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Abstract

The Short Integer Solution (SIS) and Learning With Errors (LWE) problems are the foundations for
countless applications in lattice-based cryptography, and are provably as hard as approximate lattice
problems in the worst case. A important question from both a practical and theoretical perspective is how
small their parameters can be made, while preserving their hardness.

We prove two main results on SIS and LWE with small parameters. For SIS, we show that the problem
retains its hardness for moduli q ≥ β · nδ for any constant δ > 0, where β is the bound on the Euclidean
norm of the solution. This improves upon prior results which required q ≥ β ·

√
n log n, and is essentially

optimal since the problem is trivially easy for q ≤ β. For LWE, we show that it remains hard even when
the errors are small (e.g., uniformly random from {0, 1}), provided that the number of samples is small
enough (e.g., linear in the dimension n of the LWE secret). Prior results required the errors to have
magnitude at least

√
n and to come from a Gaussian-like distribution.

1 Introduction

In modern lattice-based cryptography, two average-case computational problems serve as the foundation
of almost all cryptographic schemes: Short Integer Solution (SIS), and Learning With Errors (LWE). The
SIS problem dates back to Ajtai’s pioneering work [1], and is defined as follows. Let n and q be integers,
where n is the primary security parameter and usually q = poly(n), and let β > 0. Given a uniformly
random matrix A ∈ Zn×mq for some m = poly(n), the goal is to find a nonzero integer vector z ∈ Zm
such that Az = 0 mod q and ‖z‖ ≤ β (where ‖·‖ denotes Euclidean norm). Observe that β should be
set large enough to ensure that a solution exists (e.g., β >

√
n log q suffices), but that β ≥ q makes the

problem trivially easy to solve. Ajtai showed that for appropriate parameters, SIS enjoys a remarkable
worst-case/average-case hardness property: solving it on the average (with any noticeable probability) is at
least as hard as approximating several lattice problems on n-dimensional lattices in the worst case, to within
poly(n) factors.
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The LWE problem was introduced in the celebrated work of Regev [24], and has the same parameters n
and q, along with a “noise rate” α ∈ (0, 1). The problem (in its search form) is to find a secret vector
s ∈ Znq , given a “noisy” random linear system A ∈ Zn×mq , b = AT s + e mod q, where A is uniformly
random and the entries of e are i.i.d. from a Gaussian-like distribution with standard deviation roughly αq.
Regev showed that as long as αq ≥ 2

√
n, solving LWE on the average (with noticeable probability) is at

least as hard as approximating lattice problems in the worst case to within Õ(n/α) factors using a quantum
algorithm. Subsequently, Peikert [21] gave a classical reduction for a subset of the lattice problems and the
same approximation factors, but under the additional condition that q ≥ 2n/2 (or q ≥ 2

√
n/α based on some

non-standard lattice problems).
A significant line of research has been devoted to improving the tightness of worst-case/average-case

connections for lattice problems. For SIS, a series of works [1, 7, 14, 19, 12] gave progressively better
parameters that guarantee hardness, and smaller approximation factors for the underlying lattice problems.
The state of the art (from [12], building upon techniques introduced in [19]) shows that for q ≥ β·ω(

√
n log n),

finding a SIS solution with norm bounded by β is as hard as approximating worst-case lattice problems to
within Õ(β

√
n) factors. (The parameter m does not play any significant role in the hardness results, and

can be any polynomial in n.) For LWE, Regev’s initial result remains the tightest, and the requirement that
q ≥
√
n/α (i.e., that the errors have magnitude at least

√
n) is in some sense optimal: a clever algorithm

due to Arora and Ge [2] solves LWE in time 2Õ(αq)2 , so a proof of hardness for substantially smaller errors
would imply a subexponential time (quantum) algorithm for approximate lattice problems, which would be a
major breakthrough. Interestingly, the current modulus bound for LWE is in some sense better than the one
for SIS by a Ω̃(

√
n) factor: there are applications of LWE for 1/α = Õ(1) and hence q = Õ(

√
n), whereas

SIS is only useful for β ≥
√
n, and therefore requires q ≥ n according to the state-of-the-art reductions.

Further investigating the smallest parameters for which SIS and LWE remain provably hard is important
from both a practical and theoretical perspective. On the practical side, improvements would lead to
smaller cryptographic keys without compromising the theoretical security guarantees, or may provide greater
confidence in more practical parameter settings that so far lack provable hardness. Also, proving the hardness
of LWE for non-Gaussian error distributions (e.g., uniform over a small set) would make applications easier
to implement. Theoretically, improvements may eventually shed light on related problems like Learning
Parity with Noise (LPN), which can be seen as a special case of LWE for modulus q = 2, and which is
widely used in coding-based cryptography, but which has no known proof of hardness.

1.1 Our Results

We prove two complementary results on the hardness of SIS and LWE with small parameters. For SIS, we
show that the problem retains its hardness for moduli q nearly equal to the solution bound β. For LWE, we
show that it remains hard even when the errors are small (e.g., uniformly random from {0, 1}), provided that
the number m of noisy equations is small enough. This qualification is necessary in light of the Arora-Ge
attack [2], which for large enough m can solve LWE with binary errors in polynomial time. Details follow.

SIS with small modulus. Our first theorem says that SIS retains its hardness with a modulus as small as
q ≥ β · nδ, for any δ > 0. Recall that the best previous reduction [12] required q ≥ β ·ω(

√
n log n), and that

SIS becomes trivially easy for q ≤ β, so the q obtained by our proof is essentially optimal. It also essentially
closes the gap between LWE and SIS, in terms of how small a useful modulus can be. More precisely, the
following is a special case of our main SIS hardness theorem; see Section 3 for full details.
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Theorem 1.1 (Corollary of Theorem 3.8). Let n and m = poly(n) be integers, let β ≥ β∞ ≥ 1 be reals,
let Z = {z ∈ Zm : ‖z‖2 ≤ β and ‖z‖∞ ≤ β∞}, and let q ≥ β · nδ for some constant δ > 0. Then solving
(on the average, with non-negligible probability) SIS with parameters n,m, q and solution set Z \ {0} is
at least as hard as approximating lattice problems in the worst case on n-dimensional lattices to within
γ = max{1, β · β∞/q} · Õ(β

√
n) factors.

Of course, the `∞ bound on the SIS solutions can be easily removed simply setting β∞ = β, so that
‖z‖∞ ≤ ‖z‖2 ≤ β automatically holds true. We include an explicit `∞ bound β∞ ≤ β in order to obtain
more precise hardness results, based on potentially smaller worst-case approximation factors γ. We point out
that the bound β∞ and the associated extra term max{1, β · β∞/q} in the worst-case approximation factor
is not present in previous results. Notice that this term can be as small as 1 (if we take q ≥ β · β∞, and in
particular if β∞ ≤ nδ), and as large as β/nδ (if β∞ = β). This may be seen as the first theoretical evidence
that, at least when using a small modulus q, restricting the `∞ norm of the solutions may make the SIS
problem qualitatively harder than just restricting the `2 norm. There is already significant empirical evidence
for this belief: the most practically efficient attacks on SIS, which use lattice basis reduction (e.g., [11, 8]),
only find solutions with bounded `2 norm, whereas combinatorial attacks such as [5, 25] (see also [20]) or
theoretical lattice attacks [9] that can guarantee an `∞ bound are much more costly in practice, and also
require exponential space. Finally, we mention that setting β∞ � β is very natural in the usual formulations
of one-way and collision-resistant hash functions based on SIS, where collisions correspond (for example)
to vectors in {−1, 0, 1}m, and therefore have `∞ bound β∞ = 1, but `2 bound β =

√
m. Similar gaps

between β∞ and β can easily be enforced in other applications, e.g., digital signatures [12].

LWE with small errors. In the case of LWE, we prove a general theorem offering a trade-off among
several different parameters, including the size of the errors, the dimension and number of samples in the
LWE problem, and the dimension of the underlying worst-case lattice problems. Here we mention just one
instantiation for the case of prime modulus and uniformly distributed binary (i.e., 0-1) errors, and refer the
reader to Section 4 and Theorem 4.6 for the more general statement and a discussion of the parameters.

Theorem 1.2 (Corollary of Theorem 4.6). Let n and m = n · (1+Ω(1/ log n)) be integers, and q ≥ nO(1)

a sufficiently large polynomially bounded (prime) modulus. Then solving LWE with parameters n,m, q and
independent uniformly random binary errors (i.e., in {0, 1}) is at least as hard as approximating lattice
problems in the worst case on Θ(n/ log n)-dimensional lattices within a factor γ = Õ(

√
n · q).

We remark that our results (see Theorem 4.6) apply to many other settings, including error vectors e ∈ X
chosen from any (sufficiently large) subset X ⊆ {0, 1}m of binary strings, as well as error vectors with
larger entries. Interestingly, our hardness result for LWE with very small errors relies on the worst-case
hardness of lattice problems in dimension n′ = O(n/ log n), which is smaller than (but still quasi-linear
in) the dimension n of the LWE problem; however, this is needed only when considering very small error
vectors. Theorem 4.6 also shows that if e is chosen uniformly at random with entries bounded by nε (which
is still much smaller than

√
n), then the dimension of the underlying worst-case lattice problems (and the

number m− n of extra samples, beyond the LWE dimension n) can be linear in n.
The restriction that the number of LWE samples m = O(n) be linear in the dimension of the secret can

also be relaxed slightly. But some restriction is necessary, because LWE with small errors can be solved
in polynomial time when given an arbitrarily large polynomial number of samples. We focus on linear
m = O(n) because this is enough for most (but not all) applications in lattice cryptography, including
identity-based encryption and fully homomorphic encryption, when the parameters are set appropriately.
(The one exception that we know of is the security proof for pseudorandom functions [3].)
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1.2 Techniques and Comparison to Related Work

Our results for SIS and LWE are technically disjoint, and all they have in common is the goal of proving
hardness results for smaller values of the parameters. So, we describe our technical contributions in the
analysis of these two problems separately.

SIS with small modulus. For SIS, as a warm-up, we first give a proof for a special case of the problem
where the input is restricted to vectors of a special form (e.g., binary vectors). For this restricted version of
SIS, we are able to give a self-reduction (from SIS to SIS) which reduces the size of the modulus. So, we can
rely on previous worst-case to average-case reductions for SIS as “black boxes,” resulting in an extremely
simple proof. However, this simple self-reduction has some drawbacks. Beside the undesirable restriction on
the SIS inputs, our the reduction is rather loose with respect to the underlying worst-case lattice approximation
problem: in order to establish the hardness of SIS with small moduli q (and restricted inputs), one needs
to assume the worst-case hardness of lattice problems for rather large polynomial approximation factors.
(By contrast, previous hardness results for larger moduli [19, 12] only assumed hardness for quasi-linear
approximation factors.) We address both drawbacks by giving a direct reduction from worst-case lattice
problems to SIS with small modulus. This is our main SIS result, and it combines ideas from previous
work [19, 12] with two new technical ingredients:

• All previous SIS hardness proofs [1, 7, 14, 19, 12] solved worst-case lattice problems by iteratively
finding (sets of linearly independent) lattice vectors of shorter and shorter length. Our first new
technical ingredient (inspired by the pioneering work of Regev [24] on LWE) is the use a different
intermediate problem: instead of finding progressively shorter lattice vectors, we consider the problem
of sampling lattice vectors according to Gaussian-like distributions of progressively smaller widths.
To the best of our knowledge, this is the first use of Gaussian lattice sampling as an intermediate
worst-case problem in the study of SIS, and it appears necessary to lower the SIS modulus below n.
We mention that Gaussian lattice sampling has been used before to reduce the modulus in hardness
reductions for SIS [12], but still within the framework of iteratively finding short vectors (which in [12]
are used to generate fresh Gaussian samples for the reduction), which results in larger moduli q > n.

• The use of Gaussian lattice sampling as an intermediate problem within the SIS hardness proof yields
linear combinations of several discrete Gaussian samples with adversarially chosen coefficients. Our
second technical ingredient, used to analyze these linear combinations, is a new convolution theorem
for discrete Gaussians (Theorem 3.3), which strengthens similar ones previously proved in [22, 6].
Here again, the strength of our new convolution theorem appears necessary to obtain hardness results
for SIS with modulus smaller than n.

Our new convolution theorem may be of independent interest, and might find applications in the analysis of
other lattice algorithms.

LWE with small errors. We now move to our results on LWE. For this problem, the best provably hard
parameters to date were those obtained in the original paper of Regev [24], which employed Gaussian errors,
and required them to have (expected) magnitude at least

√
n. These results were believed to be optimal due

to a clever algorithm of Arora and Ge [2], which solves LWE in subexponential time when the errors are
asymptotically smaller than

√
n. The possibility of circumventing this barrier by limiting the number of LWE

samples was first suggested by Micciancio and Mol [17], who gave “sample preserving” search-to-decision
reductions for LWE, and asked if LWE with small uniform errors could be proved hard when the number
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of available samples is sufficiently small. Our results provide a first answer to this question, and employ
concepts and techniques from the work of Peikert and Waters [23] (see also [4]) on lossy (trapdoor) functions.
In brief, a lossy function family is an indistinguishable pair of function families F ,L such that functions in
F are injective and those in L are lossy, in the sense that they map their common domain to much smaller
sets, and therefore lose information about the input. As shown in [23], from the indistinguishability of F and
L, it follows that the families F and L are both one-way.

In Section 2 we present a generalized framework for the study of lossy function families, which does not
require the functions to have trapdoors, and applies to arbitrary (not necessarily uniform) input distributions.
While the techniques we use are all standard, and our definitions are minor generalizations of the ones given
in [23], we believe that our framework provides a conceptual simplification of previous work, relating the
relatively new notion of lossy functions to the classic security definitions of second-preimage resistance and
uninvertibility.

The lossy function framework is used to prove the hardness of LWE with small uniform errors and
(necessarily) a small number of samples. Specifically, we use the standard LWE problem (with large
Gaussian errors) to set up a lossy function family F ,L. (Similar families with trapdoors were constructed
in [23, 4], but not for the parameterizations required to obtain interesting hardness results for LWE.) The
indistinguishability of F and L follows directly from the hardness of the underlying LWE problem. The
new hardness result for LWE (with small errors) is equivalent to the one-wayness of F , and is proved by
a relatively standard analysis of the second-preimage resistance and uninvertibility of certain subset-sum
functions associated to L.

Comparison to related work. In an independent work that was submitted concurrently with ours, Döttling
and Müller-Quade [10] also used a lossyness argument to prove new hardness results for LWE. (Their work
does not address the SIS problem.) At a syntactic level, they use LWE (i.e., generating matrix) notation and
a new concept they call “lossy codes,” while here we use SIS (i.e., parity-check matrix) notation and rely
on the standard notions of uninvertible and second-preimage resistant functions. By the dual equivalence of
SIS and LWE [15, 17] (see Proposition 2.9), this can be considered a purely syntactic difference, and the
high-level lossyness strategy (including the lossy function family construction) used in [10] and in our work
are essentially the same. However, the low-level analysis techniques and final results are quite different. The
main result proved in [10] is essentially the following.

Theorem 1.3 ([10]). Let n, q,m = nO(1) and r ≥ n1/2+ε · m be integers, for an arbitrary small con-
stant ε > 0. Then the LWE problem with parameters n,m, q and independent uniformly distributed errors in
{−r, . . . , r}m is at least as hard as (quantumly) solving worst-case problems on (n/2)-dimensional lattices
to within a factor γ = n1+ε ·mq/r.

The contribution of [10] over previous work is to prove the hardness of LWE for uniformly distributed
errors, as opposed to errors that follow a Gaussian distribution. Notice that the magnitude of the errors used
in [10] is always at least

√
n ·m, which is substantially larger (by a factor of m) than in previous results. So,

[10] makes no progress towards reducing the magnitude of the errors, which is the main goal of this paper.
By contrast, our work shows the hardness of LWE for errors smaller than

√
n (indeed, as small as {0, 1}),

provided the number of samples is sufficiently small.
Like our work, [10] requires the number of LWE samples m to be fixed in advance (because the error

magnitude r depends on m), but it allows m to be an arbitrary polynomial in n. This is possible because
for the large errors r �

√
n considered in [10], the attack of [2] runs in at least exponential time. So, in

principle, it may even be possible (and is an interesting open problem) to prove the hardness of LWE with
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(large) uniform errors as in [10], but for an unbounded number of samples. In our work, hardness of LWE
for errors smaller than

√
n is proved for a much smaller number of samples m, and this is necessary in order

to avoid the subexponential time attack of [2].
While the focus of our work in on LWE with small errors, we remark that our main LWE hardness result

(Theorem 4.6) can also be instantiated using large polynomial errors r = nO(1) to obtain any (linear) number
of samples m = Θ(n). In this setting, [10] provides a much better dependency between the magnitude of the
errors and the number of samples (which in [10] can be an arbitrary polynomial). This is due to substantial
differences in the low-level techniques employed in [10] and in our work to analyze the statistical properties
of the lossy function family. For these same reasons, even for large errors, our results seem incomparable to
those of [10] because we allow for a much wider class of error distributions.

2 Preliminaries

We use uppercase roman letters F,X for sets, lowercase roman for set elements x ∈ X , bold x ∈ Xn

for vectors, and calligraphic letters F ,X , . . . for probability distributions. The support of a probability
distribution X is denoted [X ]. The uniform distribution over a finite set X is denoted U(X).

Two probability distributions X and Y are (t, ε)-indistinguishable if for all (probabilistic) algorithms D
running in time at most t,

|Pr[x← X : D(x) accepts]− Pr[y ← Y : D(y) accepts]| ≤ ε.

2.1 One-Way Functions

A function family is a probability distribution F over a set of functions F ⊆ (X → Y ) with common
domain X and range Y . Formally, function families are defined as distributions over bit strings (function
descriptions) together with an evaluation algorithm, mapping each bitstring to a corresponding function, with
possibly multiple descriptions associated to the same function. In this paper, for notational simplicity, we
identify functions and their description, and unless stated otherwise, all statements about function families
should be interpreted as referring to the corresponding probability distributions over function descriptions.
For example, if we say that two function families F and G are indistinguishable, we mean that no efficient
algorithm can distinguish between function descriptions selected according to either F or G, where F and
G are probability distributions over bitstrings that are interpreted as functions using the same evaluation
algorithm.

A function family F is (t, ε) collision resistant if for all (probabilistic) algorithms A running in time at
most t,

Pr[f ← F , (x, x′)← A(f) : f(x) = f(x′) ∧ x 6= x′] ≤ ε.

Let X be a probability distribution over the domain X of a function family F . We recall the following
standard security notions:

• (F ,X ) is (t, ε)-one-way if for all probabilistic algorithms A running in time at most t,

Pr[f ← F , x← X : A(f, f(x)) ∈ f−1(f(x))] ≤ ε.

• (F ,X ) is (t, ε)-uninvertible if for all probabilistic algorithms A running in time at most t,

Pr[f ← F , x← X : A(f, f(x)) = x] ≤ ε.
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• (F ,X ) is (t, ε)-second preimage resistant if for all probabilistic algorithmsA running in time at most t,

Pr[f ← F , x← X , x′ ← A(f, x) : f(x) = f(x′) ∧ x 6= x′] ≤ ε.

• (F ,X ) is (t, ε)-pseudorandom if the distributions {f ← F , x ← X : (f, f(x))} and {f ← F , y ←
U(Y ) : (f, y)} are (t, ε)-indistinguishable.

The above probabilities (or the absolute difference between probabilities, for indistinguishability) are
called the advantages in breaking the corresponding security notions. It easily follows from the definition
that if a function family is one-way with respect to any input distribution X , then it is also uninvertible with
respect to the same input distribution X . Also, if a function family is collision resistant, then it is also second
preimage resistant with respect to any efficiently samplable input distribution.

All security definitions are immediately adapted to the asymptotic setting, where we implicitly consider
sequences of finite function families indexed by a security parameter. In this setting, for any security definition
(one-wayness, collision resistance, etc.) we omit t, and simply say that a function is secure if for any t that is
polynomial in the security parameter, it is (t, ε)-secure for some ε that is negligible in the security parameter.
We say that a function family is statistically secure if it is (t, ε)-secure for some negligible ε and arbitrary t,
i.e., it is secure even with respect to computationally unbounded adversaries.

The composition of function families is defined in the natural way. Namely, for any two function families
with [F ] ⊆ X → Y and [G] ⊆ Y → Z, the composition G ◦ F is the function family that selects f ← F and
g ← G independently at random, and outputs the function (g ◦ f) : X → Z.

2.2 Lossy Function Families

Lossy functions, introduced in [23], are usually defined in the context of trapdoor function families, where
the functions are efficiently invertible with the help of some trapdoor information, and therefore injective (at
least with high probability over the choice of the key). We give a more general definition of lossy function
families that applies to non-injective functions and arbitrary input distributions, though we will be mostly
interested in input distributions that are uniform over some set.

Definition 2.1. Let L,F be two probability distributions (with possibly different supports) over the same set
of (efficiently computable) functions F ⊆ X → Y , and let X be an efficiently sampleable distribution over
the domain X . We say that (L,F ,X ) is a lossy function family if the following properties are satisfied:

• the distributions L and F are indistinguishable,

• (L,X ) is uninvertible, and

• (F ,X ) is second preimage resistant.

The uninvertibility and second preimage resistance properties can be either computational or statistical.
(The definition from [23] requires both to be statistical.) We remark that uninvertible functions and second
preimage resistant functions are not necessarily one-way. For example, the constant function f(x) = 0 is
(statistically) uninvertible when |X| is super-polynomial in the security parameter, and the identity function
f(x) = x is (statistically) second preimage resistant (in fact, even collision resistant), but neither is one-way.
Still, if a function family is simultaneously uninvertible and second preimage resistant, then one-wayness
easily follows.

Lemma 2.2. Let F be a family of functions computable in time t′. If (F ,X ) is both (t, ε)-uninvertible and
(t+ t′, ε′)-second preimage resistant, then it is also (t, ε+ ε′)-one-way.
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Proof. Let A be an algorithm running in time at most t and attacking the one-wayness property of (F ,X ).
Let f ← F and x ← X be chosen at random, and compute y ← A(f, f(x)). We want to bound the
probability that f(x) = f(y). We consider two cases:

• If x = y, then A breaks the uninvertibility property of (F ,X ).

• If x 6= y, then A′(f, x) = A(f, f(x)) breaks the second preimage property of (F ,X ).

By assumption, the probability of these two events are at most ε and ε′ respectively. By the union bound, A
breaks the one-wayness property with advantage at most ε+ ε′.

It easily follows by a simple indistinguishability argument that if (L,F ,X ) is a lossy function family,
then both (L,X ) and (F ,X ) are one-way.

Lemma 2.3. Let F and F ′ be any two indistinguishable, efficiently computable function families, and let X
be an efficiently sampleable input distribution. Then if (F ,X ) is uninvertible (respectively, second-preimage
resistant), then (F ′,X ) is also uninvertible (resp., second-preimage resistant). In particular, if (L,F ,X ) is a
lossy function family, then (L,X ) and (F ,X ) are both one-way.

Proof. Assume that (F ,X ) is uninvertible and that there exists an efficient algorithm A breaking the
uninvertibility property of (F ′,X ). Then F and F ′ can be efficiently distinguished by the following
algorithm D(f): choose x← X , compute x′ ← A(f, f(x)), and accept if A succeeded, i.e., if x = x′.

Next, assume that (F ,X ) is second preimage resistant, and that there exists an efficient algorithm A
breaking the second preimage resistance property of (F ′,X ). Then F and F ′ can be efficiently distinguished
by the following algorithm D(f): choose x← X , compute x′ ← A(f, x), and accept if A succeeded, i.e., if
x 6= x′ and f(x) = f(x′).

It follows that if (L,F ,X ) is a lossy function family, then (L,X ) and (F ,X ) are both uninvertible and
second preimage resistant. Therefore, by Lemma 2.2, they are also one-way.

The standard definition of (injective) lossy trapdoor functions [23], is usually stated by requiring the ratio
|f(X)|/|X| to be small. Our general definition can easily be related to the standard definition by specializing
it to uniform input distributions. The next lemma gives an equivalent characterization of uninvertible functions
when the input distribution is uniform.

Lemma 2.4. Let L be a family of functions on a common domain X , and let X = U(X) the uniform
input distribution over X . Then (L,X ) is ε-uninvertible (even statistically, with respect to computationally
unbounded adversaries) for ε = Ef←L[|f(X)|]/|X|.

Proof. Fix a function f , and choose a random input x← X . The best (computationally unbounded) attack
on the uninvertibility of (L,X ), given input f and y = f(x), outputs an x′ ∈ X such that f(x′) = y and
the probability of x′ under X is maximized. Since X is the uniform distribution over X , the conditional
distribution of x given y is uniform over f−1(y), and the attack succeeds with probability 1/|f−1(y)|. Each y
is output by f with probability |f−1(y)|/|X|. So, the success probability of the attack is

∑
y∈f(X)

|f−1(y)|
|X|

· 1

|f−1(y)|
=
|f(X)|
|X|

.

Taking the expectation over the choice of f , we get that the attacker succeeds with probability ε.
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We conclude this section with the observation that uninvertibility behaves as expected with respect to
function composition.

Lemma 2.5. If (F ,X ) is uninvertible and G is any family of efficiently computable functions, then (G ◦F ,X )
is also uninvertible.

Proof. Any inverter A for G ◦ F can be easily transformed into an inverter A′(f, y) for (F ,X ) that chooses
g ← G at random, and outputs the result of running A(g ◦ f, g(y))

A similar statement holds also for one-wayness, under the additional assumption that G is second preimage
resistant, but it is not needed here.

2.3 Lattices and Gaussians

An n-dimensional lattice of rank k is the set Λ of integer combinations of k linearly independent vectors
b1, . . . ,bk ∈ Rn, i.e. Λ =

{∑k
i=1 xibi | xi ∈ Z for i = 1, . . . , k

}
. The matrix B = [b1, . . . ,bk] is called

a basis for the lattice Λ. The dual of a (not necessarily full-rank) lattice Λ is the set Λ∗ = {x ∈ span(Λ) :
∀y ∈ Λ, 〈x,y〉 ∈ Z}. In what follows, unless otherwise specified we work with full-rank lattices, where
k = n.

The ith successive minimum λi(Λ) is the smallest radius r such that Λ contains i linearly independent
vectors of (Euclidean) length at most r. A fundamental computational problem in the study of lattice
cryptography is the approximate Shortest Independent Vectors Problem SIVPγ , which, on input a full-rank
n-dimensional lattice Λ (typically represented by a basis), asks to find n linearly independent lattice vectors
v1, . . . ,vn ∈ Λ all of length at most γ · λn(Λ), where γ ≥ 1 is an approximation factor and is usually a
function of the lattice dimension n. Another problem is the (decision version of the) approximate Shortest
Vector Problem GapSVPγ , which, on input an n-dimensional lattice Λ, asks to output “yes” if λ1(Λ) ≤ 1
and “no” if λ1(Λ) > γ. (If neither is the case, any answer is acceptable.)

For a matrix B = [b1, . . . ,bk] of linearly independent vectors, the Gram-Schmidt orthogonalization B̃
is the matrix of vectors b̃i where b̃1 = b1, and for each i = 2, . . . , k, the vector b̃i is the projection of bi
orthogonal to span(b1, . . . ,bi−1). The Gram-Schmidt minimum of a lattice Λ is b̃l(Λ) = minB‖B̃‖, where
‖B̃‖ = maxi ‖b̃i‖ and the minimum is taken over all bases B of Λ. Given any basis D of a lattice Λ and
any set S of linearly independent vectors in Λ, it is possible to efficiently construct a basis B of Λ such that
‖B̃‖ ≤ ‖S̃‖ (see [16]).

The Gaussian function ρs : Rm → R with parameter s is defined as ρs(x) = exp(−π‖x‖2/s2). When s
is omitted, it is assumed to be 1. The discrete Gaussian distribution DΛ+c,s with parameter s over a lattice
coset Λ + c is the distribution that samples each element x ∈ Λ + c with probability ρs(x)/ρs(Λ + c), where
ρs(Λ + c) =

∑
y∈Λ+c ρs(y) is a normalization factor.

For any ε > 0, the smoothing parameter ηε(Λ) [19] is the smallest s > 0 such that ρ1/s(Λ
∗ \ {0}) ≤ ε.

When ε is omitted, it is some unspecified negligible function ε = n−ω(1) of the lattice dimension or security
parameter n, which may vary from place to place.

We observe that the smoothing parameter satisfies the following decomposition lemma. The general case
for the sum of several lattices (whose linear spans have trivial pairwise intersections) follows immediately by
induction.

Lemma 2.6. Let lattice Λ = Λ1 + Λ2 be the (internal direct) sum of two lattices such that span(Λ1) ∩
span(Λ2) = {0}, and let Λ̃2 be the projection of Λ2 orthogonal to span(Λ1). Then for any ε1, ε2, ε > 0 such
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that 1 + ε = (1 + ε1)(1 + ε2), we have

ηε(Λ̃2) ≤ ηε(Λ) ≤ ηε(Λ1 + Λ̃2) ≤ max{ηε1(Λ1), ηε2(Λ̃2)}.

Proof. Let Λ∗, Λ∗1 and Λ̃∗2 be the dual lattices of Λ, Λ1 and Λ̃2, respectively. For the first inequality, notice
that Λ̃∗2 is a sublattice of Λ∗. Therefore, ρ1/s(Λ̃

∗
2 \ {0}) ≤ ρ1/s(Λ

∗ \ {0}) for any s > 0, and thus
ηε(Λ̃2) ≤ ηε(Λ).

Next we prove that ηε(Λ) ≤ ηε(Λ1 + Λ̃2). It is routine to verify that we can express the dual lattice Λ∗

as the sum Λ∗ = Λ̃∗1 + Λ̃∗2, where Λ̃1 is the projection of Λ1 orthogonal to span(Λ2), and Λ̃∗1 is its dual.
Moreover, the projection of Λ̃∗1 orthogonal to span(Λ̃∗2) is exactly Λ∗1. For any x̃1 ∈ Λ̃∗1, let x1 ∈ Λ∗1 denote
its projection orthogonal to span(Λ̃∗2). Then for any s > 0 we have

ρ1/s(Λ
∗) =

∑
x̃1∈Λ̃∗1

∑
x̃2∈Λ̃∗2

ρ1/s(x̃1 + x̃2)

=
∑

x̃1∈Λ̃∗1

∑
x̃2∈Λ̃∗2

ρ1/s(x1) · ρ1/s((x̃1 − x1) + x̃2)

=
∑

x̃1∈Λ̃∗1

ρ1/s(x1) · ρ1/s((x̃1 − x1) + Λ̃∗2)

≤ ρ1/s(Λ
∗
1) · ρ1/s(Λ̃

∗
2) = ρ1/s(Λ

∗
1 + Λ̃∗2) = ρ1/s((Λ1 + Λ̃2)∗),

where the inequality follows from the bound ρ1/s(Λ + c) ≤ ρ1/s(Λ) from [19, Lemma 2.9], and the last two
equalities follow from the orthogonality of Λ∗1 and Λ̃∗2. This proves that ηε(Λ) ≤ ηε(Λ1 + Λ̃2).

Finally, for s1 = ηε1(Λ1), s2 = ηε2(Λ̃2) and s = max{s1, s2}, we have

ρ1/s((Λ1 + Λ̃2)∗) = ρ1/s(Λ
∗
1) · ρ1/s(Λ̃

∗
2) ≤ ρ1/s1(Λ∗1) · ρ1/s2(Λ̃∗2) = (1 + ε1)(1 + ε2) = 1 + ε.

Therefore, ηε(Λ1 + Λ̃∗2) ≤ s.

Using the decomposition lemma, one easily obtains known bounds on the smoothing parameter. For
example, for any lattice basis B = [b1, . . . ,bn], applying Lemma 2.6 repeatedly to the decomposition into
the rank-1 lattices defined by each of the basis vectors yields η(B · Zn) ≤ maxi η(b̃i · Z) = ‖B̃‖ · ωn,
where ωn = η(Z) = ω(

√
log n) is the smoothing parameter of the integer lattice Z. Choosing a basis B

achieving b̃l(Λ) = minB ‖B̃‖ (where the minimum is taken over all bases B of Λ), we get the bound
η(Λ) ≤ b̃l(Λ) · ωn from [12, Theorem 3.1]. Similarly, choosing a set S ⊂ Λ of linearly independent vectors
of length ‖S‖ ≤ λn(Λ), we get the bound η(Λ) ≤ η(S ·Zn) ≤ ‖S̃‖ · ωn ≤ ‖S‖ · ωn = λn(Λ) ·ωn from [19,
Lemma 3.3]. In this paper we use a further generalization of these bounds, still easily obtained from the
decomposition lemma.

Corollary 2.7. The smoothing parameter of the tensor product of any two lattices Λ1,Λ2 satisfies η(Λ1 ⊗
Λ2) ≤ b̃l(Λ1) · η(Λ2).

Proof. Let B = [b1, . . . ,bk] be a basis of Λ1 achieving maxi ‖b̃i‖ = b̃l(Λ1), and consider the natural
decomposition of Λ1 ⊗ Λ2 into the sum

(b1 ⊗ Λ2) + · · ·+ (bk ⊗ Λ2).

Notice that the projection of each sublattice bi ⊗ Λ2 orthogonal to the previous sublattices bj ⊗ Λ2 (for
j < i) is precisely b̃i⊗Λ2, and has smoothing parameter η(b̃i⊗Λ2) = ‖b̃i‖ · η(Λ2). Therefore, by repeated
application of Lemma 2.6, we have η(Λ1 ⊗ Λ2) ≤ maxi ‖b̃i‖ · η(Λ2) = b̃l(Λ1) · η(Λ2).
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The following proposition relates the problem of sampling lattice vectors according to a Gaussian
distribution to the SIVP.

Proposition 2.8 ([24], Lemma 3.17). There is a polynomial time algorithm that, given a basis for an n-
dimensional lattice Λ and polynomially many samples from DΛ,σ for some σ ≥ 2η(Λ), solves SIVPγ on
input lattice Λ (in the worst case over Λ, and with overwhelming probability over the choice of the lattice
samples) for approximation factor γ = σ

√
n · ωn.

2.4 The SIS and LWE Functions

In this paper we are interested in two special families of functions, which are the fundamental building blocks
of lattice cryptography. Both families are parametrized by three integers m,n and q, and a set X ⊆ Zm of
short vectors. Usually n serves as a security parameter and m and q are functions of n.

The Short Integer Solution function family SIS(m,n, q,X) is the set of all functions fA indexed by
A ∈ Zn×mq with domain X ⊆ Zm and range Y = Znq , defined as fA(x) = Ax mod q. The Learning
With Errors function family LWE(m,n, q,X) is the set of all functions gA indexed by A ∈ Zn×mq with
domain Znq ×X and range Y = Zmq , defined as gA(s,x) = AT s + x mod q. Both function families are
endowed with the uniform distribution over A ∈ Zn×mq . We omit the set X from the notation SIS(m,n, q)
and LWE(m,n, q) when clear from the context, or unimportant.

In the context of collision resistance, we sometimes write SIS(m,n, q, β) for some real β > 0, without
an explicit domain X . Here the collision-finding problem is, given A ∈ Zn×mq , to find distinct x,x′ ∈ Zm
such that ‖x − x′‖ ≤ β and fA(x) = fA(x′). It is easy to see that this is equivalent to finding a nonzero
z ∈ Zm of length at most ‖z‖ ≤ β such that fA(z) = 0.

For other security properties (e.g., one-wayness, uninvertibility, etc.), the most commonly used classes of
domains and input distributionsX for SIS are the uniform distribution U(X) over the setX = {0, . . . , s−1}m
or X = {−s, . . . , 0, . . . , s}m, and the discrete Gaussian distribution Dm

Z,s. Usually, this distribution is
restricted to the set of short vectors X = {x ∈ Zm : ‖x‖ ≤ s

√
m}, which carries all but a 2−Ω(m) fraction

of the probability mass of Dm
Z,s.

For the LWE function family, the input is usually chosen according to distribution U(Znq )×X , where X
is one of the SIS input distributions. This makes the SIS and LWE function families essentially equivalent,
as shown in the following proposition.

Proposition 2.9 ([15, 17]). For any n, m ≥ n+ω(log n), q, and distribution X over Zm, the LWE(m,n, q)
function family is one-way (resp. pseudorandom, or uninvertible) with respect to input distribution U(Znq )×X
if and only if the SIS(m,m− n, q) function family is one-way (resp. pseudorandom, or uninvertible) with
respect to the input distribution X .

In applications, the SIS function family is typically used with larger input domains X for which the
functions are surjective but not injective, while the LWE function family is used with smaller domains X for
which the functions are injective, but not surjective. The results in this paper are more naturally stated using
the SIS function family, so we will use the SIS formulation to establish our main results, and then reformulate
them in terms of the LWE function family by invoking Proposition 2.9. We also use Proposition 2.9 to
reformulate known hardness results (from worst-case complexity assumptions) for LWE in terms of SIS.

Assuming the quantum worst-case hardness of standard lattice problems, Regev [24] showed that the
LWE(m,n, q) function family is hard to invert with respect to the discrete Gaussian error distribution Dm

Z,σ
for any σ > 2

√
n. (See also [21] for a classical reduction that requires q to be exponentially large in n.
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Because we are concerned with small parameters in this work, we focus mainly on the implications of the
quantum reduction.)

Proposition 2.10 ([24], Theorem 3.1). For any m = nO(1), integer q and real α ∈ (0, 1) such that αq >
2
√
n, there is a polynomial time quantum reduction from sampling DΛ,σ (for any n-dimensional lattice Λ

and σ > (
√

2n/α)η(Λ)) to inverting the LWE(m,n, q) function family on input Y = DZm,αq.

Combining Propositions 2.8, 2.9 and 2.10, we get the following corollary.

Corollary 2.11. For any positive m,n such that ω(log n) ≤ m − n ≤ nO(1) and 2
√
n < σ < q, the

SIS(m,m−n, q) function family is uninvertible with respect to input distributionDm
Z,σ, under the assumption

that no (quantum) algorithm can efficiently sample from a distribution statistically close to DΛ,
√

2nq/σ.
In particular, assuming the worst-case (quantum) hardness of SIVPnωnq/σ over n-dimensional lattices,

the SIS(m,m− n, q) function family is uninvertible with respect to input distribution Dm
Z,σ.

We use the fact that LWE/SIS is not only hard to invert, but also pseudorandom. This is proved using
search-to-decision reductions for those problems. The most general such reductions known to date are given
in the following two theorems.

Theorem 2.12 ([17]). For any positive m,n such that ω(log n) ≤ m− n ≤ nO(1), any positive σ ≤ nO(1),
and any q with no divisors in the interval ((σ/ωn)m/k, σ · ωn), if SIS(m,m − n, q,Dm

Z,σ) is uninvertible,
then it is also pseudorandom.

Notice that when σ > ω
(m+k)/(m−k)
n , the interval ((σ/ωn)m/k, σ ·ωn) is empty, and Theorem 2.12 holds

without any restriction on the factorization of the modulus q.

Theorem 2.13 ([18]). Let q have prime factorization q = pe11 · · · p
ek
k for pairwise distinct poly(n)-bounded

primes pi with each ei ≥ 1, and let 0 < α ≤ 1/ωn. If LWE(m,n, q,Dm
Z,αq) is hard to invert for all

m(n) = nO(1), then LWE(m′, n, q,Dm
Z,α′q) is pseudorandom for any m′ = nO(1) and

α′ ≥ max{α, ω1+1/`
n · α1/`, ωn/p

e1
1 , . . . , ωn/p

ek
k },

where ` is an upper bound on number of prime factors pi < ωn/α
′.

In this work we focus on the use of Theorem 2.12, because it guarantees pseudorandomness for the same
value of m as for the assumed one-wayness. This feature is important for applying our results from Section 4,
which guarantee one-wayness for particular values of m (but not necessarily all m = nO(1)).

Corollary 2.14. For any positivem,n, σ, q such that ω(log n) ≤ m−n ≤ nO(1) and 2
√
n < σ < q < nO(1),

if q has no divisors in the range ((σ/ωn)1+n/k, σ · ωn), then the SIS(m,m − n, q) function family is
pseudorandom with respect to input distribution Dm

Z,σ, under the assumption that no (quantum) algorithm
can efficiently sample (up to negligible statistical errors) DΛ,

√
2nq/σ.

In particular, assuming the worst-case (quantum) hardness of SIVPnωnq/σ on n-dimensional lattices, the
SIS(m,m− n, q) function family is pseudorandom with respect to input distribution Dm

Z,σ.
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3 Hardness of SIS with Small Modulus

We first prove a simple “success amplification” lemma for collision-finding in SIS, which says that any
inverse-polynomial advantage can be amplified to essentially 1, at only the expense of a larger runtime and
value of m (which will have no ill effects on our final results). Therefore, for the remainder of this section we
implicitly restrict our attention to collision-finding algorithms that have overwhelming advantage.

Lemma 3.1. For arbitrary n, q,m and X ⊆ Zm, suppose there exists a probabilistic algorithm A that has
advantage ε > 0 in collision-finding for SIS(m,n, q,X). Then there exists a probabilistic algorithm B that
has advantage 1− (1−ε)t ≥ 1−exp(−εt) = 1−exp(−n) in collision-finding for SIS(M = t ·m,n, q,X ′),
where t = n/ε and X ′ =

⋃t
i=1({0m}i−1 ×X × {0m}t−i). The runtime of B is essentially t times that of A.

Proof. The algorithm B simply partitions its input A ∈ Zn×Mq into blocks Ai ∈ Zn×mq and invokes A (with
fresh random coins) on each of them, untilA returns a valid collision x,x′ ∈ X for some Ai. Then B returns

(0m(i−1),x, 0m(t−i)), (0m(i−1),x′, 0m(t−i)) ∈ X ′

as a collision for A. Clearly, B succeeds if any call to A succeeds. Since all t calls to A are on independent
inputs Ai and use independent coins, some call will succeed, except with (1− ε)t probability.

3.1 SIS-to-SIS Reduction

Our first proof that the SIS(m,n, q, β) function family is collision resistant for moduli q as small as n1/2+δ

proceeds by a reduction between SIS problems with different parameters. Previous hardness results based on
worst-case lattice assumptions require the modulus q to be at least β · ω(

√
n log n) [12, Theorem 9.2], and

β ≥
√
n log q is needed to guarantee that a nontrivial solution exists. For such parameters, SIS is collision

resistant assuming the hardness of approximating worst-case lattice problems to within ≈ β
√
n factors.

The intuition behind our proof for smaller moduli is easily explained. We reduce SIS with modulus qc

and solution bound βc (for any constant integer c ≥ 1) to SIS with modulus q and bound β. Then as long as
(q/β)c ≥ ω(

√
n log n), the former problem enjoys worst-case hardness, hence so does the latter. Thus we can

take q = β · nδ for any constant δ > 0, and c > 1/(2δ). Notice, however, that the underlying approximation
factor for worst-case lattice problems is ≈ βc

√
n ≥ n1/2+1/(4δ), which, while still polynomial, degrades

severely as δ approaches 0. In the next subsection we give a direct reduction from worst-case lattice problems
to SIS with a small modulus, which does not have this drawback.

The above discussion is formalized in the following proposition. For technical reasons, we prove that
SIS(m,n, q,X) is collision resistant assuming that the domain X has the property that all SIS solutions
z ∈ (X −X) \ {0} satisfy gcd(z, q) = 1. This restriction is satisfied in many (but not all) common settings,
e.g., when q > β is prime, or when X ⊆ {0, 1}m is a set of binary vectors.

Proposition 3.2. Let n, q, m, β and X ⊆ Zm be such that gcd(x − x′, q) = 1 and ‖x − x′‖ ≤ β for any
distinct x,x′ ∈ X . For any positive integer c, there is a deterministic reduction from collision-finding for
SIS(mc, n, qc, βc) to collision-finding for SIS(m,n, q,X) (in both cases, with overwhelming advantage).
The reduction runs in time polynomial in its input size, and makes fewer than mc calls to its oracle.

Proof. LetA be an efficient algorithm that finds a collision for SIS(m,n, q,X) with overwhelming advantage.
We use it to find a nonzero solution for SIS(mc, n, qc, βc). Let A ∈ Zn×m

c

qc be an input SIS instance. Partition
the columns of A into mc−1 blocks Ai ∈ Zn×mqc , and for each one, invoke A to find a collision modulo q,
i.e., a pair of distinct vectors xi,x′i ∈ X such that Aizi = 0 mod q, where zi = xi − x′i and ‖zi‖ ≤ β.
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For each i, since gcd(zi, q) = 1 and Aizi = 0 mod q, the vector a′i = (Aizi)/q ∈ Znqc−1 is uniformly

random, even after conditioning on zi and Ai mod q. So, the matrix A′ ∈ Zn×m
c−1

qc−1 made up of all these

columns is uniformly random. By induction on c, using A we can find a nonzero solution z′ ∈ Zmc−1
such

that A′z′ = 0 mod qc−1 and ‖z′‖ ≤ βc−1. Then it is easy to verify that a nonzero solution for the original
instance A is given by z = (z′1 · z1, . . . , z

′
mc−1 · zmc−1) ∈ Zmc

, and that ‖z‖ ≤ ‖z′‖ · maxi ‖zi‖ ≤ βc.
Finally, the total number of calls to A is

∑c−1
i=0 m

i < mc, as claimed.

3.2 Direct Reduction

As mentioned above, the large worst-case approximation factor associated with the use of Proposition 3.2 is
undesirable, as is (to a lesser extent) the restriction that gcd(X−X, q) = 1. To eliminate these drawbacks, we
next give a direct proof that SIS is collision resistant for small q, based on the assumed hardness of worst-case
lattice problems. The underlying approximation factor for these problems can be as small as Õ(β

√
n), which

matches the best known factors obtained by previous proofs (which require a larger modulus q). Our new
proof combines ideas from [19, 12] and Proposition 3.2, as well as a new convolution theorem for discrete
Gaussians which strengthens similar ones previously proved in [22, 6].

Our proof of the convolution theorem is substantially different and, we believe, technically simpler than
the prior ones. In particular, it handles the sum of many Gaussian samples all at once, whereas previous proofs
used induction from a base case of two samples. With the inductive approach, it is technically complex to
verify that all the intermediate Gaussian parameters (which involve harmonic means) satisfy the hypotheses.
Moreover, the intermediate parameters can depend on the order in which the samples are added in the
induction, leading to unnecessarily strong hypotheses on the original parameters.

Theorem 3.3. Let Λ be an n-dimensional lattice, z ∈ Zm a nonzero integer vector, si ≥
√

2‖z‖∞ · η(Λ),
and Λ + ci arbitrary cosets of Λ for i = 1, . . . ,m. Let yi be independent vectors with distributions DΛ+ci,si ,
respectively. Then the distribution of y =

∑
i ziyi is statistically close to DY,s, where Y = gcd(z)Λ + c,

c =
∑

i zici, and s =
√∑

i(zisi)
2.

In particular, if gcd(z) = 1 and
∑

i zici ∈ Λ, then y is distributed statistically close to DΛ,s.

Proof. First we verify that the support of y is∑
i

zi(Λ + ci) =
∑
i

ziΛ +
∑
i

zi · ci = gcd(z)Λ +
∑
i

zi · ci = Y.

So it remains to prove that each y ∈ Y has probability (nearly) proportional to ρs(y).
For the remainder of the proof we use the following convenient scaling. Define the diagonal matrices

S = diag(s1, . . . , sm) and S′ = S⊗ In, and the mn-dimensional lattice Λ′ =
⊕

i(s
−1
i Λ) = (S′)−1 · Λ⊕m,

where
⊕

denotes the (external) direct sum of lattices and Λ⊕m = Zm ⊗ Λ is the direct sum of m copies
of Λ. Then by independence of the yi, it can be seen that y′ = (S′)−1 · (y1, . . . ,ym) has discrete Gaussian
distribution DΛ′+c′ (with parameter 1), where c′ = (S′)−1 · (c1, . . . , cm).

The output vector y =
∑

i ziyi can be expressed, using the mixed-product property for Kronecker
products, as

y = (zT ⊗ In) · (y1, . . . ,ym) = (zT ⊗ In) · S′ · y′ = ((zTS)⊗ In) · y′.

So, letting Z = ((zTS)⊗ In), we want to prove that the distribution of y ∼ Z ·DΛ′+c′ is statistically close
to DY,s.
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Fix any vectors x′ ∈ Λ′ + c′ and ȳ = Zx′ ∈ Y , and define the proper sublattice

L = {v ∈ Λ′ : Zv = 0} = Λ′ ∩ ker(Z) ( Λ′.

It is immediate to verify that the set of all y′ ∈ Λ′ + c′ such that Zy′ = ȳ is (Λ′ + c′) ∩ ker(Z) = L+ x′.
Let x be orthogonal projection of x′ onto ker(Z) ⊃ L. Then we have

Pr[y = ȳ] =
ρ(L+ x′)

ρ(Λ′ + c′)
= ρ(x′ − x) · ρ(L+ x)

ρ(Λ′ + c′)
.

Below we show that η(L) ≤ 1, which implies that ρ(L+ x) is essentially the same for all values of x′, and
hence for all ȳ. Therefore, we just need to analyze ρ(x′ − x).

Since ZT is an orthogonal basis for ker(Z)⊥, each of whose columns has Euclidean norm s =
(
∑

i(zisi)
2)1/2, we have x′ − x = (ZTZx′)/s2, and

‖x′ − x‖2 = 〈x′,ZTZx′〉/s2 = ‖Zx′‖2/s2 = (‖ȳ‖/s)2.

Therefore, ρ(x′ − x) = ρs(ȳ), and so Pr[y = ȳ] is essentially proportional to ρs(ȳ), i.e., the statistical
distance between y and DY,s is negligible.

It remains to bound the smoothing parameter of L. Consider the m-dimensional integer lattice Z =
Zm ∩ ker(zT ) = {v ∈ Zm : 〈z,v〉 = 0}. Because (Z ⊗ Λ) ⊆ (Zm ⊗ Λ) and S−1Z ⊂ ker(zTS), it is
straightforward to verify from the definitions that

(S′)−1 · (Z ⊗ Λ) = ((S−1Z)⊗ Λ)

is a sublattice of L. It follows from Corollary 2.7 and by scaling that

η(L) ≤ η((S′)−1 · (Z ⊗ Λ)) ≤ η(Λ) · b̃l(Z)/min si.

Finally, b̃l(Z) ≤ min
{
‖z‖,
√

2‖z‖∞
}

because Z has a full-rank set of vectors zi · ej − zj · ei, where index
i minimizes |zi| 6= 0, and j ranges over {1, . . . ,m} \ {i}. By assumption on the si, we have η(L) ≤ 1 as
desired, and the proof is complete.

Remark 3.4. Although we will not need it in this work, we note that the statement and proof of Theorem 3.3
can be adapted to the case where the yi respectively have non-spherical discrete Gaussian distributions
DΛi+ci,

√
Σi

with positive definite “covariance” parameters Σi ∈ Rn×n, over cosets of possibly different
lattices Λi. (See [22] for a formal definition of these distributions.)

In this setting, by scaling Λi and Σi we can assume without loss of generality that z = (1, 1, . . . , 1).
The theorem statement says that y’s distribution is close to a discrete Gaussian (over an appropriate lattice
coset) with covariance parameter Σ =

∑
Σi, under mild assumptions on

√
Σi. In the proof we simply

let S′ be the block-diagonal matrix with the
√

Σi as its diagonal blocks, let Λ′ = (S′)−1 ·
⊕

i Λi, and let
Z = (zT ⊗ In) · S′ = [

√
Σ1 | · · · |

√
Σm]. Then the only technical difference is in bounding the smoothing

parameter of L.

The convolution theorem implies the following simple but useful lemma, which shows how to convert
samples having a broad range of parameters into ones having parameters in a desired narrow range.

Lemma 3.5. There is an efficient algorithm which, given a basis B of some lattice Λ, some R ≥
√

2 and
samples (yi, si) where each si ∈ [

√
2, R] · η(Λ) and each yi has distribution DΛ,si , with overwhelming

probability outputs a sample (y, s) where s ∈ [R,
√

2R] · η(Λ) and y has distribution statistically close
to DΛ,s.
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Proof. Let ωn = ω(
√

log n) satisfy ωn ≤
√
n. The algorithm draws 2n2 input samples, and works as

follows: if at least n2 of the samples have parameters si ≤ R · η(Λ)/(
√
n · ωn), then with overwhelming

probability they all have lengths bounded by R · η(Λ)/ωn and they include n linearly independent vectors.
Using such vectors we can construct a basis S such that ‖S̃‖ ≤ R ·η(Λ)/ωn, and with the sampling algorithm
of [12, Theorem 4.1] we can generate samples having parameter R · η(Λ).

Otherwise, at least n2 of the samples (yi, si) have parameters si ≥ max{R/n,
√

2} · η(Λ). Then by
summing an appropriate subset of those yi, by the convolution theorem we can obtain a sample having
parameter in the desired range.

The next lemma is the heart of our reduction. The novel part, corresponding to the properties described in
the second item, is a way of using a collision-finding oracle to reduce the Gaussian width of samples drawn
from a lattice. The first item corresponds to the guarantees provided by previous reductions.

Lemma 3.6. Let m,n be integers, S = {z ∈ Zm \ {0} | ‖z‖ ≤ β ∧‖z‖∞ ≤ β∞} for some real β ≥ β > 0,
and q an integer modulus with at most poly(n) integer divisors less than β∞. There is a probabilistic
polynomial time reduction that, on input any basis B of a lattice Λ and sufficiently many samples (yi, si)
where si ≥

√
2q · η(Λ) and yi has distribution DΛ,si , and given access to an SIS(m,n, q, S) oracle (that

finds collisions z ∈ S with nonnegligible probability) outputs (with overwhelming probability) a sample
(y, s) with min si/q ≤ s ≤ (β/q) ·max si, and y ∈ Λ such that:

• E[‖y‖] ≤ (β
√
n/q) · max si, and for any subspace H ⊂ Rn of dimension at most n − 1, with

probability at least 1/10 we have y 6∈ H .

• Moreover, if each si ≥
√

2β∞q · η(Λ), then the distribution of y is statistically close to DΛ,s

Proof. Let A be the collision-finding oracle. Without loss of generality, we can assume that whenever A
outputs a valid collision z ∈ S, we have that gcd(z) divides q. This is so because for any integer vector
z, if Az = 0 mod q then also A((g/d)z) = 0 mod q, where d = gcd(z) and g = gcd(d, q). Moreover,
(g/d)z ∈ S holds true and gcd((g/d)z) = gcd(z, q) divides q. Let d be such that A outputs, with non-
negligible probability, a valid collision z satisfying gcd(z) = d. Such a d exists because gcd(z) is bounded
by β∞ and divides q, so by assumption there are only polynomially many possible values of d. Let q′ = q/d,
which is an integer. By increasingm and using standard amplification techniques, we can make the probability
that A outputs such a collision (satisfying z ∈ S, Az = 0 (mod q) and gcd(z) = d) exponentially close
to 1.

Let (yi, si) for i = 1, . . . ,m be input samples, where yi has distribution DΛ,si . Write each yi as
yi = Bai mod q′Λ for ai ∈ Znq′ . Since si ≥ q′η(Λ) the distribution of ai is statistically close to uniform over
Znq′ . Let A = [a1 | · · · | am] ∈ Zn×mq , and choose A′ ∈ Zn×md uniformly at random. Since A is statistically
close to uniform over Zn×mq′ , the matrix A+ q′A′ is statistically close to uniform over Zn×mq . Call the oracle
A on input A+q′A′, and obtain (with overwhelming probability) a nonzero z ∈ S with gcd(z) = d, ‖z‖ ≤ β,
‖z‖∞ ≤ β∞ and (A + q′A′)z = 0 mod q. Notice that q′A′z = qA′(z/d) = 0 mod q because (z/d) is an
integer vector. Therefore Az = 0 mod q. Finally, the reduction outputs (y, s), where y =

∑
i ziyi/q and

s =
√∑

i(sizi)
2/q. Notice that ziyi ∈ qΛ + B(ziai) because gcd(z) = d, so y ∈ Λ.

Notice that s satisfies the stated bounds because z is a nonzero integer vector. We next analyze the
distribution of y. For any fixed ai, the conditional distribution of each yi is Dq′Λ+Bai,si , where si ≥√

2η(q′Λ). The claim on E[‖y‖] then follows from [19, Lemma 2.11 and Lemma 4.3] and Hölder’s inequality.
The claim on the probability that y 6∈ H was initially shown in the preliminary version of [19]; see also [24,
Lemma 3.15].

16



Now assume that si ≥
√

2β∞q · η(Λ) ≥
√

2‖z‖∞ · η(q′Λ) for all i. By Theorem 3.3 the distribution of
y is statistically close to DY/q,s where Y = gcd(z) · q′Λ + B(Az). Using Az = 0 mod q and gcd(z) = d,
we get Y = qΛ. Therefore y has distribution statistically close to DΛ,s, as claimed.

Building on Lemma 3.6, our next lemma shows that for any q ≥ β · nΩ(1), a collision-finding oracle can
be used to obtain Gaussian samples of width close to 2ββ∞ · η(Λ).

Lemma 3.7. Let m,n, q, S as in Lemma 3.6, and also assume q/β ≥ nδ for some constant δ > 0. There is
an efficient reduction that, on input any basis B of an n-dimensional lattice Λ, an upper bound η ≥ η(Λ), and
given access to an SIS(m,n, q, S) oracle (finding collisions z ∈ S with nonnegligible probability), outputs
(with overwhelming probability) a sample (y, s) where

√
2β∞ · η ≤ s ≤ 2β∞β · η and y has distribution

statistically close to DΛ,s.

Proof. By applying the LLL basis reduction algorithm [13] to the basis B, we can assume without loss
of generality that ‖B̃‖ ≤ 2n · η(Λ). Let ωn be an arbitrary function in n satisfying ωn = ω(

√
log n) and

ωn ≤
√
n/2.

The main procedure, described below, produces samples having parameters in the range [1, q] ·
√

2β∞ · η.
On these samples we run the procedure from Lemma 3.5 (with R =

√
2β∞q · η) to obtain samples having

parameters in the range [
√

2, 2] · β∞q · η. Finally, we invoke the reduction from Lemma 3.6 on those samples
to obtain a sample satisfying the conditions in the Lemma statement.

The main procedure works in a sequence of phases i = 0, 1, 2, . . .. In phase i, the input is a basis Bi

of Λ, where initially B0 = B. The basis Bi is used in the discrete Gaussian sampling algorithm of [12,
Theorem 4.1] to produce samples (y, si), where si = max{‖B̃i‖ · ωn,

√
2β∞η} ≥

√
2β∞η and yi has

distribution statistically close to DΛ,si . Phase i either manages to produce a sample (y, s) with s in the
desired range [1, q] ·

√
2β∞η, or it produces a new basis Bi+1 for which ‖B̃i+1‖ ≤ ‖B̃i‖/2, which is the

input to the next phase. The number of phases before termination is clearly polynomial in n, by hypothesis
on B.

If ‖B̃i‖·ωn ≤
√

2qβ∞η, then this already gives samples with si ∈ [1, q]
√

2β∞η in the desired range, and
we can terminate the main phase. So, we may assume that si = ‖B̃i‖·ωn ≥

√
2qβ∞η. Each phase i proceeds

in some constant c ≥ 1/δ number of sub-phases j = 1, 2, . . . , c, where the inputs to the first sub-phase
are the samples (y, si) generated as described above. We recall that these samples satisfy si ≥

√
2qβ∞η.

The same will be true for the samples passed as input to all other subsequent subphases. So, each subphase
receives as input samples (y, s) satisfying all the hypotheses of Lemma 3.6, and we can run the reduction
from that lemma to generate new samples (y′, s′) having parameters s′ bounded from above by si · (β/q)j ,
and from below by

√
2β∞η. If any of the produces samples satisfies s′ ≤ q

√
2β∞η, then we can terminate

the main procedure with (y′, s′) as output. Otherwise, all samples produced during the subphase satisfy
s′ > q

√
2β∞η, and they can be passed as input to the next sub-phase. Notice that the total runtime of all

the sub-phases is poly(n)c, because each invocation of the reduction from Lemma 3.6 relies on poly(n)
invocations of the reduction in the previous sub-phase; this is why we need to limit the number of sub-phases
to a constant c.

If phase i ends up running all its sub-phases without ever finding a sample with s′ ∈ [1, q]
√

2β∞η, then it
has produced samples whose parameters are bounded by (β/q)c ≤ si ≤ si/

√
n. It uses n2 of these samples,

which with overwhelming probability have lengths all bounded by si/
√
n, and include n linearly independent

vectors. It transforms those vectors into a basis Bi+1 with ‖B̃i+1‖ ≤ si/
√
n ≤ ‖B̃‖iωn/

√
n ≤ ‖B̃i‖/2, as

input to the next phase.

We can now prove our main theorem, reducing worst-case lattice problems with max{1, ββ∞/q} ·
Õ(β
√
n) approximation factors to SIS, when q ≥ β · nΩ(1).
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Theorem 3.8. Let m,n be integers, S = {z ∈ Zm \ {0} | ‖z‖ ≤ β ∧ ‖z‖∞ ≤ β∞} for some real
β ≥ β∞ > 0, and q ≥ β · nΩ(1) be an integer modulus with at most poly(n) integer divisors less than β∞.
For some γ = max{1, ββ∞/q} ·O(β

√
n), there is an efficient reduction from SIVPηγ (and hence also from

standard SIVPγ·ωn) on n-dimensional lattices to S-collision finding for SIS(m,n, q) with non-negligible
advantage.

Proof. Given an input basis B of a lattice Λ, we can apply the LLL algorithm to obtain a 2n-approximation
to η(Λ), and by scaling we can assume that η(Λ) ∈ [1, 2n]. For i = 1, . . . , n, we run the procedure described
below for each hypothesized upper bound ηi = 2i on η(Λ). Each call to the procedure either fails, or returns
a set of linearly independent vectors in Λ whose lengths are all bounded by (γ/2) · ηi. We return the first
such obtained set (i.e., for the minimal value of i). As we show below, as long as ηi ≥ η(Λ) the procedure
returns a set of vectors with overwhelming probability. Since one ηi ∈ [1, 2) · η(Λ), our reduction solves
SIVPηγ with overwhelming probability, as claimed.

The procedure invokes the reduction from Lemma 3.7 with η = ηi to obtain samples with parameters
in the range [

√
2β∞,

√
2ββ∞] · η. On these samples we run the procedure from Lemma 3.5 with R =

max{
√

2q,
√

2ββ∞} to obtain samples having parameters in the range [R,
√

2R] · η. On such samples we
repeatedly run (using independent samples each time) the reduction from Lemma 3.6. After enough runs, we
obtain with overwhelming probability a set of linearly independent lattice vectors all having lengths at most
(γ/2) · η, as required.

4 Hardness of LWE with Small Uniform Errors

In this section we prove the hardness of inverting the LWE function even when the error vectors have very
small entries, provided the number of samples is sufficiently small. We proceed similarly to [23, 4], by using
the LWE assumption (for discrete Gaussian error) to construct a lossy family of functions with respect to
a uniform distribution over small inputs. However, the parameterization we obtain is different from those
in [23, 4], allowing us to obtain pseudorandomness of LWE under very small (e.g., binary) inputs, for a
number of LWE samples that exceeds the LWE dimension.

Our results and proofs are more naturally formulated using the SIS function family. So, we will first
study the problem in terms of SIS, and then reformulate the results in terms of LWE using Proposition 2.9.
We recall that the main difference between this section and Section 3, is that here we consider parameters
for which the resulting functions are essentially injective, or more formally, statistically second-preimage
resistant. The following lemma gives sufficient conditions that ensure this property.

Lemma 4.1. For any integers m, k, q, s and set X ⊆ [s]m, the function family SIS(m, k, q) is (statistically)
ε-second preimage resistant with respect to the uniform input distribution U(X) for ε = |X| · (s′/q)k,
where s′ is the largest factor of q smaller than s.

Proof. Let x ← U(X) and A ← SIS(m, k, q) be chosen at random. We want to evaluate the probability
that there exists an x′ ∈ X \ {x} such that Ax = Ax′ (mod q), or, equivalently, A(x − x′) = 0
(mod q). Fix any two distinct vectors x,x′ ∈ X and let z = x− x′. The vector Az (mod q) is distributed
uniformly at random in (dZ/qZ)k, where d = gcd(q, z1, . . . , zm). All coordinates of z are in the range
zi ∈ {−(s− 1), . . . , (s− 1)}, and at least one of them is nonzero. Therefore, d is at most s′ and |dZkq | =
(q/d)k ≥ (q/s′)k. By union bound (over x′ ∈ X \ {x}) for any x, the probability that there is a second
preimage x′ is at most (|X| − 1)(s′/q)k.

18



We remark that, as shown in Section 3, even for parameter settings that do not fall within the range
specified in Lemma 4.1, SIS(m, k, q) is collision resistant, and therefore also (computationally) second-
preimage-resistant. This is all that is needed in the rest of this section. However, when SIS(m, k, q) is not
statistically second-preimage resistant, the one-wayness proof that follows (see Theorem 4.5) is not very
interesting: typically, in such settings, SIS(m, k, q) is also statistically uninvertible, and the one-wayness
of SIS(m, k, q) directly follows from Lemma 2.2. So, below we focus on parameter settings covered by
Lemma 4.1.

We prove the one-wayness of F = SIS(m, k, q,X) with respect to the uniform input distribution
X = U(X) by building a lossy function family (L,F ,X ) where L is an auxiliary function family that we
will prove to be uninvertible and computationally indistinguishable from F . The auxiliary family L is derived
from the following function family.

Definition 4.2. For any probability distribution Y over Z` and integer m ≥ `, let I(m, `,Y) be the prob-
ability distribution over linear functions [I | Y] : Zm → Z` where I is the ` × ` identity matrix, and
Y ∈ Z`×(m−`) is obtained choosing each column of Y independently at random from Y .

We anticipate that we will set Y to the Gaussian input distribution Y = D`
Z,σ in order to make L

indistinguishable from F under a standard LWE assumption. But for generality, we prove some of our results
with respect to a generic distribution Y .

The following lemma shows that for a bounded distribution Y (and appropriate parameters), I(m, `,Y)
is (statistically) uninvertible.

Lemma 4.3. Let Y be a probability distribution on [Y] ⊆ {−σ, . . . , σ}n, and let X ⊆ {−s, . . . , s}m. Then
I(m, `,Y) is ε-uninvertible with respect to U(X) for ε = (1 + 2s(1 + σ(m− `)))`/|X|.

Proof. Let f = [I | Y] be an arbitrary function in the support of I(m, `,Y). We know that |yi,j | ≤ σ for all
i, j. We first bound the size of the image |f(X)|. By the triangle inequality, all the points in the image f(X)
have `∞ norm at most

‖f(u)‖∞ ≤ ‖u‖∞(1 + σ(m− `)) ≤ s(1 + σ(m− `)).

The number of integer vectors (in Z`) with such bounded `∞ norm is

(1 + 2s(1 + σ(m− `)))`.

Dividing by the size of X and using Lemma 2.4, the claim follows.

Lemma 4.3 applies to any distribution Y with bounded support. When Y = D`
Z,σ is a discrete Gaussian

distribution, a slightly better bound can be obtained. (See also [4], which proves a similar lemma for a
different, non-uniform input distribution X .)

Lemma 4.4. Let Y = D`
Z,σ be the discrete Gaussian distribution with parameter σ > 0, and let X ⊆

{−s, . . . , s}m. Then I(m, `,Y) is ε-uninvertible with respect to U(X), for ε = O(σms/
√
`)`/|X|+2−Ω(m).

Proof. Again, by Lemma 2.4 it is enough to bound the expected size of f(X) when f ← I(m, `,Y) is
chosen at random. Remember that f = [I | Y] where Y ← D

`×(m−`)
Z,σ . Since the entries of Y ∈ R`×(m−`)

are independent mena-zero subgaussians with parameter σ, by a standard bound from the theory of random
matrices, the largest singular value s1(Y) = max0 6=x∈Rm ‖Yx‖/‖x‖ of Y is at most σ ·O(

√
`+
√
m− `) =
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σ ·O(
√
m), except with probability 2−Ω(m). We now bound the `2 norm of all vectors in the image f(X).

Let u = (u1,u2) ∈ X , with u1 ∈ Z` and u2 ∈ Zm−`. Then

‖f(u)‖ ≤ ‖u1 + Yu2‖
≤ ‖u1‖+ ‖Yu2‖

≤
(√

`+ s1(Y)
√
m− `

)
s

≤
(√

`+ σ ·O(
√
m)
√
m− `

)
s

= O(σms).

The number of integer points in the `-dimensional zero-centered ball of radius R = O(σms) can be bounded
by a simple volume argument, as |f(X)| ≤ (R+

√
`/2)nV` = O(σms/

√
`)`, where V` = π`/2/(`/2)! is the

volume of the `-dimensional unit ball. Dividing by the size of X and accounting for the rare event that s1(Y)
is not bounded as above, we get that I(m, `,Y) is ε-uninvertible for ε = O(σms/

√
`)`/|X|+ 2−Ω(m).

We can now prove the one-wayness of the SIS function family by defining and analyzing an appropriate
lossy function family. The parameters below are set up to expose the connection with LWE, via Proposi-
tion 2.9: SIS(m,m− n, q) corresponds to LWE in n dimensions (given m samples), whose one-wayness
we are proving, while SIS(` = m − n + k,m − n, q) corresponds to LWE in k ≤ n dimensions, whose
pseudorandomness we are assuming.

Theorem 4.5. Let q be a modulus and let X ,Y be two distributions over Zm and Z` respectively, where
` = m− n+ k for some 0 < k ≤ n ≤ m, such that

1. I(m, `,Y) is uninvertible with respect to input distribution X ,

2. SIS(`,m− n, q) is pseudorandom with respect to input distribution Y , and

3. SIS(m,m− n, q) is second-preimage resistant with respect to input distribution X .

Then F = SIS(m,m− n, q) is one-way with respect to input distribution X .
In particular, if SIS(`,m − n, q) is pseudorandom with respect to the discrete Gaussian distribution

Y = D`
Z,σ, then SIS(m,m− n, q) is (2ε+ 2−Ω(m))-one-way with respect to the uniform input distribution

X = U(X) over any set X ⊆ {−s, . . . , s}m satisfying

(C ′σms/
√
`)`/ε ≤ |X| ≤ ε · (q/s′)m−n,

where s′ is the largest divisor of q that is smaller than or equal to 2s, and C ′ is the universal constant hidden
by the O(·) notation from Lemma 4.4.

Proof. We will prove that (L,F ,X ) is a lossy function family, where F = SIS(m,m − n, q) and L =
SIS(`,m− n, q) ◦ I(m, `,Y). It follows from Lemma 2.3 that both F and L are one-way function families
with respect to input distribution X . Notice that F is second-preimage resistant with respect to X by
assumption. The indistinguishability of L and F follows immediately from the pseudorandomness of
SIS(`,m− n, q) with respect to Y , by a standard hybrid argument. So, in order to prove that (L,F ,X ) is
a lossy function family, it suffices to prove that L is uninvertible with respect to X . This follows applying
Lemma 2.5 to the function family I(m, `,Y), which is uninvertible by assumption. This proves the first part
of the theorem.
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Now consider the particular instantiation. Let X = U(X) be the uniform distribution over a set
X ⊆ {−s, . . . , s}m whose size satisfies the inequalities in the theorem statement, and let Y = D`

Z,σ.
Since |X|(s′/q)m−n ≤ ε, by Lemma 4.1, SIS(m,m− n, q) is (statistically) second-preimage resistant with
respect to input distribution X . Moreover, since (Cσms/

√
`)`/|X| ≤ ε, by Lemma 4.4, I(m, `,Y) is

(ε+ 2−Ω(m))-uninvertible with respect to input distribution X .

In order to conclude that the LWE function is pseudorandom (under worst-case lattice assumptions) for
uniformly random small errors, we combine Theorem 4.5 with Corollary 2.14, instantiating the parameters
appropriately. For simplicity, we focus on the important case of a prime modulus q. Nearly identical results
for composite moduli (e.g., those divisible by only small primes) are also easily obtained from Corollary 2.14,
or by using either Theorem 2.13 or Theorem 2.12.

Theorem 4.6. Let 0 < k ≤ n ≤ m − ω(log k) ≤ kO(1), ` = m − n + k, s ≥ (Cm)`/(n−k) for a large
enough universal constant C, and q be a prime such that max{3

√
k, (4s)m/(m−n)} ≤ q ≤ kO(1). For

any set X ⊆ {−s, . . . , s}m of size |X| ≥ sm, the SIS(m,m− n, q) (equivalently, LWE(m,n, q)) function
family is one-way (and pseudorandom) with respect to the uniform input distribution X = U(X), under the
assumption that SIVPγ is (quantum) hard to approximate, in the worst case, on k-dimensional lattices to
within a factor γ = Õ(

√
k · q).

A few notable instantiations are as follows. To obtain pseudorandomness for binary errors, we need s = 2
and X = {0, 1}m. For this value of s, the condition s ≥ (Cm)`/(n−k) can be equivalently be rewritten as

m ≤ (n− k) ·
(

1 +
1

log2(Cm)

)
,

which can be satisfied by taking k = n/(C ′ log2 n) and m = n(1 + 1/(c log2 n)) for any desired c > 1 and a
sufficiently large constant C ′ > 1/(1− 1/c). For these values, the modulus should satisfy q ≥ 8m/(m−n) =
8n3c = kO(1), and can be set to any sufficiently large prime p = kO(1).1

Notice that for binary errors, both the worst-case lattice dimension k and the number m− n of “extra”
LWE samples (i.e., the number of samples beyond the LWE dimension n) are both sublinear in the LWE
dimension n: we have k = Θ(n/ log n) and m − n = O(n/ log n). This corresponds to both a stronger
worst-case security assumption, and a less useful LWE problem. By using larger errors, say, bounded by
s = nε for some constant ε > 0, it is possible to make both the worst-case lattice dimension k and number
of extra samples m− n into (small) linear functions of the LWE dimension n, which may be sufficient for
some cryptographic applications of LWE. Specifically, for any constant ε < 1, one may set k = (ε/3)n and
m = (1 + ε/3)n, which are easily verified to satisfy all the hypotheses of Theorem 4.6 when q = kO(1)

is sufficiently large. These parameters correspond to (ε/3)n = Ω(n) extra samples (beyond the LWE
dimension n), and to the worst-case hardness of lattice problems in dimension (ε/3)n = Ω(n). Notice that
for ε < 1/2, this version of LWE has much smaller errors than allowed by previous LWE hardness proofs,
and it would be subject to subexponential-time attacks [2] if the number of samples were not restricted. Our
result shows that if the number of samples is limited to (1 + ε/3)n, then LWE maintains its provable security
properties and conjectured exponential-time hardness in the dimension n.

One last instantiation allows for a linear number of samples m = c · n for any desired constant c ≥ 1,
which is enough for most applications of LWE in lattice cryptography. In this case we can choose (say)

1Here we have not tried to optimize the value of q, and smaller values of the modulus are certainly possible: a close inspection of
the proof of Theorem 4.6 reveals that for binary errors, the condition q ≥ 8n3c can be replaced by q ≥ nc′ for any constant c′ > c.
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k = n/2, and it suffices to set the other parameters so that

s ≥ (Cm)2c−1 and q ≥ (4s)c/(c−1) ≥ 4c/(c−1) · (Ccn)2c+1+1/(c−1) = kO(1).

(We can also obtain better lower bounds on s and q by letting k be a smaller constant fraction of n.) This
proves the hardness of LWE with uniform noise of polynomial magnitude s = nO(1), and any linear number
of samples m = O(n). Note that for m = cn, any instantiation of the parameters requires the magnitude s
of the errors to be at least nc−1. For c > 3/2, this is more noise than is typically used in the standard LWE
problem, which allows errors of magnitude as small as O(

√
n), but requires them to be independent and

follow a Gaussian-like distribution. The novelty in this last instantiation of Theorem 4.6 is that it allows for a
much wider class of error distributions, including the uniform distribution, and distributions where different
components of the error vector are correlated.

Proof of Theorem 4.6. We prove the one-wayness of SIS(m,m − n, q) (equivalently, LWE(m,n, q) via
Proposition 2.9) using the second part of Theorem 4.5 with σ = 3

√
k. Using ` ≥ k and the primality of q,

the conditions on the size of X in Theorem 4.5 can be replaced by simpler bounds

(3C ′ms)`

ε
≤ |X| ≤ ε · qm−n,

or equivalently, the requirement that the quantities (3C ′ms)`/|X| and |X|/qm−n are negligible in k. For the
first quantity, letting C = 4C ′ and using |X| ≥ sm and s ≥ (4C ′m)`/(n−k), we get that (3C ′ms)`/|X| ≤
(3/4)−` ≤ (3/4)−k is exponentially small (in k). For the second quantity, using |X| ≤ (2s + 1)m and
q ≥ (4s)m/(m−n), we get that |X|/qm−n ≤ (3/4)m is also exponentially small.

Theorem 4.5 also requires the pseudorandomness of SIS(`,m−n, q) with respect to the discrete Gaussian
input distribution Y = D`

Z,σ, which can be based on the (quantum) worst-case hardness of SIVP on k-
dimensional lattices using Corollary 2.14. (Notice the use of different parameters: SIS(m,m − n, q) in
Corollary 2.14, and SIS(m − n + k,m − n, q) here.) After properly renaming the variables, and using
σ = 3

√
k, the hypotheses of Corollary 2.14 become ω(log k) ≤ m− n ≤ kO(1), 3

√
k < q < kO(1), which

are all satisfied by the hypotheses of the Theorem. The corresponding assumption is the worst-case hardness
of SIVPγ on k-dimensional lattices, for γ = kωkq/σ =

√
kωkq/3 = Õ(

√
kq), as claimed. This concludes

the proof of the one-wayness of LWE.
The pseudorandomness of LWE follows from the sample-preserving search-to-decision reduction of

[17].
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