
Combining all this, we have

P —); P/ —9 Pl = PQ = P”.

Thus P =5 P' =g, P". O

We are now ready to show [Theorem 9.10] Let R = {(P,Q)
P, Q May-processes, P ~1 QQ}. We show that R is an Msy-simulation (and due to its
symmetry also an Mo-bisimulation):

e If (P,Q) € R and P |2, for some My-term M, then Q —3 Q' |3, for some
M-process Q.

P |2, implies (see [Foofnote 7) P =g, E[M(T).P'] for some evaluation context E
not binding fn(M). This implies P =g, E[M(T).P'] (since M; =g, My implies
M, =g, Mj for Ma-terms My, Ms). Thus P Hw. Since (P, Q) € R, we have that
P~ Q and thus @ —% Q" |1, for some M;j-process Q”. By [Clalm 3} this implies
that Q —3% Q' =g, Q" for some My-process @'. Since Q" =g, Q" |},, we have
Q' |}, (this follows immediately using the characterization from [Footnote 7). Since
Q' 1}, by definition of |, we have Q' = E[M/(T").Q)] for some M;-terms M’ T’
with M’ =g, M and Mj-process Q, and some evaluation context not binding
fn(M). Since @' is an My-process, E[M'(T").Q] is an Ma-process, hence M’ is
an Mo-term. Thus M, M’ are My-terms, and M’ =g, M. Since M; is a safe
extension of My, this implies M’ =g, M. Thus Q' = E[M’(T").Q] implies Q' |3,.
So we have @ —5 @' |3, and @’ is an Ma-process.

e If (P,Q) € R and P —9 P’ for an Ma-process P’, then there exists an Ma-process
Q' with (P',Q') € R and Q —3 Q":
Since P, P’ are My-processes, and P —9 P’ by we have P —; P’. Since

(P,Q) € R, we have P ~1 @ and thus Q —7 Q" for some M;j-process Q" =~
P’. By [Claim 3| there is an Ma-process @’ such that Q" =g, Q' and Q —3 Q'

90

Furthermore, by [Lemma 3.2([vl]), we have =g, C = and trivially =C~, hence
=p, C ~1. Thus Q" =p, Q' implies Q" ~ Q’. Together with Q" =~ P’, we have
P’ ~; @' and thus (P',Q’) € R.

o If (P,Q) € R and E is an My-evaluation context, then (E[P], E[Q]) € R.

Since (P,Q) € R, we have P ~1 (). Furthermore, since F is an Ma-evaluation
context, F is also an M;-evaluation context. Hence E[P] ~; E[Q] and thus
(E[P], E[Q]) € R.

Since R is a My-bisimulation, R C ~». Thus for Ms-terms P, P’ we have P ~; P’ =
(P,P') € R = P ~ P'. [Thoorem 910 follows. O

Now we can finally state the following result that derives security of COM with respect
t0 M eq In any context (we state it generally, though):

Lemma 9.11 Let P, F be M eq-processes (representing a protocol and an ideal function-
ality, e.g., P = COM and F = Fcon). Let Myiy be a safe extension of Meq. Assume
that P <y F.

Let C be an M eq-context whose hole is protected only by vio for IO-names io, by
parallel compositions, and by !, and that does not contain any NET-names in fn(P,F).
Assume that C[F] <yt G for some M eq-process G.

Let E1,Ey be M eq-contexts satisfying the conditions of [Theorem 6.1 (property
preservation,).

If E1 [g] X virt E2 [g] then E1 [C[PH ~ real E2 [C[PH

Proof. By the composition theorem (Theorem 5.37), P <+ F implies C[P] <yire C[F].
With transitivity and C[F] <,u¢ G, this implies C[P] <,;+ G. Then by the property
preservation theorem (Theorem 6.0l), F1[G] =it F2[G] implies Ey[C[P]] ~yire E2[C[P]].
Since M is a safe extension of My, this implies E1[C[P]] ~pa E2[C[P]] by
MTheorem 9.101 O

9.3 On removing the CRS

Using virtual primitives, we have managed to get rid of the need for trapdoors in our
commitment protocol. However, we still use a common reference string. This leads to
the question whether the CRS can also be removed from the protocol. We do not answer
that question here, but we give some indications as to how it might be possible to remove
the CRS, also.

First, the question is whether we can construct a UC secure commitment protocol
without using a CRS in the first place (i.e., instead of the protocol from [Section 9.1). We
know that this is impossible in the computational UC setting (no matter what primitives
we use) [CEOI]. Unfortunately, their impossibility result carries over to the symbolic
setting:

Lemma 9.12 There are no closed processes A, B and NET-names net with the following
three properties:

91

(i) vnet.(A|B) < Fcom- (Uncorrupted case.)
(ii) A< Foop{Reoms "lopensy - (Bob corrupted.)

0comb * openb

(iii) B < Foop{Rkeoma Ielopena = (Alice corrupted.)

10coma ' 10 opena

Thus, a UC secure commitment protocol has to be of the form vnet.(A|B|F) for some
functionality F, e.g., FoRrs-

Proof. Assume that there are such processes A, B and NET-names net.
Then there are simulators (Sp, vo,ng), (Sa,94,n4), and (SB,¢p,np) such that

vnet.(A|B) ~ vng.(FoompolSo) = vng-(Feom|So) (5)

A= v (Foou (5 B840 = v (Foou (s, Szt 0
(6)

B~ vng.(Fooy { iekeens M}SDBLSB) = vnp.(Foon { 2tiona netl g OPBMH)

10coma ' 10opena 10coma ' %Oopena
(7)
/ / g
for suitable names neti,,,,, ety enq, netl, 1, netopenb The equalities use the fact that

Fcon does not contain any NET-names.
Let

E = V'iocoma iocomb Z'Oopena ioopenb-
(v (@ coma)0 comb - (1 opena) 10 opens (2).if & = 7 then ()))) D)

where c is a fresh name. Intuitively, this context commits to a fresh nonce r, waits until
the commit succeeds, then opens the commitment and checks whether the unveiled value
is indeed r. For a “good” commitment scheme, this should always be the case. Indeed:
By definition of Foonr (and using that n, does not contain IO-names), we have that
Elvng.(Fecom|So)] —=*}e. By ([@) we have Efvnet.(A|B)] =~ Elvng.(Fcom|So)] and thus
Elvnet.(A|B)] = 1.

We now use (@) and (@) to transform E[vnet.(A|B)] into a process that does not use
the commitment protocol A|B any more, but instead uses two instances of Foon:

ne

comb M}LS'A”VTLB (]_‘COM{TL coma opena}| B))]

10 comb 10 openb 10coma ' 10opena

E[Vn_et.(A|B)]@%mE[Vnet (vny.(Foomd

By moving all restrictions up (and potentially renaming names to avoid clashes of bound
variables), we get:

Elvnet.(A|B)] ~ vnet' E[J—"COM{—C"”“’ - Dpe"b}’ con { Bocoma netioma OPBM}’SAB] =P

0comb * 10openb 10coma ' 10opena

Here net’ is the list of all names that were moved up. net”,, . etc are potentially renamed
names, and S4p := S4|Sp potentially up to renamings. Note that S4p does not contain
[O-names.

92

We now use several application of [Lemma 3.3 to simplify P. Each of the following
observational equivalences corresponds to one application of [Lemma 3.3

P = vnet iocoma Z'Ocomb ioopena ioopenbr-

10 coma (") | 10 comb ()-(0 opena () | z'oopenb(x).if x = r then &())

| fCO {netcoma opena} | ‘FCOM{ comb openb} | SAB

10 coma 7foopena 10comp 10 openb
= vnet 10 coma 10 comb 10 opena 10 openbT-

10 coma(T) | 10 comb ()-(20 opena () | 10 opens (x).if & = then &())

et!!
| Foon { Zkeoma 1

— oz} | 0 coma (Tm)- (et L, () | 100pena ()- netopenb< m)) | SaB

10 coma 10opena
~ vnet 20 comb 10 opena 10 openbT-

1€t () | 100pena()-m€t7 05 (T) | 90 comb ()-(100pena () | 10 opens (%).if = r then €())

net!”

| Foon {oma Mlopenay 10| g

10 coma 10opena

(u) .
~ vnet 10 comb 20 openb T

net/c,omb <> ‘ iocom}?() (netgpenb< > ’ ingenb ((E)lf x =r then E<>)
tcomu opena
|]:CO {Tzzcoma ? Zoopina } | SAB

= VNet 10 comp 10 opend T
netlc/omb <> ‘ iocom}?() (net/olpenb< > ‘ ingenb ((E)lf x =r then E<>)

’ net/c/oma(m.)-(10 comb () | netlt;pena()‘ioopenb (Tm)) | SaB

(iii) _
R vnet 10openyr- et ()

m)-(net”

openb<) | i0opens ().if © =7 then &) | netopena().ioopmb (xm)) | SaB

| n€tcoma (

(iv) -
~uvnet r. net” ()

(ry | net? .. .0).if 2y, =7 then €()) | Sap

| n€tcoma ('Im) (n6t,o/penb

Here () uses [Lemma 3.3 with n := i0coma, t := 7, and := z4,.

And () uses with 7 1= 10 openq.-

And () uses with n 1= 90 comp-

And () uses Lemma 3.3 with n := 10gpenp, t := @y, and z := 2 (and [Lemma 3.2/ ()
to move the vi0,penpy below the net?, . () first, and [Lemma 2.7] so that we can apply
[Lemma 3.3l to a subprocess instead of the whole process.)

Thus we have

opena

Elvnet.(A|B)] =~ P ~

VTL_@tT. net,c/ <> ‘ netcoma(xm) (net/c:penb

(rY | net? oo (O)if =7 then €()) | Sap =: P»

opena

Note that in P, x,, is received before the fresh nonce r is revealed. Thus we expect

93

that the comparison x,, = r will always fail. Indeed:
Py = vnet .net” ()| net'cloma(xm).yr.(net’épmb (r) | netpen, ()if £m = 7 then &()) | Sap

(ry | net? ...0.0) | Sap =: Ps

(g)un_et.net” O | netlt o (@m).vr.(net” opena

comb coma openb

Here (x) uses [Lemma 3.2([l) with x := x,,, to move the restriction vr down, and (xx)
uses [Lemma 3.8 to replace the if-statement by its else-branch (which is 0).

Thus we have that Flvnet.(A|B)] ~ P, ~ P3. Furthermore, we showed above that
Elvnet.(A|B)] —*].. But since ¢ does not occur in P3 (we chose it as a fresh name, thus
it also does not occur in S4p5), we have that P; —* . cannot hold. This is a contradiction
to the observational equivalence E[vnet.(A|B)| ~ P;. Thus our assumption was wrong
that processes A, B and NET-names net as in the statement of the lemma exist. O

However, [Lemma. 9.12] does not exclude that an approach similar to the virtual primi-
tives approach might work: We first construct a UC secure commitment protocol (again,
commitments are just one example), build a complex protocol from it using the compo-
sition theorem, and then show that security of the complex protocol implies (non-UC)
security of a modification that does not use the CRS. It is likely that this works as the
CRS returned by the CRS functionality is just a fresh public name, so instead of the
CRS we should be able to just use some fresh (non-restricted) name a.

There is one subtlety, though: When composing the commitment protocol P, we end
up with a complex protocol C[P] that may use multiple instances of Fogg. In particular,
if C[P] contains ! P, then C[P] will contain an unbounded number of Frrg-instances. So
we cannot replace Foprg just by a single name, we will need a way to generate an arbitrary
number of fresh values. The obvious way for this is to use something like hash(a, sid)
instead of the CRS that we get from the Forg-instance with session-id sid (here a is a
fresh name).

A lemma roughly like the following conjecture should therefore lead to a method for
removing the CRS from a protocol that was produced by UC composition:

Conjecture 9.13 Let hash be a free constructor (i.e., not occurring in any equations or
rewrite rules in the symbolic models). Let P be a process. Let E1, Es be contexts. Assume
that hash does not occur in Ey, Es, P. Let a ¢ fn(Ey, Eo, P)U bn(Ey, Eo, P).

(i) Let P’ result from P by replacing all subterms “netqrsq(x).Q7 by “let x = a in Q”.
Then Er[vnet rsq.(P|Fors)] & Ea[vnet crsa-(P|Fors)| implies Eylvnetpsq.(P')] &
Es[vnet crsq.(P')].

(11) Let P’ result from P by replacing all subterms “(Mg;q, netersq)(x).Q7 by “let © =
hash(a, Msq) in Q”. Then Ei[vnetcrse. (PN Feors)| & Ea[vnetcrsa. (P Fers)] im-
plies Eq[vnet cpsq.(P')] & Ealvnet cpsq.(P)].

Proving (i) is probably considerably simpler than proving (). An alternative to
proving () could be to make sure that C[P] does not contain Feors under a !l. This
could be achieved if we design a commitment protocol P that does not implement Fooy,
but ! Feon (compare with Section 83). Then a single copy of P would be sufficient in
C[P].

We leave further exploration of approaches to get rid of the CRS to future research.

94

fun empty/0.
free net2, net3.

let Q = new n; out(iol,n) |
(in(i02,x); if x=n then out(net2,empty)) |
(in(io03,x); if x=n then out(net3,empty)).

process new iol; new i02; new i03; in(iol,x1); in(iol,x2);
out(i02,x1) | out(io3,choice[x1,x2]) | !Q

Figure 16: Proverif code for showing FE;[Q] =~ E3[Q] in [Lemma Al
(prop-pres-bangl.pv, see).

A Limits for composition and property preservation

In this section, we show that the restrictions of the composition theorem are necessary.
More precisely, we show that if P < @, then not necessarily |P < !Q or io(z).P < io(x).Q
or i0(t).P < io(t).Q or vnet.P < vnet.QQ or P|R < Q|R (for R that has NET-names
in common with P, Q). We show that this is not just a limitation of the composition
theorem, we show that similar limitations also apply to property preservation. More
precisely, property preservation P < @, F1[Q] ~ E»[Q] = E1[P] =~ E3[P] does not
necessarily hold if Ep, Es contain a bang (!) over their hole, or an input/output over
their hole, or an if/let over their hole, or a different number of !!’'s over their respective
holes, or restrict NET-names over their holes, or use NET-names.

Example A.1
P :=vnm. io1(n) | ioa(x).if x = n then neta(m) | ioz(z).if x = n then netz(m)

1i01(2).(i02(21) | G03(z1)) | 1O

.iol(xg).(i02<$1> ‘%<$2>) ’ 100

Q:=vn . ido1(n) | ios(x).if x = n then nety(empty) | ios3(x).if z = n then nets{empty)
1

E1 = I/iOl iOQ ’i03. iol(xl

~— —

EQ = I/iOl iOQ ’i03. iol(xl

Lemma A.1 Using the notation from[Ezample A.1], we have P < Q, and E1[Q] ~ E»2(Q)],
but E4[P] % Es[P).

Proof. We show P < @Q: We have P = uneténeté.(@{ﬁiié,Z:ié}]S) for S =
vm.(neth(z).nety(m)|nets(z).nets(m)) by two invocations of (first with
n = neth, x := z, and ¢ := empty, second with n := neth, z := x, and t := empty).
Hence P < Q.

The claim F4[Q] ~ FE2[Q)] is shown using Proverif. The Proverif code is given in

95

fun empty/0.

free net2, net3.
private free c.

query mess:C,C.

let P = new n; new m; out(iol,n) |
(in(i02,x); if x=n then out(net2,m)) | (in(io3,x); if x=n then out(net3,m)).

let E2P = new iol; new i02; new io3; in(iol,x1); in(iol,x2);
out(i02,x1) | out(io3,x2) | !'P.

let D = in(net2,yl); in(net3,y2); if yl=y2 then out(c,empty).

process D | E2P

Figure 17: Proverif code for showing that D|FE3[P] —*|. does not hold in the proof of
[Cemma ATl (prop-pres-bang2.pv, see [BULJ]).

We now show Ej[P]| % Es[P]. Let D := neta(y1).nets(y2).if y1 = ya then c(empty).
Then D | Ei[P] —* D | --- | vm.neto(m) | mnets(m)) —=* vm.(--- |
if m = m then ¢()) —*|.. Using Proverif, we show that D | E3[P] —*|. does not
hold (for any context D not containing c¢). The Proverif code is given in [Figure 17]
E1[P] = E3[P] would imply D | E1[P] = D | E5[P] which together with D | E4[P] —*|.
would imply the wrong fact D | E5[P] —*].. Thus E;[P] % E)[P].

O

Lemma A.2 Using the notation from[Ezample A1, we have P < @ but not |P <!Q.

Proof. From [Lemma Al we have P < @ and E1[Q] =~ E»[Q]. Assume !P < 1Q. We
can write Fy; = F{[I00] and Ey = E[!00] for NET-free evaluation contexts Eq, E5. Then

El['Q] = E1[Q] = E2|Q] = E4['Q] and thus by [Theorem 6.1} we have Ey[P] = E{[!P] ~
EL[\P] = E,[P]. This is a contradiction to [Lemma Al Thus the assumption !P < !Q

was wrong. 0O
Example A.2

P := net{empty)

Q=0

Ey = vio. (io().00 | io{empty))
Es = vio. (i0().0)

96

Lemma A.3 Using the notation from[Ezample A.2, we have P < Q, and E1[Q] ~ E»[Q],
but E1[P)] % Eq[P).

Proof. Obviously, P ~ Q|S with S := net{empty). Hence P < S.

We show E1[Q] ~ E»[Q]: We have E1[Q] = vio. (i0().0 | io(empty)) ~ 0 by
with n := 40 and C' := 0. And E»[Q] = vio.io().0 = 0 by
with n := 40 and C' := 0. Hence E}[Q] ~ E2[Q].

We show E3[P] % Es[P]: We have E1[P] —* vio.net(empty) lnet. But E3[P] Ynet,
and Fs[P] does not reduce. Thus there is no successor of Es[P] that emits on net. This
contradicts E1[P] &~ E»[P] by definition of observational equivalence. O

Lemma A.4 Using the notation from we have P < Q but not io().P <
i0().Q.

Proof. From [Lemma A.3 we have P < Q and E1[Q] = E2[Q]. Assume io().P < i0().Q.
We can write F; = Ef[io().0] and E2 = F) [zo() O] for NET-free evaluation contexts
Epli

Ey, Es. Then E'lio().Q] = E1[Q] = E»|Q] = Eblio().Q] and thus by [Theorem 6.1 w
have E1[P] = E}[io().P] = E}lio().P] = E2[P]. This is a contradiction to IM‘H
Thus the assumption io().P < io().QQ was wrong. O

Example A.3 Let P,Q be as in[Ezample A.9

Ey = vio. (io(empty).0 | io())
Ey :=vio. (io(empty).J)

Lemma A.5 Using the notation from[Ezample A.3, we have P < Q, and E1[Q] ~ E»(Q)],

Lemma A.6 Using the notation from we have P < @Q but not
io(empty).P < io{empty).Q.

The proofs of Lemmas and are identical to those of Lemmas and [AL6]
except that io() and io(empty) are exchanged.

Example A.4 Let P,Q be as in[Ezample A.3

FEq = if true then OJ
FEsy = if false then [J

Here true is an equality t =t for an arbitrary closed t (e.g., empty = empty), and false
is an equality t =t for arbitrary closed t,t' with t #g t' (e.g., empty = (empty, empty)).

Remember that if = y is syntactic sugar for let z = equals(z,y). So this example
is a counterexample for let-statements.

97

Lemma A.7 Using the notation from[Ezample A.J, we have P < Q, and E1[Q] ~ E»[Q],
but E1[P)] % Eq[P).

Proof. P < @ was already shown in [Lemma A3l By [Lemma 3.2(w) we have that
Eq[P] = P and F1|Q] = @ = 0 and by [Lemma 3.2/() we have that E;[P] ~ 0 and
E»[Q] ~ 0. Obviously, P # 0. E}[P] % E3[P], but E1[Q] = E2[Q)]. O

Example A.5 Let P,Q be as in[Ezample 2.9

E1 = 110
E2 =0

Lemma A.8 Using the notation from[Ezample A.5, we have P < Q, and E1[Q] ~ E»[Q],
but E1[P)] % Eq[P).

Proof. P < @Q was already shown in [Lemma A3l Let t € SID be arbitrary. We have
Ey[P] = [l,esm (x, net){empty) —*L(t net). But no successor of Ex[P] = net(empty)
emits on (t, net) #g net. Thus Ey[P] % Es[P).

It is easy to see that 0 ~ J[,cq;p 0 (by showing that R := {(R, R|[[,cs/p\s0)} up
to structural equivalence is a bisimulation). Thus

Example A.6

Q = net'(
E1 :=vio.(io{) | vnet'.0)
Ey = vio.(vnet'.0)

Lemma A.9 Using the notation from[Ezample A.6, we have P < Q, and E1[Q] ~ E»[Q],
but E1[P)] % Eq[P).

Proof. P < @ holds with simulator S := 0, ¢ := (net’ — net), n:= @.
It is easy to see that vnet’.Q ~ 0. Hence F1[Q] ~ vio.io() and Es[Q] ~ vio.0. Thus

B Q] = E2Q].
But E1[P] —*|,, and Es[P] A*,,. Hence E\[P] % Es[P]. O

Lemma A.10 Using the notation from[Ezample A 1] we have P < Q but not vnet'.P <
vnet'.Q.

98

Proof. From [Lemma A 9we have P < Q and F1[Q] ~ F>[Q]. Assume vnet’.P < vnet'.Q.
We can write F1 = E{[vnet’.0] and Fy = El[vnet’.0] for NET-free evaluation contexts

Ej, Ey. Then Ef[vnet’.Q] = E©[Q] =~ E2[Q] = Eb[vnet’.Q)] and thus by [Theorem 6.1] we
have E;[P] = E{[vnet’.P] ~ Eb[vnet’.P] = Es[P]. This is a contradiction to[Lemma A9l
Thus the assumption vnet’.P < vnet’.QQ was wrong. O

Example A.7
P :=io().net()
Q := io().net'()
Ey == vio.(io() | O |'net’())
By = (vio.O |Inet’())

Lemma A.11 Using the notation from we have P < Q, and E1[Q] =~
EQ[Q], but El[P] 93 EQ[P]

Proof. P < @ holds with simulator S := 0, ¢ := (net’ — net), n:= @.

By [Cemma 3.3} we have E1[Q] ~ net’() |'net’(). And by Lemma 3.21(0), net’() |
Inet’() ~!net’(). Finally E5[Q] ~ 0 |'net’(). Hence E1[Q] ~ E2[Q)].

But Ei[P] —*|net and E9[P] A% |pet. Hence Ej[P] % Es[P]. O

Lemma A.12 Using the notation from we have P < @ but not P |
Inet’() < Q | Inet’().

Proof. From [Lemma A 11l we have P < Q and E1[Q] ~ F»[Q]. Assume P | Inet'() <
Q | 'net’(). We can write By = E{[0 | 'net’()] and Ey = E5[0 | 'net’()] for NET-free
evaluation contexts E1, By. Then E![Q | 'net' ()] = E1[Q] ~ E»[Q] = F5[Q | !net’()] and
thus by [Theorem 6.1 we have E1[P] = E{[P | Inet’()] ~ E4[P | 'net’()] = E5[P]. This
is a contradiction to [Lemma A1} Thus the assumption P | !net’() < Q | !net’() was
wrong. O

Acknowledgement. Florian Bohl was supported by MWK grant “MoSeS”. Dominique
Unruh was supported by the European Union through the European Regional Develop-
ment Fund through the sub-measure “Supporting the development of R&D of info and
communication technology”, by the European Social Fund’s Doctoral Studies and Inter-
nationalisation Programme DoRa, and by the Estonian Centre of Excellence in Computer
Science, EXCS.

References

[ACRR10] Myrto Arapinis, Tom Chothia, Eike Ritter, and Mark Ryan. Analysing
unlinkability and anonymity using the applied pi calculus. In CSF 2010, 23rd
IEEE Computer Security Foundations Symposium, pages 107-121. TEEE,
2010.

99

[AFO1]

[BAF0S]

[BBF+11]

[BCCO4]

[Bla04]

[Bla09)

[Blal2a)
[Blal2b]

[BPW03]

[BPWO7|

[BS05]

Martin Abadi and Cedric Fournet. Mobile values, new names, and secure
communication. In Proceedings of the 28th ACM SIGPLAN-SIGACT sym-
posium. on Principles of programming languages, pages 104—115. ACM New
York, NY, USA, 2001.

Bruno Blanchet, Martin Abadi, and Cédric Fournet. Automated verification
of selected equivalences for security protocols. Journal of Logic and Algebraic
Programming, 75:3-51, 2008. Online available at http://www.di.lens.fr/
“blanchet/publications/BlanchetAbadiFournetJLAPO7 . pdf.

Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gor-
don, and Sergio Maffeis. Refinement types for secure implementations. ACM
Transactions on Programming Languages and Systems (TOPLAS), 33:8:1—
8:45, 2011.

Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous at-
testation. In Proc. 11th ACM Conference on Computer and Communications
Security, pages 132-145. ACM Press, 2004.

Bruno Blanchet. Automatic Proof of Strong Secrecy for Security Proto-
cols. Technical Report MPI-1-2004-NWG1-001, Max-Planck-Institut fiir In-
formatik, Saarbriicken, Germany, July 2004.

Bruno Blanchet. Automatic verification of correspondences for security pro-
tocols. Journal of Computer Security, 17(4):363-434, 2009. Preprint avail-
able as [arXiv:0802.3444v1 [cs.CRJ.

Bruno Blanchet. Personal communication, August 2012.

Bruno Blanchet. Proverif 1.86pl4: Automatic cryptographic protocol verifier
- user manual and tutorial. http://prosecco.gforge.inria.fr/personal/
bblanche/proverif/manual.pdf, 2012.

Michael Backes, Birgit Pfitzmann, and Michael Waidner. A composable
cryptographic library with nested operations. In Proc. 10th ACM CCS,
pages 220-230, 2003.

Michael Backes, Birgit Pfitzmann, and Michael Waidner. The reactive sim-
ulatability (RSIM) framework for asynchronous systems. Information and
Computation, 205(12):1685-1720, 2007.

Boaz Barak and Amit Sahai. How to play almost any mental game over the
net — concurrent composition via super-polynomial simulation. In Proc.
46th IEEE Symposium on Foundations of Computer Science (FOCS), pages
543-552, 2005.

100

http://www.di.ens.fr/~blanchet/publications/BlanchetAbadiFournetJLAP07.pdf
http://arxiv.org/abs/0802.3444v1
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf

[BU13]

[Can01]

[CB13]

[CCK06a]

[COK*06b]

[CDPWO7]

[CFO1]

[CH11]

[Che66]

[CRO3]

[CV12]

Florian Bohl and Dominique Unruh, 2013. Proverif examples from
the present paper: |http://boehl.name/publications/symbolic-uc/
proverif-files.zip.

Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In Proc. 42nd IEEE Symposium on Foundations of
Computer Science (FOCS), pages 136-145, 2001. Extended version in Cryp-
tology ePrint Archive, Report 2000/67, http://eprint.iacr.org/.

Vincent Cheval and Bruno Blanchet. Proving more observational equiva-
lences with proverif. In David Basin and John Mitchell, editors, POST
2013, volume 7796 of LNCS, pages 226-246. Springer, 2013.

Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov, Nancy Lynch,
Olivier Pereira, and Roberto Segala. Task-structured probabilistic I/O au-
tomata. Technical Report MIT-CSAIL-TR-~2006-060, MIT CSAIL, Septem-
ber 2006. Online available at http://dspace.mit.edu/handle/1721.1/
33964.

Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Moses Liskov, Nancy A.
Lynch, Olivier Pereira, and Roberto Segala. Time-bounded task-PIOAs: A
framework for analyzing security protocols. In DISC, pages 238-253, 2006.

Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally
composable security with global setup. In Proc. 4th Theory of Cryptography
Conference (TCC), pages 61-85, 2007.

Ran Canetti and Marc Fischlin. Universally composable commitments. In
Joe Kilian, editor, Advances in Cryptology, Proceedings of CRYPTO 2001,
number 2139 in Lecture Notes in Computer Science, pages 19-40. Springer-
Verlag, 2001. Full version online available at http://eprint.liacr.org/
2001/055. ps.

Ran Canetti and Jonathan Herzog. Universally composable symbolic secu-
rity analysis. J Cryptology, 24(1):83-147, January 2011.

Cher. Bang bang (my baby shot me down). 7" single, 1966. Written by Sonny
Bono, sound sample: http://en.wikipedia.org/wiki/File:Cher-_Bang_
Bang_My_Baby_Shot_Me_Down.ogg.

Ran Canetti and Tal Rabin. Universal composition with joint state. In Proc.
CRYPTO 2003, volume 2729 of LNCS, pages 265-281. Springer, 2003.

Ran Canetti and Margarita Vald. Universally composable security with
local adversaries. In Ivan Visconti and Roberto De Prisco, editors, SCN
2012, volume 7485 of Lecture Notes in Computer Science, pages 281-301.
Springer, 2012.

101

http://boehl.name/publications/symbolic-uc/proverif-files.zip
http://eprint.iacr.org/
http://dspace.mit.edu/handle/1721.1/33964
http://eprint.iacr.org/2001/055.ps
http://en.wikipedia.org/wiki/File:Cher-_Bang_Bang_My_Baby_Shot_Me_Down.ogg

[DKMRO5|

[DKP]

[DKP09)

[DY8I]

[FS11]

[KDMROS]

[Kiis06]

[Low95]

[MQUO7]

[PS04]

[UMQ10]

Anupam Datta, Ralf Kiisters, John C. Mitchell, and Ajith Ramanathan. On
the relationships between notions of simulation-based security. In Joe Kilian,
editor, Theory of Cryptography, Proceedings of TCC 2005, Lecture Notes in
Computer Science, pages 476-494. Springer-Verlag, 2005.

Stephanie Delaune, Steve Kremer, and Olivier Pereira. Simulation based
security in the applied pi calculus. TACR ePrint 2009/267, version 5 June

2009. full version of [DKP09].

Stephanie Delaune, Steve Kremer, and Olivier Pereira. Simulation based
security in the applied pi calculus. In Ravi Kannan and K. Narayan Kumar,
editors, FSTTCS, volume 4 of LIPIcs, pages 169-180. Schloss Dagstuhl —
Leibniz-Zentrum fuer Informatik, 2009.

Danny Dolev and Andrew Chi-Chih Yao. On the security of public key
protocols (extended abstract). In FOCS, pages 350-357. IEEE, 1981.

Dennis Hofheinz and Victor Shoup. GNUC: A new universal composability
framework. TACR ePrint 2011/303, 2011.

Ralf Kiisters, Anupam Datta, John C. Mitchell, and Ajith Ra-
manathan. On the relationships between notions of simulation-based se-

curity. Journal of Cryptology, 2008. To appear. Electronic publication
http://dx.doi.org/10.1007/s00145-008-9019-9.

Ralf Kiisters. Simulation-based security with inexhaustible interactive Tur-
ing machines. In CSFW 2006, Computer Security Foundations Workshop,
pages 309-320. IEEE Computer Society, 2006. Long version available as
TACR eprint 2006/151.

Gavin Lowe. An attack on the needham-schroeder public-key authentication
protocol. Information Processing Letters, 56:131-133, November 1995.

Jorn Miiller-Quade and Dominique Unruh. Long-term security and universal
composability. In Theory of Cryptography, Proceedings of TCC 2007, volume
4392 of Lecture Notes in Computer Science, pages 41-60. Springer-Verlag,
March 2007. Preprint on TACR ePrint 2006/422, superseeded by [MQU07].

Manoj Prabhakaran and Amit Sahai. New notions of security: Achieving
universal composability without trusted setup. In Proc. 36th Annual ACM
Symposium on Theory of Computing (STOC), pages 242-251, 2004.

Dominique Unruh and Jorn Miiller-Quade. Universally composable inco-
ercibility. In Crypto 2010, volume 6223 of LNCS, pages 411-428. Springer,
August 2010. Preprint on TACR ePrint 2009/520.

102

[Unr10] Dominique Unruh. Universally composable quantum multi-party computa-
tion. In Eurocrypt 2010, LNCS, pages 486-505. Springer, 2010. Preprint on
arXiv:0910.2912 [quant-ph)].

[Unrll] Dominique Unruh. Concurrent composition in the bounded quantum storage
model. In Furocrypt 2011, volume 6632 of LNCS, pages 467-486. Springer,
May 2011. Preprint on TACR ePrint 2010/229.

Symbol index

N The set of names

% The set of variables

X The Signature — a set of function symbols (ap-
plied pi calculus)

T The set of terms

E The finite set of equations that are to hold in the
equational theory (applied pi calculus)

M =g N Terms M and N are equal with respect to the
equational theory E

D(My,...,M,) - M Reduction rule for destructor D

R Finite set of rewrite rules for destructors

DM || Term D evaluates to M

M Symbolic model M

0 Empty process (applied pi calculus)

P Concurrent executions of instances of P (applied
pi calculus

va Restriction of the name a (applied pi calculus)

M (x) Receiving = on channel N

M(N) Sending N on channel N

let z =D in P else) Let it be

fn(P) Free names in P

fu(P) Free variables in P

bn(P) Bound names in P

bv(P) Bound variables in P

P=qQ Structural equivalence of P and @)

P—=qQ Process P reduces to @)

Py The process P emits on a channel M

Pty The process P reads on a channel M

Py The process P communicates on a channel M

P=Q Observational equivalence of the closed processes
P and @

if M = N then P else @ Syntactic sugar for let x =

equals(M,N) in P else @

103

BEA

B &

=2

COONENNENOENENESE8EH SOEHEEEE

=

C().P
C().P
equals

fst

snd

=E

PRQ

HJ:ES P
{a/b}
=

=0
event f(t)

plain®(P)
ev®(P)

syncout®(ty —], ..

10
NET
P<Q
P(M))

SID
CSID

z,n
nil
Zero
one
SID bits
C 5,1 (? bits
G7.a

C(s]D,gID,n)

z,a

sID

. /
.,U1I—>u1,...

Syntactic sugar for C'(z).P with fresh variable z
Syntactic sugar for C'(empty).P

Destructor equals

Destructor: Extracts the first component of a tag
Destructor: Extracts the second component of a
tag

Structural equivalence modulo equational theory
E

Full observational equivalence of the non-closed
processes P and @)

Indexed replication of the process P
Substitution replacing b with «

Asymmetric variant of structural equivalence

Z modulo equational theory

Raise event f(t)

P with synchronization channel s removed

P with synchronization channel s replaced by
events

Outputs on synchronization channel s

Set of all I/O names

Set of all network names

P emulates)

Process P with session-id M

Set of all session IDs

An arbitrary but fixed SID-indexing context
Constructor denoting the empty bitstring
Constructor prefixing a bitstring with 0
Constructor prefixing a bitstring with 1
Concrete set of session IDs built from bitstrings
A concrete fixed SIDp;-indexing context
Auxiliary definition in analysis of Cfff bits
Auxiliary definition in analysis of CPvits
Auxiliary definition in analysis of Ci{? bits — set of
spawned IDs

Auxiliary definition in analysis of Cfff bits — set of
generator IDs

Short for P{si/x}|P{s2/x}|... for S =
{81, S92, ... }

Span of a set of IDs

Concurrent composition of P with session ids
Observational equivalence restricted to processes
that do not contain n and contexts build from S
Fixed name for sid-sensitive processes

104

BEEHE

—
—

BEEEHEBEE B B

HE BEHBBHBEEBEEEEER

HEB B #

N
O

Msid
Ssid

tag
untag
~Ssid
Fsc

P <% Q

fanon
penc
pk

sk
senc
hash
empty
pdec
sdec
pkofsk
pkofenc
FkE
FPKI
NSL
SC
KE*
Feoom
M virt
M real
crsext
crsequ
fakeH
fake
extract

Fcrs
COM

Index

Fixed term for sid-sensitive processes

The set of sid-sensitive processes
Transformation of a generic plain process into a
sid-sensitive process

Tag channel identifiers

Untag channel identifiers

An S,;4-observational equivalence relation
Secure channel functionality

Observational preorder

P emulates () in the sense of Delaune et al.

[DKP09].
Insecure but anonymous channel functionality
Constructor: public key encryption
Constructor: public key

Constructor: secret key

Constructor: symmetric encryption
Constructor: hash function

Constructor: empty message

Destructor: public key decryption

Destructor: symmetric decryption

Destructor extracting secret from public key
Destructor extracting public key from ciphertext
Key exchange functionality

Public key infrastructure functionality
Needham-Schroeder-Lowe protocol

Secure channel protocol

Protocol for generating many keys
Commitment functionality

Symbolic model with virtual primitives
Symbolic model without virtual primitives
Constructor: CRS for extraction

Constructor: CRS for equivocation
Constructor: Fake (equivocal) hash
Constructor: Randomness for fake hash
Destructor: Extracting from a hash

Common reference string functionality
Commitment protocol

105

= = =
Spsaps

EEBEHEH

82

M EHEEHENEHNEEEREEBEEEEEBEEE

S-n-bisimulation, 44
S-n-observational equivalence, [44]
S-n-simulation, @4l

0-1-context, [I0

adversary,
dummy,
Q-conversion,

bisimulation,
black-box simulatability, [34]

channel identifiers, [0
communicate,
complete (set of processes), 4]
composition

concurrent,
concurrent composition,
context,

0-1-,

evaluation,

indexing, 37

multi-hole,

destructor term,
M-,

DKP-security,

dummy adversary,

emit,
empty, [L0
emulate,
equals, [IQ]
equivalence
full observational, [T
observational,
structural,
event process,
EVENT rule,
extension

safe, 7

free, [
full observational equivalence, [I1]

if-statement,

106

indexed replication,
indexing context, [37]

internal reduction,
IREPL, I3l

M-destructor term, 87
M-process,
M-term, B
model

symbolic,
multi-hole context,

name,

bound, [7]
name-reduced,
natural symbolic model,
NET-stable,

observational equivalence,
full, 1]
observational preorder,

preorder

observational,
process

M-, B

closed, [

event,

product,
product process,
protected, see unprotected

read,

relay,

replication
indexed,

safe extension,
satisfy
trace property,
signature,
simulatability
black-box, B4
strong, 341
universally-composable, [34]

simulation,
simulator,
strong simulatability, B4]
strong unlinkability,
structural equivalence,
substitution,
closing, 1]
symbolic model,
natural,

term

M-, B

107

trace property,
satisfy,

universally-composable
B4
unlinkability
strong,
unprotected,

variable,
bound, [7]
virtual primitives,

simulatability,

	Introduction
	Review of the applied pi calculus
	Syntactic sugar
	Additional concepts used in this work

	Useful properties of the pi calculus
	Relating events and observational equivalence
	Unpredictability of nonces

	Symbolic UC
	Composition
	Property preservation
	Relation to Delaune-Kremer-Pereira
	Example: Secure channels
	Key exchange using NSL
	Secure channel from key exchange.
	Generating many keys from one

	Virtual primitives
	Realizing commitments
	A note on adaptive corruption

	Removing the virtual primitives
	On removing the CRS

	Limits for composition and property preservation
	References
	Symbol index
	Index

