
Lightweight Zero-Knowledge Proofs for
Crypto-Computing Protocols

Sven Laur1 and Bingsheng Zhang2,3

1 University of Tartu, Estonia
swen@math.ut.ee

2 State University of New York at Buffalo
3 National and Kapodistrian University of Athens, Greece

bzhang@di.uoa.gr

Abstract Crypto-computing is a set of well-known techniques for com-
puting with encrypted data. The security of the corresponding proto-
cols are usually proven in the semi-honest model. In this work, we pro-
pose a new class of zero-knowledge proofs, which are tailored for crypto-
computing protocols. First, these proofs directly employ properties of the
underlying crypto systems and thus many facts have more concise proofs
compared to generic solutions. Second, we show how to achieve univer-
sal composability in the trusted set-up model where all zero-knowledge
proofs share the same system-wide parameters. Third, we derive a new
protocol for multiplicative relations and show how to combine it with
several crypto-computing frameworks.

Keywords. Universal composability, conditional disclosure of se-
crets, zero-knowledge proof, homomorphic encryption scheme, crypto-
computing, multi-party computation.

1 Introduction

There are two basic approaches for crypto-computing: garbled circuit eval-
uation and protocols for computing with ciphertexts. Garbled circuit eval-
uation is Turing complete [Yao82,BHR12], while the computational express-
ibility of ciphertext manipulation depends on the underlying cryptosys-
tem [SYY99,IP07,Gen09]. In this work, we consider only the ciphertext ma-
nipulation protocols. These protocols often rely on the specific properties of the
underlying plaintexts, e.g., they assume that the encrypted inputs are bits. If
these conditions are not satisfied, these protocols often break down and even the
privacy of inputs is not guaranteed [AIR01,LL07]. Hence, these protocols are
often complemented with zero-knowledge proofs to guarantee security.

Conditional disclosure of secrets (CDS) can be used as a lightweight alterna-
tive to zero knowledge proofs [GIKM98,AIR01,LL07]. In a nutshell, CDS pro-
tocols are used to release secrets only if received ciphertexts satisfy a desired
relation. If we use these secrets to encrypt replies in the original protocol, these
replies become unreadable when the ciphertexts are malformed. The resulting

protocol is extremely lightweight, as the transformation adds only few extra ci-
phertexts and some additional crypto-computing steps. On the flip side, CDS
transformation ensures only input-privacy.

In this work, we extend this approach to full-fledged zero-knowledge proofs
by adding a few short messages. As relatively efficient CDS protocols exist for
proving NP/poly relations between plaintexts [AIR01,LL07], our method can
be used to get zero-knowledge proofs for any NP language. It is a new and
interesting paradigm for constructing zero-knowledge proofs, as resulting CdsZk
protocols do not follow standard sigma structure.

In particular, note that parties do not have to agree before the protocol
execution whether they aim for input-privacy, honest verifier or full-fledged
zero-knowledge. This can be decided dynamically during the protocol with
no overhead. For many zero-knowledge techniques, where the full-fledged zero-
knowledge is achieved by adding extra messages into the beginning of the pro-
tocol, such flexibility is unachievable without additional overhead.

Properties of our zero-knowledge protocols are largely determined by the
underlying commitment scheme. Essentially, we must choose between perfect
simulation and statistical soundness. For perfect simulatability, the commitment
scheme must be equivocal and thus security guarantees hold only against compu-
tationally bounded provers. Statistical binding assures unconditional soundness
but it also prevents statistical simulatability. In both cases, usage of trusted
setup together with dual mode commitments assures universal composability
even if the setup is shared between all protocols.

As CDS and CdsZk protocols are mostly applied for protecting crypto-
computing protocols against malicious adversaries, we show how the trusted
setup can be implemented in the standard or in the common reference string
model without losing security guarantees, see Section 6.

As the second major contribution, we describe a CDS protocol for a mul-
tiplicative relation with the cost of two additional ciphertexts. This is a major
advancement, as all previous CDS protocols for multiplicative relation had a
quadratic overhead in communication. This result is important as many crypto-
computing protocols can be made secure against active attacks by verifying
multiplicative relations. These relations naturally occur in the computation of
Beaver tuples and shared message authentication codes [DPSZ12].

A new CDS protocol for multiplicative relation is presented in Section 4 and
main results about zero-knowledge proofs are presented in Section 5. Hence, a
reader who is familiar with basics of conditional disclosure of secrets can skip
Sections 2 and 3. For clarity, all of our results are formalised in the concrete
security framework and statements about polynomial model are obtained by
considering the asymptotic behaviour w.r.t. the security parameter.

2 Preliminaries

We use boldface letters for vectors and calligraphic letters for sets and algo-
rithms. A shorthand m←M denotes that m is chosen uniformly from a set

M. For algorithms and distributions, the same notation x← A means that the
element is sampled according to the (output) distribution. A shorthand A ≡ B
denotes that either distributions or elements A and B are identical. All algo-
rithms are assumed to be specified as inputs (programs) to a universal Turing
machine U . A t-time algorithm is an algorithm that is guaranteed to stop in
t time steps. In particular note that the program length of a t-time algorithm
must be less than t bits.1 To make definitions more concise, we use stateful ad-
versaries. Whenever an adversary A is called, it has read-write access to a state
variable σ ∈ {0, 1}∗ through which important information can be sent from one
stage of the attack to another. In the beginning of the execution σ is empty.

Homomorphic encryption. As all protocols for conditional disclosure of se-
crets are based on homomorphic encryption schemes, we have to formalise corre-
sponding security notions. A public key encryption scheme is specified by a triple
of efficient algorithms (gen, enc, dec). The probabilistic key generation algorithm
gen generates a public key pk and a secret key sk. The deterministic algorithms
encpk : Mpk × Rpk → Cpk and decsk : Cpk → Mpk are used for encryption and
decryption, where the message space Mpk, the randomness space Rpk and the
ciphertext space Cpk might depend on pk. As usual, we use encpk(m) to denote
the distribution of ciphertexts encpk(m; r) for r ← Rpk.

In this work, we put two important additional restrictions to the encryption
scheme. First, encryption scheme must be with perfect decryption:

∀(pk, sk)← gen ∀m ∈Mpk : decsk(encpk(m)) = m .

Second, membership for the set Cpk must be efficiently testable given pk, i.e.,
everybody should be able to tell whether a message is a valid ciphertext or not.

Some cryptosystems have specific ways to combine ciphertexts, which lead to
predictable changes in plaintexts. We say that an encryption scheme is additively
homomorphic if there exists an efficient binary operation · such that

∀m1,m2 ∈Mpk : encpk(m1) · encpk(m2) ≡ encpk(m1 +m2) (1)

where the equivalence means that the corresponding distributions coincide. A
cryptosystem is multiplicatively homomorphic if there exists an efficient binary
operation ~ such that

∀m1,m2 ∈Mpk : encpk(m1) ~ encpk(m2) ≡ encpk(m1 ·m2) . (2)

First, these definitions directly imply that if a fixed ciphertext encpk(m1) is
combined with a freshly generated encpk(m2) then nothing except m1 + m2 or
m1 · m2 can be deduced from the resulting ciphertext. Secondly, the message
space must be cyclic or a direct product of cyclic subgroups. In the following, we
refer to these as simple and vectorised cryptosystems to make a clear distinction.

1 The direct translation to the polynomial security model is following. The universal
Turing machine can be converted to a non-uniform polynomial adversary A that
takes 1t and the code x as an advice and runs U(x) to interact with the environment.

An encryption scheme is (t, ε)-IND-CPA secure, if for any t-time adversary
A, the corresponding distinguishing advantage is bounded:

2 ·
∣∣∣∣∣Pr

[
(sk, pk)←gen, (m0,m1)←A(pk),

b← {0, 1} , c← encpk(mb) : A(c) = b

]
− 1

2

∣∣∣∣∣ ≤ ε .
The ElGamal [EG85] and Paillier [Pai99] cryptosystems are the most com-

monly used cryptosystems that satisfy all these requirements under standard
number theoretic assumptions. The ElGamal cryptosystem is multiplicatively
homomorphic and the ciphertext space has an efficient membership test if it is
built on top of elliptic curve with prime number of elements. The Paillier en-
cryption and its extension Damg̊ard-Jurik [DJ01] cryptosystem are additively
homomorphic with ciphertext space Z∗Nk , which is also efficiently testable. Both
of these cryptosystems have a cyclic message space.

Commitment schemes. A commitment scheme is specified by triple of effi-
cient probabilistic algorithms (gen, com, open). The algorithm gen fixes public
parameters ck. The algorithm comck : Mck → Cck × Dck maps messages into
commitment and decommitment pairs. A commitment is opened by applying an
algorithm openck : Cck × Dck → Mck ∪ {⊥} where the symbol ⊥ indicates that
the commitment-decommitment pair is invalid. We assume that

∀ck← gen ∀m ∈Mck : openck(comck(m)) = m .

A commitment scheme is (t, ε)-hiding, if for any t-time adversary A, the
corresponding distinguishing advantage is bounded by ε:

2 ·
∣∣∣∣∣Pr

[
ck←gen, (m0,m1)←A(ck),

b← {0, 1} , (c, d)← comck(mb) : A(c) = b

]
− 1

2

∣∣∣∣∣ ≤ ε .
A commitment scheme is (t, ε)-binding, if for any t-time adversary A, the

probability of successful double-openings is bounded by ε:

Pr

[
ck←gen, (c, d0, d1)←A(ck) : openck(c, d0) 6= ⊥
∧ openck(c, d1) 6= ⊥ ∧ openck(c, d0) 6= openck(c, d1)

]
≤ ε .

A commitment is ε-binding if the bound holds for all adversaries.
A commitment scheme is perfectly equivocal if there exists a modified setup

procedure gen∗ that in addition to ck produces an equivocation key ek, which
is later used by additional algorithms com∗ek and equivek. The algorithm com∗ek
returns a fake commitment c∗ together with a trapdoor information σ such
that the invocation of equivek(σ,m) produces a valid decommitment d∗ for m,
i.e., openck(c∗, d∗) = m. More over, for any message m ∈ Mck the distribution
(c∗, d∗) must coincide with the distribution generated by comck(m).

In some proofs, we need commitments that are simultaneously equivocal and
ε-binding. To achieve such a chameleon-like behaviour, we can use two commit-
ment schemes, which differ only in the key generation. That is, they use the same

algorithms com and open for committing and decommitting. Now if commitment
parameters ck are (t, ε1)-indistinguishable and the first commitment scheme is
perfectly equivocal and the second ε2-binding, we can switch the key generation
algorithms during security analysis and use both properties. This construction
is known as a (t, ε1)-equivocal and ε2-binding dual-mode commitment.

Such commitments can be constructed from additively homomorphic encryp-
tion, see [GOS06]. Let e ← encpk(1) together with pk be the commitment key.
Then we can commit m ∈ Mpk by computing c ← em · encpk(0; r) for r ← R.
To open c, we have to release m and r. This construction is perfectly binding.
To assure equivocality, we can set e ← encpk(0; r∗) for some r∗ ← R. Then any
commitment c is an encryption of zero and can be expressed as em · encpk(0; r)
provided that r∗ is known. It is easy to see that (t, ε)-IND-CPA security is suffi-
cient to guarantee hiding and computational indistinguishability of commitment
keys. As you never need to decrypt during the equivocation, the construction
can be based on lifted ElGamal or Paillier encryption scheme.

Trusted setup model. In this model, a trusted dealer T computes and privately
distributes all public and secret parameters according to some procedure πts.
For instance, T might set up a public key infrastructure or generate a common
reference string. In practical applications, the trusted setup πts is commonly
implemented as a secure two- or multi-party protocol run in isolation. Hence,
protocols with trusted setup are practical only if many protocols can share the
same setup without rapid decrease in security.

3 Conditional Disclosure of Secrets

A conditional disclosure of secrets (CDS) is a two-message protocol between a
client P and a server V where the client learns a secret s specified by the server
only if its encrypted inputs x = (x1, . . . , xn) satisfy a public predicate φ(x).
The server should learn nothing beyond the vector of encryptions (q1, . . . , qn).
We also assume that the client knows the secret key sk, whereas the server knows
only the public key pk. These protocols are often used as implicit sub-protocols
in more complex crypto-computing protocols, see for example [AIR01,BK04].

The complexity of CDS protocol depends on the predicate. For instance, it
is straightforward to construct CDS protocols for all monotone predicates if the
input x is a bit vector [AIR01,LL07]. These constructions can be used as a basis
for more complex predicates. In particular, note that for any predicate φ(x)
there exists a constant depth monotonous predicate ψ(x,w) such that

φ(x) = 1 ⇔ ∃w : ψ(x,w) = 1

and w can be efficiently computed from x and φ. For the conversion, fix a circuit
that computes φ(x). Let w1, . . . , wk denote the output values of all gates in the
circuit when the input is x. Then you can define a monotonous formula ψ(x,w),
which states that all gates are correctly evaluated and the output of the circuit
is one. Clearly, the circuit complexity of ψ is linear in the circuit complexity

of φ. As a result, efficient CDS protocols exist for all predicates provided that
the client is willing to encrypt w besides x and the server is willing to combine
encryptions. See [AIR01,LL07] for more detailed discussions.

Formal security definition. A CDS protocol is specified by a triple of algo-
rithms (query, answer, recov). The client first sends a query q ← querypk(x,w)
for which the server computes a reply a ← answerpk(q, s; r) for r ← R. The
client can recover the secret by computing recovsk(a).

Some CDS protocols also specify how the server must combine ciphertexts
to get new encryptions with specific properties. We omit this step from the
protocol description as it is a separate local post-processing step. For clarity, let
Qinv denote the set of all invalid queries, i.e., queries for which ψ(x,w) = 0 or
which contain invalid ciphertext or are otherwise malformed.

All standard implementations of CDS protocols are secure in the relaxed
model, where the client can be malicious and the server is assumed to be honest
but curious. Hence, a security definition should be expressed in terms of simu-
lator constructions. However, as the protocol structure is so simple, we can be
more explicit. Namely, a CDS protocol is (ε, ta)-client-private, if for any ta-time
stateful adversary A, the next inequality holds:

2 ·
∣∣∣∣∣Pr

[
(sk, pk)←gen, (x0,w0,x1,w1)←A(pk),

i← {0, 1} , q ← querypk(xi,wi) : A(q) = i

]
− 1

2

∣∣∣∣∣ ≤ ε .
To simulate a malicious client P∗, the simulator can forward its query q to

the trusted third party T who will test it. If q /∈ Qinv, T releases the secret s and
the simulator can compute answerpk(q, s). Otherwise, T will release nothing and
we need an efficient algorithm answer∗pk(q) for faking replies without knowing
the secret. A CDS protocol is ε-server private if, for all valid public keys pk and
secrets s ∈ S and for all invalid queries q ∈ Qinv, the statistical distance between
the distributions answerpk(q, s) and answer∗pk(q) is at most ε. As the statistical
distance of replies is at most ε, the joint output distribution is also at most ε
apart and thus the protocol is secure against malicious clients [LL07].

Example protocols. The simplest of CDS protocols is a disclose-if-one proto-
col, where the client P learns the secret only if the server V receives encryption
of one. For clarity, let us consider cryptosystems with a cyclic plaintext space of
size p. A standard way to build such a protocol relies on the fact that

encpk(x)e ~ encpk(s) ≡ encpk(x
e · s)

when the underlying encryption scheme is multiplicatively homomorphic. If p is
publicly known prime then e be chosen uniformly from Zp and it is easy to prove
that xe ·s is uniformly distributed overMpk if x 6= 1 and xe ·s = s otherwise. The
latter forms a core of many CDS constructions [AIR01,BGN05]. For additively
homomorphic encryption schemes, we can utilise the equality

encpk(x)e · encpk(s) ≡ encpk(xe+ s)

to construct a disclose-if-zero protocol. As commonly used additively homomor-
phic encryption schemes have a composite plaintext space ZN , extra care is
required to address cases when x is non-trivial factor of N . In such cases, the
noise term xe is uniformly distributed over non-zero additive subgroup G ⊆ ZN
and additional randomness is needed to hide the secret. Laur and Lipmaa [LL07]
proposed a solution where the secret is first encoded with a randomised substi-
tution cipher encode. Thus, the client learns

encpk(x)e · encpk(encode(s)) ≡ encpk(xe+ encode(s)) .

If there exists an efficient function decode such that decode(encode(s)) = s for
all s ∈ S, the honest client can still recover the secret. For the security, encode(s)
must contain enough randomness so that an additive noise from a small subgroup
can hide the secret when the query is invalid. We say that the encoding is ε-secure
if for any s ∈ S and for any non-zero additive subgroup G ⊆Mpk, encode(s) + g
for g ← G is statistically ε-close to uniform distribution over Mpk.

Secure encodings. If the message spaceMpk has a prime order, the only non-
zero subgroup is Mpk and thus the identity function can be used as perfectly
secure encoding. For composite message spaces ZN , we can choose t randomly
from ZbN/2`c and set encode(s) = s + 2` · t to encode `-bit secrets. Laur and

Lipmaa showed that this encoding is 2`−1/γ-secure where γ is the smallest factor
of N and there are no alternative encoding functions with significantly longer
secrets [LL07]. See App. A for a more detailed discussion about optimality.

This construction can be lifted to the vectorised setting provided that all
plaintext components have the same public order n as in [SV11,GHS12,DPSZ12].
However, the information about s must be split between different plaintext com-
ponents to assure security. For instance, if the plaintext space is Zp×Zp, the sub-
group generated by (0, 1) is non-zero while the first component of encode(s) + g
for g ← G comes without a protective noise. Hence, an additive secret sharing
of s = s1 + s2 is needed to assure that the secret is recovered only if ciphertext
corresponds to (0, 0). The same technique is applicable for message spaces with
composite order when we additionally encode each share si. As the noise hides
at least one share si when G 6= {0}, the secret s becomes irrecoverable.

4 A New CDS Protocol for a Multiplicative Relation

For clarity, we specify the solution for additively homomorphic encryption and
then discuss how the same protocol can be modified to work with other types of
cryptosystems such as the lifted ElGamal and vectorised cryptosystems.

Let encpk(x1), encpk(x2) and encpk(x3) be the ciphertexts sent by the client
P and let s ∈ S be the secret picked by the server V. Then the client should
learn s only if the multiplicative relation x1x2 = x3 holds between plaintexts.
Figure 1 depicts the corresponding CdsMul protocol.

Theorem 1. If the encryption scheme is (t, ε1)-IND-CPA secure and encode is
ε2-secure, the CdsMul protocol is (t, 3ε1)-client and ε2-server private.

Global parameters: Both parties know functions encode and decode for secrets.
The client P has a secret key sk and the server V has the corresponding public key
pk. Let n be a publicly known common multiple of all cyclic subgroup sizes inMpk.

Client’s input: The client P has inputs x1, x2, x3 such that x1x2 = x3 over Mpk

Server’s secret: The server V wants to release a secret s ∈ S.

Query: The client P sends q = (q1, q2, q3) to the server V where qi = encpk(xi).
Answer: The server V picks e1, e2 ← Zn and and sends back

u1 ← qe11 · encpk(e2), u2 ← qe13 · q
e2
2 · encpk(encode(s)) .

Recovery: P computes di ← decsk(ui) for i ∈ {1, 2} and uses the known plaintext
value x2 = decsk(q2) to compute the output s← decode(d2 − x2d1).

Figure1. CDS protocol CdsMul for multiplicative relation.

Proof. As the output computed by the client satisfies the following equation

d2 − x2d1 = x3e1 + x2e2 + encode(s)− x2(x1e1 + e2)

= (x3 − x1x2)e1 + encode(s) ,

the client is guaranteed to recover the secret s when x1x2 = x3. If x1x2 6= x3
the term (x3 − x1x2)e1 adds additive noise to the payload. Clearly, the term
(x3−x1x2)e1 belongs to a cyclic additive subgroup G = {(x3 − x1x2)m : m ∈ Z}.
Since the size of every cyclic subgroup ofMpk divides n, the term (x3−x1x2)e1
must be uniformly distributed over G. Consequently, we have established that
d2−x2d1 ≡ encode(s) +G for G 6= {0}. By the assumptions, G+ encode(s) is ε2-
close to the uniform distribution over Mpk. More importantly, the distribution
of d2−x2d1 is also independent from e2. As e2 perfectly masks the term x1e1 in
d1, we can simulate the replies u1 and u2 by encrypting two random messages.
The claim on client-privacy is straightforward. ut

Remarks. First, note that the protocol has perfect server-privacy when the
message space is cyclic and has a prime order, since the identity function as
encode has perfect privacy. If all non-trivial cyclic subgroups have the same prime
order, we can use additive secret sharing to make sure that the multiplicative
relation holds for every sub-component of a vectorised cryptosystem.

Second, note that the protocol does not work directly with lifted cryptosys-
tems. In such schemes, the new encryption rule encpk(x) = encpk(g

x) is defined
in terms of an old multiplicatively homomorphic encryption rule encpk(·) and a
generator of the plaintext space g. The resulting scheme is additively homomor-
phic, but discrete logarithm must be taken to complete the decryption. Hence,
we cannot blindly follow the reconstruction phase in CdsMul protocol.

Still, the client can employ the old decryption algorithm to compute gd1 and
gd2 from the lifted ciphertexts u1 and u2. Since the client knows x2, he or she

can compute a partial decryption gd1(gd2)−x2 = g(x3−x1x2)e1gencode(s). Thus, the
honest client learns gencode(s), which might not be enough to extract s.

For lifted ElGamal with a prime order message space, we can use identity
function to encode s. Hence, the secret s can be restored by brute-forcing gs if
the set of secrets is small. Alternatively, both parties can use gs instead of s to
share a randomly distributed value overMpk. These solutions are not viable for
lifted cryptosystems with composite message spaces, such as [BGN05].

5 From CDS protocols to Zero Knowledge

The new zero-knowledge protocol is based on the following observation. The
client P is able to reconstruct the secret s in a CDS protocol only if ciphertexts
satisfy a certain relation, i.e., q /∈ Qinv. Hence, if P sends the secret s back to the
honest server V, the server is able to verify whether q /∈ Qinv or not. This leaks
no information to the semihonest server, since V already knows s. Consequently,
we can view this simple modification as an honest verifier zero-knowledge proof
where the client P is a prover and the server V acts as a verifier.

However, if V acts maliciously, the secret s recovered by the honest P might
leak additional information. To counter this attack, V should prove knowledge
of s and randomness r ∈ R needed to compute the reply answerpk(q, s; r) before
P sends the secret. Since neither s nor r are among private inputs, V can release
them so that P can validate the behaviour of V by recomputing answerpk(q, s; r).
As the secret becomes public, P must commit to its reply before the pair (s, r)
is released or otherwise we lose soundness. The corresponding idea gives a rise
to zero-knowledge protocol, which is depicted in Figure 2. The secret s is in this
protocol is just a temporary challenge for the prover and has no persistent value.
Depending on the properties of commitment scheme and the CDS protocol, we
get zero-knowledge protocols with different properties.

5.1 Proper Model for Defining Security

By definition a CdsZk protocol verifies a relation between ciphertexts. As such
it is fairly useless without another protocol that uses these ciphertexts in its
computations to get an output. As these protocols must share a joint state (at
minimum the same public key), standard composability results are not applica-
ble [CR03]. A systematic way to prove security of such compound protocols is to
split the proof into phases. In the first phase, we show that instances of CdsZk
protocols are concurrently composable with other protocols if the shared state
is generated by the trusted setup procedure. In the second phase, we replace
the trusted setup with a secure multiparty protocol run in isolation and use
the standard sequential composability result to prove that the setup protocol
followed by the compound protocol remains secure.

Finding an efficient protocol to substitute the trusted setup might be tech-
nically challenging (see App. B), however, the corresponding security analysis is
straightforward, see Section 6. Hence, we discuss here only the first phase.

Trusted setup for encryption. Trusted dealer runs (pk, sk)← pkc.gen and sends
pk as a public key of P to everyone. The secret key sk is sent securely to P.

Trusted setup for CdsZk protocols. Trusted dealer generates commitment
parameters ck← cs.gen and broadcast ck to everyone.

Message formation. The CDS protocol is chosen according to the predicate ψ.
The prover P sends q ← querypk(x,w) to the verifier V.

Proof phase. A statement to be proved is q /∈ Qinv.

1. V chooses s← S and r ←R and sends a← answerpk(q, s; r) to P.
2. P recovers s← recovsk(a), computes (c, d)← cs.comck(s) and sends c to V.
3. V reveals (s, r) to P who aborts if a 6= answerpk(q, s; r).
4. P reveals decommitment d to V who accepts the proof only if s = cs.openck(c, d).

Figure2. Zero-knowledge proof of correctness CdsZk for encryptions.

First of all, note that a CdsZk protocol might be used to prove state-
ments that depend on common parameters z shared by all participants after
the trusted setup. To handle such cases, the language of all valid statements
Lz = {x | ∃w : ψ∗(z, x, w) = 1} must be specified by an efficiently decidable
ternary predicate ψ∗. As usual x is the protocol input (statement) and w is the
witness and z additional auxiliary input. For a CdsZk protocol, q is the proto-
col input, sk is the witness, and pk is the common parameter z shared by many
CdsZk protocols and crypto-computing protocols using CdsZk. The statement
q belongs to Lpk iff q /∈ Qinv(pk). Indeed, the knowledge of sk allows us to
decrypt q to obtain x and then output φ(x) as ψ∗(pk, q, sk).

A proof system is determined by two algorithms P and V which specify the
actions of the prover and the verifier, respectively. The prover P takes (x,w) as
inputs and the verifier V takes x as an input. Both algorithms can additionally
access parameters distributed to them by the setup πts. Let 〈[P,V]〉(x) denote
the verifiers output after the interaction with P(x,w). Then a proof system is
perfectly complete if all valid statements are provable, i.e., for all statements
x ∈ Lz and corresponding witnesses w, 〈[P,V]〉(x) ≡ 1 for all runs of π◦ts.

We formalise the security of a zero-knowledge protocol by specifying the ideal
functionality. An ideal implementation of a zero knowledge proof is a restricted
communication channel π◦ψ∗ from the prover P to the verifier V. The prover P
can provide an input x to the channel, after which the verifier V obtains2

π◦ψ∗(x) =

{
x, if ∃w : ψ∗(z, x, w) = 1 ,

⊥, if ∀w : ψ∗(z, x, w) = 0 ,
(3)

where the set of shared parameters z is determined by the trusted setup π◦ts.

2 Another alternative is to send (x, b) over the channel where b = ψ∗(z, x, w). This
models the setting where the verifier does not discard x but just marks it as invalid.

Let E〈π◦ts, π◦ψ1
, . . . , π◦ψ`

〉 denote a compound protocol (computational context),
which internally uses a single instance of π◦ts and ideal zero-knowledge protocols
π◦ψ1

, . . . , π◦ψ`
. The compound protocol can model any kind of computational ac-

tivity that uses the functionality of π◦ψ1
, . . . , π◦ψ`

. For instance, it can use zero-
knowledge to guarantee correctness of an e-voting protocol.

We say that E is a te-time computational context if the maximal amount of
computation steps done by E disregarding invocations of π◦ts and π◦ψi

is bounded

by te. Now let E〈π∗ts, π1, . . . , π`〉 be a hybrid implementation3 with augmented
trusted setup π∗ts and real instantiations of zero knowledge protocols πψi . The
augmented setup procedure first runs π◦ts and then creates some additional pa-
rameters (commitment parameters in our case) shared by π1, . . . , π`. Now we
would like that both compound protocols have comparable security against
plausible attacks. The corresponding formalisation is rather technical. Hence,
we only highlight the major aspects in the formal definition and refer to the
manuscripts [Can01,Lin03] for further details. Still, it is important to empha-
sise that we consider only security against static corruption but semi-adaptively
chosen contexts4 and we assume that the communication is asynchronous.

In a nutshell, let ξ denote inputs of all parties and let ζ◦ and ζ denote joint
outputs of all parties in the ideal and the hybrid execution. Let f be a low-degree
polynomial. Then a protocol π is (te, ta, f, td, ε)-universally composable in the
shared setup model if for any te-time E and for any ta-time adversary A against
π there exists f(ta)-time adversary A◦ against π◦ such that for any input ξ
distributions ζ◦ and ζ are (td, ε)-indistinguishable. We omit the time bound td
if ζ◦ and ζ are statistically indistinguishable.

The parameter te limits the complexity of protocols where we can safely
use zero-knowledge protocols. The parameter ta shows how much computational
power the adversary can have before we lose security guarantees. The polynomial
f shows how much extra power the adversary gains by participating the hybrid
protocol. The slower it grows the better. In the standard asymptotic setting, we
view all parameters as functions of a security parameter k and we ask whether for
any polynomials te(k), ta(k), td(k), the distinguishing advantage ε(k) decreases
faster than a reciprocal of any polynomial.

5.2 Soundness Guarantees for CDSZK Protocols

A proof system π is ε-sound if for any prover P∗ and adaptively chosen statement
x the deception probability is bounded by ε:

Advsnd

π (P∗) = Pr [x← P∗ : 〈[P∗,V]〉(x) = 1 ∧ x /∈ Lz] ≤ ε
3 The name hybrid implementation is used here to distinguish the implementation

from the final (real world) setting where π∗
ts is replaced with a setup protocol πts.

4 This setting guarantees security against inside attacks even if the corrupted party
can influence what is computed and in which contexts zero-knowledge proofs are
executed., i.e., the adversary must decide before the execution which of two parties
it corrupts. However, the adversary can choose the computational context E based on
the outputs received in πts. Secondly, we limit the overall amount of computations.

where the probability is taken over all possible runs of the setup procedure πts
and P∗ can choose the statement x based on all public and private parameters
received during πts. An argument system π is (t, ε)-sound if for any t-time P∗
the deception probability is bounded: Advsnd

π (P∗) ≤ ε.

Theorem 2. If the commitment scheme is ε2-binding and CDS protocol is ε3-
server private, CdsZk protocol is

(
1
|S| + ε2 + ε3

)
-sound for any P∗. If the com-

mitment scheme is perfectly binding, a stronger claim holds:

∀sk, ck, (ψ, q)← P∗(sk, ck) : Pr [〈[P∗,V]〉(q) = 1 ∧ q ∈ Qinv] ≤ 1/|S|+ ε3 .

Proof. Consider a modified protocol where a is replaced with answer∗pk(q) when-
ever q ∈ Qinv. As the CDS protocol is ε3-server private, the replacement can
reduce the deception probability at most by ε3. Let c denote the the commitment
issued in the modified protocol and let d∗ ∈ D be the first valid decommitment
for c according to some fixed ordering over the decommitment space D. Let
ŝ = openck(c, d∗) be the corresponding opening. Then

Pr [〈[P∗,V]〉(q) = 1 ∧ q ∈ Qinv] ≤ Pr [ŝ = s ∧ q ∈ Qinv] + ε2 + ε3 .

Indeed, note that P∗ can succeed only if openck(c, d) = s and thus all successful
runs with s 6= ŝ correspond to valid double openings. As the commitment scheme
is statistically binding Pr [s = openck(c, d) 6= ŝ] ≤ ε2. To complete the proof, note
that the fake reply answer∗pk(q) is independent of s (which is uniformly chosen
in CdsZk) and thus Pr [ŝ = s ∧ q ∈ Qinv] ≤ Pr [ŝ = s|q ∈ Qinv] ≤ 1/|S|.

For the strengthened claim, note that answer∗pk and answerpk(q, s) are ε3-close
for any valid pk. Now if the commitment is perfectly binding then s = ŝ for any
ck and we get the desired bound. ut

Surprisingly enough, computational binding alone is not sufficient for sound-
ness against time-bounded provers. The CdsZk protocol is sound only if the
underlying CDS protocol is equivocal for incorrect queries. The latter is a non-
trivial property to achieve. See App. D for further discussion.

5.3 Universal Composability of CDSZK Protocols

Usually, one gives a simulation construction for a malicious verifier to prove
the zero-knowledge property. Here, we aim for more. Namely, we show that any
adversary who attacks the CdsZk protocol πψ∗ can be converted to an efficient
adversary against the ideal implementation π◦ψ∗ even if some side-computations
are done in parallel with πψ∗ . For that we modify the generation of parameters
for the dual-mode commitments to get an equivocality key into the simulator.

Lemma 1. If (t, ε1)-equivocal and ε2-binding dual-mode commitment is used in
the hiding mode, then for any ta-time malicious verifier A there exists O(ta)-
simulator A◦ that achieves perfect simulation for single CdsZk protocol.

T A◦ A
q−−−−−−→ q−−−−−−→

a←−−−−−−
(c∗, σ)← com∗

ek
c∗−−−−−−→

Halt if a 6= answerpk(q, s; r)
s,r←−−−−−−

d∗ ← equivek(σ, s)
d∗−−−−−−→

Figure3. Simulation construction for corrupted verifier.

Proof. To convert A to an equivalent ideal world adversary A◦, we need to
simulate π∗ts given access to π◦ts and πψ∗ given access to π◦ψ∗ . The simulation of
π∗ts is trivial, since π◦ts delivers all messages as π∗ts except for the commitment key
ck. For the latter, the simulator A◦ computes (ck, ek)← gen∗ and delivers ck to
A and stores the equivocation key ek for later use.

Figure 3 depicts the simulation construction for πψ∗ . Let (c, d) denote the
commitment and decommitment values used in πψ∗ and (c∗, d∗) the correspond-
ing values computed in the simulation. Since the commitment is perfectly equiv-
ocal, distributions of c and c∗ coincide. Next, note that if a = answerpk(q, s; r),
then honest prover would have committed s. Consequently, if corrupted verifier
A releases values s, r such that a = answerpk(q, s; r), the distribution of (c, d)
and (c∗, d∗) coincides, again. Hence, simulation of πψ∗ is perfect. ut

Note that the transformation outlined in Lemma 1 can be applied only once
to the malicious verifier, as the resulting adversary A◦ expects the trusted dealer
to engage π◦ts. Therefore, we need a separate proof to show that concurrent
composition of CdsZk protocols, which share the commitment parameters ck
can be replaced with ideal implementations.

Lemma 2. If (t, ε1)-equivocal and ε2-binding dual-mode commitment is used in
the hiding mode, then for any ta-time malicious verifier A there exists O(ta)-
simulator A◦ that achieves perfect simulation even if many CdsZk protocols are
concurrently executed.

Proof. We use the same simulator for the setup phase as in Lemma 1 and share
the equivocation key ek for all sub-simulators that simulate πψi

. For each proto-
col, we use the same construction as depicted in Figure 3. As the commitment
is still perfectly equivocal, all claims about perfect simulatability of messages of
the sub-protocols πψi hold and the claim follows. ut

Lemma 2 shows how to handle corrupted verifiers but we also need to handle
the case where the prover is malicious. The following result follows directly from
soundness guarantees of Theorem 2.

Lemma 3. If (t, ε1)-equivocal and ε2-binding dual-mode commitment is used in
the binding mode and the underlying CDS protocols is ε3-server private, then an
unbounded prover can succeed with probability 1

|S| + ε2 + ε3 when q ∈ Qinv.

Note that a corrupted party P1 can act simultaneously as a prover and ver-
ifier. Let pk1 and pk2 be the public key of P1 and P2. Then P1 can prove that
encryptions under the public key pk1 are well formed and let P2 to convince
that encryptions under the key pk2 satisfy certain relations. Hence, the final
claim about the security of CdsZk must provide a simultaneous simulation. For
brevity, let us prove the claim for two-party setting as the proof can be easily
generalised for multi-party setting. Recall that ta + te is the maximal running
time of the adversary and the context where the protocols are executed.

Theorem 3. If (t, ε1)-equivocal and ε2-binding dual-mode commitment is used
in the hiding mode and all ` instances of CDS protocols are ε3-server private,
then the CdsZk protocol is (te, ta,O(ta), td, `(

1
|S| + ε2 + ε3) + ε1)-universally

composable in the shared setup model provided that t ≥ ta + te +O(`).

Proof. Let E〈π◦ts, π◦ψ1
, . . . , π◦ψ`

〉 denote a compound protocol with ideal imple-
mentations and let E〈πts, πψ1 , . . . , πψ`

〉 be the corresponding hybrid world im-
plementation. Let P1 denote the corrupted and P2 the honest party. LetA denote
a malicious adversary that acts in behalf of P1.

For the proof, we modify the simulator construction as in Lemma 2 so that
it can handle protocol instances where A is a prover. For that A◦ must forward
the query q to trusted third party T and play the role of honest verifier V. The
latter is always possible as V has no inputs. Note that the simulator will accept
some proofs where q ∈ Qinv while the P2 reading the channel will always reject
these proofs. Hence, there will be small discrepancy between ideal and hybrid
executions. If the commitment scheme is in the binding mode, such events occur
with probability εs = 1

|S| + ε2 + ε3 per each protocol instance due to Lemma 3.

If the commitment scheme is in the hiding mode, such events can occur at
probability `εs + ε1 if ta + te + O(`) ≤ t. Otherwise, we can use the hybrid
execution model for distinguishing between commitment keys. Consequently,
executions in the ideal and hybrid world can diverge with with probability `εs+ε1
and the claim follows. ut

Theorem 3 assures that CdsZk protocols are concurrently composable zero-
knowledge arguments and not proofs, since unbounded prover can always fool
verifiers. If the commitment scheme is run in the binding mode, we get zero-
knowledge proofs but lose statistical simulatability.

Theorem 4. If the commitment scheme is used in the binding mode, the CdsZk
protocol is (te, ta,O(ta), td, `(

1
|S| + ε2 + ε3) + 2ε1)-universally composable in the

shared setup model provided that t ≥ ta + te + td +O(`).

Proof. Note that td algorithm can distinguish hybrid executions with different
commitment modes with probability ε1 if t ≥ ta + te + td +O(`). Hence, we can
use hybrid argument to show that the simulator from Theorem 3 is sufficient. ut

Concluding remarks. First, note that the trusted setup for public key in-
frastructure is essential. Although the commitment key ck can be viewed as
common reference string, the CdsZk proofs are not guaranteed to be univer-
sally composable in the CRS model. The underlying CDS protocol is required
to be server-private only if the public key pk is valid. Hence, a prover with an
invalid public key may succeed in deception. There are no easy fix for this prob-
lem, as the public keys of most additively homomorphic cryptosystems are not
efficiently verifiable. Second, note that CdsZk protocols can be proven secure
in the standard model. However, we lose universal composability, see App. C.

5.4 Comparison with Other Zero-Knowledge Protocols

Efficient zero-knowledge protocols can be obtained form challenge-response or
sigma protocols. The CdsZk protocol can be viewed as a challenge-response
protocol followed by the proof of knowledge to tame cheating verifiers. However,
differently from the standard solution [GMR89] where the proof of knowledge is
executed before the prover sends the response, the commitment is used to fix the
response. As result, the verifier can directly reveal the internal state yielding the
challenge, while standard construction needs witness-indistinguishable proofs.
Hence, our protocol is clearly superior compared to the standard approach.

More remarkably, our methodology can be used to convert any challenge-
response protocol to zero-knowledge proof. By using dual-mode commitments,
we can easily get security guarantees analogous to Theorems 3 and 4. If the
challenge does not have a nice algebraic form (say we want to establish provers
ability to decrypt ciphertexts or invert hash functions) then it is much more
efficient to reveal all inputs (to the encryption algorithm or hashing function)
directly instead of crafting witness-indistinguishable proofs of knowledge.

There is a strange duality between CDS and sigma protocols. In both cases,
protocols for elementary relations can be combined into disjunctive and con-
junctive proofs using secret sharing, see [CDS94,LL07]. As there are efficient
sigma protocols for affine relations between plaintexts, the overhead of combiner
constructions for both types of protocols is comparable.

Table 1 summarises the efficiency of the three most important elementary
relations, where E, D, M, X correspond to encryption, decryption, multipli-
cation and exponentiation operations. For the multiplicative relation, we use
Damg̊ard-Jurik sigma protocol from [DJ01] detailed in App. E. In all these CDS
protocols, the client sends only the ciphertexts to be checked, while prover in a
sigma protocols must send extra ciphertexts. Thus, CDS protocols have smaller
communication complexity, while the computation complexity is comparable5.

Dual-mode commitments with the trusted setup can be used to convert sigma
protocols into universally composable zero-knowledge proofs. For that the prover
must commit the challenge ahead of proof. By using extractable commitments

5 Exact comparisons are hard to give, since the cost of decryption operations depends
on implementation details, which vary from a cryptosystem to a cryptosystem.

Table1. The number of elementary operations done in sigma and CDS protocols.

Relation Sigma protocol CDS protocol
Prover Verifier Client Server

x = 0 1E + 1M 1E + 1M + 1X 1D 1E + 1M + 1X
ax = b 1E + 1M 2E + 2M + 2X 1D 2E + 2M + 2X
x1x2 = x3 2E + 4M 2E + 3M + 4X 2D + 1M 2E + 3M + 3X

during the simulation, we can extract the challenge and thus create a matching
sigma protocol transcript without access to the witness.

The resulting zero-knowledge protocol has higher communication complexity
than CdsZk proof and cannot be dynamically reconfigured. Namely, assume
that P1 sends some encryptions to P2. Then P2 can add CDS transformation to
his reply without prior agreement with P1 to guarantee input privacy or start
honest verifier zero knowledge proof (HVZK). If the prover P1 feels frightened
then it can upgrade HVZK proof to full-fledged zero knowledge by committing
the reply. Again, there is no need for an agreement before this step. Such dynamic
configurability is not attainable for other types of zero-knowledge proofs.

Zero-knowledge proofs for any NP language. The CdsZk protocol can be
directly converted to general purpose zero-knowledge proof for any NP state-
ment. Let ψ(x,w) be the predicate that checks validity of the witness w and
the statement x. Now if we encrypt w, then we can use CdsZk to prove that
we have indeed encrypted a witness to public statement x. Since relatively ef-
ficient CDS protocols exist for any circuit [AIR01,LL07], the resulting CdsZk
protocol is rather efficient. Since CdsZk protocol can be proved secure in the
standard model (see App. C), the resulting proof system is no worse than any
other general purpose zero-knowledge proof.

6 Securing Crypto-computations Against Active Attacks

Assume that we have a crypto-computing protocol E0 that is secure in the semi-
honest setting and our goal is to protect the protocol against malicious client
who has the secret key. Moreover, assume that the only way for the client to
cheat is to send invalid ciphertexts to the server. For instance, send an incor-
rectly encrypted vote in the e-voting protocol. The are wide range of client-server
protocols that can be formalised such way, see [AIR01,BK04,LL07].

All such crypto-computing protocols can be split into a computational phase
and a trusted setup π∗ts that sets up public and private keys. Let π◦ts be the
augmented trusted setup, which additionally sets up the commitment param-
eters shared by all CdsZk protocols. Let πts be a secure two- or multi-party
protocol that implements π◦ts in the standard model. Clearly, we can modify
the protocol E0〈π◦ts〉 by adding ideal zero-knowledge protocols π◦ψi

to guarantee
that the client cannot cheat. The resulting protocol can be viewed as a context
E〈π◦ts, π◦ψ1

, . . . , π◦ψ`
〉 for execution ideal zero knowledge protocols.

By substituting the real implementations of CdsZk, we get a hybrid execu-
tion model E〈π∗ts, πψ1

, . . . , πψ`
〉. Finally, we can consider the crypto-computing

protocol E〈πts, πψ1 , . . . , πψ`
〉 where first πts is run isolation to get all setup pa-

rameters and then the remaining protocols are concurrently scheduled. To prove
the security of the resulting implementation, we have to use hybrid argument
several times to show indistinguishability.

As πts is a secure implementation of π∗ts, the standard sequential composabil-
ity result guarantees that any efficient adversary A against E〈πts, πψ1

, . . . , πψ`
〉

can be converted to an efficient adversary A1 against E〈π∗ts, πψ1
, . . . , πψ`

〉 so that
outputs are computationally indistinguishable. Due to Theorems 3 and 4, we
can convert A1 into an efficient adversary A2 against E〈π◦ts, π◦ψ1

, . . . , π◦ψ`
〉 such

that outputs remain indistinguishable. As the adversary A2 cannot successfully
cheat and we can efficiently mimic the outputs of π◦ψi

by knowing the secret
key sk, we can convert A2 to the adversary A3 against E0〈π◦ts〉. Since E0〈π◦ts〉 is
secure protocol, we can convert A3 into an efficient adversary against the ideal
implementation of crypto-computing protocol.

To summarise, we can concurrently schedule CdsZk protocols together with
a crypto-computing protocol provided that honest parties do no other compu-
tations during the setup phase πts which generates global parameters.

7 Conclusions

In brief, we showed how to build universally composable zero-knowledge proto-
cols from dual-mode commitments and homomorphic encryption. As the stan-
dard dual-mode commitments are also based on homomorphic encryption, our
construction can be based solely on homomorphic encryption.

We acknowledge that the CdsZk protocol is not round-optimal, as there are
theoretical constructions for zero-knowledge in three rounds. However, these are
not as efficient. Similarly, our protocols are not the best in terms of online com-
munication, as there are zero-knowledge protocols with constant communication
in the trusted setup model, e.g. [Gro10]. However, these protocols use stronger
security assumptions (bilinear parings combined with unfalsifiable assumptions)
and the size of public parameters is really large.

In terms of practical performance our protocols are comparable to the zero-
knowledge protocols based on sigma protocols where the security against mali-
cious verifiers is achieved by committing the challenge at the beginning of the
protocol. These protocols are more rigid against dynamic change of security lev-
els. The latter is a drawback in the covert model where parties randomly alter
security levels during the computations to discourage cheating.

Protocols CdsMul and CdsZkMul have also many direct applications.
First, crypto-computing protocols often use oblivious polynomial evaluation, in
which a valid query consists of encryptions of x, x2, . . . , xk. Second, multiplica-
tive relations naturally occur in crypto-computing systems, see App F and G.

Finally, conditional disclosure of secrets (CDS) is often used for going beyond
linearity in crypto-computing. For example, it is possible to securely evaluate

greater than predicate using CDS protocols [BK04,LL07]. As somewhat homo-
morphic encryption (SHE) remains additively homomorphic when we reach the
multiplication limit, we can combine CDS with SHE to extend the set of func-
tions computable with SHE without extending its multiplicative depth.

References

[AF90] Mart́ın Abadi and Joan Feigenbaum. Secure circuit evaluation. J. Cryptol-
ogy, 2(1):1–12, 1990.

[AIR01] Bill Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How
to sell digital goods. In Proc. of EUROCRYPT 2001, volume 2045 of LNCS,
pages 119–135. Springer-Verlag, 2001.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF Formulas on
Ciphertexts. In Proc. of TCC 2005, volume 3378 of LNCS, pages 325–342.
Springer, 2005.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Proc. of ITCS 2012,
pages 309–325, 2012.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of
garbled circuits. In Proc. of ACM CCS, pages 784–796. ACM, 2012.

[BK04] Ian F. Blake and Vladimir Kolesnikov. Strong conditional oblivious transfer
and computing on intervals. In Proc. of ASIACRYPT 2004, volume 3329
of LNCS, pages 515–529. Springer, 2004.

[Can01] R. Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In Proc. of FOCS 2001, pages 136–145. IEEE 2001.

[CDS94] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In Proc. of
CRYPTO 1994, volume 839 of LNCS, pages 174–187. Springer, 1994.

[CIK+01] Ran Canetti, Yuval Ishai, Ravi Kumar, Michael K. Reiter, Ronitt Rubin-
feld, and Rebecca N. Wright. Selective private function evaluation with
applications to private statistics. In Proc. of PODC 2001, pages 293–304.
ACM, 2001.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In
Proc. of CRYPTO 2003, volume 2729 of LNCS, pages 265–281. Springer,
2003.

[DGKN09] Ivan Damg̊ard, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen.
Asynchronous multiparty computation: Theory and implementation. In
Proc. of PKC 2009, volume 5443 of LNCS, pages 160–179. Springer, 2009.

[DJ01] Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some
applications of Paillier’s probabilistic public-key system. In In Proc. of PKC
2001, volume 1992 of LNCS, 119–136. Springer, 2001.

[DO10] Ivan Damg̊ard and Claudio Orlandi. Multiparty computation for dishonest
majority: From passive to active security at low cost. In Proc. of CRYPTO
2010, volume 6223 of LNCS, pages 558–576. Springer, 2010.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Mul-
tiparty computation from somewhat homomorphic encryption. In Proc. of
CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer, 2012.

[EG85] Taher El Gamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In Proc. of CRYPTO 1984, volume 196 of LNCS,
pages 10–18. Springer, 1985.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proc.
of STOC 2009, pages 169–178. ACM, 2009.

[GHS12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryp-
tion with polylog overhead. In Proc. of EUROCRYPT 2012, volume 7237
of LNCS, pages 465–482. Springer, 2012.

[GIKM98] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting
data privacy in private information retrieval schemes. In Proc. of STOC
1998, pages 151–160, 1998. ACM.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput.
Syst. Sci., 28(2):270–299, 1984.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof systems. SIAM J. Comput., 18(1):186–208, 1989.

[GOS06] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive Zaps and
New Techniques for NIZK. In Proc. of CRYPTO 2006, volume 4117 of
LNCS, pages 97–111. Springer, 2006.

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments.
In Proc. of ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340.
Springer, 2010.

[IP07] Yuval Ishai and Anat Paskin. Evaluating branching programs on encrypted
data. In Proc. of TCC 2007, volume 4392 of LNCS, pages 575–594. Springer,
2007.

[Lin03] Yehuda Lindell. General composition and universal composability in secure
multi-party computation. In Proc. of FOCS 2003, pages 394–403, 2003.

[LL07] Sven Laur and Helger Lipmaa. A new protocol for conditional disclosure of
secrets and its applications. In Proc. of ACNS 2007, volume 4521 of LNCS,
pages 207–225. Springer, 2007.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residu-
osity classes. In Proc. of EUROCRYPT 1999, volume 1716 of LNCS, pages
223–238. Springer, 1999.

[SV11] Nigel P. Smart and Frederik Vercauteren. Fully Homomorphic SIMD Op-
erations. IACR Cryptology ePrint Archive, 2011:133, 2011.

[SYY99] Tomas Sander, Adam L. Young, and Moti Yung. Non-Interactive Crypto-
Computing For NC1. In Proc. of FOCS 1999, pages 554–567. IEEE Com-
puter Society, 1999.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations. In Proc. of
FOCS 1982, pages 160–164. IEEE Computer Society, 1982.

A Maximal Capacity of Secure Encoding Functions

Theorem 5. Assume that the message space of a cryptosystem is a cyclic group
of size N . Then we can encode at most γ

1−ε different secrets with ε-secure en-
coding where γ is smallest factor of N .

Proof. W.l.o.g. we can assume that the message space is ZN , as we are not
interested in the computational efficiency in this proof. Let φ = N/γ denote the
biggest non-trivial factor of N . Let Es denote the set of all possible encodings of
s ∈ S and let Zs = {e mod γ : e ∈ Es} denote of residues of Es modulo γ.

First, lets consider the case where |Es| = |Zs| for all s ∈ S, i.e., for each
z ∈ Zs there exist only one e ∈ Es such that e ≡ z (mod φ). Let us arrange all

elements of ZN into a γ × φ rectangular grid so that element e is in the column
e mod φ and each row is reserved for separate set Es. Clearly, we can fit up to
γ sets Es in such way but there could be enough blank cells to fit more sets.

For the proof, we bound the number of extra sets we can squeeze into these
blanks. Let pz = Pr [encode(s) ≡ z (mod φ)] for some fixed s. Then ε-indistin-
guishability of encode(s) + φZN and encode(t) + φZN implies that encode(s)
mod φ and encode(t) mod φ are also ε-indistinguishable. Thus, the total prob-
ability of free cells in a single row αs =

∑
z/∈Zs

pz ≤ ε and the probability of
covered cells βs =

∑
e∈Es pe mod φ ≥ 1 − ε for any additional set. Thus, the

number of additional sets is bounded from above by γε/(1− ε), as the total sum
of probabilities captured by free sells is at most γε. The claim follows.

In general, some sets Es may contain pairs such that e1 6≡ e2 (mod N)
but e1 ≡ e2 (mod φ). However, we can get rid of these pairs by defining a
new encoding encode∗(·) which transfers the occurrence probability of e2 to e1
so that the distribution of residues modulo φ does not change. Hence, the ε-
indistinguishability of encode∗(s) mod φ and encode∗(t) mod φ still holds and
any new encoding sets E∗s is contained in Es. Now it is straightforward to use
the same argument as before to get the same bound on the number of disjoint
encoding sets E∗s and thus also the size of S. ut

B Multi-party Protocol for Trusted Setup

Setting up public and secret key pairs for the cryptosystem is easy. Parties
can generate keys by themselves an then use standard techniques to prove the
knowledge of their secret key. Setting up the commitment key is bit more difficult,
as we must make sure that nobody can learn the trapdoor.

If commitments based on additively homomorphic encryption as in [GOS06],
we can use protocols for generating public key such that both parties share the
secret key. After that, parties can separately generate two encryptions of zeroes
and combine them into the commitment key e← encpk(1; r0) ·encpk(0) ·enc(0) for
a publicly fixed r0. To avoid cheating both parities must prove that they indeed
submitted an encryption of zero using standard zero-knowledge proofs.

Thus, the final issue is the construction of a valid public key. For the Paillier
cryptosystem, the generation of the RSA moduli is a well-researched problem
with some good solutions. For the lifted ElGamal, the problem is even simpler
as the public key is just a random group element. Hence, it is sufficient if both
parties generate their own random elements, prove that they know the exponent,
and finally use secure multiplication to obtain the public key as a multiple.

C Composability in the Standard Model

The proof of Theorem 3 hinges on the fact that simulation construction depicted
in Figure. 3 works without rewinding. Let us now consider the standard model
setting, where each party Pi generates a commitment key of a perfectly binding
commitment, which is shared through all sessions of CdsZk proof where Pi acts

as a prover. In this setting, we must extract the randomness of the verifier by
rewinding. If the CdsZk protocol is executed in isolation, i.e., all side computa-
tions are suspended, we can use standard knowledge-extraction techniques. For
clarity, we omit all terms in time-bounds that are constant w.r.t. varying t.

Lemma 4. Assume that a commitment scheme is (κ, t)-hiding and the CdsZk

protocol is executed in isolation. Then there exists a O
(t log(1/δ)

ε−κ
)
-time knowledge

extractor which fails with probability at most δ provided that a t-time verifier V∗
passes the check a = answerpk(q, s; r) with probability at least ε.

Proof (Sketch). The knowledge extraction strategy is straightforward. Simulate
the provers first reply by sending a commitment to zero. Since the overall running
time of the malicious verifier V∗ is below t the probability that V∗ releases the
correct randomness (s, r) can decrease by κ. Markov inequality assures that the
probability that V∗ has not released correct randomness (s, r) after 2

ε−κ rewind-

ings is at most 1
2 . Thus, after log(1/δ) · 2

ε−κ rewindings the failure probability
must be below δ. ut

Corollary 1. CdsZk protocols are secure in the standalone model in the sense
that, for any desired failure probability ε, we can construct a simulator that runs

in time O
(t log(1/ε)

ε−κ
)

and fails the simulation with probability ε.

Proof (Sketch). For the proof, we modify the simulator constructor in in Fig-
ure. 3 by replacing the equivocal commitment with a knowledge extractor from
Lemma 4. That is, the simulator first rewinds V∗ to get a correct randomness
(s, r) and in case of success commits to s as expected. In case of a knowledge-
extraction failure, the simulator commits zero and hopes for the best. Let ε(a)
denote the probability that V∗ gives a correct randomness after the commitment

from honest prover P. Then by doing O
(log(1/ε)

ε−κ
)

rewindings we can assure
that (s, r) is recovered with probability ε whenever ε(a) ≥ ε. The cases where
ε(a) < ε do not matter, since for these cases the simulator has to open the
commitment with probability at most ε and thus rarely fails. ut

Clarification. Security guarantees given by Corollary 1 are comparable with
other proofs relying on black-box knowledge extraction techniques. In the frame-
work of asymptotic security, this result guarantees security in the weak polyno-
mial security model. That is, we can choose any positive power c > 0 such
that the simulation failure decreases asymptotically O(k−c) w.r.t. to the secu-
rity parameter k, while the simulator construction is still polynomial. However,
we cannot find a single polynomial-time simulator such that simulation failure is
asymptotically negligible, i.e., O(k−ω(1)). To hide this fact, one often considers
asymptotic of expected running time instead strict running-time, as the latter
formally allows to achieve negligible simulation error.

Corollary 2. CdsZk protocols are sequentially self-composable in the standard
model provided that validity of public keys can be assured.

Proof (Sketch). The proof is based on the observation that we can simulate each
protocol instance similarly to Corollary 1 and all these simulators are sequentially
executed. As consequence, it is straightforward to show that failures sum up
linearly. As a small but important detail, note that if a malicious prover manages
to use invalid public key, then the server-privacy is not guaranteed in the initial
CDS phase of the proof and we cannot establish soundness guarantees. Therefore,
we need public verifiability of public keys or parties must execute a dedicated
zero-knowledge protocol for proving correctness of public keys before executing
any of CdsZk protocols. ut

Security of other composition types. The simulation construction sketched
through Lemma 4 and Corollary 1 can be generalised for more complex settings.
More precisely, the knowledge-extraction is guaranteed to work as long as we
can efficiently simulate the actions of honest prover until the verifier releases
the randomness. In particular, parallel execution of many CdsZk protocols is
secure, as we can simulate commitments to all secrets at the same time.

However, not all all self-compositions lead to an efficient simulation. As a
concrete example, consider a case where a CdsZk instance is embedded be-
tween the commitment and release message of another protocol instance. As the
messages of the innermost protocol are not simulatable without rewinding, one
must first extract s from it and then span outwards. If such an embedding is
done for all ` protocols, we quickly reach exponential number of rewindings.
Hence, only well-aligned concurrent compositions, where no answer-commit-
release-decommit modules are in-lined between a commit-release module, are
efficiently simulatable without dual commitments. This can be enforced by the
prover, if it delays decommitments in case of potential conflicts.

The same restriction holds for other composition types, as well. As long as
we can efficiently simulate all messages of a prover sent after the commitment
and before the randomness release, the CdsZk protocol remains secure in this
context. For instance, note that the asymmetric crypto-computing framework
described in App. F has an interesting property that the server is prover in all
CdsZk proofs and sends only encryptions to the client. As the client does not
know the secret key, these encryptions can be simulated by encryption zeroes.
Hence, CdsZk protocols can be arbitrarily scheduled as long as they remain
well-aligned w.r.t. each other. The same claim holds also for the symmetric
crypto-computing framework described in App. G.

D Equivocal Conditional Disclosure of Secrets

Computational soundness of the the CdsZk protocol does not follow from com-
putational binding without extra assumptions on the CDS protocol. We say that
a CDS protocol is (teq, ε)-equivocal if there exists a teq-time equivocation algo-
rithm equivsk. More precisely, let r be the randomness space for the protocol.
Then for every invalid query q ∈ Qinv, s0, s1 ∈ S and r0 ∈ R, we should get
r1 ← equivsk(q, s0, s1, r0) such that answerpk(q, s0; r0) = answerpk(q, s1; r1). The

algorithm might fail for some inputs, however, the distributions r0 and r1 must
be statistically ε-close for any q ∈ Qinv and s0, s1 ∈ S.

Lemma 5. Assume that the CDS protocol is (teq, ε)-equivocal. Let a0 denote
a correct reply answerpk(q, s0, r0) for s0 ← S and randomness r0 ← R. Let r1
denote the equivocation value equivsk(q, s0, s1, r0) for s1 ← S. Then distributions
(a0, s0, r0) and (a0, s1, r1) are ε-close for any q ∈ Qinv.

Proof. Fix an arbitrary q ∈ Qinv. By definition the distributions of r0 and r1
are statistically ε-close for any values of s0 and s1. Consequently, the statis-
tical distance between the distributions (s0, r0) and (s1, r1) is bounded by ε,
since s0 and s1 are identically distributed. Let a1 = answerpk(q, s1, r1). Then
distributions (a0, s0, r0) and (a1, s1, r1) also ε-close, as the first element can be
computed from the other two. The definition of equivocality also implies that
a0 6= a1 only if r1 = ⊥. Since triples with r1 = ⊥ are clearly distinguishable from
elements of (a0, s0, r0), the statistical distance does not change if we consider
the distribution (a0, s1, r1) instead of (a1, s1, r1). Hence, we have proved that
the distributions (a0, s0, r0) and (a0, s1, r1) are ε-close. ut

Hence, we can consistently lie about underlying secret value whenever the
prover submits q ∈ Qinv. The latter provides an efficient way to get double
openings and allows us to reduce soundness to computational binding.

Theorem 6. If the commitment scheme is (2t, ε1)-binding and CDS protocol is
(teq, ε2)-equivocal, then for any (t− teq)-time prover P∗:

Pr [〈[P∗,V]〉(c) = 1 ∧ q ∈ Qinv] ≤ 1

|S| +
√
ε1 + ε2 .

Proof. For the sake of contradiction, assume that some adversarial algorithm
P∗ violates the claims. Then we can consider the following adversary A with
hardwired (sk, pk) against the binding property.

1. Given ck as input, send ck, pk to P∗ to simulate the trusted setup.
2. Run the message formation phase. Decrypt q and halt if q /∈ Qinv.
3. Generate a reply a← cds.answerpk(q, s0; r0) for s0 ← S and r0 ← R.
4. Store the reply c. Release (s0, r0) to P∗ and store the decommitment as d0.
5. Obtain alternative opening r1 ← cds.equivsk(q, s0, s1, r0) for s1 ← S.
6. Rewind P∗, release (s1, r1) instead and store the decommitment as d1.
7. Output (c, d0, d1) as a double opening.

Let αi(ck, q) = Pr [openpk(c, di) = si|ck, q] for i ∈ {0, 1} denote the suc-
cess probability of P∗ in Steps 4 and 6. Since the CDS protocol is (teq, ε2)-
equivocal, Lemma 5 assures that |α0(ck, q)− α1(ck, q)| ≤ ε2 for any q ∈ Qinv

and for any ck ← cs.gen. Now, let Dopen denote the double-opening event
⊥ 6= openck(c, d1) 6= openck(c, d2) 6= ⊥ and κ = 1

|S| . Then

Pr [Dopen|ck, q] ≥ α0(ck, q)(α1(ck, q)− κ)

≥ α0(ck, q)2 − (ε2 + κ) · α0(ck, q) .

As square is a convex-cup function, Jensen’s inequality assures

Pr [Dopen] ≥
∑
ck,q

Pr [ck ∧ q ∈ Qinv] ·
(
α0(ck, q)2 − (ε2 + κ) · α0(ck, q))

≥ α2 − (ε2 + κ) · α

where α = Pr [〈[P∗V]〉(c) = 1 ∧ q ∈ Qinv] is average of α0(ck, q). Under the as-
sumptions of the theorem, A is at most 2t-time adversary and thus

α2
0 − (ε2 + κ) · α0 ≤ ε1 ,

which itself implies α0 ≤ ε2 + κ+
√
ε1. The claim is proved. ut

*Remarks. First, equivocality is essential if we want to reduce soundness to
computational binding. Indeed, note that Fig. 3 describes an adversary A, which
bypasses the check by equivocating the commitment to the revealed secret. As
A releases decommitment only if the CDS reply a is correctly opened, we must
equivocate a to get a double opening from A. Thus, no black-box reductions can
exist without employing equivocality of the CDS protocol.

Second, note that standard CDS protocols are not equivocal when we use
ElGamal and Paillier cryptosystems, since one cannot efficiently extract ran-
domness of a ciphertext even if the secret key is known.

Fortunately, Goldwasser-Micali cryptosystem [GM84] is a suitable cryptosys-
tem for CDS that facilitates randomness extraction. For brevity, we provide a
solution for equivocal disclose-if-zero protocol, as the remaining CDS construc-
tions can be build according to the description given in [AIR01,LL07].

Recall that Goldwasser-Micali cryptosystem is additively homomorphic over
Z2. The public key is a random quadratic non-residue y over ZN and zero is
encrypted as a random quadratic residue and one is encrypted as a random
quadratic non-residue. Consequently, a valid reply to quadratic non-residue q
is a random ciphertext a with two explanations a = qe0r20 and a = qe1yr21
where e0 and e1 are uniquely determined by the quadratic residuosity of a.
For the equivocation, we must find r0 =

√
aq−e0 and r1 =

√
aq−e1y−1. As

the knowledge of secret key provides an efficient way to find square roots, the
corresponding equivocation algorithm is also efficient.

E Sigma Protocols for Standard Relations

Zero-testing protocol depicted in Figure 4 is the basic protocol for proving rela-
tions about additively homomorphic encryptions. Together with disjunctive and
conjunctive proof constructions it is sufficient to construct a sigma protocol for
any efficiently computable relation. Hence, it is a direct counterpart for disclose-
if-zero CDS protocol. Testing affine relation can reduced to the zero-testing pro-
vided that all multipliers are public. Damg̊ard-Jurik protocol for multiplicative
relations [DJ01] that is comparable to CdsMul is depicted in Figure 5.

Trusted setup for encryption. Trusted dealer runs (pk, sk)← pkc.gen and sends
pk as a public key of P to everyone. The secret key sk is sent securely to P.

Provers input. The prover P knows r such that c = encpk(0; r).

1. The prover P sends c1 ← enc(0, r1) for r1 ←Rpk to V.
2. The verifier V pics e←Mpk and sends e to V.
3. The prover P computes r2 ← r − er1 to V who verifies that ce1 · encpk(0, r2) = c0.

Figure4. Sigma protocol for zero testing.

F Crypto-computing in Asymmetric Setting

Let us consider a setting where the client knows the public key pk of the
server and the server helps him or her to perform various operations on the
ciphertexts. As the cryptosystem is additively homomorphic, the client can
compute encryptions of affine functions without the help from the server.
Hence, the client needs help only for computing encpk(x1x2) from encpk(x1)
and encpk(x2). In the semihonest model, the client can use blinding to shift
the task back to the server [AF90,CIK+01]. Namely, the client can generate
two random masks r1, r2 ← Mpk and send encpk(x1 + r1) and encpk(x2 + r2)
to the server. Due to the homomorphic properties (see Eq. (1)), the client
can compute encpk(x1x2) from the servers reply encpk((x1 + r1)(x2 + r2)) as
encpk((x1 + r1)(x2 + r2))encpk(x2 + r2)−r1encpk(x1)−r2 .

In the malicious model, the server must additionally prove that encpk(x1+r1),
encpk(x2+r2), encpk((x1+r1)(x2+r2)) are in multiplicative relation. By using out
new CdsMul together with the CdsZk construction, we obtain security against

Trusted setup for encryption. Trusted dealer runs (pk, sk)← pkc.gen and sends
pk as a public key of P to everyone. The secret key sk is sent securely to P.

Provers input.
The prover P knows r1, r2, r3 and x1, x2, x3 such that x1x2 = x3 and ci = encpk(xi; r).

1. The prover P generates m∗
1 ←Mpk, r

∗
1 , r

∗
2 ←Rpk.

The prover P sends c∗1 ← encpk(m
∗
1, r

∗
1) and c∗2 ← encpk(m

∗
1x2, r

∗
2) to V.

2. The verifier V pics e←Mpk and sends e to V.
3. The prover P sends back

m̄1 ← ex1 +m∗
1, r̄1 ← er1 + r∗1 , r̄2 ← m̄1r2 − (er3 + r∗2) .

The verifier V verifies that ce1c
∗
1 = encpk(m̄1, r̄1) and cm̄1

2 · (ce3 · c∗2)−1 = encpk(0, r̄2).

Figure5. Sigma protocol for multiplicative relation.

malicious servers with a protocol that has roughly tripled communication and
computation. The exact overhead depends on the cryptosystem.

Since addition and multiplication is enough to represent any function, the
client can compute an encryption of any function. Hence, we are left with the
problem how the server can decrypt the final output without learning the out-
come. In the semi-honest model, the client can mask the final outcome by sending
encpk(y+ r) for decryption. In the malicious model, the server can lie about de-
cryption and must add correctness proof. There are many efficient protocols for
specific cryptosystems. However, we can use also CdsZk protocol, since after
obtaining x ← decsk(c), the client can compute encpk(−x)c which is encpk(0)
only if x was correctly computed.

G Crypto-computing in Symmetric Setting

Let us consider a symmetric setting where each party has a secret keys and
the opponent knows their public key. As a party can decrypt only ciphertexts
corresponding to his or her secret key, we can combine additive secret sharing
with encryption to get verifiable xor-secret sharing. More formally, let pk1 and
pk2 be the public keys of P1 and P2. Then a shared bit [[x]] consists of private
shares x1 ⊕ x2 = x and their public commitments encpk1(x1) and encpk2(x2).
To get a Turing complete share-computing system, we must implement secure
addition and multiplication over Z2.

First, we describe how P1 can shares the secret x. The protocol for P2 is
symmetric. For sharing, P1 chooses x2 ← Z2, sets x1 ← x⊕ x2 and publishes x2
and encpk1(x1). Next, both parties jointly compute encpk2(x2) to avoid cheating.
To complete the sharing, P1 must show that encpk1(x1) either encryption of zero
or one. The latter can be with corresponding CdsZk proof, which reply a consist
of two encryptions. See [LL07] for further details.

It is easy to compute shares [[x ⊕ y]] securely from [[x]] and [[y]], since par-
ties can locally compute zi = xi ⊕ yi and publish encpk1(z1) and encpk2(z2).
To prove the correctness of its computations, Pi must show that encryptions
encpki(xi), encpki(yi) and encpki(zi) satisfy the relation 2xiyi = xi + yi − zi. As
the encryption for the right hand side can be computed by the opponent, the
proof can be done with a single invocation of CdsZkMul protocol.

For the multiplication protocol note that xy = x1y1⊕x1y2⊕x2y1⊕x2y2 where
all multiplications are done over integers. As terms xiyi are locally computable, it
is straightforward to create a valid sharings [[x1y1]] and [[x2y2]]. Let z1⊕z2 = xiyi.
Then Pi must prove the relation xiyi = z1 + z2 − 2z1z2. Again, we need only
a single CdsZkMul protocol, since the opponent can compute the the right
hand side. Xor-sharing for the terms xiyj requires cooperation. For brevity, we
consider the term x1y2 as the treatment of the second term is symmetrical. In
this case, P2 can generate z2 ← Z2 and then send

encpk1(x1)y2encpk1(z2)encpk1(x1)−2y2z2 ≡ encpki(x1y2 ⊕ z2) ≡ encpk1(z1)

to P1 who decrypts it to get z1. Finally, P2 publishes encpk2(z2).

To assure correctness, parties must prove that x1y2 = z1 + z2 − 2z1z2. Al-
though, the latter is multiplicative relation, we cannot use CdsZk protocols, as
published encryptions encpk1(x1), encpk1(z1) and encpk2(y2), encpk2(z2) are under
different keys. Thus, we must use standard zero-knowledge proofs to complete
the multiplication protocol.

