
Instantiating Treeless Signature Schemes

Preliminary Version

Patrick Weiden, Andreas Hülsing,
Daniel Cabarcas, and Johannes Buchmann

Technische Universität Darmstadt
Department of Computer Science

Darmstadt, Germany
{pweiden,huelsing,cabarcas,buchmann}@cdc.informatik.tu-darmstadt.de

Abstract. We study the efficiency of the treeless signature schemes
[Lyu08], [Lyu09], [Lyu12] and evaluate their practical performance.
We explain how to implement them, e.g., how to realize discrete
Gaussian sampling and how to instantiate the random oracles.
Our software implementation as well as extensive experimental re-
sults are presented. In particular, we compare the treeless signature
schemes with currently used schemes and other post-quantum sig-
nature schemes. As the experimental data shows non-competitiveness,
a discussion of possible improvements concludes the paper.

Keywords: Treeless Signature Schemes, Lattice-Based Cryptogra-
phy, Efficiency, Implementation, Discrete Gaussians, Random Or-
acles.

1 Introduction

Digital signatures are one of the most important primitives used in
cryptography today. There are many applications of digital signa-
tures in practice, e.g., signatures on updates of operating systems or
other software distributed over the Internet, authentication of online
banking systems or online marketplaces to the customers, and so on.
Lattice-based signature schemes constitute an interesting alternative
to RSA- and discrete logarithm-based systems used in practice to-
day, since the lattice-based schemes are assumed to resist quantum-
attacks, are equipped with strong security proofs and are asymptoti-
cally efficient in theory. Unfortunately, only little is known about the
practical efficiency of those schemes and to what extent asymptotic
and practical efficiency coincide.

In this work we study the practical efficiency of lattice-based
signature schemes and evaluate their performance. We implement
the treeless signature schemes [Lyu08,Lyu09,Lyu12] since especially
the last one is believed to be a very efficient lattice-based signature
scheme in practice and at the same time provably secure (in the
random oracle model). We detail the technical solutions to the main

2 Patrick Weiden et al.

challenges, since the realization of these challenges in practice is not
as straightforward as assumed in theory. We show how to correctly
realize sampling integers following a discrete Gaussian distribution
and instantiating the different random oracles. We also show how to
implement the random oracles used in the schemes, as the common
way of replacing them by a cryptographic hash function [BR93] does
not work. The reason is that the ranges of the random oracles do not
consist of bit strings, but of polynomials with certain constraints.
We present detailed experimental results for running times, sizes and
space consumption of the three implementations.

There already exist a few implementations of lattice-based schemes.
In a recent work Güneysu et al. [GLP12] presented a tailored and
highly optimized hardware (FPGA) implementation of a lattice-
based signature scheme on constraint devices. An implementation
of a lattice-based encryption scheme was presented by Göttert et
al. in [GFS+12]. Implementations of other post-quantum secure schemes
can be found in [BDH11,HBB13,BERW08,CCC+09].

Organization. In Section 2 we define our notation. Section 3 recalls
the descriptions of the treeless signature schemes. Section 4 presents
our implementations, including details on the main challenges. In
Section 5 experimental results are shown, and Section 6 concludes
our work.

2 Preliminaries

We first introduce the notation used througout the paper. For an
introduction and definition of lattices and ideal lattices as well as the
underlying hardness problems we refer to [MG02,MR08]. Regarding
attacks on lattices we advise the reader to [GN08,GNR10,CN11].

2.1 Notation

We use the rings R := Z[x]/〈f(x)〉 and Rq := Zq[x]/〈f(x)〉 for an
integer q and a polynomial f(x) that is monic and irreducible over
Z[x], where 〈f(x)〉 := f(x)Z[x] denotes the ideal generated by f(x).
Two commonly used polynomials are f(x) = xn + 1 for n being a
power of 2 and f(x) =

∑n−1
i=0 x

i for n being prime. By Rq,d we denote
the subset of polynomials in Rq with coefficients in [−d, . . . , d] ∩ Z.
Reductions modulo an integer q end up in (−q/2, . . . , q/2] ∩ Z.

We denote ring elements by boldface lower case letters, e.g., y,
and identify them both as polynomials y = y0 +y1x+ · · ·+yn−1x

n−1

of maximal degree smaller than n as well as (column) vectors y =

Instantiating Treeless Signature Schemes 3

(y0, . . . , yn−1)
T with n entries. For better distinction, we denote vec-

tors of ring elements by a hat, e.g., p̂. For p̂ = (p1, . . . ,pm), we de-
note the associated coefficient-vector of dim.mn by p̄ = (pT1 , . . . ,p

T
m)T .

Matrices are denoted by boldface capital letters A. The usual scalar
product of x and y is written as 〈x,y〉, the `∞-norm is ‖y‖∞ :=
maxi(|yi|) and the `1-norm ‖y‖1 := |y0| + · · · + |yn−1|. By sim-
ply writing ‖x‖ we intentionally mean the Euclidean length ‖x‖2 =√
|x0|2 + . . .+ |xn−1|2.
Let x← D denote sampling element x according to distribution

D and let x
$← S denote uniformly sampling element x from set S.

The latter is also written x ← U(S), or x ← U(a, b) if S = [a, b], or
Ub short for U(0, b). The statistical distance of two distributions F
and G is the absolute difference of both functions evaluated at the
(common) domain D, i.e., ∆(F,G) :=

∑
x∈D

1
2 |F (x)−G(x)|.

Let Dv,σ be the discrete Gaussian distribution over Z, centered
at v ∈ R, with standard deviation σ ∈ R>0. For x ∈ Z, Dv,σ as-
signs the probability Dv,σ(x) := ρv,σ(x)/

∑
z∈Z

ρv,σ(z), where ρv,σ(x) =

exp
(
−1

2 |x− v|
2/σ2

)
denotes the Gaussian function. We write Dσ for

D0,σ and ρσ for ρ0,σ.1

Let [m] be the set {1, . . . ,m} and a||b the usual concatenation of
a and b. Let furthermore O(g) be the standard big O-notation and
let Õ(g) denote O(g logc(g)) for a constant c > 0. Finally, we mean
log2(x) when simply writing log(x).

3 Treeless Signature Schemes

In this section, we briefly describe the three treeless signature schemes
to be instantiated. We state their security assumptions, list the pa-
rameter choices and highlight the challenges we faced for their im-
plementations.

We first establish some notation common to all the schemes. The
schemes are parametrized by lattice dimension n being a power of 2
and modulus q, which define Rq via f(x) = xn + 1. The parameters
uK, uM, uS and m are integers and Ai ⊂ Rq are special scheme-
dependent sets defined later. All schemes share the following features.

1 Some authors use a slightly different definition for the Gaussian function with
ρv,s(x) = exp

(
−π|x− v|2/s2

)
. The two definitions are equivalent with s =

σ
√

2π.

4 Patrick Weiden et al.

signing keys K := {f ∈ Rq : ‖f‖∞ ≤ uK}
masking elements M := {f ∈ Rq : ‖f‖∞ ≤ uM}
signature outputs S := {f ∈ Rq : ‖f‖∞ ≤ uS}

hash function family H(Rq,m) := {hâ : â ∈ Rmq } with

hâ : Rmq → Rq, ẑ 7→ hâ(ẑ) := a1z1 + · · ·+ amzm
random oracle outputs A1,A2,A3

random oracles H : {0, 1}∗ → Ai
We note that H(Rq,m) is a collision-resistant hash function fam-

ily for certain choices of m and q (see e.g., [Lyu08] or [Mic07]), and
each h ∈ H(Rq,m) can be described via â = (a1, . . . ,am) ∈ Rmq .

3.1 Treeless Signatures 2008 and 2009

The following description covers both the treeless signature scheme [Lyu08]
(TSS08) and [Lyu09] (TSS09), which are operationally the same.

KeyGen(1n): Sample ŝ
$← Km and choose h

$← H(Rq,m). Output
the signing key ŝ and the verification key (h, t) with t := h(ŝ).

Sign(µ, h, ŝ): Given message µ, hash function h and signing key ŝ,

sample ŷ
$← Mm and compute the values e = H(h(ŷ)‖µ) and

ẑ = ŝe + ŷ. Repeat these steps until ẑ ∈ Sm. Then, output the
signature (ẑ, e).

Verify(µ, (ẑ, e), (h, t)): Accept the signature (ẑ, e) iff both ẑ ∈ Sm
and e = H(h(ẑ)− te‖µ) hold.

One of the challenges we faced for the implementation of the key
generation algorithm was how to uniformly sample elements from
Km. Similarly challenging is sampling a hash function from the hash
function family H(Rq,m). But perhaps the biggest challenge is the
instantiation of the random oracle in the signing algorithm. As we
will see, this is challenging due to the particularities of the different
output sets Ai, which cannot simply be sampled by using a hash
function.

Security and Parameter Choice for TSS08. The security of TSS08 is
based on the hardness of SVPγ , as stated in the following theorem.

Theorem 1 (Cor. 6.7 in [Lyu08]). If TSS08 is not strongly unforge-
able for the parameters of Table 1, then there is a polynomial-time
algorithm that solves SVPγ(L) for γ = Õ(n2.5) for every ideal lattice
L ⊂ R.

For TSS08, parameters and variable definitions are given in Ta-
ble 1. As for our implementation, we let q be prime numbers of
bitlength log(n4).2 The other parameters are set as in Table 1. Since

2 We rely on the function GenPrime ZZ of NTL [Sho] for this.

Instantiating Treeless Signature Schemes 5

TSS08 TSS09

n power of 2 power of 2

m 3 log2(n) any integer

σ - any integer

κ - smallest integer s.t. 2κ
(
n
κ

)
≥ 2160

q prime of order Θ(n4) integer ≈ (2σ + 1)m · 2−128/n

uK 1 σ

uM mn1.5 · log2(n) mnσκ

uS mn1.5 · log2(n)−
√
n · log2(n) mnσκ− σκ

Ai A1 = {f ∈ Rq : ‖f‖∞ ≤ 1} A2 = {f ∈ Rq : ‖f‖1 ≤ κ}
Table 1. Parameter Definitions for TSS08 and TSS09 (see [Lyu08,Lyu09])

we want to retain the underlying security proof, we did not further
investigate different parameter choices.

Security and Parameter Choice for TSS09. The security for TSS09
is the same as given for TSS08 in Theorem 1 with γ = Õ(n2) (see
Theorem 3 in [Lyu09]), but the parameter set for this scheme is
different as listed in Table 1. Two new parameters σ, κ are introduced
which have an impact on the sets K, M and S. Furthermore, we
note that the set of random oracle outputs A2 is different from A1.
This apparently minor change in theory leads to a major change in
practice (see Section 4.3 below).

For our implementation, we chose the parameters m = log2(n),
σ = 127, and q =

⌈
(2σ + 1)m · 2−128/n

⌉
, and κ, uK, uM, and uS

as in Table 1, which is a reasonable adaption of the definitions and
instantiations in Figure 2 of [Lyu09].

3.2 Treeless Signatures 2012

The treeless signature scheme in [Lyu12] (TSS12) has the same Key-
Gen- and nearly the same Verify-algorithm as TSS08 and TSS09. The
difference in the latter is that the condition ẑ ∈ Sm is replaced by
‖z̄‖2 ≤ 2σ

√
m, while the condition on the random oracle remains.

The Sign-algorithm of TSS12 is as follows.

Sign(µ, h, ŝ): Given message µ, hash function h and signing key ŝ,
sample ŷ = (y1, . . . ,ym)← (Dn

σ)m and compute e = H(h(ŷ)||µ)
and ẑ with zi = sie + yi for i ∈ [γ]. Output the signature (ẑ, e)
with probability

min

(
1,

Dp
σ(z̄)

MDp
ē,σ(z̄)

)
, (1)

where p = mn, and z̄ = (zT1 , . . . , z
T
m)T and ē = ((s1e)T , . . . , (sme)T)T .

6 Patrick Weiden et al.

Note that the masking values yi are chosen from a discrete Gaus-
sian distribution instead of uniformly from the set M. Sampling el-
ements from a discrete Gaussian distribution is another challenge of
the implementation, which is addressed in detail in Section 4.2. Also
notice that the random oracle output is A3, defined below. A last
challenge for TSS12 is the conditional output of the signature which
we address in Section 4.4.

Security and Parameter Choice for TSS12. The security of this
variant of the treeless signature scheme is based on the hardness
of Search-SIS`2q,f,m,β with β = (4σ + 2((2α + 1)uK + α)κ)

√
p for

p = mn and some positive integer α, and on the hardness of Decision-
SISq,f,m,uK (see [Lyu12]).

n power of 2 512 512

q see below 224 233

uK 1 31

p 2n 1024 1024

κ smallest integer s.t. 2κ
(
n
κ

)
≥ 2100 14 14

σ 12uK · κ
√
p 5376 166656

M exp(12uK · κ
√
p/σ + (uK · κ

√
p/(2σ))2) 2.72 2.72

A3 {f ∈ Rq : ‖f‖∞ ≤ 1 and ‖f‖1 ≤ κ}
Table 2. TSS12: Parameters according to Figure 2 of [Lyu12], columns IV and
V.

Parameter definitions and concrete choices for this scheme can
be found in Table 2. The author chose the Hermite factor δ = 1.007
as origin to deduce the given values according to the extensive ex-
perimental results of [GN08] and to be equivalent to 80-bit security
(see [GLP12]).

In order for the SISq,f,m,uK problem to be hard, one can deduce

that q < δm
2n(23uK(uK + 1)πe)m/2. Therefore, we chose q to be the

largest power of 2 that fulfills the previous condition. With m = 2,
uK = 13 and p, κ and σ as in Table 2 we obtained the following
values for q in our implementation:

n 8 16 32 64 128 256 512 1024 2048 4096

log2 (q) 3 4 4 6 8 13 24 44 85 168

3 For our implementation, we solely chose the case uK = 1, but our method can
be adapted to the case uK = 31 as used by the author (see Table 2).

Instantiating Treeless Signature Schemes 7

4 Implementing the Schemes

In this section we present relevant details on our implementations of
the treeless signature schemes. After some general considerations, we
detail the technical solution to the main challenges faced for their
implementation, namely, sampling random numbers, sampling dis-
crete Gaussian distributed integers, and instantiating the different
random oracles. When available, we explain further tweaks used for
optimizing the implementation.

General Considerations. All implementations were developed in C++
using the Number Theory Library (NTL) from [Sho]. Tasks like poly-
nomial multiplication and reduction (as in Rq) are out of this work’s
scope. We note that NTL performs multiplication and reduction in
Rq using the Fast Fourier Transform (FFT) which suffices for this
purpose.

Thus, we rely on NTL’s internal data structures for the repre-
sentation of reals, (modular) integers, and polynomials as well as
internal functions that can be applied to them. Since some func-
tions, e.g., computing

(
n
k

)
, a special infinity norm on polynomials,

or conversion of polynomial representations, did not already exist in
NTL, we implemented them.

Everything that is not explicitly mentioned in this Section can
be implemented in a straightforward way. We only detail those issues
that are of particular interest.

4.1 Sampling Uniformly Random Numbers

Integers chosen uniformly random from [0, b) ∩ Z (or [−b/2, b/2) ∩
Z, equivalently) are needed in all schemes, e.g., the coefficients for
polynomials in Rq as for the secret and public keys created in the
KeyGen-algorithm. In order to guarantee a uniform distribution we
use rejection sampling.

simple rejection sampling(b):
1. Read y bits by−1 . . . b0 from a “random source” with y = dlog2(b)e.
2. Compute the decimal representation x = 2y−1by−1 + · · ·+ 20b0.
3. If x < b, output x; otherwise goto step 1.

Notice that the naive approach of sampling a large integer (via
native C++ for example) and reducing it modulo b is not a good idea.
The modular reduction increases the probability of small numbers to
occur, and thus spoils the uniform distribution.

We have to rely on some “random source” from which we as-
sume that it returns random bits. In our case, the operating system’s
source of randomness achieves this goal.

8 Patrick Weiden et al.

Tweak. To improve the efficiency of uniformly sampling we use an
internal randomness buffer which for π > 1 requests πy bits from
a single syscall and which is used by all internal routines until it is
empty.

4.2 Sampling Discrete Gaussians

In order to sample integers according to a discrete Gaussian distribu-
tion Dσ as needed in the Sign-algorithm in TSS12, we adapt rejection
sampling described in [GPV08] in the following way.

normal sampling(τ, ω, σ):
1. Sample an integer x uniformly at random from [−τσ, τσ).
2. Sample an integer y uniformly at random in [0, 2ω).
3. If y < 2ω · ρσ(x), output x; otherwise goto step 1.

The parameter ω determines the precision in the rejection step,
which aims at accepting x with probability ρσ(x). The value of ω
dictates how many decimal places of ρσ(x) will be taken into con-
sideration. We synchronize ω with the precision of the floating point
arithmetic used.

The parameter τ (tailcut) affects the distribution and the run-
ning time. A larger τ yields a better fit to the Gaussian distribu-
tion, but increases the rejection rate and therefore the running time.
In [GPV08] it is shown that the number of repetitions for a sin-
gle sample is proportional to τ and independent of σ. Moreover, if
τ = ω(

√
log(n)) the output of normal sampling is statistically close

to Dσ, such that we used τ =
√
n.

Tweak. For improvement we implemented a space-time-tradeoff: We
pre-compute a lookup table consisting of all pairs (x, ρσ(x)) with x in
[0, τσ]. In step 3. of normal sampling we replace the calculation of
ρσ(x) by a lookup in the table. Note that the table has to store only
half of the values of ρσ(x) for x ∈ [−τσ, τσ] due to its symmetry.

4.3 Random Oracle Instantiations

Since the treeless signatures schemes are proven secure in the ran-
dom oracle model, we have to instantiate random oracles. This is
challenging because the output of the ROs has to be uniformly dis-
tributed over their ranges, which for the treeless signature schemes
consist of elements in Rq with certain constraints, and we have to
preserve the security properties of a cryptographic hash function, i.e.,
collision-resistance, second-preimage resistance and one-wayness.

Instantiating Treeless Signature Schemes 9

In the following we assume that we already have (an instantiation
of) a “basic” random oracle RO2,k : Z → Zp with p = 2k for some
k ∈ Z following the common approach using a hash function.

TSS08: Polynomials with Bounded Coefficients. In TSS08,
the output of the RO is the set A1 = {f ∈ Rq : ‖f‖∞ ≤ 1}. We
present two generic approaches that can be adapted to the set A1

(set d = 3). We assume that d > 2? and p � dn, i.e., that RO2,k

gives us as many output bits as needed. Otherwise, the output can
be extended as in (3) below.

Construction 1. Let t′ be the decimal representation of the first
` = d2 log2(d

n)e bits of the output of RO2,k(µ) for message µ. Round
t′ to an element t ∈ Zdn by computing t ≡ t′ mod dn. Take the base-
d representation t = (t1 . . . tn), and return ROd,n(µ) =

∑n
i=1 tix

i−1,
the polynomial whose coefficients are the representatives ti from t.

Analysis of Construction 1. The goal is to obtain an output uni-
formly distributed over Zdn , assuming a uniformly distributed bit
string of length ` (via RO2,k) as input. After the modular reduction,
we have the following output probability for any e′ ∈ Zdn :⌊

2`

dn

⌋
2`
≤ Pre←ROd,n(U2`)

[
e = e′

]
≤

⌊
2`

dn

⌋
+ 1

2`
.

Hence, for two different values, the difference in the output prob-
ability is at most 1/2`. In the worst case, the first dn/2 values occur

with probability (b 2`dn c + 1)/2` and the remaining dn/2 values with

b 2`dn c/2
`. Overall, we get for the statistical distance between the uni-

form distribution on [0, dn) and the output of ROd,n:

∆(Udn ,ROd,n(U2`)) =
1

2

dn
2

∣∣∣∣∣∣ 1

dn
−

⌊
2`

dn

⌋
+ 1

2`

∣∣∣∣∣∣+
dn

2

∣∣∣∣∣∣ 1

dn
−

⌊
2`

dn

⌋
2`

∣∣∣∣∣∣


=
dn

2`+2
≤ dn

d2n
=

1

dn
. (2)

Thus, the statistical distance above is negligible in n.

While the first solution leads to a direct transform from RO2,k to
ROd,n, the second solution instantiates ROd,n indirectly by a modifi-
cation of its querying signing algorithm B1, called B2, which performs
as follows.

? The cases d = 1 and d = 2 are trivial.

10 Patrick Weiden et al.

Construction 2. Sample y′ ← D as B1. Next, use the binary RO to
compute RO2,k(f(y′), µ). Take the first `′ = dlog2(d

n)e output bits
and treat them as an integer t. If t < dn, take the base-d representa-
tion t = (t1 . . . tn), set e′ =

∑n
i=1 tix

i−1 and output (y′, e′). If t ≥ dn,
restart by sampling a new y′.

Analysis of Construction 2. Let D be a distribution and f some
function with noticeable range. Algorithm B1 first samples y ← D,
then evaluates e = ROd,n(f(y), µ) for message µ, and finally outputs
(y, e).

The goal is that the outputs (y, e) of B1 and (y′, e′) of B2 are
computationally indistinguishable. The distribution of e equals that
of e′ as both are uniformly random over Zdn . Furthermore, y and y′

are equally distributed, although y′ has to be re-chosen sometimes.
This is because for a fixed µ, the rejection probability is the same
for every y′, since RO2,k outputs a uniformly random value. Hence,
the rejection step does not change the distribution of y′. Besides, B2
rejects with probability < 1/2 because of the choice of `′ and the
output distribution of the RO.

Comparison between the Constructions. We note that our two con-
structions for instantiating the random oracle are nearly equally fast,
e.g., for n = 512 the average running time of Construction 2 is only
3% higher than of Construction 1. Thus, we used the values of Con-
struction 2 in the experimental results.

Addressing the Length Problem. We now address the case ` > k (or
`′ > k, resp.), i.e., the output length of RO2,k is not large enough.
Our construction RO2,k′ extends the output using a PRNG. More
specifically, if h is a collision-resistant hash function instantiating
RO2,k, e.g., h = SHA-256, we obtain RO2,k′ by an iterative construc-
tion from [BDK+07]:

Rand← h(Seed)

Seed← (1 + Seed+Rand) mod 2k.
(3)

The first Seed is the message µ, and the function is repeated until
enough random output Rand is generated, i.e., k′ > ` (or k′ > `′,
resp.). Our construction is collision-resistant if h is.

TSS09/TSS12: Bounded Polynomials (and Coefficients). The
random oracle in TSS09 outputs elements uniformly at random from
the set A2 = {f ∈ Rq : ‖f‖1 ≤ κ}, and in TSS12 it outputs uniformly
random elements of A3 = {f ∈ Rq : ‖f‖∞ ≤ 1 and ‖f‖1 ≤ κ}. For

Instantiating Treeless Signature Schemes 11

notational purpose, let ns := 2s
(
n
s

)
, let Si :=

∑i
j=0 nj be the i-th

subsum of the nj ’s for i = 0, . . . , κ, and let S := Sκ.

Construction for TSS12. Use RO2,k′ (e.g., as built in (3)) to output
at least k′ ≥ dlog2 (S)e + κ · (dlog2 (n)e + 1) bits. First sample the
outcome s = ‖f‖1 for 0 ≤ s ≤ κ using dlog2 (S)e bits (see below).
Then sample the indices i of the s non-zero coefficients fi (skipping
already chosen ones) as well as their signs, since fi ∈ {±1}, using
the s · (dlog2 (n)e+ 1) bits.

Construction for TSS09. Use RO2,k′ (e.g., as built in (3)) to output
at least k′ ≥ dlog2 (S)e+ κ · log2 (κ) + κ · (dlog2 (n)e+ 1) bits. First
sample the outcome s = ‖f‖1 for 0 ≤ s ≤ κ using dlog2 (S)e bits (see
below). Let I = ∅, then iteratively sample the non-zero coefficients fi
as well as their indices i and signs using the κ(log2 (κ)+dlog2 (n)e+1)
bits as follows:

Repeat while s > 0 and I 6= {0, . . . , n− 1}:
– Uniformly sample i ∈ {0, . . . , n− 1} \ I and add it to I.
– Uniformly sample |fi| from [1, s] and uniformly sample its sign.
– Set s = s− |fi|.

In both constructions (for TSS09 and TSS12) one needs to sample
s = ‖f‖1 which is done using one of the following two methods.

I. Uniformly sample a number rs in [0, S] and find the value s
with Ss−1 < rs ≤ Ss. (The second step can be done efficiently
using binary search with depth log2 (κ).)

II. Uniformly sample s in [0, κ] and rs in [0, S]. Output s if rs ≤ ns,
otherwise restart.

Analysis. Sampling s is a challenge because the values for s are not
uniformly distributed, but according to some other distribution. This
is due to the fact that for larger values of s there are more possible
polynomials f with ‖f‖1 = s. We have to assure to output s with the
correct probability. Therefore we need to compute these probabilities
first, via the number of (overall) possibilities ns for each s. Then, one
of the above methods is used to obtain s.

For the constructions for TSS09 and TSS12, respectively, we have
the following. Since we use rejection sampling for obtaining s, the
indices i, the non-zero coefficients |fi| as well as their signs, we do not
spoil the according distribution. Unfortunately, the methodology can
entail multiple calls to RO2,k′ due to the rejection of s or some indices
i. Using a randomness buffer with a larger chunk of bits improves
the situation.

12 Patrick Weiden et al.

We have to compute the values nj and Si for both methods for
sampling s = ‖f‖1, but these can be precomputed for fixed values
of n and κ. For our implementation, we prefer method I since the
second leads to more rejections due to the choice of rs.

4.4 Other Issues

Handling Keys. In our implementation, we changed the handling of
the keys, i.e., for TSS08 the signing key is (n, q, â, ŝ) instead of ŝ and
the verification key is (n, q, â, t) instead of (â, t) (TSS09 and TSS12
were modified similarly). This is due to the fact that the value â
is needed (at least temporarily in the cache) of the signing device,
e.g., when a smartcard downloads the “publicly known” â from a
webpage in order to use it, and the system parameters are needed to
operate at all.

Conditional Output of Signatures in TSS12. In the Sign-algorithm,
a signature (ẑ, e) is output only with probability

min

(
1,

Dp
σ(z̄)

MDp
ē,σ(z̄)

)
(∗)
= min

(
1,
E

M

)
=

{
1 if E ≥M
E/M if E < M

where E = exp
(

(‖z̄− ē‖22 − ‖z̄‖
2
2)/(2σ

2)
)

and (∗) holds because of

the invariance property of Gaussian distributions in higher dimen-
sions.

In practice, we first compute E. If E ≥M , we immediately accept
the signature (ẑ, e); otherwise we sample x← UM+1 and accept the
signature if x < E; else the signature is rejected.

5 Experimental Results

In this section we analyze the efficiency of the three schemes. We
describe the experiments that lead to this analysis, present the results
and analyze the data. Finally, we compare our results to those of
other practically used signature schemes, e.g., RSA and DSA, and
other post-quantum signature schemes, e.g., XMSS and Rainbow.

The experiments were performed on a Sun XFire 4400 server with
16 Quad-Core AMD Opteron 8356 CPUs running at 2.3GHz, having
64GB of RAM and running a 64bit version of Debian 6.0.6. For our
experiments we only used one of the 16 available cores.

Each of the three schemes performed 106 full cycles (KeyGen,
Sign, Verify) on randomly chosen messages of length 512 bits. For

Instantiating Treeless Signature Schemes 13

any cryptographic operation we measured the running time, av-
eraging the final results of all 106 cycles. For the key and signa-
ture sizes we did similar measurements. We measured the running
time using the Linux function clock gettime called with the clock
CLOCK PROCESS CPUTIME ID. We used Valgrind with tool callgrind
and Kcachegrind to analyze the contribution of parts of the code to
the total, and measured peak memory consumption using Valgrind

with tool massif.

5.1 Key and Signature Sizes

Table 3 shows the sizes of keys and signatures for our implementation
of the three treeless signature schemes in kilobytes.

TSS08 TSS09 TSS12
n sk pk sig. sk pk sig. sk pk sig.

8 0.55 0.39 0.32 0.41 0.39 0.27 0.08 0.06 0.05
16 1.72 1.21 0.98 1.17 1.07 0.69 0.17 0.12 0.12
32 5.00 3.48 2.72 3.62 3.45 1.70 0.31 0.24 0.23
64 14.00 9.62 6.97 10.17 9.72 4.18 0.68 0.56 0.52
128 38.14 26.88 18.13 26.96 26.08 8.66 1.61 1.38 1.19
256 95.85 67.91 44.76 69.64 67.51 20.12 4.03 3.75 3.01
512 235.68 168.13 107.46 172.09 168.22 46.01 12.93 12.78 8.10
1024 560.72 400.14 257.69 418.49 407.34 103.31 42.07 43.89 22.45

Table 3. Key and Signature Sizes for the Treeless Signature Schemes (in kB)

As one can see, the public and secret key sizes as well as the
signature sizes of TSS08 are huge, i.e., hundreds of kilobytes, for
secure parameters like n = 512. Compared to these results, the sizes
of keys and signatures in TSS09 have been lowered by a factor of
1.34, but still remain bad. In TSS12, the sizes of signatures and keys
have been reduced to at most 40 or 20 kilobytes, resp. For signatures
the reduction factor is 4.5 and higher; for keys it is 9.25 and higher
which is quite a significant improvement. When compared to RSA
and other schemes which have sizes around hundreds of bytes or
small kilobytes, TSS12 has much larger sizes.

We note that we did not efficiently store keys and signatures
due to their straightforward use, i.e., we store a number in its Zq
representation rather than its bit-representation. Using the latter,
one could improve the sizes at least by a factor of 2.

5.2 Running Times

Table 4 shows the running times for our implementations of the tree-
less signature schemes.

14 Patrick Weiden et al.

TSS08 TSS09 TSS12
n KeyGen Sign Verify KeyGen Sign Verify KeyGen Sign Verify

8 1.99 5.71 0.13 4.06 4.16 0.09 1.39 1.55 0.09
16 2.16 7.22 0.34 4.15 4.33 0.18 1.73 2.00 0.19
32 2.91 6.72 1.11 4.39 4.99 0.59 1.87 2.40 0.45
64 5.19 16.55 3.41 4.99 6.79 1.78 2.09 3.87 1.16
128 12.80 50.98 10.13 7.10 13.19 4.91 2.92 5.82 1.89
256 16.34 96.65 11.04 12.04 26.99 9.13 3.09 11.67 2.81
512 43.47 177.67 31.18 25.58 58.02 20.48 4.77 40.71 5.68
1024 102.06 507.23 71.65 63.34 145.98 53.71 9.89 56.53 14.54

Table 4. Running Times of the Treeless Signature Schemes (in ms)

Notice the huge running times for TSS08. For example, for n =
512, key generation takes about 44ms, signing about 178ms and ver-
ification about 32ms. For higher dimensions, the situation gets even
worse.

In TSS09, the running times are large, but compared to TSS08
there was a significant reduction of the running times for KeyGen
and Sign.

Further improvement in TSS12 compared to TSS09 is that the
running times of all methods have been decreased: for KeyGen by a
factor of 6, for Sign by a factor of about 1.5, and for Verify by a factor
of 3.5.

In order to identify the bottleneck in the running time, we inves-
tigated the contribution of different parts of the code to the total.
Figure 1 summarizes some of the most interesting results for TSS12.
As can be seen in Figure 1(a), the bottleneck of the Sign-algorithm
is sampling discrete Gaussians. For our implementation of the Gaus-
sian sampling algorithm as in Section 4.2, using a lookup table, one
can see in Figure 1(c) that the limiting factors are NTL-internal
functions. In the Verify-algorithm, the most time-consuming function
is NTL::InnerProduct, which computes the product of two vectors
of polynomials. This also matches our expectations, regarding mul-
tiplication of polynomials and vector of polynomials, respectively,
which are complex functions due to conversions to/from the FFT-
representation.

5.3 Memory Consumption

We also measured the memory consumption of our implementations.

In TSS08, for n = 512, key generation needed 2.5MB at maxi-
mum and KeyGen used in average 86.37% of this memory; the remain-
ing part was used by memory allocations of the program execution.
For signature creation the program needed 3.6MB, but Sign used

Instantiating Treeless Signature Schemes 15

Gauss-Sampling
NTL::operator*

NTL::InnerProduct
RO-Instantiation

Output-Signature
Others

0

10

20

30

40

50

60 56.12

14.93 13.91
8.59

5.43
1.02

%

(a) Sign

NTL::InnerProduct
RO-Instantiation

NTL::operator*
Others

0

5

10

15

20

25

30

35

40

45 41.94

25.99
23.15

8.92

%

(b) Verify

NTL::RandomBits
NTL::ZZ::~ZZ

NTL::operator-
NTL::abs

Get-Rho-Value
NTL::ZZ::operator=

Others

0

5

10

15

20

25

30

35

40

45
41.42

17.14

12.75
9.54

6.49 6.01 6.65

%

(c) Gauss-Sampling

Fig. 1. Running time-Partitioning of the Sign- and Verify-Algorithms and Gauss-
Sampling

only 53.66% of this memory. This is due to inputting/outputting the
keys from/to files. Verify only used at max. 5% of the peak memory
of 2.9MB (mostly consuming: in-/output). For TSS09, the situation
is almost the same with minor difference in the allocated memory.

For TSS12, the situation is different, since the most memory-
consuming part is storing the lookup table in RAM. Thus, we put
particular interest to the consumption of the table-creation method.
For n = 512, of an overall memory of 4.5MB for the whole program,
the lookup table consumed on average 77,78% of it. For all cycles,
the maximum percentage for the lookup table was 78.15% compared
to the complete memory allocation.

5.4 Comparison to State-of-the-Art Signatures

In order to contextualize our results, we compare them to other signa-
ture schemes. We collected efficiency measures for different signature
schemes which are considered state-of-the-art, are used in practice,
or are post-quantum secure. A summary is presented in Table 5.

As one can derive, the key generation in the treeless signature
schemes is quite fast compared to other schemes. Unfortunately, this
procedure can be performed offline and is thus of less interest. Fur-
thermore, we can deduce that the fastest Sign-algorithm (of TSS12)

16 Patrick Weiden et al.

Running times [ms] Sizes [KB]
KeyGen Sign Verify sk pk sig.

TSS08 (n = 512) 43.47 177.67 31.18 235.68 168.13 107.46

TSS09 (n = 512) 25.58 58.02 20.48 172.09 168.22 46.01

TSS12 (n = 512) 4.77 40.71 5.68 12.93 12.78 8.10

RSA-2048 279.30 5.31 0.06 2.05 0.26 0.26

DSA-2048 109.20 18.03 10.63 2.10 3.87 1.16

XMSS (H = 20, w = 4,AES-128) 158,208.49 2.87 0.22 0.02 0.91 2.45

Rainbow(?) 69.28 0.36 0.67 20.11 31.68 0.04

Rainbow(24, 24, 20, 20) 1600.00 0.93 0.73 91.50 83.00 0.26

Rainbow(31, 24, 20, 20) 120.00 0.071 0.02 57.00 150.00 0.04?
Table 5. Comparison of the Treeless to State-of-the-Art Signature Schemes. The
values for RSA and DSA are from [EBA], the values for XMSS are from [BDH11],
and the values for Rainbow are from [EBA,BERW08,CCC+09].

is outperformed by nearly all other schemes by at least a factor 2.
Even for verification it is beaten outstandingly by current schemes.

The same can be derived for sizes: Regarding key sizes, the most
efficient treeless signature scheme is definitely worse than RSA or
DSA, but better or comparable to the other schemes. However, the
signature sizes are much too large.

6 Conclusion and Future Work

In this work we presented a collection of implementation data for
three signature schemes in the area of lattice-based cryptography.
Our work points out that indeed there are useful lattice-based prim-
itives that are ready for implementation.

Nonetheless, there are many open problems left. Regarding the
running times, nearly all other signature schemes outperform the
treeless signature schemes. In addition, the size of the keys of these
schemes is still large compared to classical schemes like RSA and
DSA. For the signature size, the situation is even worse. Memory
consumption is good for PCs, but still far from optimal for small
equipment. Lowering the sizes of these objects is a fundamental goal
to further expand lattice-based schemes to constraint devices, e.g.,
smartcards. Approaches like the tailored and highly optimized one
in [GLP12] must be considered for software implementations, but
concurrently the impact of parameter selection of these schemes in
regard to attacks has to be investigated. Further progress on im-
plementing discrete Gaussian sampling, maybe parallelisation tech-
niques, can entail improvement to signature creation time due to
increased number of samples per clock cycle. The efficient creation

Instantiating Treeless Signature Schemes 17

of random bits in a secure fashion is very interesting, since at least
the treeless schemes heavily rely on them.

A further interesting topic is the multiplication of polynomials.
We consider the routines of NTL sufficient for first implementations,
but believe it is possible to obtain faster implementations using more
dedicated routines, such as the Karatsuba method. Lattice-based
signature schemes in different rings, like cyclotomic rings, could also
be interesting.

Acknowledgements

We would like to thank Michael Schneider and Rachid El Bansarkhani
for fruitful discussions on several topics of this work.

References

[BDH11] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - a
practical forward secure signature scheme based on minimal security
assumptions. In Bo-Yin Yang, editor, Post-Quantum Cryptography,
volume 7071 of Lecture Notes in Computer Science, pages 117–129.
Springer Berlin / Heidelberg, 2011.

[BDK+07] Johannes Buchmann, Erik Dahmen, Elena Klintsevich, Katsuyuki
Okeya, and Camille Vuillaume. Merkle signatures with virtually un-
limited signature capacity. In Jonathan Katz and Moti Yung, editors,
ACNS 07: 5th International Conference on Applied Cryptography and
Network Security, volume 4521 of Lecture Notes in Computer Science,
pages 31–45. Springer, June 2007.

[BERW08] Andrey Bogdanov, Thomas Eisenbarth, Andy Rupp, and Christo-
pher Wolf. Time-area optimized public-key engines: Cryptosystems
as replacement for elliptic curves? In Elisabeth Oswald and Pankaj
Rohatgi, editors, Cryptographic Hardware and Embedded Systems –
CHES 2008, volume 5154 of Lecture Notes in Computer Science, pages
45–61. Springer, August 2008.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In V. Ashby, editor, ACM
CCS 93: 1st Conference on Computer and Communications Security,
pages 62–73. ACM Press, November 1993.

[CCC+09] Anna Inn-Tung Chen, Ming-Shing Chen, Tien-Ren Chen, Chen-Mou
Cheng, Jintai Ding, Eric Li-Hsiang Kuo, Frost Yu-Shuang Lee, and
Bo-Yin Yang. SSE implementation of multivariate PKCs on modern
x86 CPUs. In Christophe Clavier and Kris Gaj, editors, Cryptographic
Hardware and Embedded Systems – CHES 2009, volume 5747 of Lec-
ture Notes in Computer Science, pages 33–48. Springer, September
2009.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security
estimates. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances
in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in
Computer Science, pages 1–20. Springer, December 2011.

[EBA] eBACS: ECRYPT benchmarking of cryptographic systems, home-
page: http://bench.cr.yp.to/ebats.html.

18 Patrick Weiden et al.

[GFS+12] Norman Göttert, Thomas Feller, Michael Schneider, Johannes Buch-
mann, and Sorin A. Huss. On the design of hardware building blocks
for modern lattice-based encryption schemes. In Emmanuel Prouff
and Patrick Schaumont, editors, Cryptographic Hardware and Embed-
ded Systems – CHES 2012, volume 7428 of Lecture Notes in Computer
Science, pages 512–529. Springer, September 2012.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Prac-
tical lattice-based cryptography: A signature scheme for embedded
systems. In Emmanuel Prouff and Patrick Schaumont, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2012, volume
7428 of Lecture Notes in Computer Science, pages 530–547. Springer,
September 2012.

[GN08] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In
Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008,
volume 4965 of Lecture Notes in Computer Science, pages 31–51.
Springer, April 2008.

[GNR10] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice enumer-
ation using extreme pruning. In Henri Gilbert, editor, Advances in
Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes in
Computer Science, pages 257–278. Springer, May 2010.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors
for hard lattices and new cryptographic constructions. In Richard E.
Ladner and Cynthia Dwork, editors, 40th Annual ACM Symposium
on Theory of Computing, pages 197–206. ACM Press, May 2008.

[HBB13] Andreas Hülsing, Christoph Busold, and Johannes Buchmann. For-
ward secure signatures on smart cards. In LarsR. Knudsen and
Huapeng Wu, editors, Selected Areas in Cryptography, volume 7707
of Lecture Notes in Computer Science, pages 66–80. Springer Berlin
Heidelberg, 2013.

[Lyu08] Vadim Lyubashevsky. Towards practical lattice-based cryptography.
PhD thesis, University of California, San Diego, 2008.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice
and factoring-based signatures. In Mitsuru Matsui, editor, Advances
in Cryptology – ASIACRYPT 2009, volume 5912 of Lecture Notes in
Computer Science, pages 598–616. Springer, December 2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology
– EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer
Science, pages 738–755. Springer, April 2012.

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Prob-
lems: a Cryptographic Perspective, volume 671 of The Kluwer Interna-
tional Series in Engineering and Computer Science. Kluwer Academic
Publishers, Boston, Massachusetts, March 2002.

[Mic07] Daniele Micciancio. Generalized compact knapsacks, cyclic lat-
tices, and efficient one-way functions. Computational Complexity,
16(4):365–411, December 2007. Prelim. in FOCS 2002.

[MR08] Daniele Micciancio and Oded Regev. Lattice-based cryptography. In
Daniel J. Bernstein, Johannes A. Buchmann, and Erik Dahmen, edi-
tors, Post-Quantum Cryptography, pages 147–191. Springer, 2008.

[Sho] Victor Shoup. Number theory library (NTL) for C++. http://www.

shoup.net/ntl/.

