
A Verifiable 1-out-of-n Distributed Oblivious Transfer Protocol∗

Christian L. F. Corniaux and Hossein Ghodosi

James Cook University,
Townsville QLD 4811,

Australia
chris.corniaux@my.jcu.edu.au, hossein.ghodosi@jcu.edu.au

February 7, 2013

Abstract

In the various 1-out-of-n distributed oblivious transfer protocols (DOT) designed in an
unconditionally secure environment, a receiver contacts k out of m servers to obtain one
of the n secrets held by a sender. After a protocol has been executed, the sender has no
information on the choice of the receiver and the receiver has no information on the secrets
she did not obtain. Likewise, a coalition of k − 1 servers is unable to infer any information,
neither on the sender’s secrets, nor on the receiver’s choice.

These protocols are based on a semi-honest model: no mechanism prevents a group of
malicious servers from disrupting the protocol such that the secret obtained by the receiver
does not correspond to the chosen secret. Actually, to verify the information transmitted by
the servers seems to require some properties difficult to reconcile: on one hand the receiver
has to collect more information from the servers to discard the incorrect data generated by
the malicious servers; on the other hand, if the receiver is allowed to gather more information
from the servers, the sender’s security may be compromised.

We study the first unconditionally secure DOT protocol in the presence of an active
adversary who may corrupt up to k − 1 servers. In addition to the active adversary, we also
assume that the sender may (passively) corrupt up to k − 1 servers to learn the choice of the
receiver. Similarly, the receiver may (passively) corrupt up to k − 1 servers to learn more
than the chosen secret. However, we assume that the sender, receiver, and active adversary
do not collaborate with each other. Our DOT protocol allows the receiver to contact 4k − 3
servers to obtain one secret, while the required security is maintained.

Keywords: Cryptographic Protocol, Privacy and Security, Distributed Oblivious Transfer,
Verifiable Oblivious Transfer

1 Introduction

In the unconditionally secure distributed oblivious transfer (DOT) schemes presented in [14, 3,
15, 4], a sender S holds n secrets and a receiver R wishes to obtain one of them. The model
encompasses a distributed environment including m servers. The sender distributes shares of the
secrets to the servers and does not intervene in the rest of the protocol. The receiver selects the
index of a secret, sends shares of this index to k servers and receives back k shares allowing her

∗The ongoing work related to this study was presented in a poster session at ACISP 2011

1

mailto:chris.corniaux@my.jcu.edu.au
mailto:hossein.ghodosi@jcu.edu.au

to reconstruct the chosen secret. The security of these protocols may be assessed thanks to the
following four security conditions defined by Blundo, D’Arco, De Santis and Stinson [3, 4]:

C1. Correctness – The receiver is able to determine the chosen secret once she receives
information from the k contacted servers.

C2. Receiver’s privacy – A coalition of up to k − 1 servers cannot obtain any information on
the choice of the receiver.

C3. Sender’s privacy with respect to k − 1 servers and the receiver – A coalition of up to k − 1
servers with the receiver does not obtain any information about the secrets before the
protocol is executed.

C4. Sender’s privacy with respect to a “greedy” receiver – Given the transcript of the interaction
with k servers, a coalition of up to k − 1 dishonest servers and the receiver does not obtain
any information about secrets which were not chosen by the receiver.

In these protocols, security condition C1 is satisfied in a semi-honest model; No mechanism
prevents a set of up to k − 1 malicious servers from disrupting the protocol such that the secret
obtained by the receiver does not correspond to the chosen secret. Such a mechanism could allow
(1) the servers to check that the requests sent by the receiver are consistent and (2) the receiver
to collect redundant shares to detect and discard inconsistent shares returned by the malicious
servers.

We introduce this kind of mechanism in one of the (k, m)-DOT-
(
n
1

)
protocols presented by

Blundo et al. [3, 4]. In this context, condition C1 is extended to condition C ′1:

C ′1. Correctness – If the receiver is not detected as cheating, she is able to determine the chosen
secret once she receives information from the contacted servers, in spite of k − 1 malicious
servers.

Our protocol guarantees security conditions C ′1, C2 and C3, despite the presence of up to
k − 1 malicious servers among the m servers participating to the protocol. Blundo et al. have
proven that security condition C4 cannot be satisfied by one-round DOT protocols. Indeed,
when condition C2 is satisfied, any subset of k − 1 shares selected from the k shares collected by
the receiver during the execution of the protocol, cannot give any information on the receiver’s
choice. Having selected a subset of k − 1 shares, the receiver is able to build a request to collect
a kth share – from a corrupted server – to obtain any secret.

This paper is organised as follows. The next section shortly describes Blundo et al.’s
protocol [4] and investigates verifiable secret sharing schemes. In Sect. 3 we introduce a few
notations and definitions used in the rest of the paper. Then, in Sect. 4, we describe our model
and give an overview of our verifiable DOT protocol. The main components of our protocol are
detailed in Sect. 5. Sect. 6 is devoted to the detailed description of the protocol. Finally, in
Sect. 7, we analyse the security of the protocol.

2 Related Works

Although there have been a few DOT protocols studied in the past 15 years, e.g. [14], [3, 15,
22, 23, 4], the verifiability of distributed shares in such protocols was rarely tackled. The main
contribution to the subject was made by Zhong and Yang [22, 23], but the setting of their
proposed scheme is conditionally secure (difficulty to compute a discrete logarithm).

2

We present the first unconditionally secure verifiable DOT, adapted from the main component
of the DOT protocol introduced by Blundo et al. [3, 4]. This component is described hereafter.

2.1 Blundo et al.’s Distributed Oblivious Transfer

The basic principles underlying DOT protocols are conceptually similar. In the original DOT
protocol [14] introduced by Naor and Pinkas, as well as in its generalization [3, 4] presented by
Blundo et al., a sender distributes some information amongst m servers so that, by contacting
k servers, a receiver is able to learn only one of the secrets held by the sender. A simplified
overview of the (k, m)-DOT-

(
n
1

)
presented in [4] may be described as follows (operations are

executed in a finite field Fp, where p is a prime number):

1. The sender, who holds n secrets ω0, . . . , ωn−1 generates a sparse n-variate polynomial
function Q defined by

Q (x, y1, . . . , yn−1) = ω0 +
k−1∑
i=1

aix
i +

n−1∑
i=1

(ωi − ω0)× yi,

where the coefficients ai (1 ≤ i ≤ k − 1) are numbers randomly selected in Fp. We note
that ω0 = Q (0, . . . , 0) and, for ` ∈ {1, . . . , n− 1}, ω` = Q (0, . . . , 0, 1, 0, . . . , 0), where the
number 1 is in position `+ 1.

2. Then, to each server Sj (1 ≤ j ≤ m), the sender transmits the (n− 1)-variate polynomial
function Fj defined by

Fj (y1, . . . , yn−1) = Q (j, y1, . . . , yn−1) .

3. In the transfer phase, the receiver chooses the identifier ` of one secret and generates
univariate polynomial functions Zi (1 ≤ i ≤ n − 1) of degree at most k − 1 such that
(Z1(0), . . . , Zn−1(0)) is an (n − 1)-tuple of zeros if the receiver is interested in ω0 (i.e.,
` = 0), or an (n− 1)-tuple of zeros and a single one in position ` if the receiver is interested
in ω` (where ` ∈ {1, . . . , n− 1}).

4. Then, the receiver selects a subset Ik ⊂ {1, . . . ,m} of k indices and sends to each server
Si (i ∈ Ik) a request (i, Z1(i), . . . , Zn−1(i)). When a server Si receives such a request, it
replies with the share Fi (Z1(i), . . . , Zn−1(i)).

5. After receiving k responses, the receiver interpolates a univariate polynomial R from the k
points (i, Fi (Z1(i), . . . , Zn−1(i))) and calculates the chosen secret: ω` = R (0).

Moreover, the secrets are masked and the protocol is executed twice: the first instance
allows the receiver to obtain a masked secret and the second instance allows her to obtain the
corresponding mask.

2.2 Verifiable Secret Sharing Schemes

A component common to all unconditionally secure DOT protocols is the threshold secret sharing
scheme introduced by Shamir [19] in 1979. In this scheme, the dealer who shares a secret is
honest: the m pieces he generates are built in compliance with the protocol and so, the k pieces
used by the players to reconstruct the secret are genuine. In 1985, Chor, Goldwasser, Micali
and Awerbuch [6] assumed that the dealer could be cheating and transmit some invalid shares

3

to some players. They introduced the concept of verifiable secret sharing (VSS) to detect any
deviation of the dealer from the sharing protocol. Moreover, during the reconstruction phase,
some malicious players could provide honest players with incorrect shares to make honest players
reconstruct an incorrect secret while they, the dishonest players, would reconstruct the original
secret. Tompa and Woll [21] studied the particular problem of secret sharing in presence of
an honest dealer but also in the presence of dishonest players attempting to cheat during the
reconstruction of the secret.

Following Chor et al.’s scheme, there have been a considerable research on VSS schemes. It
is clear that if a combiner – or a group of players – wants to check the validity of a reconstructed
secret, she needs to collect in addition to k shares, some verification information. Basically, this
verification information may consist of additional shares (redundancy technique) or longer shares
containing verification information (check vectors technique).

The first unconditionally secure VSSs were introduced by Ben-Or, Goldwasser and Wigder-
son [1] and by Chaum, Crépeau and Damg̊ard [5]. However, the correctness of the VSS presented
in [5] is not guaranteed: the reconstructed secret may be incorrect with a very small probability.
A similar weakness can be found in [17, 16] and [7].

The unconditionally secure VSS introduced by Ben-Or et al. [1] tolerates n
3 cheaters – n

being the number of players – including the dealer, and is correct without probability error. This
scheme was improved by Cramer, Damg̊ard and Maurer [8] and a simpler version was proposed
by Desmedt, Kurosawa and Van Le [10]. However, in the original scheme and its variants, the
dealer has to make public the shares of complaining players. So, cheating players may force the
dealer to reveal some shares and consequently the threshold k cannot be guaranteed. In this
scenario, a coalition of k − 1 corrupt servers (See security conditions C3 and C4) could obtain
additional shares to the shares it holds, and consequently breach the security of the protocol.

In [20], Stinson and Wei introduced an unconditionally secure VSS in which the shares of the
identified cheaters are not made public, but are simply ignored during the reconstruction of the
secret. Therefore, the threshold k of the underlying secret sharing scheme is not modified during
the execution of the protocol. The scheme is correct without error probability and tolerates
up to t = bn4 c cheaters. Gennaro, Ishai, Kushilevitz and Rabin proposed a VSS [13] similar
to Stinson et al.’s scheme, tolerating also up to t = bn4 c cheaters and with no share publicly
disclosed. D’Arco and Stinson [9] improved this VSS scheme in 2002 using a feature introduced
in [13] to detect inconsistencies.

However, in [20] and in [9], the detection of cheaters is based on the determination of a
maximum clique in a graph, which is a classical NP-complete problem; Thus, the complexity
of these two VSS is not polynomial. Inversely, in [13], the detection of cheaters is based on the
determination of a maximal matching in a graph, which is a problem that can be solved in a
polynomial time [11]. For these reasons, we have chosen to replace the secret sharing scheme
component used in [4] with Gennaro et al.’s VSS.

3 Preliminaries

Throughout this paper, operations are executed in a finite field K = Fp (p prime). We assume
that p ≥ max(n, ω0, . . . , ωn−1,m), where n is the number of secrets, m is the number of servers
involved in the protocol, and ω0, . . . , ωn−1 are the n secrets in the system. In addition, by an abuse
of language, a polynomial and its corresponding polynomial function will not be differentiated.

Definition 1. If (K[X],+,×) is the ring of polynomials over K and (Kk[X],+) the additive
group of polynomials of degree at most k over K, we say that a polynomial F =

∑k
i=0 fiX

i of

4

Kk[X] is quasi-random, if the coefficients fi (1 ≤ i ≤ k) are randomly selected in K and the
constant term f0 ∈ K has a predefined value.

This definition is extended to bivariate polynomials. If (K[X,Y],+,×) is the ring of bivariate
polynomials over K and (Kk[X,Y],+) the additive group of polynomials of degree at most k in X
and Y over K, we say that a polynomial F =

∑k
i=0

∑k
j=0 fi,jX

iY j of Kk[X,Y] is quasi-random,
if the coefficients fi,j (0 ≤ i, j ≤ k, (i, j) 6= (0, 0)) are randomly selected in K and the constant
term f0,0 has a predefined value.

Definition 2. In a (k, m)-threshold secret sharing scheme involving a dealer D, m players
P1, . . . ,Pm and a combiner C, if the same polynomial of Kk−1[X] is interpolated from any set of
k shares selected from the m shares distributed by the dealer D to players P1, . . . ,Pm, then the
m shares are said k-consistent.

Definition 3. In a (k, m)-threshold secret sharing scheme involving a dealer D, m players
P1, . . . ,Pm and a combiner C, if a set of ` shares (k ≤ ` ≤ m), possibly including incorrect shares,
allows C to calculate the dealer’s secret s, then the ` shares are said k-resilient.

Notations:
The Kronecker’s symbol, δji , is equal to 0 if i 6= j and equal to 1 if i = j.
By α ∈R K, we mean that α is chosen randomly from all possible elements of K.
If v = (f1, . . . , fn) is a vector of polynomials and i an element of K, we denote v(i) the vector
(f1(i), . . . , fn(i)).

4 Our Model

The setting of our model encompasses a sender S who holds n secrets ω0, . . . , ωn−1 (n > 1), a
receiver R who wishes to obtain a secret ωσ (σ ∈ {0, . . . , n− 1}), and m servers S1, . . . , Sm. In
addition to these parties, we also need to take into account an adversary whose characteristics
are defined below.

To detect cheating, the servers must be able to communicate with each other and also to
have access to a broadcast channel.

Like other DOT protocols, our protocol is composed of two parts: a set-up part and an
oblivious transfer part. During the set-up part, the sender generates a sharing polynomial for the
n secrets he holds and distributes shares of this sharing polynomial to the m servers. The sender
does not intervene in the rest of the protocol. During the oblivious transfer part, the receiver
has to contact c ≥ 4k − 3 servers (1 < c < m) to collect enough shares to construct ωσ.

4.1 Adversary Model

Three parties may try to breach the security of our protocol:

• The sender S, with possibly a coalition of up to k − 1 corrupt servers, plotting against the
receiver to obtain the receiver’s choice σ. Servers of the coalition make any information
they hold available to the sender. In addition, S distributes correct shares of the secrets he
holds to the servers.

• The receiver R, colluding with up to k − 1 corrupted servers to obtain information not
only about the chosen secret ωσ, but about other secrets too. Here too, the servers of the
coalition share their data with R.

5

• An active adversary, with the help of a group of up to k − 1 malicious servers, who intends
to disrupt the protocol such that the secret obtained by the receiver does not correspond
to the chosen secret. In particular, when they are requested to provide a share, these
malicious servers may not reply or replace the requested share with any value, designated
in this case as an incorrect share.

We assume that both the sender S and the receiver R wish to complete the protocol to allow
R to obtain the chosen secret. The adversary collaborates neither with the sender S nor with the
receiver R. Therefore, we assume that the set of malicious servers, the set of servers colluding
with S and the set of servers colluding with R are disjoint.

In this paper, we consider static parties only; the sets of malicious and corrupted servers are
in place before the protocol is executed and their contents do not change during the execution of
the protocol.

In addition, along the protocol, some servers may be disqualified. We assume that a mechanism
prevents the disqualified servers from keeping on participating in the protocol.

4.2 Communication Model

Our protocol requires the availability of private communication channels between the sender
and the servers, the receiver and the servers and among the servers. It also requires a broadcast
channel, allowing all participants to receive simultaneously information sent by one participant
through this channel.

We assume that these communication channels are secure, i.e., any party is unable to eavesdrop
on them and they guarantee that communications cannot be tampered with.

4.3 Principle of the Protocol

The protocol introduced by Blundo et al. (See Sect. 2.1) is adapted with the following two
modifications:

1. The receiver is allowed to contact more than k servers. However, to prevent the receiver
from obtaining more than one secret (See the impossibility result with security condition
C4 in Sect. 1), she must be kept from asking information related to different secrets.
Distributing the shares of her secret inputs to c ≥ 4k − 3 servers, thanks to a VSS scheme,
enables the servers to verify that the receiver did not cheat, to disqualify ` ≤ k − 1 servers
with incorrect shares and to prepare at least c− ` k-consistent shares.

2. The receiver collects at least k + 2t shares, including t ≤ k − 1 incorrect shares. An
error-decoding code decoding scheme allows her to interpolate a unique sharing polynomial
R ∈ Kk−1[X] and to calculate the chosen secret R(0).

To guarantee the security of the sender and the privacy of the receiver, the sender and the
receiver send shares of their privates values to the servers. That is, the sender generates a sharing
n-variate polynomial from the the n secrets he holds and distributes one share to each of the m
servers. Actually, the shares are (n− 1)-variate polynomials. To obtain a secret ωσ, the receiver
selects at least 4k − 3 servers, and for each secret input δsσ (1 ≤ s ≤ n − 1) distributes shares
generated by Gennaro et al.’s VSS to these servers. For each secret input, the VSS allows the
majority of honest servers to identify servers with incorrect shares and to disqualify some of
them. If the overall number of disqualified servers is greater than k, the receiver has cheated
and the protocol stops. Otherwise, servers with inconsistent shares are able to correct them,

6

thanks to an error-correcting codes decoding scheme. Every server not disqualified returns to the
receiver the evaluation of the (n− 1)-variate polynomial received from the sender at the vector of
n− 1 shares transmitted by the receiver. Using the same error-correcting codes decoding scheme
as the servers, the receiver then is able to determine a sharing polynomial related to the chosen
secret and to calculate this secret.

5 Components of the System

Our protocol is mainly based on two components.
The first one is an error-correcting codes decoding scheme [18, 12]. With this scheme, a

participant who has collected k+ 2t shares generated by a sharing polynomial of Kk−1[X] is able
to determine the dealer’s secret, even if t out of the k + 2t shares are incorrect.

The second component is the VSS introduced by Gennaro et al. [13]. This scheme allows
4k − 3 players which have received shares generated from a sharing polynomial of Kk−1[X] to
detect and disqualify up to k − 1 cheating participants (dealer or players). The scheme also
enables the players to prepare k-consistent shares.

5.1 Error-Correcting Codes Decoding Scheme

Let D be an honest dealer holding a secret s, Pi (i = 1, . . . ,m) a player and C a combiner wishing
to obtain s. We assume that D uses for example Shamir’s (k, m)-threshold scheme to generate
m shares si (1 ≤ i ≤ m) from a polynomial f and distributes the share si to the player Pi. Thus,
if C collects k shares from the players, she can reconstruct s, but if C collects k− 1 or less shares,
she does not obtain any information on s. We also assume that up to t players may cheat; a
cheating player Pc, when requested by C to provide the share sc received from D, may transmit
to C a value s′c 6= sc.

If C contacts k players, she will collect k shares (correct or incorrect) and will be able to
interpolate a polynomial f ′ of degree at most k − 1 and to calculate s′ = f ′(0). If only one share
is incorrect, s′ 6= s. So, we consider that C is allowed to contact ` players (k ≤ ` ≤ m) to collect
some redundant information.

If the ` shares are not k-consistent, we propose a protocol hereafter such that if ` ≥ k + 2t,
then C is able to reconstruct the original secret, in spite of up to t incorrect shares transmitted
by cheaters. This protocol is adapted from the Reed-Solomon correcting error technique [18]
which allows a decoder, given a list of k + 2t codes including up to t incorrect codes, to detect
that some codes are incorrect, to locate them and to correct them.
Set-up Phase

Each player Pi (1 ≤ i ≤ m) is allocated a distinct number αi ∈ K. The values α1, . . . , αm are
public. The sharing polynomial f =

∑k−1
i=0 aiX

i, where a0 = s and ai ∈R K (1 ≤ i ≤ k − 1), is
presented under the form of a word a = (a0, . . . , ak−1) encoded as the codewordD = (D1, . . . , Dm),
where Di = f(αi) (1 ≤ i ≤ m).

The dealer D distributes (αi, Di) to the player Pi (1 ≤ i ≤ m).
Reconstruction Phase

The combiner C collects ` shares (k ≤ ` ≤ m), without loss of generality from players
P1, . . . ,P`, and checks that the collected shares are k-consistent. To perform this task, C applies
Lagrange interpolation formula on the first k collected shares (αi, Di) (1 ≤ i ≤ k) and obtains
a polynomial f of degree at most k − 1. For all remaining shares (αj , Dj) (k + 1 ≤ j ≤ `), C
checks that f(αj) = Dj . If the `− k equalities are satisfied, the shares are k-consistent and C
calculates s = f(0).

7

If incorrect shares were detected, they could be identified and corrected thanks to algorithms
like the Berlekamp-Massey algorithm [2] introduced by Berlekamp. However, if the main objective
of error-correcting codes is to restore original codes from corrupted codes, our goal is to reconstruct
the polynomial f which was used to generates the code so as to calculate s = f(0). In other
words, the combiner C does not need to identify the incorrect shares, but needs to interpolate f
from the received shares. This is why a Reed-Solomon decoding algorithm like the algorithm
introduced by Gao [12] is preferred. This algorithm, described hereafter, allows C to reconstruct
f , in spite of up to t ≤ `−k

2 incorrect shares.
First, the combiner C generates two polynomials g0 and g1 such that:

• g0 =
∏`
i=1 (x− αi) and

• g1 is interpolated from the received shares D1, . . . , D`. Thus, g1 is the unique polynomial
of K`−1[X] such that g1(αi) = Di for 1 ≤ i ≤ `.

Then, C calculates a partial GCD polynomial g between g0 and g1. This polynomial g
is determined using the extended Euclidean algorithm. More precisely, C determines three
polynomials u, v and g verifying ug0 + vg1 = g and the following criterion. At each step i of the
algorithm, C obtains ui, vi and ri such that uig0 + vig1 = ri. At each step i+ 1 of the iteration,
the degree of ri+1 is smaller than the degree of ri obtained in the previous step. As soon as
deg ri <

`+k
2 , the iteration process is stopped and v = vi and g = ri. Then, C determines the

polynomial g
v which is the polynomial f generated by D in the set-up phase, and consequently

can calculate s = f(0).

5.2 Verifiable Secret Sharing Scheme

The setting of Gennaro et al.’s VSS scheme [13] encompasses a dealer D who holds a secret ω,
m players P1, . . . ,Pm, each of them receiving a (k, m)-threshold share of ω and a combiner C
collecting the shares from ` (1 < ` < m) players P1, . . . ,P`. Up to t < k participants (dealer or
players) may cheat during the execution of the protocol. In particular, cheating players may
provide incorrect shares to C. The protocol guarantees that, if ` ≥ 4t+ 1, C is able to verify the
k-consistency of the shares distributed by D and also to collect a set of k-resilient shares if D is
not detected as cheating.

The outline of the protocol is given hereafter.
First, D generates a quasi-random bivariate polynomial F in Kk−1[X,Y]. We denote fi(x)

the polynomial F (x, i) where i ∈ {1, . . . ,m}. Similarly, we denote gi(y) the polynomial F (i, y)
where i ∈ {1, . . . ,m}. The dealer D distributes to player Pi (1 ≤ i ≤ m) the polynomials fi and
gi.

Second, each player Pi (1 ≤ i ≤ m) sends to the player Pj (1 ≤ j ≤ m) a number ri,j ∈R K
and then broadcasts fi(j) + ri,j and gi(j) + rj,i. From the broadcast values, each player builds
the same set of lists {L1, . . . , Lm} where Li contains Pj if fi(j) + ri,j 6= gj(i) + ri,j .

Third, each player transforms the lists L1, . . . , Lm into a graph G = (V,E) where V =
{P1, . . . ,Pm} and (Pi,Pj) ∈ E if Pi 6∈ Lj and Pj 6∈ Li. The following step allows the players
to build three sets H, D and C. The set H contains players whose broadcast information is
consistent with the broadcast information of all other players of H, D is the group of players
whose broadcast information is consistent with the broadcast information of at least 2t+1 players
in H, and C is the set of disqualified players. Players in D and C may have cheated or they may
be honest but have received forged shares from the dealer.

8

Remark. It is important to note that the players in H ∪D are able to calculate their correct
shares, but may be cheaters, whereas players in C do not hold enough correct information to
reconstruct the shares they should hold.

Applying for example the algorithm described in Appendix A, Pi determines a maximal
matching Mal of G and builds the set of players H =

⋃
{Pi,Pj} where (Pi,Pj) ∈Mal and the set

H = {P1, . . . ,Pm} \H. Then, Pi builds the set of players D, thanks to the following algorithm:
for each Pu 6∈ H, Pi checks the number nu of pairs (Pu,Pv) in E. If nu ≥ 2t + 1, then Pu is
added to D. Otherwise, Pu is disqualified and added to the set C of cheaters.

The last step consists for Pi in assessing |H|+ |D|: if |H|+ |D| < 3t+ 1, then D has cheated.
Otherwise, each player Pi calculates fi(0).

At the end of the protocol, if D was not detected as a cheater, |H|+ |D| ≥ 3t+ 1 players,
including up to t corrupted players are considered as holding a valid share. Applying for example
the error-correcting codes decoding scheme described in Sect. 5.1 allows C to determine ω from
the shares collected from the players of H ∪D.

Like Shamir’s threshold scheme, Gennaro et al.’s VSS is perfect, i.e., the knowledge of k − 1
or less shares (fi, gi) leaves ω completely undetermined.

6 Description of the Protocol

In this section we present our verifiable DOT protocol (See Fig. 1). The protocol is composed of
five phases, described hereafter.

6.1 Phase 1 – Sharing of the Sender’s Secrets

The sender S generates a quasi-random polynomial P ∈ Kk−1[X] such that

P = ω0 +
k−1∑
i=1

aiX
i, where ai ∈R K, 1 ≤ i ≤ k − 1.

Then, S generates the n-variate polynomial

Q(x, y1, . . . , yn−1) = P (x) +
n−1∑
j=1

(ωj − ω0)yj .

For each index ` ∈ Im, S builds an (n − 1)-variate polynomials F` = Q(`, y1, . . . , yn−1) and
transmits this polynomial to the server S`. The sender does not intervene in the rest of the
protocol.

At the end of this phase, m servers S` including up to k− 1 malicious servers have received a
polynomial F`.

6.2 Phase 2 – Sharing of the Receiver’s Secret Inputs

The receiver R chooses the index σ ∈ {0, . . . , n− 1} of the secret ωσ she wishes to obtain as well
as a set Ic ⊂ Im of c ≥ 4k− 3 indices of servers. The index σ is coded under the form of a vector
(δ1σ, . . . , δ

n−1
σ) of n− 1 elements of {0, 1}.

Then, for each secret input δsσ, R generates and distributes shares of δsσ according to the VSS
sharing phase of the protocol described in Sect. 5.2.

9

Let S1, . . . , Sm be m servers.

Input The sender S, contributes with n secrets ω0, . . . , ωn−1 ∈ K.
The receiver R, chooses an index σ ∈ {0, . . . , n−1}, and contributes with n−1
private values δ1σ, . . . , δ

n−1
σ ∈ {0, 1}

Output If R is detected as a cheater, then the protocol stops. Otherwise, if she follows
the protocol, R receives ωσ, while S receives nothing.

Phase 1 – Sharing of the Sender’s Secrets

1. S generates an n-variate polynomial Q(x, y1, . . . , yn−1) = P (x) +
∑n−1

i=1 (ωi − ω0)yi
where P ∈ Kk−1[X] is a quasi-random polynomial whose constant term is ω0.

2. S transmits to the server S` (` ∈ Im = {1, . . . ,m}) the (n − 1)-variate polynomial
F`(y1, . . . , yn−1) = Q(`, y1, . . . , yn−1).

Phase 2 – Sharing of the Receiver’s Secret Inputs

1. R chooses σ ∈ {0, . . . , n− 1} and Ic ⊂ Im, a set of c ≥ 4k − 3 servers to contact.

2. R generates a vector Θ = (G1, . . . , Gn−1) of n− 1 quasi-random bivariate polynomials
Gs ∈ Kk−1[X,Y], where the constant term of Gs is δsσ. The polynomial Gs(x, i) (i ∈ Ic)
is denoted fs,i(x) and the polynomial Gs(i, y) (i ∈ Ic) is denoted gs,i(y).

3. R generates c vectors Vi = (f1,i, . . . , fn−1,i) of polynomials (i ∈ Ic). Similarly, R
generates c vectors Wi = (g1,i, . . . , gn−1,i) of polynomials (i ∈ Ic).

4. R transmits to Si (i ∈ Ic) the pair of vectors (Vi,Wi).

5. For s = 1, . . . , n − 1, Si (i ∈ Ic) sends to the server Sj (j ∈ Ic) a random element
rs,i,j ∈R K.

Phase 3 – Detection of Cheaters

1. Si (i ∈ Ic) broadcasts fs,i(j) + rs,i,j and gs,i(j) + rs,j,i, for s = 1, . . . , n− 1. From the
broadcast values and for s = 1, . . . , n− 1, Si builds three sets of servers Hs, Ds and
Cs, following the technique described in Sect. 5.2. If |Cs| > k − 1, then R has cheated
and the protocol stops.

2. Si (i ∈ Ic) determines H =
⋂n−1
s=1 (Hs ∪Ds). If c− |H| ≥ k, then R has cheated and

the protocol stops. Otherwise, the set of indices corresponding to the servers in H is
denoted IH.

3. Si (i ∈ IH) calculates Φi = (Z1(i), . . . , Zn−1(i)). The share Zs(i) (1 ≤ s ≤ n − 1) is
calculated from the values gs(i) (i ∈ IH) thanks to the error-correcting codes decoding
scheme described in Sect. 5.1.

Phase 4 – Computation of the Shares of the Chosen Secret

Each server Si (i ∈ IH) calculates the share µi = Fi(Φi) and sends it to R.

Phase 5 – Reconstruction of the Chosen Secret

R interpolates a polynomial R of degree at most k − 1, thanks to the error-correcting codes
decoding scheme described in Sect. 5.1 and calculates ωσ = R(0).

Figure 1: A verifiable (4k − 3, m)-DOT-
(
n
1

)
protocol

10

That is, R generates for s = 1, . . . , n − 1, a quasi-random bivariate polynomial Gs ∈
Kk−1[X,Y] such that Gs(0, 0) = δsσ. For i ∈ Ic, we denote fs,i(x) the polynomial Gs(x, i)
and gs,i(y) the polynomial Gs(i, y). We also define, for s = 1, . . . , n − 1, the polynomial Zs
by Zs(y) = Gs(0, y). The polynomial Zs ∈ Kk−1[X] satisfies the c equalities Zs(i) = fs,i(0)
(i ∈ Ic). The receiver R distributes to server Si (i ∈ Ic) the two vectors of polynomials
Vi = (f1,i, . . . , fn−1,i) and Wi = (g1,i, . . . , gn−1,i).

Then, for s = 1, . . . , n− 1, each contacted server Si (i ∈ Ic) sends to the server Sj (j ∈ Ic) a
random element rs,i,j ∈R K.

6.3 Phase 3 – Detection of Cheaters

This phase, composed of three steps, allows the servers to verify that the receiver is honest,
possibly to detect and identify malicious servers, and above all to calculate the receiver’s secret
inputs shares.

6.3.1 Categorization of Servers.

Each server Si (i ∈ Ic) broadcasts fs,i(j) + rs,i,j and gs,i(j) + rs,j,i, for s = 1, . . . , n− 1. From the
broadcast values, each server builds for each value s = 1, . . . , n− 1, c lists Ls,1, . . . , Ls,c where
Ls,i contains Sj if fs,i(j) + rs,i,j 6= gs,j(i) + rs,i,j .

Then, Si transforms Ls,1, . . . , Ls,c into a graph Gs = (Vs, Es) where Vs = {Si1 , . . . , Sic}
(i1, . . . , ic ∈ Ic) and (Si, Sj) ∈ Es if Si 6∈ Ls,j and Sj 6∈ Ls,i. The next step consists for each
server Si (i ∈ Ic) in building for s = 1, . . . , n − 1 the sets Hs, Ds and Cs. The set Hs is a
group of servers in which any server’s broadcast information was consistent with the broadcast
information of all other servers of the group, Ds is a group of servers whose broadcast information
was consistent with the broadcast information of at least 2k − 1 servers in Hs, and Cs is a set of
servers detected as cheaters. Servers in Ds and Cs may be malicious or may be honest but have
received forged shares from R.

Using the algorithm described in Appendix A, Si (i ∈ Ic) determines, for each value s
(s = 1, . . . , n − 1) a maximal matching Ms of Gs and builds the set of servers Hs =

⋃
{Si, Sj}

where (Si, Sj) ∈Ms and the set Hs = Vs \Hs. Then, Si builds another set of servers Ds, thanks
to the following algorithm: for each Su 6∈ Hs, Si checks the number nu of pairs (Su, Sv) in Gs.
If nu ≥ 2k − 1 (i.e. at least k honest players have consistent information with Su), then Su is
added to Ds. Otherwise, Su is disqualified and added to the set Cs.

If Si finds out that |Cs| > k − 1, then the receiver R is considered as a cheater and the
protocol stops.

6.3.2 Overall Verification.

Then, each server Si (i ∈ Ic) agglomerates the sets constructed in the previous step. Thus,
H =

⋂n−1
s=1 (Hs ∪Ds). If Si finds out that c − |H| > k − 1, then like in the previous step, the

receiver R is considered as a cheater and the protocol stops.
The set of indices corresponding to the servers in H is denoted IH. A server Sd belongs to

the set D of disqualified servers if d ∈ Ic \ IH. The servers in D do not participate to the rest of
the protocol.

11

6.3.3 Recovering of Shares.

Each server Si (i ∈ IH) calculates the vector

Φi = (Z1(i), . . . , Zn−1(i)) .

The share Zs(i) (1 ≤ s ≤ n − 1) is calculated from the values gs,j(i) (j ∈ IH) thanks to the
error-correcting codes decoding scheme described in Sect. 5.1.

6.4 Phase 4 – Computation of the Shares of the Chosen Secret

Now, each server Si (i ∈ IH) holds an (n − 1)-variate polynomial Fi as well as a vector
Φi = (Z1(i), . . . , Zn−1(i)) of secret inputs shares. Therefore, Si is able to calculate the value
µi = Fi(Φi).

Each of the servers Si(i ∈ IH) transmits µi to R.

6.5 Phase 5 – Reconstruction of the Chosen Secret

From the collected shares µi (i ∈ H), the receiver R executes the error-correcting codes decoding
scheme described in Sect. 5.1 to interpolate a polynomial R of degree at most k − 1. Assuming
R distributed shares of δ1σ, . . . , δ

n−1
σ in Phase 2, R can easily calculate ωσ = R(0).

7 Security of the Protocol

In this section we show (proof sketch) that the proposed protocol satisfies all desirable conditions
C ′1, C2 and C3.

7.1 Correctness

Because we assume that the sender S is honest, each server Si (i ∈ Im) has received a correct
polynomial Fi at the end of Phase 1.

Each of the n−1 sets Hs∪Ds (1 ≤ s ≤ n−1) determined in the first step of Phase 3 contains
at least c− (k− 1) servers holding k-consistent shares. If we set t = k− 1, the number of servers
in Hs ∪Ds is at least k + 2t, including up to t malicious servers, because c ≥ 4k − 3. It follows
that each server Si of Hs ∪Ds, from the shares gs,j(i) (j such that Sj ∈ Hs ∪Ds), is able to
interpolate a polynomial f ′s,i thanks to the error-correcting codes decoding scheme described in
Sect. 5.1 and to calculate the share Zs(i) = f ′s,i(0). If a server Si was given an incorrect sharing
polynomial fs,i by R, then fs,i(0) 6= f ′s,i(0), but if a server Si (honest or malicious) was given a
correct share by R, then fs,i(0) = f ′s,i(0).

However, the receiver may have cheated by giving inconsistent shares for one secret input to a
group of servers and inconsistent shares for another secret input to another group of servers. This
is why in the second step of Phase 3, each server Si determines the set C =

⋃n−1
s=1 Cs composed

of the cheaters regarding all the secret inputs. If |C| > k− 1, then at least one honest server had
incorrect shares, which means that this server received incorrect shares from R. If |C| ≤ k − 1,
it cannot be proven that R cheated. It follows that |H| = c− |C| ≥ c− (k − 1). Again, we set
t = k − 1. Because c ≥ 4k − 3, it holds |H| ≥ k + 2t.

Therefore, at the end of Phase 3, each server Si ∈ H, i.e. at least k + 2t servers, including up
to t malicious servers, holds a vector Φi = (Z1(i), . . . , Zn−1(i)) of k-consistent shares.

The computations executed by the servers Si ∈ H in Phase 4 are therefore correct, although
up to t of those servers may be malicious.

12

In Phase 5, R receives the responses from the servers of H, i.e. at least k+2t shares, including
up to t incorrect shares. The receiver is then entitled to apply the error-correcting codes decoding
scheme described in Sect. 5.1 and calculate the chosen secret ωσ = R(0) = Q(0, δ1σ, . . . , δ

n−1
σ).

We conclude that condition C ′1 is satisfied.

7.2 Receiver’s Privacy

We show that the sender, but also the sender and k − 1 corrupt servers, cannot obtain any
information on the receiver’s choice, along or after the protocol has been executed.

The index σ chosen by the receiver is represented under the form of a vector (δ1σ, . . . , δ
n−1
σ)

of private values. The receiver’s input to the protocol consists of shares of these values. That is,
each element δsσ, which is either zero or one, is distributed among the c selected servers Si (i ∈ Ic),
using Gennaro et al.’s VSS scheme. This is achieved by generating a vector (G1, . . . , Gn−1) of
n− 1 quasi-random bivariate polynomials of Kk−1[X,Y], such that Gs(0, 0) = δsσ.

Note that the polynomial Zs ∈ Kk−1[Y] (1 ≤ s ≤ n − 1) defined by Zs = Gs(0, Y) is a
quasi-random polynomial with a free coefficient Zs(0) = δsσ. Thus, Zs may be considered as a
sharing polynomial for the value δsσ.

For each private value δsσ, a server Si (i ∈ Ic) receives two polynomials fs,i = Gs(x, i) and
gs,i = Gs(i, y). The server Si is then able to calculate the share Zs(i) since Zs(i) = fs,i(0). From
the received polynomial gs,i, Si is also able to determine one share corresponding to the sharing
polynomial fs,j received by the server Sj (j ∈ Ic). Indeed, Si is able to calculate gs,i(j) = fs,j(i).

In order to breach the privacy of the receiver along the execution of the protocol, or after
completion of the protocol, a set of k − 1 colluding servers S` (` ∈ Ib ⊂ Ic) should be able to
determine at least one of the values δsσ. The set of k − 1 collaborating servers, however, holds
for each value δsσ, k − 1 shares associated with a Gennaro et al.’s scheme. More precisely, the
coalition holds k − 1 shares Zs(`) (` ∈ Ib) and also k − 1 shares of each sharing polynomial fs,j
of Kk−1[X] (j ∈ Ic). The knowledge of a kth share of fs,j would allow to determine Zs(j) and by
interpolation Zs, and then δsσ = Zs(0). But, due to the perfectness of Gennaro et al.’s scheme,
every set of k− 1 shares provides the coalition with absolutely no information about the relevant
private value.

Consequently, the condition C2 is guaranteed.

7.3 Sender’s Security

First, we show that along or after having executed the protocol, the receiver cannot obtain more
than one secret and second, we demonstrate that a coalition of k − 1 servers with the receiver is
unable to obtain information on the secrets ω0, . . . , ωn−1.

7.3.1 Sender’s Security with Respect to the Receiver.

In the original protocol, if we denote Ik = {x1, . . . , xk} the set of indices of the contacted servers,
each collected share µi (i ∈ Ik) is actually the right member of the equation:

ω0 +

k−1∑
j=1

aji
j +

n−1∑
j=1

(ωj − ω0)Zj(i) = µi .

So, the receiver R is able to build the linear system of k equations in n+ k − 1 unknowns (n
secrets, k − 1 coefficients ai):

13


∑k−1

j=1 ajx
j
1 + ω0(1−

∑n−1
j=1 Zj(x1)) +

∑n−1
j=1 ωjZj(x1) = µx1

. .∑k−1
j=1 ajx

j
k + ω0(1−

∑n−1
j=1 Zj(xk)) +

∑n−1
j=1 ωjZj(xk) = µxk

(1)

With our protocol, R collects additional shares. The c ≥ 4k−3 collected shares are consistent,
i.e., assuming Ic = Ik ∪ {xk+1, . . . , xc}, R is able to built the linear system

∑k−1
j=1 ajx

j
1 + ω0(1−

∑n−1
j=1 Zj(x1)) +

∑n−1
j=1 ωjZj(x1) = µx1

. .∑k−1
j=1 ajx

j
k + ω0(1−

∑n−1
j=1 Zj(xk)) +

∑n−1
j=1 ωjZj(xk) = µxk∑k−1

j=1 ajx
j
k+1 + ω0(1−

∑n−1
j=1 Zj(xk+1)) +

∑n−1
j=1 ωjZj(xk+1) = µxk+1

. .∑k−1
j=1 ajx

j
c + ω0(1−

∑n−1
j=1 Zj(xc)) +

∑n−1
j=1 ωjZj(xc) = µxc

(2)

According to Theorem 1 (See Appendix B), the two systems (1) and (2) are identical. It
follows that R cannot learn more than one linear combination of secrets by collecting extra
consistent shares. To force R to obtain information on no more than one secret from the linear
combination, the technique described by Naor and Pinkas [14] may be applied; in Phase 1, S
randomly selects n masks c0, . . . , cn−1 ∈ K∗. Two polynomials P1 and P2 are generated: P1 to
share the n masked secrets ciωi and P2 to share the n masks ci (0 ≤ i ≤ n − 1). Phase 3 is
executed with the shares of both the masked secrets and the masks. In Phase 4, in response to the
receiver’s request Φi, each server Si (i ∈ IH) returns two shares: P1(i,Φi) and P2(i,Φi). From
the collected shares, R is able to apply the error-correcting codes decoding scheme described in
Sect. 5.1 and calculate the chosen masked secret and its corresponding mask.

Consequently, like in the original protocol, R cannot obtain more than one secret.

7.3.2 Sender’s Security with Respect to a Coalition of Servers.

Assuming the technique preventing R from obtaining information on more than one secret is used
(See previous section), the initialisation phases of Blundo et al.’s and our protocols are the same.
So at the end of Phase 1, a coalition of k − 1 servers holds 2× (k − 1) sharing (n− 1)-variate
polynomials. There is no advantage for the coalition to collude with the receiver to breach the
sender’s security, because the receiver has no input to contribute to an attack. It follows that
the sender’s security with respect to a coalition of the receiver and k − 1 servers is the same for
our protocol as for the original protocol, i.e. C3.

14

References

[1] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In: STOC’88: Proceedings of the twentieth annual
ACM symposium on Theory of computing. pp. 1–10. ACM (1988)

[2] Berlekamp, E.: Algebraic coding theory revised 1984 edition. Aegean Park Press (1984)

[3] Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: New results on unconditionally
secure distributed oblivious transfer. In: Nyberg, K., Heys, H.M. (eds.) Selected Areas in
Cryptography - SAC 2002. Lecture Notes in Computer Science, vol. 2595, pp. 291–309.
Springer-Verlag (2003)

[4] Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: On unconditionally secure distributed
oblivious transfer. Journal of Cryptology 20(3), 323–373 (2007)

[5] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols. In:
STOC’88: Proceedings of the twentieth annual ACM symposium on Theory of computing.
pp. 11–19. ACM (1988)

[6] Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving
simultaneity in the presence of faults. In: SFCS’85: Proceedings of the 26th Annual
Symposium on Foundations of Computer Science. pp. 383–395. IEEE Computer Society
(1985)

[7] Cramer, R., Damg̊ard, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multiparty
computations secure against an adaptive adversary. In: Stern, J. (ed.) Advances in Cryptology
- EUROCRYPT’99. Lecture Notes in Computer Science, vol. 1592, pp. 311–326. Springer-
Verlag (1999)

[8] Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation from any
linear secret-sharing scheme. In: Preneel, B. (ed.) Advances in Cryptology - EUROCRYPT
2000. Lecture Notes in Computer Science, vol. 1807, pp. 316–334. Springer-Verlag (2000)

[9] D’Arco, P., Stinson, D.R.: On unconditionally secure robust distributed key distribution
centers. In: Zheng, Y. (ed.) Advances in Cryptology - ASIACRYPT 2002. Lecture Notes in
Computer Science, vol. 2501, pp. 181–189. Springer-Verlag (2002)

[10] Desmedt, Y., Kurosawa, K., Van Le, T.: Error correcting and complexity aspects of linear
secret sharing schemes. In: Boyd, C., Mao, W. (eds.) Information Security - ISC 2003.
Lecture Notes in Computer Science, vol. 2851, pp. 396–407. Springer-Verlag (2003)

[11] Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17(3), 449–467
(1965)

[12] Gao, S.: A new algorithm for decoding Reed-Solomon codes. In: Bhargava, V.K., Poor,
H.V., Tarokh, V., Yoon, S. (eds.) Communications, Information and Network Security, pp.
55–68. Kluwer Academic Publishers (2003)

[13] Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifiable secret
sharing and secure multicast. In: STOC’01: Proceedings of the thirty-third annual ACM
symposium on Theory of computing. pp. 580–589. ACM (2001)

15

[14] Naor, M., Pinkas, B.: Distributed oblivious transfer. In: Okamoto, T. (ed.) Advances in
Cryptology - ASIACRYPT 2000. Lecture Notes in Computer Science, vol. 1976, pp. 205–219.
Springer-Verlag (2000)

[15] Nikov, V., Nikova, S., Preneel, B., Vandewalle, J.: On unconditionally secure distributed
oblivious transfer. In: Menezes, A., Sarkar, P. (eds.) Advances in Cryptology - INDOCRYPT
2002. Lecture Notes in Computer Science, vol. 2551, pp. 395–408. Springer-Verlag (2002)

[16] Rabin, T.: Robust sharing of secrets when the dealer is honest or cheating. J. ACM 41(6),
1089–1109 (1994)

[17] Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest
majority. In: Johnson, D.S. (ed.) STOC’89: Proceedings of the twenty-first annual ACM
symposium on Theory of computing. pp. 73–85. ACM (1989)

[18] Reed, I., Solomon, G.: Polynomial codes over certain finite fields. Journal of the Society for
Industrial and Applied Mathematics 8(2), 300–304 (1960)

[19] Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)

[20] Stinson, D.R., Wei, R.: Unconditionally secure proactive secret sharing scheme with combi-
natorial structures. In: Heys, H., Adams, C. (eds.) Selected Areas in Cryptology - SAC’99.
Lecture Notes in Computer Science, vol. 1758, pp. 200–214. Springer-Verlag (2000)

[21] Tompa, M., Woll, H.: How to share a secret with cheaters. Journal of Cryptology 1(2),
133–138 (1988)

[22] Zhong, S., Richard Yang, Y.: Verifiable distributed oblivious transfer and mobile agent
security. In: Proceedings of the 2003 joint workshop on Foundations of mobile computing.
pp. 12–21. ACM (2003)

[23] Zhong, S., Richard Yang, Y.: Verifiable distributed oblivious transfer and mobile agent
security. Mobile Networks and Applications 11(2), 201–210 (2006)

16

Appendix

A Subprotocol Maximal Matching in a Graph

A graph G is defined as a pair (V,E) where V = {v1, . . . , vn} (n ∈ N) is a set of vertices or
nodes and E = {e1, . . . , em} (m ∈ N), is a set of edges, where an edge is a pair of vertices (vi, vj)
(vi ∈ V , vj ∈ V , vi 6= vj).

The graph Ḡ = (V̄ , Ē) is the complement of G if V̄ = V and e ∈ Ē if and only if e /∈ E.
In a graph G = (V,E), a matching M ⊂ E is a set of edges such that no two edges of M have

a vertex in common.
A maximal matching is a matching which cannot be extended by the addition of any edge of

G.
To determine a maximal matching M of a graph G = (V,E), a simple greedy algorithm may

be used: First, an edge is selected, added to M and its vertices are deleted from G. In the
remaining subgraph, another edge is selected, added to M and its vertices are deleted from the
subgraph. This process continues until no edge is available.

B Additional Consistent Shares in Blundo et al.’s Protocol

To demonstrate that a receiver R who collects c ≥ k consistent shares does not obtain more linear
combinations of secrets than if she collects k shares, it is sufficient to demonstrate Theorem 1.

Theorem 1. The linear systems (1) and (2) determined in Sect. 7.3.1 are identical.

Proof. System 2 can be written under the matrix form Ax = b, where

A =



x1 . . . xk−11 (1−
∑n−1

j=1 Zj(x1)) Z1(x1) . . . Zn−1(x1)
...

...
...

...
...

xk . . . xk−1k (1−
∑n−1

j=1 Zj(xk)) Z1(xk) . . . Zn−1(xk)

xk+1 . . . xk−1k+1 (1−
∑n−1

j=1 Zj(xk+1)) Z1(xk+1) . . . Zn−1(xk+1)
...

...
...

...
...

xc . . . xk−1c (1−
∑n−1

j=1 Zj(xc)) Z1(xc) . . . Zn−1(xc)


,

x =



a1
...

ak−1
ω0
...

ωn−1


and b =



µx1
...
µxk
µxk+1

...
µxc


We show that each row ` (k + 1 ≤ ` ≤ c) of A is a linear combination of the rows 1 to k.
Let us define the k + n− 1 polynomials Ti ∈ Kk−1[X] (1 ≤ i ≤ k + n− 1) by the relations:

• Ti = Xi for i = 1, . . . , k − 1,

• Tk = 1−
∑n−1

j=1 Zj ,

• Tk+s = Zs for s = 1, . . . , n− 1.

17

The matrix A may be written under the form:

A =

T1(x1) . . . Tk−1(x1) Tk(x1) Tk+1(x1) . . . Tk+n−1(x1)
...

...
...

...
...

T1(xc) . . . Tk−1(xc) Tk(xc) Tk+1(xc) . . . Tk+n−1(xc)

 ,

In Kk−1[X], we consider the k Lagrange polynomials Lxi related to x1, . . . , xk (these elements
of K are distinct and different from 0):

Lxi =
k∏
j=1
j 6=i

X − xj
xi − xj

Because (Lx1 , . . . , Lxk) is a basis of the vector space of polynomials of degree at most k − 1,

each polynomial Ti ∈ Kk−1[X] can be written as Ti =
∑k

j=1 Ti(xj)Lxj . It follows that the matrix
A is:

A =



T1(x1) . . . Tk+n−1(x1)
... . . .

...
T1(xk) . . . Tk+n−1(xk)∑k

j=1 T1(xj)Lxj (xk+1) . . .
∑k

j=1 Tk+n−1(xj)Lxj (xk+1)
...

...∑k
j=1 T1(xj)Lxj (xc) . . .

∑k
j=1 Tk+n−1(xj)Lxj (xc)


.

Clearly, the lines k + 1, ..., c are linear combinations of the first k lines.
It follows that the matrix equality Ax = b can be written A′x = b′, where

A′ =



x1 . . . xk−11 (1−
∑n−1

j=1 Zj(x1)) Z1(x1) . . . Zn−1(x1)
...

...
...

...
...

xk . . . xk−1k (1−
∑n−1

j=1 Zj(xk)) Z1(xk) . . . Zn−1(xk)

0 . . . 0 0 0 . . . 0
...

...
...

...
...

0 . . . 0 0 0 . . . 0


and b′ =



µx1
...
µxk
0
...
0


The linear system corresponding to this equation is exactly (1), which concludes the demon-

stration.

18

	Introduction
	Related Works
	Blundo et al.'s Distributed Oblivious Transfer
	Verifiable Secret Sharing Schemes

	Preliminaries
	Our Model
	Adversary Model
	Communication Model
	Principle of the Protocol

	Components of the System
	Error-Correcting Codes Decoding Scheme
	Verifiable Secret Sharing Scheme

	Description of the Protocol
	Phase 1 – Sharing of the Sender's Secrets
	Phase 2 – Sharing of the Receiver's Secret Inputs
	Phase 3 – Detection of Cheaters
	Categorization of Servers.
	Overall Verification.
	Recovering of Shares.

	Phase 4 – Computation of the Shares of the Chosen Secret
	Phase 5 – Reconstruction of the Chosen Secret

	Security of the Protocol
	Correctness
	Receiver's Privacy
	Sender's Security
	Sender's Security with Respect to the Receiver.
	Sender's Security with Respect to a Coalition of Servers.

	Subprotocol Maximal Matching in a Graph
	Additional Consistent Shares in Blundo et al.'s Protocol

