
Power Analysis of Hardware Implementations
Protected with Secret Sharing

Guido Bertoni∗, Joan Daemen∗, Nicolas Debande†‡, Thanh-Ha Le†, Michaël Peeters§ and Gilles Van Assche∗,
∗STMicroelectronics, †Morpho, ‡TELECOM ParisTech and §NXP Semiconductors

Abstract—We analyze the security of three-share hardware
implementations against differential power analysis and ad-
vanced variants such as mutual information analysis. We present
dedicated distinguishers that allow to recover secret key bits from
any cryptographic primitive that is implemented as a sequence
of quadratic functions. Starting from the analytical treatment
of such distinguishers and information-theoretic arguments, we
derive the success probability and required number of traces
in the presence of algorithmic noise. We show that attacks on
three-share hardware implementation require a number of traces
that scales in the third power of the algorithmic noise variance.
Finally, we apply and test our model on KECCAK in a keyed
mode.

Keywords-power analysis; quadratic functions; secret sharing
schemes; mutual information analysis; Keccak

I. INTRODUCTION

Protection against side channel attacks is essential for any
implementation of a cryptographic primitive that needs to
process secret keys and to which an adversary has access.
Failing to put in place sufficient countermeasures can lead to
the recovery of a secret key or otherwise secret information
that allows, e.g., to forge an authentication code or to recover
decrypted data. An important class of side channel attacks
is differential power analysis (DPA) and its variants, which
exploits dependencies between the data being processed and
the power consumption or electromagnetic radiation [1], [2].

In a hardware circuit, the implementer cannot always control
the exact sequencing of gate switching and a proper counter-
measure must take glitches into account. To achieve protection
under realistic assumptions, including the presence of glitches,
Nikova et al. propose techniques based on secret sharing [3],
[4]. In their paper, the authors analyze a three-share imple-
mentation of the Noekeon block cipher [5], which provides
security against first-order DPA. However, the authors noticed
that an advanced variant of DPA, called mutual information
analysis (MIA) [6], can reveal the correct key bits if the power
consumption is not affected by noise.

In this paper, we analyze the security of three-share hard-
ware implementations against DPA (including MIA) under the
presence of noise induced by all the bits being processed.
The analysis can be applied to any cryptographic primitive
whose round function is a Boolean vector function of algebraic
degree two, called quadratic in the sequel or is implemented
as sequence of quadratic operations. We use the KECCAK
function as an example, for which the designers defined

This work is partially funded by the ANR Saphir 2 project

protected and unprotected hardware architectures that we can
explicitly compare using the techniques presented in this paper
[7]. Nevertheless, the treatment actually covers a variety of
primitives. First, there are those whose round function is ex-
plicitly described in terms of quadratic functions. For instance,
the stream cipher Trivium is built as three cyclically-connected
shift registers with quadratic feedback [8]. Then, there are
primitives making use of small s-boxes. For instance, the s-
boxes of Present [9] or Noekeon [5] have algebraic degree
3 (cubic) and decomposable into two quadratic functions.
Applying secret sharing techniques on each quadratic function
requires less shares than on the cubic function [3], [4]. The
AES can also be protected using secret sharing, as presented
by Moradi et al. [10].

The techniques of this paper share some similarity with
those in [11]. Their Zero-Offset 2DPA distinguisher can be
applied in the case of hardware implementations using two
shares. We adapt it to three shares in Section IV-C, show
that three shares concretely provide a masking scheme that
provably offers protection for functions implemented with
quadratic operations, analytically model the attack success
probability, and compare with simulations. In our analysis and
simulations we have adopted the Hamming-Distance model
[2], applied to the registers. A conclusion of the analysis of
this paper is that a three-share implementation does provide
security against DPA and MIA. We analytically show that
in our model the number of traces needed to distinguish the
correct key bits grows with the third power of the noise vari-
ance induced by the bits being computed. This suggests that
masking with three shares on quadratic functions efficiently
provides security that scales similarly as third-order DPA
[12], [13], [14]. An analysis taking into account the power
consumption of the combinatorial logic, with its occurrence
of glitches, is future work.

The paper is organized as follows. Section II gives a model
of the power consumption in hardware both for an unprotected
and for a protected hardware implementation. Section III
proposes a general form of selection function suitable for
any quadratic function and different leakage models. Distin-
guishers against unprotected and protected implementations
are presented in Section IV. Finally, Section V applies the
selection function and distinguishers on the KECCAK hash
function and shows simulations.

II. FROM BITS TO POWER CONSUMPTION

In power (or electromagnetic) analysis, an attacker attempts
to retrieve key information by analyzing the power consump-

tion (or electromagnetic radiation) of the device performing the
cryptographic primitive. The general set-up is that the attacker
has one or more traces of the measured power consumption.
DPA exploits the dependence, however weak, of the power
consumption on the processed variables by taking the power
traces of many executions of the cryptographic primitive with
different input values and processing them with statistical
methods to retrieve the values of the processed variables [1].

During the last decade, researchers have improved the
treatment of traces and one of these enhancement is the so-
called correlation power analysis (CPA) [15]. CPA exploits
the correlation between the power consumption and processed
variables. Later, more advanced ways to measure the distance
between distributions were introduced. In particular, MIA does
not require a non-zero correlation, but can in principle exploit
any dependence of the distribution of the power consumption
on the value of variables [6].

There are different types of countermeasure for protecting
the cryptographic computation. They range from the transistor
level (such as dual rail logic) up to the protocol level (via
a careful use of different keys). In this paper we study the
effectiveness of a countermeasure at algorithmic level, i.e.,
that of a secret sharing scheme.

A. Modeling leakage
A hardware circuit consumes power through the activity

of its registers, combinatorial logic, wires and auxiliary logic
such as the clock. In synchronous CMOS circuits, the data-
dependent part of the power consumption is dominated by
the dynamic power consumption, particularly the switching
activity of the registers and the combinatorial logic [2, Chapter
3]. In this paper we adopt the Hamming distance model limited
to registers, with the convention that a register contributes
−1 if it flips and +1 otherwise. We make abstraction of the
dynamic power consumption of the combinatorial logic, and
more in particular the effect of glitches. Investigation of the
latter requires a model that is closer to the implementation than
the Hamming distance model but the analysis of the resulting
power consumption functions is of similar nature. The same
goes for models in which the switching activity of different
elements does not have the same weight.

For a given primitive, let K be the fixed secret key under
attack and M the input message controlled by the attacker. The
activity in each register bit is given by some binary functions
di(M,K) ∈ GF(2), where di(M,K) = 1 if the bit flips and
0 otherwise. Then, the contribution of all the registers to the
power consumption is expressed as:

P (M,K) =
∑
i

(−1)di(M,K)
. (1)

Adopting a more complex model will result in a similar
expression than Eq. (1), with terms ai(−1)di(M,K), where i
ranges over all elements (gates, registers, . . .) contributing to
the power consumption and the factors ai are weighing factors.

B. Protection with secret sharing
The secret sharing scheme technique proposed in [3], [4]

can be seen as an evolved version of the duplication method

that was introduced in [16]. These two methods consist in
representing the internal variables x of a primitive (i.e., its
state) in a number of shares a, b, c . . . The sum (typically in
GF(2)) of the shares gives the native value of the state: x =
a⊕b⊕c Performing computations or storing a single share
has a power consumption that is independent of the native
value as each share is independent of the native value.

The linear steps of the primitive can be computed on the
shares in separate computations as for a linear function f it
yields f(x) = f(a ⊕ b ⊕ c . . .) = f(a) ⊕ f(b) ⊕ f(c) . . .
Information-theoretically, the variables processed in each of
these calls to f provide no information on the native value of
the state. For the non-linear steps, one cannot avoid computa-
tions that mix elements from more than one share of the state.
However, if one can ensure that no intermediate results are
correlated to native state bits, this rules out any form of DPA
that requires a correlation between the power consumption and
native state bits, such as correlation power analysis (CPA).

In dedicated hardware, however, it is not easy to ensure the
absence of such correlations, which can arise from transient
states due to glitches in the combinatorial logic [17]. The
secret sharing scheme technique proposed in [3], [4] solves
this problem essentially by representing the state in n shares
such that any computation involves at most n− 1 shares. The
required number of shares depends on the algebraic degree of
the nonlinear step to be computed, and for quadratic functions
3 shares are usually sufficient (see the exact conditions in [3],
[4]).

C. Modeling leakage with three shares

The implementation of quadratic functions can be protected
using three shares. Each bit of the state is therefore stored as
the parity of three registers, a so-called register triplet, i.e.,
the native value 0 can be represented as 000, 011, 101 or
110, and 1 as 111, 100, 010 or 001. The value of two of the
three registers is generated randomly each time the primitive
is evaluated, hence for each measurement, and the power
consumption becomes a stochastic variable to the adversary.

Considering the power consumed by the changes in
registers, we define di(M,K) as in Section II-A, where
di(M,K) = 1 if the native value of the bit i changes and
0 otherwise. The impact on the power consumption of the
register triplets is as follows.

• di(M,K) = 0: either no register flips, contributing
+3, or 2 of the 3 registers flip, contributing −1. The
contribution is a stochastic variable that has value 3 with
probability 1/4 and −1 with probability 3/4. We denote
this variable by T0 and its distribution by T0(t).

• di(M,K) = 1: either all 3 registers flip or 1 of the 3
registers flip. The contribution is a stochastic variable that
has value −3 with probability 1/4 and 1 with probability
3/4. We denote it by T1 and its distribution by T1(t).

Both T0(t) and T1(t) have mean 0 and variance 3.
The power consumption is the sum of the stochastic vari-

ables determined by the bits of d:

P (M,K) =
∑
i

Tdi(M,K). (2)

As opposed to an unprotected implementation, the total power
consumption is not a deterministic function of d, but a
stochastic variable with a probability density function that is
determined by d. Its probability distribution is obtained by
convoluting the distributions Tdi(M,K)(t) over all indices i.

Interestingly, the value of a bit of di(M,K) does not affect
the mean of the probability density function of P (M,K),
hence precluding CPA. Moreover, as T0 and T1 have the same
variance, it does not even affect the variance of P (M,K).

III. SELECTION FUNCTION FOR QUADRATIC FUNCTIONS

We describe a general way to build a suitable selection
function for the implementation of a quadratic function. We
assume that the primitive is implemented as a sequence of
quadratic operations, although a slightly more general set
of functions is covered. This applies not only to primitives
making use of a quadratic round function but also for round
functions that can suitably be implemented as the composition
of quadratic functions. Let K be the fixed secret key under
attack and M the input message controlled by the attacker.
Let the activity we target be denoted as d, gathering b binary
functions di(M,K), one for each output bit i. The function
di(M,K) has the following form in GF(2):

di(M,K) = αi(M) + βi(K) +KTΓiM. (3)

Here, αi(M) and βi(K) are any functions of M and K only,
respectively, while Γi is a binary matrix connecting the bits
of K and M in the bilinear form KTΓiM . Note that Eq. (3)
encompasses not only all quadratic functions but also some
more general functions, as the degree of αi(M) and of βi(K)
is not limited.

The function d can model the switching activity of a register
with a quadratic updating function (Hamming distance model)
but also consumption imbalance in (quadratic) combinatorial
logic (Hamming weight model).

We will consider in this paper attacks based on the con-
sumption of a single register at a time. We do not expect
attacks addressing multiple registers to give better success
probabilities. It may result in a marginal decrease of algo-
rithmic noise but at the same time it increases the number of
hypothesis exponentially.

The bit i we use to partition the traces at a given time is
called the focus point. Our goal is to build a selection function
for the focus point that splits measurements into two sets
M0 and M1, whose distributions can be set apart when the
hypothesis on key bits is correct. The key point is that the
distributions of M0 and M1 differ iff the correct hypothesis is
set.

For the activity function in Eq. (3), the selection function
is defined as

si(M,K) = αi(M) +KTΓiM.

Compared to d, we remove in s any fixed (unknown) contri-
bution of the key. The influence of the key goes only through
KTΓiM . The hypothesis on K need to be set only within
a subset of dimension rankΓi. For instance, let Ui be an
invertible matrix such that UT

i Γi has only rankΓi non-zero

rows, and let K = Uiκ. Then, the hypothesis is only on the
bits κj of the non-zero rows of UT

i Γi.
Let the hypothesis on the key K∗ be related to the correct

key K as K = K∗ + ϵ. Then, si(M,K + ϵ) = si(M,K) +
ϵTΓiM . When ϵ ∈ ker ΓT

i , then si(M,K∗) differs from
di(M,K) only by a constant (unknown) term. Otherwise, if
ϵ ̸∈ ker ΓT

i and at the condition that ϵTΓiM is balanced
over GF(2) when M is seen as a random variable, then
si(M,K∗) behaves as a random variable that is independent
from di(M,K). This is the case, for instance, if M is
uniformly distributed over its underlying set.

IV. DISTINGUISHERS

We start with using the Kullback-Leibler divergence to
determine a lower bound on the number of measurements
needed to distinguish two distributions. Then, we see how to
distinguish the distributions in the cases of the unprotected
and three-share implementations.

A. Kullback-Leibler divergence as a reference

The number of samples that are needed to distinguish
between one distribution f over another g with some given
success probability is inversely proportional to the Kullback-
Leibler divergence D(f∥g) between the two distributions [18],
with

D(f∥g) =
∫

f(t)(log(f(t))− log(g(t))dt.

This measure allows estimating the required number of sam-
ples for successfully distinguishing the correct hypothesis over
the wrong ones. We model the distributions that correspond
to the different hypotheses as a two-dimensional function of
t and s, with t the value of the power consumption and s the
value of si(M,K∗). Let us denote them by f⋆(t, s) for the
correct hypothesis and f⋄(t, s) for the incorrect hypotheses.
We assume the distributions of all incorrect hypotheses are
equal. We then have:

D(f⋆(t, s)∥f⋄(t, s)) =
∑
s

∫
f⋆(t, s) log

(
f⋆(t, s)

f⋄(t, s)

)
dt.

(4)
If we assume that Pr(si(M,K) = 0|M) = Pr(si(M,K) =
1|M) = 1

2 , we can express f⋆(t, s) as f⋆(t, s) = 1
2f

⋆
s (t) with

f⋆
0 (t) and f⋆

1 (t) the distributions of the power consumption
for s = 0 and s = 1 respectively. If we further assume for
the incorrect hypothesis that the distribution is independent
from s, we have f⋄(t, s) = 1

2f
⋄(t). This allows us to simplify

Eq. (4):

D(f⋆∥f⋄) =
1

2

∫
f⋆
0 (t) log

(
f⋆
0 (t)

f⋄(t)

)
+

1

2

∫
f⋆
1 (t) log

(
f⋆
1 (t)

f⋄(t)

)
dt.

Additionally, if we have a symmetry condition such that
f⋆
1 (t) = f⋆

0 (−t) and f⋄(t) = f⋄(−t), we can further simplify
this into:

D(f⋆∥f⋄) =

∫
f⋆
0 (t) log

(
f⋆
0 (t)

f⋄(t)

)
dt. (5)

B. Distinguishing for unprotected implementations

We show how to distinguish the measurements in the case
of a correct hypothesis from those in the case of an incorrect
one. For this, we assume that the power consumption follows
the model in Section II-A and in particular Eq. (1). Depending
on the exact form of the functions di, there are ways to select
the messages M such that di′(M,K) is perfectly balanced.
However, to simplify the discussion, we assume that the
messages M are randomly selected.

For a given focus point i and hypothesis K∗, we gather
in sets M0 and M1 the power measurements P (M,K) for
which si(M,K∗) is 0 or 1, respectively. In each of these sets,
the noise is only algorithmic and its amplitude depends on
the number b of bits computed simultaneously. We study the
influence of this noise on the success probability of an attack
on an unprotected implementation.

If si(M,K∗) is independent from di′(M,K) with i′ ̸= i,
the distribution of the power consumption is the convolution
of distributions with peaks at −1 and +1. This leads to a
binomial distribution that is close to a normal distribution
with variance b thanks to the central limit theorem. For the
distribution within the sets M0 and M1, we distinguish two
cases:

• For the correct hypothesis, P (M,K) knowing si(M,K)
has mean ±1 and variance b − 1. So f⋆

s (t) ≈
N((−1)(s+δ);b−1)(t), where δ is fixed due to the (unknown)
difference between si and di.

• For the incorrect hypotheses, P (M,K) is independent of
si(M,K∗) and f⋄(t) ≈ N(0;b)(t).

The goal of our attack on the plain core is to build an under-
standing on the influence of noise on the success probability
and to compare later to the three-share core. Therefore, we will
consider an attack where a (passive) attacker is provided traces
for randomly chosen message blocks. This random process
introduces noise that is easy to model. We are aware that in
our model of the plain core one can conduct a noiseless attack
but this would set the wrong target for comparing with the
three-share core, where noise is unavoidable.

If the bits q(x′,y′,z′) are independent from each other, each
one contributes to the distribution by convoluting it with a
distribution with a impulse at −1 and one at 1. This leads to a
binomial distribution that is very close to a normal distribution
with variance b− 1 thanks to the central limit theorem.

The distributions f⋆ and f⋄ satisfy the assumptions of
Section IV-A, so Eq. (5) yields:

D(f⋆∥f⋄) =

∫
N(1;b−1)(t) log

(N(1;b−1)(t)

N(0;b)(t)

)
dt.

If we approximate b− 1 by b, this can be solved analytically
resulting in D(f⋆∥f⋄) = 1/2b. So the required number of
samples for a given success rate is proportional to b.

Looking at f⋆ and f⋄, it appears clearly that we can
distinguish the correct hypothesis from the incorrect one(s)
based on the distance between the averages of the measured
power consumptions in M0 and M1. We choose as correct
hypothesis the one that maximizes this distance (in absolute
value). This is known as difference of means (DoM), where E

denotes the expected value:

∆DoM(K∗) =|E[P (M,K)|si(M,K∗) = 0]

− E[P (M,K)|si(M,K∗) = 1]|.

If we denote the number of traces by |M | and assume M0

and M1 have the same size, the average power consumption
over M0 and over M1 have an expected variance of 2(b −
1)/|M | and 2b/|M | for the correct and incorrect hypotheses,
respectively. The difference of the means is 2(−1)δ , and the
variance is the sum of the variances. Taking the absolute
value folds the distribution around the y-axis and discards the
unknown sign (−1)δ . This results in the following distributions
for t ≥ 0 (and 0 otherwise):

f⋆
DoM(t) = N(2;4(b−1)/|M |)(t) +N(−2;4(b−1)/|M |)(t)

f⋄
DoM(t) = 2N(0;4b/|M |)(t).

These distributions (assuming b − 1 ≈ b) are illustrated in
Figure 1.

Fig. 1. Distributions f⋆
DoM(t) and f⋄

DoM(t) (or f⋆
DoA(t) and f⋄

DoA(t)).

The probability of success can now readily be computed
from these distributions. It is the probability that a variable
chosen according to f⋆

DoM(x) is larger than h − 1 values
chosen according to f⋄

DoM(x), with h = 2rank Γi the number
of hypotheses considered. This is given by:

Psuccess =

∫ ∞

0

(∫ t

0

f⋄
DoM(y)dy

)h−1

f⋆
DoM(t)dt.

Let Gh be the function defined as

Gh(σ
2) =∫ ∞

0

(
erf

(
t√
2σ

))h−1 (
N(−1;σ2)(t) +N(1;σ2)(t)

)
dt.

The expression
∫ t

0
f⋄

DoM(y)dy = 2
∫ t

0
N(0;4b/|M |)(y)dy can

be expressed in terms of the error function as follows:
erf(t/

√
8b/|M |). If we approximate b − 1 by b, we see the

success probability is fully determined by the ratio b/|M |,
and Psuccess = Gh(b/|M |). Using D(f⋆∥f⋄) = 1/2b we can
express it as a function of the Kullback-Leibler divergence,
yielding:

Psuccess = Gh

(
1

2D(f⋆∥f⋄)|M |

)
(6)

C. Distinguishing for three-share implementations

We assume a power consumption given by Eq. (2) in
Section II-C. Hence we have:

f⋆
s (t) = Ts+δ(t)⊗N(0;3(b−1))(t)

=
1

4
N(−3(−1)δ;3(b−1))(t) +

3

4
N((−1)δ;3(b−1))(t), and

f⋄(t) = N(0;3b)(t),

with δ the (unknown) fixed difference between si and di.
We can fill this in Eq. (5) to compute the Kullback-Leibler
distance. We evaluated this expression numerically and for
large values of b it converges to D(f⋆∥f⋄) = 1/(9b3). So the
required number of traces is proportional to the 3rd power of
the register size.
T0 and T1 start to differ only from their third statistical

moment, called the coefficient of asymmetry (or skewness)
[19]. We call the distinguisher based on this the Difference
of coefficient of Asymmetry (DoA):

∆DoA(K
∗) =|E[P (M,K)3|si(M,K∗) = 0]

− E[P (M,K)3|si(M,K∗) = 1]|.

Note that the DoA can also be seen as the Zero-Offset 2DPA
distinguisher of [11] adapted to the third order.

For a normal distribution N (µ;σ2), its third moment is
µ3 + 3µσ2 [20]. So, for the correct hypothesis, the power
measurements in Ms have E[P 3] = 6(−1)s+δ and taking
the difference gives E[∆DoA] = 12(−1)δ . For the incorrect
hypotheses, the third moment is zero.

The variance on the skewness E[P 3] for |M | samples of
a normal distribution with variance σ2 is given by 6σ6/|M |
[19]. So assuming b≫ 1, we have σ2(∆DoA) ≈ 24(3b)3/|M |.
Using the central limit theorem and then taking the absolute
value, we write for t ≥ 0:

f⋆
DoA(t) = N(12;24(3b)3/|M |)(t) +N(−12;24(3b)3/|M |)(t)

f⋄
DoA(t) = 2N(0;24(3b)3/|M |)(t).

Figure 1 illustrates also these distributions. Following the same
reasoning as in Section IV-B yields Psuccess = Gh(9b

3/2|M |).
Using D(f⋆∥f⋄) = 1/(9b3), we can again express the success
probability as a function of the Kullback-Leibler divergence.
Remarkably, this leads to the same expression as in the case
of DoM, i.e., Equation (6).

D. Information theoretic distinguishers

The mutual information of two discrete variables X and Y
is I(X;Y) = H(X)−H(X|Y), with H denoting the Shannon
entropy [18]. Informally, the mutual information I(X;Y) is
the amount of information (in bits) the variables X and Y have

in common. When two variables are independent, the mutual
information is zero.

We can compute the mutual information between the vari-
ables P (M,K) and si(M,K∗), for a given hypothesis K∗.
For the incorrect hypothesis, f⋄(t, 0) = f⋄(t, 1), therefore the
two variables are independent and I(P, si) = 0. For the correct
hypothesis, f⋆(t, 0) ̸= f⋆(t, 1) and the mutual information is
strictly positive.

This makes the mutual information a candidate distin-
guisher. One needs to estimate or approximate the joint distri-
bution of P (M,K) and si(M,K∗) using the measurements.
This leads to a number of variants (see also, e.g., [21]). Most
of MIA estimators are in the probability density function
(pdf) estimators family. Another family groups methods that
use statistics. In the pdf estimators family, the methods are
either non-parametric methods or parametric methods. His-
togram MIA is a non-parametric method and does not need
any preliminary knowledge on the distributions. Parametric
methods assume particular distributions, e.g., the Gaussian
parametric method assumes the distributions are normal. MIA
statistics methods use either statistical tests such as computing
a distance or statistical tools such as computing statistical
moments. An example of the former is the Kolmogorov-
Smirnov distance and an example of the latter is cumulant
MIA. There are also extensions of MIA from univariate to
multivariate distributions [22].

The method of cumulant MIA aims at estimating mutual in-
formation by using high-order cumulants. This method was de-
scribed in [23], where an Edgeworth expansion [20] was used
to estimate mutual information. Applied to I(P (M,K);Z)
with Z = (−1)si(M,K∗), this becomes

I(P ;Z) ≈1

4
E[P.Z]2 +

1

12
(E[P 2.Z]2 + E[P.Z2]2)

+
1

48
(4(E[P 3.Z]− 3E[P 2]E[P.Z])2

+ 6(E[P 2.Z2]− E[P 2]E[Z2]− 2E[P.Z]2)2

+ 4(E[P.Z3]− 3E[P.Z]E[Z2])2).

(7)

The attacker can evaluate this expression for the different
hypotheses by computing the different terms based on the
measurements. This estimation allows to analyze the different
dependencies separately, which is not the case with other ap-
proaches. Indeed, an attacker can determine which components
of the mutual information estimation give the most useful
information.

In the case of the three-share implementation, we see that
most terms in Eq. (7) disappear. First, E[P.Zi] = 0 for any i as
the mean of P is zero over both M1 and M0. Then, assuming
|M0| = |M1|, the term E[P 2.Z] is also zero, as the variance of
P is the same over both M0 and M1. Finally, as Z2 = 1, the
terms E[P 2.Z2] and E[P 2]E[Z2] are equal and cancel each
other out. This results in I(P ;Z) ≈ 1

12E[P
3.Z] = 1

6∆DoA.

V. KECCAK

KECCAK is a function with variable-length input and
arbitrary-length output based on the sponge construction [24].
In this construction, a permutation f with b input/output bits

is iterated. First, the input padded and its blocks are absorbed
sequentially into the state, with a simple XOR operation. Then,
the output is squeezed from the state block by block. The
size of the blocks is denoted by r and called the bitrate. The
remaining number of bits c = b− r is called the capacity and
determines the security level of the function.

The simplest use case of a sponge function is to use it
as a hash function by simply truncating the output. A MAC
function can be built by taking as input the concatenation of
a secret key and a message. For using it as a stream cipher,
it suffices to input the secret key and a nonce and using the
output as a key stream. More modes of use are described in
[25] and [24].

Seven permutations, denoted KECCAK-f [b], are defined
with width b = 25w ranging from 25 to 1600 bits, increasing
in powers of two. The state of KECCAK-f [b] is organized as a
set of 5×5×w bits with (x, y, z) coordinates. The coordinates
are always considered modulo 5 for x and y and modulo w
for z. Coordinates are taken modulo 5 for x and y and modulo
w for z. A row is a set of 5 bits with given (y, z) coordinates,
a column is a set of 5 bits with given (x, z) coordinates and
a slice is a set of 25 bits with given z coordinate. A row is a
set of 5 bits with given (y, z) coordinates and a column is a
set of 5 bits with given (x, z) coordinates.

The round function of KECCAK-f [b] consists of the follow-
ing steps, which are only briefly summarized here. For more
details, we refer to the specifications [25].

• θ is a linear mixing layer that adds a pattern depending
solely on the parity of the columns of the state.

• ρ and π displace bits without altering their value. Jointly,
their effect is denoted by (x′, y′, z′)

π◦ρ−→ (x, y, z), with
(x′, y′, z′) a bit position before ρ and π and (x, y, z) its
coordinates afterward.

• χ is a degree-2 non-linear mapping that processes each
row independently. It can be seen as the application of a
translation-invariant 5-bit quadratic S-box:

a(x,y,z) ← a(x,y,z) + (a(x+1,y,z) + 1)a(x+2,y,z).

• ι adds a round constant.

A. The plain core

The plain core architecture instantiates the KECCAK-f
round function using combinatorial logic and keeps track of
the state in a register [25]. At each clock cycle, the state value
in the register is updated by applying the round function to
it. Applying the permutation simply consists in performing
as many clock cycles as there are rounds in KECCAK-f . The
absorbing of message blocks is implemented by an XOR stage
at the input of the round function logic, which takes its input
from a buffer. The round constants are handled by a simple
finite state machine.

B. The three-share core

The three-share core architecture implements the secret
sharing scheme technique presented in Section II-B to offer
protection against CPA. The designers of KECCAK show that

three shares are sufficient thanks to the low degree of the
nonlinear step in the KECCAK-f round function χ [7]. Their
architecture is a rather straightforward application of the secret
sharing scheme technique to the plain core: it keeps the three
shares of the state in separate registers and instantiates the
three-share version of the KECCAK-f round function in com-
binatorial logic. The linear layer λ is instantiated three times,
operating on each share separately. It implements the nonlinear
step χ by three separate logic blocks each implementing a
function a = χ′(b, c) defined by:

a(x,y,z) ←b(x,y,z) + (b(x+1,y,z) + 1)b(x+2,y,z)

+ b(x+1,y,z)c(x+2,y,z) + c(x+1,y,z)b(x+2,y,z) .

Each block computes χ′ for a share taking as input the two
other shares. The message blocks are applied to a single share
at the input of the round logic and the round constants are
applied to a single share at the output of the round logic.

The three-share core is illustrated in Figure 2.

Fig. 2. The three-share core

Before processing, the three shares are generated from a
random source. As the initial state of KECCAK is equal to
zero, two of the three shares can be generated randomly and
the third is computed as the sum (in GF(2)) of the other two.
Before processing, the three shares are initialized consistent
with the zero value: two of the three shares are generated
randomly and the third is computed as their XOR.

C. The attack point
A DPA attack on a KECCAK core consists in making

it run repeatedly, taking each time the same secret key K

and a chosen (or known) input block M , and recording the
power computation in a so-called trace. The traces can be
identified by the corresponding value of M and we can use
the measured power consumption P (M,K) to determine the
unknown secret value K.

In typical cases where a sponge function is used in com-
bination with a secret key, the input is prefixed with the
key. The input of the KECCAK-f permutation under attack
is K + M , with K the state of the sponge function after
absorbing the key. The knowledge of K is sufficient to, e.g.,
forge MACs or produce key streams with arbitrary nonces.
This setting corresponds with the case that the key consists
of (or is padded as) exactly one block and the attacker
targets K = KECCAK-f(Key||0c) with Key ∈ GF(2)r. After
retrieving K, the attacker can recover the absorbed key by
inverting KECCAK-f . The second block brings message bits
and K +M is the input to KECCAK-f , with M spanning the
first r bits.

A key that is shorter than the rate would give rise to a
slightly different setting, in which the key bits and message
bits sit together in a first block Key||M ||0c, with M spanning
r−|Key| bits. We do not consider this setting in the remainder
of this section, but its analysis is very similar to the one we
present.

Both in the plain core and in the three-share core, the output
of the round function is stored in registers. The round function
of KECCAK-f is quadratic, hence we can apply the definitions
of Section III and target the power consumed when storing
the result in the registers. Subsequent rounds would make the
dependencies between key and message bits more difficult to
deal with.

Let B be the output of the first round, κ = π(ρ(θ(K))) and
µ = π(ρ(θ(M))). Then the output bit at coordinates (x, y, z)
is

B(x,y,z) = RC(x,y,z) + κ(x,y,z) + µ(x,y,z)

+ (κ(x+1,y,z) + µ(x+1,y,z) + 1)(κ(x+2,y,z) + µ(x+2,y,z)).

The function describing the register activity is d = K +B
and the selection function is derived as in Section III:

s(x,y,z)(M,κ∗
(x+1,y,z), κ

∗
(x+2,y,z)) = (8)

µ(x,y,z) + µ(x+2,y,z) + µ(x+1,y,z)µ(x+2,y,z) (9)
+ κ∗

(x+1,y,z)µ(x+2,y,z) + κ∗
(x+2,y,z)µ(x+1,y,z).

(10)

If the hypothesis on κ∗
(x+1,y,z) and κ∗

(x+2,y,z) is cor-
rect, then s(x,y,z)(M,κ∗

(x+1,y,z), κ
∗
(x+2,y,z)) differs from

d(x,y,z)(M,K) by a fixed (unknown) term. However, if
the hypothesis is incorrect, (ϵ(x+1,y,z), ϵ(x+2,y,z)) ̸= (0, 0),
then s(x,y,z)(M,κ∗

(x+1,y,z), κ
∗
(x+2,y,z)) is independent from

d(x,y,z)(M,K).
Regarding the independence of the activity function be-

tween different coordinates, their sum s(x1,y1,z1)(M,κ) +
s(x2,y2,z2)(M,κ) is not necessarily balanced for all pairs
(x1, y1, z1) ̸= (x2, y2, z2) because M is zero in the inner part
of the state. However, we can prove the following theorem.

Theorem Let (x′
i, y

′
i, z

′
i)

π◦ρ−→ (xi, yi, zi) for i ∈ {1, 2}. Then
s(x1,y1,z1)(M,κ) and s(x2,y2,z2)(M,κ) are independent unless

(x′
1, z

′
1) = (x′

2, z
′
2) and (5yi + xi)w + zi ≥ r for i ∈ {1, 2}

(i.e., the bits come from the same column and both from the
last c bits).

Proof: Two Boolean functions are independent if their
bitwise sum is balanced, so we need to prove that the func-
tion s(x1,y1,z1)(M,κ) + s(x2,y2,z2)(M,κ) is balanced if the
conditions of the theorem are satisfied. Let us trace the bits
of M to those of µ throught λ = π ◦ ρ ◦ θ. The bits of M are
balanced in the outer part of the state ((5y′i + x′

i)w + z′i < r)
and zero in the inner part of the state. Let µ′ = θ(M). If the
rate is not below 5w, all bits of µ′ are balanced. However,
in the outer part of the state, bits in the same column are
equal due to the fact that θ treats the bits of a column in
the same way. So the bitwise sum of two such bits will be
zero. The bit transposition π ◦ ρ just moves bits to other
positions, realizing the mapping from (x′

i, y
′
i, z

′
i) to (xi, yi, zi)

specified in the theorem. If (x′
1, y

′
1, z

′
1) and (x′

2, y
′
2, z

′
2) are in

different columns or not both in the outer part, the function
s(x1,y1,z1)(M,κ)+s(x2,y2,z2)(M,κ) will exhibit two balanced
terms that do not cancel out. It may be that (x1, y1, z1) is
equal to (x2+1, y2, z2) or (x2+2, y2, z2), possibly canceling
out terms. In that case the balanced term µ(x2,y2,z2) remains,
as (x2, y2, z2) can then not be equal to (x1 + 1, y1, z1) or
(x1 + 2, y1, z1). In a similar way, equality of (x2, y2, z2)
to (x1 + 1, y1, z1) or (x1 + 2, y1, z1) leaves µ(x1,y1,z1) as a
balanced term.

For a focus point not covered by this theorem, there may be
other activity bits correlated with the selection function. The
contribution of these bits will affect the DoM values for M0

and M1, both for the correct and the incorrect key hypotheses
and hence impact the success probability.

For focus points covered by this theorem, there may be
pairs of bit positions (x1, y1, z1) and (x2, y2, z2) with activity
functions that are correlated and their contributions to the
variance is not independent. It is easy to see that if the
correlation between the bits is c, their sum contributes 2(1+c)
to the variance instead of 2. Making the plausible assumption
that the sign is (near)-balanced over all non-zero correlation,
allows us to predict the total variance by b− 1 for the correct
and b for the incorrect hypotheses.

D. Experimental results for the plain core

We performed experiments for the DoM distinguisher on
KECCAK variants based on all seven KECCAK-f versions,
namely KECCAK[r = 16× 2ℓ, c = 9× 2ℓ]. The rate ranges
from 1024 bits for KECCAK-f [1600] down to 16 bits for
KECCAK-f [25]. The secret value to recover is as in Sec-
tion V-C.

The experiment assumes that the power consumed is equal
to the number of bits that flip in the b-bit register that initially
contains the output of the previous call to KECCAK-f and then
the state after the first round. For each width of KECCAK-f ,
we conducted distinguishing experiments for 1000 different
secret key values and for each key value we took traces for
a large number of r-bit message blocks. The focus point in
this experiment is (0, 0, 0), which is not in the last c bits (see
Theorem in Section V-C).

0.0

0.2

0.4

0.6

0.8

1.0

102 103 104 105

DoM for various b
DoM (theory) for b=1600

b=
25

b=
50

b=
10

0
b=

20
0

b=
40

0

b=
80

0

b=
16

00

Number of traces

Pr
ob

ab
ilit

y
of

 su
cc

es
s

Fig. 3. Success rate for the experiments on the plain core with DoM.

Figure 3 reports on the outcome of our experiments. It
plots the success rate, being the ratio of correctly selected
hypotheses among all keys, as a function of the number
of traces. It also plots the theoretical success probability
Gh(b/|M |), obtained in Section IV-B for KECCAK-f [1600],
which the experimental results follow closely. The success
probability starts at 1/h = 1

4 , as the correct hypothesis could
be any value, and then grows very close to 1 when |M | reaches
20b. It follows the scaling suggested by the Kullback-Leibler
distance.

E. Experimental results for the three-share core
We performed experiments for the DoA distinguisher

on KECCAK[r = 16, c = 9], KECCAK[r = 32, c = 18] and
KECCAK[r = 64, c = 36]. These toy primitives already require
a high number of measurements when protected by three
shares and can give an idea of the adequacy of the model and
on the scaling. We again assume that the power consumed is
equal to the number of bits that flip in the registers, except
that the register now contains 3b bits. For each instance, we
conducted distinguishing experiments for 1000 different secret
key values and for each key value we took traces for large
numbers of message blocks. The focus point is again (0, 0, 0).

Figure 4 shows the success rate as a function of
the number of traces for KECCAK[r = 16, c = 9],
KECCAK[r = 32, c = 18] and KECCAK[r = 64, c = 36],
both for DoA and cumulant MIA. Clearly, DoA is more
efficient than cumulant MIA, confirming the intuition behind
the DoA distinguisher.

The figure also plots the theoretical success probability
Gh(9b

3/(2|M |)) that is confirmed by the experimentally ob-
tained values for DoA. In this case too it follows the scaling
suggested by the Kullback-Leibler distance.

These simulations are for toy versions of KECCAK-f . For
instances actually usable in practice, e.g., from lightweight
KECCAK-f [200] till KECCAK-f [1600] used in SHA-3, the
scaling suggests a tremendous number of traces (from billions
to hundreds of billions) needed to recover secret key bits.

0.0

0.2

0.4

0.6

0.8

1.0

104 105 106 107

DoA (theory)
DoA

Cumulant MIA

b=
25

b=
50

b=
10

0

Number of traces

Pr
ob

ab
ili

ty
 o

f
su

cc
es

s

Fig. 4. Success rate for the experiments on the three-share core with cumulant
MIA and DoA.

VI. CONCLUSIONS

We presented selection functions and distinguishers dedi-
cated to protected and unprotected hardware implementations,
for any cryptographic primitive implemented as a sequence of
quadratic functions. We analyzed such implementations under
the presence of algorithmic noise, in particular in terms of
required number of traces and success probabilities.

This analysis shows that a three-share implementation does
provide security against DPA and MIA. The number of traces
needed to distinguish the correct key bits grows with the third
power of the algorithmic noise variance, i.e., induced by the
bits being computed. This suggests that masking with a secret-
sharing scheme on quadratic functions efficiently provides
security that scales similarly as third-order DPA. This applies
readily to the three-share architecture proposed in [7].

Our power model does not deal with glitches in the com-
binatorial logic. They introduce second-order effects [3], [4],
although we expect them to be of lower amplitude than the reg-
ister switching activity. An extension of this work includes the
analysis of their effect on the success probability and adapting
the results of Section IV to this seems straightforward.

REFERENCES

[1] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology – Crypto ’99, ser. Lecture Notes in Computer
Science, M. Wiener, Ed., vol. 1666. Springer, 1999, pp. 388–397.

[2] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks —
Revealing the Secrets of Smartcards. Springer-Verlag, 2007.

[3] S. Nikova, V. Rijmen, and M. Schläffer, “Secure hardware implemen-
tation of nonlinear functions in the presence of glitches,” in ICISC, ser.
Lecture Notes in Computer Science, P. J. Lee and J. H. Cheon, Eds.,
vol. 5461. Springer, 2008, pp. 218–234.

[4] ——, “Secure hardware implementation of nonlinear functions in the
presence of glitches,” J. Cryptology, vol. 24, no. 2, pp. 292–321, 2011.

[5] J. Daemen, M. Peeters, G. V. Assche, and V. Rijmen, “Nessie proposal:
the block cipher Noekeon,” Nessie submission, 2000.

[6] B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel, “Mutual information
analysis,” in CHES, ser. Lecture Notes in Computer Science, E. Oswald
and P. Rohatgi, Eds., vol. 5154. Springer, 2008, pp. 426–442.

[7] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “Building power
analysis resistant implementations of Keccak,” Second SHA-3 candidate
conference, August 2010.

[8] C. D. Cannière, “Trivium: A stream cipher construction inspired by
block cipher design principles,” in ISC, ser. Lecture Notes in Computer
Science, S. K. Katsikas, J. Lopez, M. Backes, S. Gritzalis, and B. Pre-
neel, Eds., vol. 4176. Springer, 2006, pp. 171–186.

[9] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An ultra-
lightweight block cipher,” in CHES, ser. Lecture Notes in Computer
Science, P. Paillier and I. Verbauwhede, Eds., vol. 4727. Springer,
2007, pp. 450–466.

[10] A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang, “Pushing
the limits: A very compact and a threshold implementation of AES,”
in Eurocrypt, ser. Lecture Notes in Computer Science, K. G. Paterson,
Ed., vol. 6632. Springer, 2011, pp. 69–88.

[11] J. Waddle and D. Wagner, “Towards efficient second-order power
analysis,” in CHES, ser. Lecture Notes in Computer Science, M. Joye
and J.-J. Quisquater, Eds., vol. 3156. Springer, 2004, pp. 1–15.

[12] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound
approaches to counteract power-analysis attacks,” in Advances in Cryp-
tology – Crypto ’99, ser. Lecture Notes in Computer Science, M. Wiener,
Ed., vol. 1666. Springer, 1999, pp. 398–412.

[13] E. Prouff, M. Rivain, and R. Bevan, “Statistical analysis of second order
differential power analysis,” IEEE Trans. Computers, vol. 58, no. 6, pp.
799–811, 2009.

[14] F.-X. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs, M. Med-
wed, M. Kasper, and S. Mangard, “The world is not enough: Another
look on second-order DPA,” in Asiacrypt, ser. Lecture Notes in Com-
puter Science, M. Abe, Ed., vol. 6477. Springer, 2010, pp. 112–129.

[15] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with
a leakage model,” in CHES, ser. Lecture Notes in Computer Science,
M. Joye and J.-J. Quisquater, Eds., vol. 3156. Springer, 2004, pp.
16–29.

[16] L. Goubin and J. Patarin, “DES and differential power analysis (the
duplication method),” in CHES, ser. Lecture Notes in Computer Science,
Ç. K. Koç and C. Paar, Eds., vol. 1717. Springer, 1999, pp. 158–172.

[17] S. Mangard, N. Pramstaller, and E. Oswald, “Successfully attacking
masked AES hardware implementations,” in CHES, ser. Lecture Notes
in Computer Science, J. Rao and B. Sunar, Eds., vol. 3659. Springer,
2005, pp. 157–171.

[18] T. Cover and J. Thomas, Elements of Information Theory. Wiley, 2006.
[19] E. Weisstein, “Skewness,” From MathWorld–A Wolfram

Web Resource, September 2012. [Online]. Available:
http://mathworld.wolfram.com/Skewness.html

[20] P. McCullagh, Tensor methods in statistics, ser. Monographs on statistics
and applied probability. London [u.a.]: Chapman and Hall, 1987.
[Online]. Available: http://www.stat.uchicago.edu/ pmcc/tensorbook/

[21] L. Batina, B. Gierlichs, E. Prouff, M. Rivain, F.-X. Standaert, and
N. Veyrat-Charvillon, “Mutual information analysis: a comprehensive
study,” J. Cryptology, vol. 24, no. 2, pp. 269–291, 2011.

[22] B. Gierlichs, L. Batina, B. Preneel, and I. Verbauwhede, “Revisiting
higher-order DPA attacks: Multivariate mutual information analysis,” in
CT-RSA, ser. Lecture Notes in Computer Science, J. Pieprzyk, Ed., vol.
5985. Springer, 2010, pp. 221–234.

[23] T. Le and M. Berthier, “Mutual information analysis under the view
of higher-order statistics,” in IWSEC, ser. Lecture Notes in Computer
Science, I. Echizen, N. Kunihiro, and R. Sasaki, Eds., vol. 6434.
Springer, 2010, pp. 285–300.

[24] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “Duplexing the
sponge: single-pass authenticated encryption and other applications,” in
Selected Areas in Cryptography (SAC), 2011.

[25] ——, “The Keccak reference,” January 2011.
[26] M. Joye and J.-J. Quisquater, Eds., Cryptographic Hardware and Embed-

ded Systems - CHES 2004: 6th International Workshop Cambridge, MA,
USA, August 11-13, 2004. Proceedings, ser. Lecture Notes in Computer
Science, vol. 3156. Springer, 2004.

[27] M. Wiener, Ed., Advances in Cryptology – Crypto ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, ser. Lecture Notes in Computer
Science, vol. 1666. Springer, 1999.

