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Abstract: What kind of guidelines can the UC approach provide for traditional 
designs and applications? The aim of this report is to bring this theoretically rooted, 
computer scientist technology closer to the community of practitioners in the field of 
protocol designs.  
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1. Introduction 
 
What kind of design and analysis advantages can the UC framework provide 
compared to the daily practice of protocol design and analysis?  In this report, we try 
to follow a practical approach in order to  

• present those technical tools rooted in the UC framework, which could enrich 
the arsenal of practical designers, 
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• whet practitioner’s appetite to dive more deeply into the theoretical 
foundations of the UC framework.  

 
Though, a short technical report cannot set a goal to grasp the problem in its entirety, 
we try to touch relevant and convincing aspects to demonstrate the practical 
advantages of the UC framework. We give several examples for illustration of the 
presented concepts. Formal statements, conjectures and comments will also be shown 
to deepen the understanding of the application features of the UC framework. During 
these comparisons several related issues will be treated: among others, the 
relationship to the security game based definitions, the theoretical and practical 
importance of the realizability of the identification and authentication ideal 
functionality, an interaction-proof property, the technique of hybrids and modular 
design/analysis, the “technical loophole” of the simulation approach with respect to 
simulation failures,   the importance of out-of-system physical security assumptions, 
the (Backes-Pfitzmann-Waidner) BPW’s approach versus the Canetti’s UC approach 
or the problem of time modeling.    
 
We are not aware of papers with a goal of taking an effort to provide such a bridge. 
Obviously, we also undertake the possible criticism of too practical/informal or too 
formal/less practical from the two sides of this imaginary interface.   
 
By lack of space, and by the size of the field, clearly, we have to refer the reader to 
the original formulations of the basic notions and definitions, we also use in this 
report. In this respect, surely the best and most authentic source is Canetti [11]. This 
paper provides all the needed definitions for the base universal composability (UC) 
framework. In addition, the key references from which this report profited the most 
are the following: the Joint UC (JUC) approach [13], the Global UC (GUC) approach 
[14], [24], the application/theoretical paper [12] on key exchange protocols, work [24] 
on realization theorems for authentication/identification protocols, paper [8] on secure 
computation without authentication  as well as papers [4],[5],[17] on reactive security 
and universally composable cryptographic library from the Backes-Pfitzmann-
Waidner’s (BPW’s) approach. 
 
The structure of the report is the following. In Section 3 we step through the main 
elements of the UC framework in a concise way with special view to their 
design/analytic strength and application-oriented/theory-founding features compared 
to earlier traditional methods. In Section 4 we turn our attention to concrete design 
and analysis “guidelines” by considering the traditional and the UC methodology in 
parallel. In Section 4 we also treat the BPW’s approach and the problem of time 
modeling.  
 
 
 
2. Elements of the UC framework  
 
In this chapter we step through the main concepts, model elements of the UC 
approach with a special view to the connections/independence to/from the traditional 
design. The main elements, treated below, are the following: 

• definition and strength of the ideal functionality: simulation failures and 
resolutions, relaxation    
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• the practical/theoretical importance of the assumed level of adaptivity of the 
adversary  

• assumptions on the security of the communication channels and their 
realizability  

• setups, trusted functionalities 
• instance separation and “stand alone” analysis  

 
The UC model is adjustable along several factors (e.g. definition and strength of the 
ideal functionality, the assumed level of the adaptivity of the adversary, the assumed 
setup models and trusted functionalities, the availability of authenticated channels 
etc.), which strongly affects the realizability of a cryptographic task. A pragmatic 
corresponding question is the following: How to choose the set of these “factors” in 
concrete application problems and scenarios?  
This problem and the corresponding answers have remarkable practical importance. If 
this set of conditions is not unique, then it provides room for cost/efficiency 
optimization.  
 
 
2.1. Definition of the ideal functionality 
 
What do we mean under a specific cryptographic task? Originally, it is informal, and 
the community has a more or less accurate/formal consensus on it. A formalized 
definition is a corresponding ideal functionality. This formalization is not unique and 
it is not a definition of “for now and ever”. Especially, the level of abstraction has a 
strong effect on the demand against the cryptographic elements (e.g. primitives) and 
the setups by which they can securely be realized under different adversarial models 
(especially, at different levels of adaptivity).  
 
2.1.1. Indistinguishability games vs. UC 
 
A cryptographic primitive or a security mechanism can be specified in a variety of 
ways, such as a  

a.) the traditional way of a list of properties that must hold in the face of attack,   
b.) indistinguishability game against an attacker (security by indistinguishability),  
c.) simulatability, based on the definition of an ideal functionality (security by 

emulation of an ideal process).  
 
Note, all these three specifications may refer to the same cryptographic task and they 
are defined independently within their “framework”. Therefore, it should not be a 
surprise, if incoherencies arise. 
 
In Section 3 we will return to specification a.), in details. Now we concentrate on 
specifications b.) versus c.).  
 
The game based security relies on the indistinguishability paradigm, often called 
indistinguishability games. UC security also applies this paradigm within the 
simulatability approach.    
 
In approach b.), the adversary is allowed to access a corresponding oracle during a 
learning period before he comes ahead with an attack. During this learning the 
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adversary is allowed to send requests to the oracle independent (in a corresponding 
sense) from the target to be attacked finally. The oracle answers should not provide 
the adversary with information which increases its attack success non-negligibly, 
compared to the case, when it has no access to the oracle.    
 
Basically, from the reason of easier abstraction in the definition of ideal functionality, 
the typical case is that specification c.) is stronger then b.), i.e. if a realization is 
secure by spec. c.) then it is also secure by spec. b.).  
 
It may happen that we can “convert” the game into a security definition within the 
UC-framework. Assume a cryptographic task, the security of which is defined both as 
an indistinguishability game and also in UC-framework, i.e. an ideal functionality is 
defined in the latter case. We would like to bridge the two security definitions, 
typically by showing that a single session protocol is secure according some UC 
definition if and only if it is secure according to the game-based definition (referring 
typically, to some multi-session extension of the protocol).  
 The game based security definition is rephrased in the UC framework. The 
oraculum of the game is included into environment Z. Z carries out the game. The 
adversary of the game requests Z to invoke instances for learning and also Z provides 
the target instance for the attack (may be together with concurrent instances by the 
wish of the adversary). Environment Z carries out the job of distinguishing by 
observing the communication at the global interface. Finally, Z outputs the 
corresponding binary decision.   
 For example, such a method has been used in [12], where the authors 
established an “if and only if” bridge between the game based and UC-based 
definition of session key exchange.  
 
Example 1 (anonymous communication): The authors of [15] proposed a 
computational indistinguishability approach, similar to the definition of semantic 
encryption schemes, in order to give a strong definition for anonymity under 
computational constraint (ind-anonymizer):  
“…the adversary produces two message matrices (which encode message senders and 
receivers in a standard way), and it is allowed to passively observe the execution of a 
communication protocol under a random one of these two matrices and then is required to 
have non-negligible advantage in determining under which of the two matrices the protocol 
was executed.”  
In [22] we prove that our ideal system acomF  provides an equivalently strong 
definition for anonymity with the significant advantage that acomF  is also part of a 
proof system for assessment of anonymity provided by different realizations. In 
particular, it was shown that under global passive adversary an anonymous 
communication scheme Q is an ind_anonymizer if and only if protocol Qπ  UC-

realizes ideal functionality acomF . The result was extended also to adaptive case.   
 □ 
 
Example 2 (public key encryption, digital signatures):  
The ind-CCA secure public key encryption as well as digital signatures secure against 
existential forgery are equivalently UC-secure against static adversaries [11].  
Here we assume that different concurrent instances of the primitives choose 
independently generated keys. If a set of parties within the run of a protocol instance 
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uses a public key encryption (a digital signature) primitive with fixed keys for several 
times then ind-CCA (existential forgery) ensures secure separation assuming that the 
calling protocol instance takes care of keeping the corresponding plaintexts  
(documents) different (e.g. by inserting appropriate nonce values). Note, keeping the 
input to the “common” functionality different, is analogue to the JUC (Joint state UC) 
technique (we return to JUC in subsection 2.5).    
 
For an example of application, we refer to [18] and [19], where such primitives were 
used in realization of several different secure routing tasks.   
□ 
  
2.1.2. Simulation failures and solutions 
 
In nutshell, the UC approach is a security assessment where security is defined by 
emulation of an ideal process. The real power and unique advantage of the method is 
the assurance of secure composition with arbitrary protocol. Technically, the essence 
of the security proof is the construction of the simulator, usually, a black box 
simulator.  
 
It may happen, that we construct a seemingly secure protocol for a cryptographic task, 
however, we fail to carry out the simulation (excluding the case, when the simulation 
can be done just we failed to find it out). The proof may stuck by a commitment 
problem, when at some step within the run of an instance the simulator has to produce 
a real value c in vain of some necessary information d (e.g. secret key, plaintext etc.), 
such that value c remains acceptable for a PPT distinguisher even when the missing 
information d becomes known at some time later.  

 
Obviously, if information d uniquely determines value c then this problem cannot be 
resolved. This is the case of deterministic functions, for instance, usual hash 
functions, where the simulator commits to a hash value c without knowing message d.  
 
However, if simulated value c is a (realization of a) random variable with a p.d. which 
cannot be distinguished by a PPT distinguisher from the real value (real random 
variable) even after getting access to d, then the simulator solves the problem. Indeed, 
the probabilistic approach and the corresponding indistinguishability tasks are at the 
heart of this simulation-based definition of security.  
 
Taking a general view of this simulatability problem, at one side of extremes, we find 
the deterministic function (e.g. deterministic hash function), on the other side the 
random function (e.g. public random oracle). In the middle, we find pseudorandom 
functions (e.g. semantically secure public key encryption function). The most 
randomized functions (n bit to n bit random functions with uniform distribution over 
the total output space) provide trivial possibility for simulation; without knowing the 
input we can choose randomly any n bit long string.  
 
The two main causes of simulation failures are the following: 

• a too strong ideal functionality (e.g. an ideal functionality corresponding to 
usual hash functions [6] or key exchange functionality [12]) 

• adaptivity (especially, full adaptivity) of the adversary   
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The first problem with a strong ideal functionality can be remedied by the relaxation 
of the definition. This may mean, for instance, leaving a fully symbolic deterministic 
model and allowing tolerated impairments or supporting the simulator with carefully 
chosen additional information.  
 
In the case of adaptive adversary the simulation process is divided in time by a 
corruption event into two stages: during the first stage honest protocol messages has 
to be simulated without having access to the corresponding secret/unknown stuff, 
while after corruption all protocol messages simulated in the first stage must remain 
consistently looking in the view of a distinguisher after getting access to 
secret/unknown information (e.g. for a black box adversary in base UC, or for the 
environment, in case of shared functionalities in GUC).  
 
Relaxation of the ideal functionality 
 
A completely symbolic ideal functionality provides no additional information about 
the content of a message to the adversary just as much as it was known by it a priori 
(i.e. the space from which the element may come from, the bit length of the message 
or of its parts, etc.).  Here the knowledge of the adversary (the simulator) of the ideal 
system about an “observed” element is just that it is an arbitrary element from the 
space of ciphertexts, plaintexts etc. With such knowledge, we cannot expect that the 
simulator is able to simulate the corresponding actual real message which comes from 
a subspace according to a probability distribution D unknown by the simulator. In 
other words, according to its knowledge, the simulator’s best action is a uniformly 
random selection from the total space, which if it can be distinguished from a sample 
from D, the simulator fails to accomplish the actual simulation.  
We have to help the simulator to make him possible to access random samples from 
distribution D. Such a help can be provided by primitives with appropriate properties, 
like non-committing public key encryption [9] or adding an appropriate interface to 
the ideal functionality like a non-information oracle [12].  
In order to provide UC-security against adaptive adversaries we have to use such 
methods. 
    

Example 3 (non-information oracle): The ideal functionality of key exchange KEF  
([12]) was too strong to allow simulation in UC framework and the authors weakened 
this ideal functionality by adding a so called non-information oracle to it. The authors 
referred to the problem as a “technical loophole” of the general approach of security 
by emulation of ideal functionality.  
Here we propose a little bit different view of this problem:  
Rather, KEF  was too strong with respect to modeling the capabilities of the adversary 
appropriately, in other words, with respect to tolerable imperfections. The information 
gained by - even a passive - (real) adversary is not only the bit-lengths (the length of a 
ciphertext), because he sees a sample from a probability distribution D determined by 
the corresponding cryptographic primitive (which is more than assuming a uniform 
distribution over the total space of ciphertexts). 

The ideality should not be expressed by denying access to information about 
distribution D and denying just the access to any information about the secret 
information underlying the sample of distribution D (by PPT algorithms).        

Such an event is the result of the not-comparability of specifications by the 
two approaches, in particular, the strong ideal functionality and it is not a 
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consequence of some inherent technical problem (“weakness”) in the simulation 
approach.       
□       
 
 
It has been mentioned above that deterministic functions (like usual hash functions) 
cause simulation failure in corresponding commitment cases. The next example refers 
to randomization together with relaxation of ideal functionality in order to resolve this 
simulation problem:  
   
Example 4 (hash function): In [20] the following ideal properties i-ii.) of hash 
functions were relaxed by verification property iii.), where  
i.) Ideal collision freeness: _ ( ) _ ( ')r hash m r hash m=  →  m= m′ for all m, m′, 
ii.) Ideal secrecy: If we have a new hash value h of message m and we want to find 
information about the hashed message we cannot do better than forgetting about h and 
just relying on the verification oracle mI  by invoking it with guessed messages 
polynomial many times, 
and  
iii.) Verification capability:  Only those users are able to verify (re-calculate) a hash 
value in the knowledge of the corresponding message, who are included in a set 
(Vset).  Vset is determined by the sender of the hash value.  
 
This ideal function can be realized in the standard model of cryptography (in 
particular, without relying on random oracles): 
(Theorem 2, [20]): The symbolic system with ideal r-hash model is securely 
implemented in the real system with the real r-hash primitive (Definition 2. [20]) in 
the sense of BRSIM/UC in the standard model of cryptography, assumed that honest 
users authorize only honest users to carry out verification.  
□ 
 
Sometimes, we have to incorporate tolerable imperfections into the ideal 
functionality, where tolerable imperfections model those attacks that are unavoidable, 
or too costly to defend against, and hence, we tolerate them. 
 
Example 5 (tolerable imperfections):  
In case of anonymous communication [22], if actually there is only a single active 
sender and its transmission cannot be hidden (tolerable impairment) then sender-
anonymity, obviously, cannot be guaranteed for a message on the corresponding 
communication link and without dummy packets it cannot be guaranteed at any other 
point of the system observable by the adversary. Indeed, the anonymity requirement 
must be coherent with the set of tolerable imperfections.    
□ 
 
Different setups included also into the ideal system can also be considered as a 
supplement to the ideal functionality. This way the potential for realizability of 
cryptographic tasks are increased even against strong adversaries, in particular, a full 
adaptive adversary. In this class of setups we find practically/theoretically useful 
shared functionalities e.g. CRS, ACRS, KRK etc.     
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 Special primitives 
 
Technically, the essence of security assessment in UC framework, is to find an 
appropriate simulator. A black box simulator translates abstract objects handled by the 
ideal functionality into real bit-strings for the real adversary. In the view of the real 
adversary such a simulated view should be indistinguishable from the real one he sees 
in the real system. The interesting problems for such “translation” are those when the 
simulator is in vain of information and as a consequence, it gets stuck in a 
commitment problem. Informally, the ideal functionality describes the guarantees in 
“information theoretical” terms (like a party knows, does not know or partially knows 
some information) and the question is the ability to reproduce these security 
guarantees in a PPT environment.  The success of this “translation” effort is supported 
by special primitives.      
 
Example 6:  
 
Passive adversary: 
A typical case of simulation failures happens when the simulator has to produce a 
ciphertext c without knowing the corresponding plaintext d.  If the (real) adversary 
has no access to the corresponding decoding key, a semantically secure (ind-CPA) 
encryption will do the task: this is the technique of public key encryption of dummy 
plaintexts. If, sometimes later, plaintext d becomes known the real adversary will not 
see the simulated ciphertext inconsistent. This is the case, when protocol parties are 
honest and the (real) adversary is passive (i.e. sees the bits transmitted over – non-
private - communication channels). However, if during the run of the instance or later 
on, the party, in the name of which the simulator produced the simulated ciphertext, 
becomes corrupted and the adversary gets access to the decoding key, the above 
simulation trick collapses: the adversary trivially compares the dummy plaintext to 
the real one. 
 
If the parties are trusted to erase records of their states, even adaptively secure 
computation can be carried out using known primitives. However, this total trust in 
parties may be unrealistic in many scenarios and then special primitives are needed. 
 
Adaptive adversary/UC: 
In the (full) adaptive case, it makes a big difference of how the adversary/ 
distinguisher gets access to the secret stuff during the run of the instance:  

If it happens only via the mediation of the simulator, then the simulator may 
cheat, relying on the approach of indistinguishable random substitute. This is the 
typical case in base UC setup. Probably, the best example is the non-committing 
encryption [9], which makes possible that after a corruption event, the simulator 
becomes able to come up with a decoding key consistent with the simulated ciphertext 
and plaintext.   
 
Adaptive adversary/GUC: 
However, if even the environment (distinguisher) Z has direct access to the secret 
stuff within a corrupted element, like in the case of corrupted shared functionalities, 
then considerably less room remains for disguising tricks for the simulator. Clearly, 
there remains no room for tricking with substitution of the corresponding real secret 
key similar to mentioned above.  
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The special case, when the protocol for a cryptographic task needs only 
encryption operation without the need for decoding by using a secret decoding key, 
allows some room for successful simulation even in case of GUC and even in case of 
adaptive adversaries. Such a cryptographic task is a bit commitment problem, where 
the “decoding” operation is the opening of the commitment, when the committer 
simply shows up a simulated committed value. The simulator prepares to a corrupted 
verifier by producing commitment with – so called - equivocal property. In general, 
equivocality means that a simulated object can fit to different input values (or sets of 
such vales) indistinguishably. An example for a corresponding primitive is a public 
key encryption which maps into the space of ciphertext indistinguishably from a 
mapping and produces randomly chosen ciphertext (PRC-CCA, Pseudo-Random 
Ciphertext, [7]).  
□ 
 
Impossibility and realizability results 
 
An important advantage of the UC framework is that in this rigorous model general 
impossibility/realizability results can be proved. At first glance, it might seem that 
such results are at the far end of theoretical interest, however, it is not so: these results 
have considerable practical value: 

An impossibility result says that under the corresponding assumptions (model 
scenario) an UC-secure realization is not possible. The model scenario consists of the 
security assumptions about the underlying communication channels (e.g. raw channel, 
authenticated channel, secure channel), assumed setups and trusted third parties, 
assumed ideal algorithmic components (subroutines) and the level of adaptivity of the 
adversary. For instance, in the assumed setups, “out-of-system” pre-distributed shared 
keys or other physically supported security ingredients are also included. Different 
sets of assumptions also mean different cost and efficiency/complexity. From 
practical point of view all these components could be traded-off.      
 
 
2.2. Adaptive adversary 
 
The UC approach essentially exceeds the capabilities of traditional approaches in the 
fine grade modeling against adaptive adversaries. As it was already mentioned above, 
the complexity of the design, and the analysis as well as the complexity of primitives 
for secure realization jumps when we switch to full adaptivity, especially, together 
with shared functionalities (causing dependent states for concurrent instances). 
 
Therefore in concrete applications we have to analyze the level of adaptivity of the 
imagined adversary carefully, together with the possible non-algorithmic procedures 
to limit or decrease the necessary level of adaptivity.   
 
Example 7 (cost of adaptivity):  Achieving UC/GUC security against full adaptive 
adversary, typically, costs a lot in terms of complexity/efficiency (if we can show a 
proof at all). Facing such a task, we should think it through thoroughly if an adversary 
is really able to attack during the time window of an instance in an adaptive way with 
non-negligible probability.      
□ 
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Example 8 (quasi-adaptivity):   
Papers [18], [19] provide the first provably secure routing protocols in the UC 
framework. The proof uses the composable cryptolibrary of Backes, Pfitzmann and 
Waidner [4].  
 
For instance, consider the case of source routing: the initiator of the route discovery 
process generates a route request, which contains the identifiers of the initiator and the 
target node, and a randomly generated request identifier. Each intermediate node that 
receives the request for the first time appends its identifier to the route accumulated so 
far in the request, and re-broadcasts the request. When the request arrives to the target 
node, it generates a route reply message. The reply message is sent back to the 
initiator on the reverse of the route found in the request. 
 
Here we propose the notion of quasi-adaptivity, illustrated for this application. We 
restrict the full adaptivity by assuming that when certain subroutines are running the 
adversary does not carry out adaptive attacks. In the application example, we assume 
that the adversary which does not adapt during the run of an instance of a 
cryptoprimitive (e.g. digital signature) run by a node; it has to make its decision about 
the corruption of a node before the node starts processing an incoming protocol 
message. Assuming such an adversarial model, we allow adaptivity and at the same 
time we can use non-special primitives, which are need to be secure only against a 
static adversary.     
□  
 
The task of identification and authentication 
 
An authenticated channel provides double security services: integrity protection and 
party identification. These two services are independent; both of them can be realized 
without the other. We can share secret keys with a party without knowing his identity 
and using these keys we can realize integrity protection. However, if these secret keys 
are pre-assigned by some trusted out-of-system approach, we might know the identity 
of the party, we share keys with. In this latter case, the success of integrity protection, 
implicitly, provides also identification. In general, secure identification assumes a 
trusted third party which provides some kind of registration service.           
  
Almost all known results for UC-secure realization of different cryptographic tasks 
assumed (were proved in) an authF -hybrid model. Assuming the existence of 
authenticated channels can be visualized as follows: two remote parties, who 
“personally” know each other, “talk” as if they were within line of sight and hearing 
distance, potentially together with the adversary within line of sight and hearing 
distance. Such an elimination of remote communication illustrates its independence 
from the core of the particular task, which - in the above analogy – is a security 
problem the “talking” parties, who may not trust each other, want to solve.           
 
A results in [24] shows that authF can only be realized against static adversaries (under 
pre-assigned shared keys or under krkF - hybrids). It follows that physically 
authenticated channels has to be available, if we want UC-security against full 
adaptive adversaries:  



 11

We cannot eliminate or get around the out-of-system physical/procedural 
security assumptions. 

The informal reason is the following: here we have to work directly over bare 
channels, and therefore the secret keys has to be deployed in straightforward way via 
authentication checksums to protect the transmitted bits against manipulation by an 
adversary. Note, a receiving party has to be able to check the authenticity of each 
message it receives – even the first -, and the only possibility for the transmitting/ 
receiving party is to use secret information.  

Secure identification is implicit in authenticated channels. Some kind of 
registration service includes the out-of-system procedures of secure identification; let 
it be, for instance, a communication node or a person. The point here is that there 
always exist out-of-system physical/procedural components which cannot be 
eliminated or substituted by pure algorithmic methods.  
 
By a conjecture of Walfish ([24], p.103), it is “impossible to realize authF with a 
forward secure protocol even if erasures are allowed”.  Here we return to this 
conjecture. 
 
Proposition 1:  In the model defined above, we confirmed the conjecture of Walfish 
([24], p.103) about the impossibility of forward secure realization of authF  even if 
erasures are allowed.  
 
Proof: (Sketch) 

Because,  idF  can (trivially) be realized over authF -hybrid, it is enough to 
consider the conjecture for idF . Consider the following (real system) model for 
identification: 

We take it plausible, that it is necessary for a party of an identification 
procedure to have a unique public identifier and a related secret element/key k, 
generated by algorithm KeyGen.  

Assume a two-party identification scenario between parties B and C, where 
party B authenticates to party C. During this authentication, party C receives (in one 
or more steps) bit-string ( , , , )B C BI r r k pub (=i), where algorithm I is public; Br  and Cr  
are temporary random elements generated by party B and C, respectively; Bk  is the 
unique secret element of party B; pub is public information (e.g. public identifiers, 
public keys etc.).   

C runs a public verification algorithm V with input (I, Cr , pub). Assume, after 
the run of an instance, honest parties erase temporary internal state elements, here, 
random elements Br  ( Cr ).  The adversary gets access to value i.   
  Assume (KeyGen, I, V) provides static security. In particular, to support the 
simulation of honest party B, we assume, that the distribution of samples 

(1)
1 1 2( , , , )i I r r k pub=  and (2)

2 3 4( , , , )i I r r k pub=  are indistinguishable for a 

distinguisher, where (1)k , (2)k are two different outputs of KeyGen, ( 1 2 3 4, , ,r r r r ) are 
independent random input elements and all these inputs are unknown by the 
distinguisher. Assume, however, if in the above task, the distinguisher gets access also 
to key (1)k , he becomes successful with non-negligible probability.  
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Having defined the real system, assume, the adversary compromises party B 
after the run of the instance of the protocol and gets access to Bk .  

Forward security cannot be achieved, because, as soon as, the adversary gets 
access to the real key, he is able to distinguish a simulated transcript from a real one. 
Note, there should exist such a distinguishing algorithm, otherwise, anybody could 
impersonate the party successfully without knowing the secret information.      
□ 
 
 
2.3. Setups: theoretical or practical? 
 
Circularity of assumptions   
 
Without appropriate setup assumptions most cryptographic tasks are unrealizable. 
There are practical and theoretical setup models. For example, PKI/ KRK (Key 
Registration with Knowledge) and “weak” PKI (“bulletin board”, “bare public key”) 
models can be considered practical. However, the primary role of CRS and ACRS 
setup models is to find the minimal setups under which most cryptographic tasks can 
be realized against certain level of adaptivity of the adversary, and these setup models 
are first of all of theoretical interest.  

The “simplest” setup is the CRS (Common Random String) [7].  In the UC 
framework, parties of an instance are able to obtain a common random string chosen 
from a distribution D, which is public in the sense that it is known even by the 
adversary; however, it is not available for other instances. In the GUC framework, it 
is known also by the environment, which technically means that the string must be the 
same in the real and the ideal system.  

If we are thinking about realizability of such a setup, one of the problems is 
the guarantee for authenticated channels between the parties of the instance and the 
setup: indeed, realization of an authenticated channel itself needs a setup, stronger 
than CRS. Resolution of such circularity of assumptions can only be done by 
involving out-of-system methods “to cut the circle”, for instance, physically ensuring 
the existence of such channels. In this sense, the use of such a theoretical approach is 
questionable if finally we want to see a realization fully over bare model. We can 
arrive to similar conclusion with the stronger theoretical setup, the ACRS [14].  
 
 
Dependence of protocol layers via setups: an internal shared functionality model 
 
In global UC, instances of the same or different protocols may have dependent state 
via the shared setup functionalities. Here we propose an internal shared functionality 
model. 

Consider the case when different layers within a protocol would like to use 
common functionality (a shared instance of it). The composition technique (i.e. freely 
“plugging in” a UC-secure subroutine realization) is supported if the corresponding 
layers call independent instances of the shared functionality (e.g. independent pre-
assigned keys, independent instances of cryptographic primitives). Independence at 
different layers is a clear cut assumption. In spite of that, here arises the following 
question: Could we use a “master” functionality, which could serve different layers 
(like a JUC functionality serving several instances of a protocol)?   
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Consider a protocol instance with two layers and with common functionality 
(Fig.1). We want to plug-in the ideal or the real subroutine interchangeably into the 
lower layer, i.e. in an indistinguishable way in the view of the upper layer. Because 
both layers have access to a common functionality, this scenario resembles the global 
UC setup, where the environment (here played by the upper layer) has access to a 
shared functionality both in the ideal and the real system (which models that arbitrary 
protocols can use a functionality PID-wise).  

To strengthen such an analogy, imagine an attack scenario and implementation 
circumstance, where an adversary is able to launch attack against a protocol by 
HW/SW modules.  

Following the GUC-analogy, we might require that a realization of the lower 
layer should be “GUC-secure” by the actual common functionality/setup. The 
advantage of such a relationship, in general, could be that, we might profit from those 
analogous results, e.g. realisability/impossibility results.  

 
 

π1 

π2/F2 

Shared 
functionality 

           

π2/F2 Shared 
functionality 

Environment (π1) 

 
Fig.1: An internal shared functionality model 

 
Proposition 2: Internal shared functionality model is proposed, which provides the 
potential to apply known results of GUC-approach in the analysis of shared-
functionality dependent protocol layers.  
 
 
2.4. Instance separation  
 
An UC-secure realization of a cryptographic task offers 

• secure separation of instances   
• simulatability of the message flow for honest and corrupted cases during the 

“stand alone” analysis 
 
Instance separation means the interaction-proof property between the target instance 
and other instances of the same or other protocol: a corresponding attack by an 
adversary results in the abort of the target instance sometime during the run. Once the 
instances are securely separated, the analysis is reduced to the examination of the 
target instance, where the adversary is restricted to use only the information it can get 
from the messages of the target instance together with the state of parties in case of 
corruption.     
 
Separation plane 
 
We can visualize a “separation plane” as an X xY = concurrency x time plane, with   
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X axis: separation from concurrent instances of any protocols, 
Y axis: separation from past instances of the same protocol.  
Along the Y axis we can consider attacks in both directions in time:  

• from past to present (e.g. CCA-security, existential forgery),  
• from present to past (forward security) 
 

(1)
iP  

(1)
jP  

(2)
kP  

(1)
lP  

(1)
mP  

Concurrency 

Time 
 

Fig. 2: Concurrency x time plane 
( ( )m

nP is the n-th instance of protocol ( )mP ; (1)
iP is the target instance ) 

 
An interaction-proof property of protocols 
 
By the paradigm of secure emulation an adversary is successful if he is able to distort 
the output in a distinguishable way; the (total) output of the implementation as a 
random variable is different from the same in the ideal system. Consider a conscious 
adversary with an aim, which is not just distorts the output in arbitrary way, but in 
some controlled way. Such a control is modeled by a general relation R on UxU, 
where U is the output space. Such an adversary is successful, if there exists a relation 
R, such that, the adversary is able to distort the output, according to R, with non-
negligible probability.  

Report [23] suggests a game-based definition for interaction-proof property of 
protocols. The best known attack type against secure separation of instances is the so 
called interleaving attack.  Assume a general cryptographic task and an 
implementation π (see Fig.3). Assume, that a restricted, stand alone attack against π 
cannot be successful in the sense of emulation of an ideal process (shortly, protocol π 
is “stand alone secure”). Here, the stand alone assumption is meant over the total 
separation plane, i.e. the adversary has no access to any information, in addition, what 
can be exploited from a single instance, neither from past nor from concurrent 
instances. Our intention with this model is to exclude that an implementation intended 
to be used in public network environment is so weak that it is not able to achieve the 
security goals even when it is running completely separated from the outside world. 
This assumption is modeled by ind-secure realization of the ideal functionality by a 
stand alone system (relationship (2) in Fig. 3).  

The game-based definition is proposed for interaction-proof property of 
protocol π corresponds to relationship (1) in Fig. 3 (“R-secure”). This relationship is 
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expectedly more stringent than ind-security followed by the UC approach, i.e. in 
general, it requests stronger security guaranties from realizations.  
 
   

Stand alone system 

Ideal-system 

ind-secure (2)
ind-secure (3)

Real-system-2 

R-secure (1) 

Real-system-1 

 
 

Fig. 3: Interaction proof property 
 
Conjecture 1: Consider a “conscious adversary” and a protocol π, which is 
interaction-proof (by definition of [23]) as well as “stand alone secure”.  We expect, 
by this way, we can define stronger security guaranties while keeping the definitional 
strength of the ideal functionality.  
 
 
JUC 
 
In case of JUC, the same instance of a shared functionality serves several instances of 
the same protocol: instances accessing the common functionality (in the ideal model) 
are separated by ssid’s (sub-sid). These ssid’s are prepended to the input sent by the 
instance to the instance of the common ideal functionality (having session identifier 
sid). In other words, the inputs sent to the common functionality are forced to be 
different. For example, JUC encryption/digital signature realization for message m is 
done by encryption/digital signature on extended message m’=[ssid,m].  

By this way, the ideal functionality implies that any realization (of this 
common functionality) must be able to separate messages securely with different 
ssid’s (shortly, “JUC-secure” primitive). On the other hand, in security game 
definitions of cryptographic primitives we require the requests (inputs) to the oracle to 
be different (from each other and from the target) during learning/testing actions. Let 
this distinction of inputs be realized by a unique string (like an ssid) prepended to the 
message.  

A further parameter is also underlying both these approaches: we can 
distinguish different “attack classes” reflecting the strength of the adversary, like CPA 
or CCA attacks.   Shortly, we refer to the security by game approach (per attack class) 
“game-secure”. The (JUC) approach is analogue to “game-secure” solutions, when we 
consider the secure separation along the time (Y) axis (Fig.2).  
 
Proposition 3: “Game secure” primitives provide “JUC-secure” implementations (per 
attack class). 
Proof: Straightforward from the meaning of “game secure” and “JUC-secure” detailed 
above.  
 



 16

3. The traditional sound design guidelines for protocols and the UC 
approach 
 
The general questions for this chapter are the following:  
Can traditional sound design guidelines for protocols guarantee an UC-secure 
realization of a cryptographic task?  What an extent, if not completely?   
 
Recall the traditional design guidelines comprise the following main issues: 

• definition of a security goal (e.g. “which party what will know at the end of 
the run”) 

• adversarial model (passive, active etc.) 
• universal guidelines (because of such universality, these guidelines are 

expected to support security of realizations also in the UC framework)  
 
 
3.1. Security goals  
 
Example 9 (traditional security services of key exchange): The set of security features 
of traditional key exchange protocols, for setting up a fresh symmetric session key, 
are the following: implicit key authentication, key confirmation, explicit key 
authentication, freshness of keys.  
“Implicit key authentication” means that a party can be sure that only the assumed 
remote party (and also the trusted third party if there is such) can have access to the 
key. “Key confirmation” means that the remote party confirms the possession of the 
new session key. “Explicit key authentication” is “implicit key authentication” 
together with “key confirmation”. “Key freshness” means that a party is sure in the 
freshness of the key.  
   
In comparison, consider ideal functionality KEF  ([12], Fig.7, p.29):  

• KEF  guaranties (in the above terminology) explicit key authentication and key 
freshness  

• in addition, KEF  defines the case of corruption: if corruption happens during 
the run of the instance (neither party is aware of the session key, yet) then the 
adversary sees the session key, otherwise, i.e. if corruption happens after the 
run has been finished, the adversary obtains no information about the key 
(forward security)   

□ 
   
The traditional approach of security definition of a task requires correctness and 
secrecy. Correctness means (in terms of simulation based approach) that at the 
interface of honest users the outputs in the real and the ideal system are 
indistinguishable (S1 in Fig.4). Correctness is connected to the security goal approach 
of traditional specification (usually defined by a set of security requirements). Secrecy 
means that the adversary does not learn anything more in addition to the information 
it can obtain from corrupted parties (S2 in Fig.4).  
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Z

Adversary Protocol 
parties 

S2 S1 

 
Fig.4. Interfaces to the environment from the adversary and the protocol parties 

 
In contrary, in the UC approach, the so called global output ([S1|S2]) is considered, 
which is a random variable that consists of the concatenation of the outputs of honest 
parties and the adversary (compromised parties are incorporated into the adversary). 
The point is the following: security goal may be fulfilled without the 
indistinguishability of the global interface. This implies that security provided by the 
UC-approach is stronger than the traditional.  
 
Example 10 (security goal vs. emulation of global output): Consider a session key 
agreement protocol between parties B and C over secure channel: 
 
1. B→C: k1 
2. C→B: k2 
3. B, C:  k=k1+k2 
 
where ki is binary n-bit string and “+” addition is  XOR.  
S1: Correctness: honest parties output the “correct” value, i.e. the XOR of the random 
n-bits generated by the parties (honest or corrupted).   
S2: Secrecy: (in this case trivial); the adversary (passive/static) does not learn anything 
more from the run than what can be learned from the information received by the 
corrupted parties (inputs/received messages).  
 
The adversary freely communicates with environment Z, so at interface S2, we can 
assume that the adversary outputs the random n-bit, which a corrupted party 
“generates”. Say, party C becomes corrupted and the adversary outputs k2 at interface 
S2. The honest party outputs k at (service) interface S1 (e.g. key exchange is a lower 
layer in a protocol, which serves an upper layer). Consider the random variables U 
and V at interface S1 and S2, respectively, i.e. in our case U=k and V=k2.  
 If the adversary passive or static, then random variables U and V are 
independent: ( | ) ( ) 1/ 2nP U u V v P U u= = = = = . However, if we assume an adaptive 
adversary, he is able to set session key k to an arbitrary value by choosing k2 
appropriately. For instance, by setting k to all zero bits: 1( 0 | ) 1P U V k= = = . 
 For a fair comparison, recall, that in traditional approaches only passive 
adversary and at most static corruption used to be assumed.     
□ 
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3.2. UC analysis of designs and the technique of hybrids 
 
The most important advantage of the approach of “security by emulation of an ideal 
process” is the composability; i.e. the guarantee of secure functioning of an UC- 
secure element when it is invoked by arbitrary protocol. A closely related design and 
proof technique is the technique of hybrid protocols. The technique of hybrid 
protocols can be considered as a decomposition of the original task into sub-tasks, 
where sub-tasks can be as granular as cryptographic primitives.  
 
Example 11 (chain of hybrids/sequential composition): 
Sometimes, bigger protocols have a serial structure, where the protocol can be 
decomposed into a chain of parts corresponding to sub-tasks, where each sub-task in 
this chain assumes the security of the previous elements along the chain. For example, 
in case of a traditional protocol for secure two-party communication: 
 
1. Initialization (pre-assigned information/setup) - initF  
2. Party authentication (A) - 1F  
3. Key exchange (K) - 2F  
4. Secure channel (S) - 3F  
5. Secure communication (C) - 4F   
 

initF  → A/ initF  → K/( 1F , initF ) → S/( 2F , 1F )  → C/ 3F   
 
The aim is to break the analysis of the protocol into the analysis of the element of the 
chain of hybrids.  
□ 
 
Looking at the chain of hybrids in Example 11 one might feel an analogy from the 
probability theory: the conditional probability. Let’s consider just the interface 
between the protocol parties and the environment, where parties send output only as 
the last step of the protocol.  This output, modeled as a random variable, is determined 
by the local random elements of parties, the algorithm of the adversary (and its 
random elements) as well as the random variable describing the communication with 
the subroutine(s) (ideal functionalities). In this respect, the probability distribution of 
the output depends on the subroutine(s). The chain of hybrids in Example 11 is an 
analogue to the conditional distributions, where in the conditions we find (the shortest 
list of) those hybrids which determine (dependent with) the considered sub-task 
variable.    
 
 
3.3. Design guidelines  
 
The traditional (informal) sound protocol design guidelines (e.g. [1]) usually 
emphasize the 
(a) clear definition of security goals/requirements (Principles 4-9 in [1]),   
(b) explicit assumptions (Principle 2 in [1]),  
 
as well as they suggest several simple  
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(c) techniques for instance identification and separation (Principles 1,3,10 in [1]).  
 
Informally, we find obvious connections to these guidelines from the UC framework:  
(a’) definition of the ideal functionality for the considered task,  
(b’) definition of adversarial capabilities (adaptive, non-adaptive…), communication 
network (authenticated, private,…), setups/trusted parties 
(c’) an inherent feature of the UC approach is the separation of instances in 
connection with the “stand alone” analysis.   
 
We considered the comparison (a-a’) in subsection 3.1, with conclusion that the UC 
approach is more general; the traditional approach (a) is a special case. As for issue 
(b), in the UC approach the system setup is rigorously formalized not just as “static 
list” as in (b) but via precise definition of dynamic, “runable” functionalities.  
 
In [1] we find the following  guidelines  (reformulated below):  
- The (intended) meaning of each protocol message should be clean-cut (the content 
of each message should represent the (intended) meaning completely). 
- If the identity of a party is essential to the meaning of the message, then the 
identifier of the party should appear explicitly in the message.  
- It should be uniquely decidable, which instance the message is corresponding to.  
 
In the UC framework, in the ideal system the general structure of a message is the 
following:  
 
(message/command type, sid, “payload”),  
 
e.g. (sign, sid, m). sid=(A,B,…sid’) , where A,B,… identifies the parties. Each 
message is identified uniquely in the ideal system. A secure realization must 
guarantee such unique separation. (Note, this does not necessarily mean that, for 
instance, in the real protocol each and every message must contain similar sid 
element/structure).   
 
Before we show examples for these design approaches, we recall two important 
techniques for message/instance separation:  
 
“Sequence numbers” 
 
When a flow of messages is transmitted, the traditional approach is to use sequence 
numbers to separate consecutive messages within a protocol instance (usually, 
together with techniques preserving the integrity of the flow).  

In the UC approach, an instance serves the transmission of a single message 
only. If the (natural) realization uses a keyed cryptographic primitive, then from 
cost/efficiency reasons we use the same key (at least) for all messages of the flow. 
The solution is to assign a sid to the flow (the “traditional” instance), and sub-sid 
(ssid) to the single message instance. The actual cryptographic operation realizing 
such multi-session extension of the ideal functionality, should ensure the secure 
separation of the messages of the flow. (Note, ssid in itself does not imply the 
integrity preservation of the flow, it just distinguishes the messages. In this respect, it 
is not a sequence number, however, a realization could use sequence numbers, which 
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supports also integrity protection.)  We shall return to the JUC approach also in the 
examples.   
 
“Independent keys per applications” 
 
Almost the best known traditional security guidelines refer to the secure erasure of 
expired secret keys as well as the selection of independent keys for different protocols 
(usually, phrased as different applications): 
 
Example 12 (implicit authentication):  
Implicit authentication was an insecure realization practice for traditional session key 
exchange protocols: the long term encryption key (“terminal key”) is intended to 
provide also authentication for the transmitted fresh key by inserting fields into the 
message, the content of which provides known redundancy for the receiving party. It 
may happen that an actual realization is secure, however, such an approach is not 
sound: independent keys have to be assigned to the tasks of encryption and to the 
authentication. Specifically, in this case, the encrypt-then-MAC paradigm [16] should 
also be adhered to.  
□ 
 
Example 13 (session key exchange): 
The task of session key exchange is considered in this example. The modular design 
and analysis approach is demonstrated. The session key is transmitted over a secure 
channel. Secure messaging is built upon initially distributed keys. The initial key can 
be a long term pre-assigned shared key or public key (e.g. relying on krkF  setup).  
Secure messaging can be realized in one or two steps. At first, the one-step case is 
shown:  
  

initF →SMT/ initF :  
Canetti and Krawczyk [12] show a “weak” UC-secure realization of secure messaging 
against adaptive adversary over initF , where initialization means pre-assigned long 
term shared keys. The weakened version of ideal functionality KEF  relies on a non-
information oracle (recall, weakening resolves the commitment problem, which 
arises, when corruption happens). Semantically secure (ind-CPA) symmetric key 
encryption and Message Authentication Code (MAC) secure against chosen message 
attacks is used by following the encrypt-then-MAC paradigm [16].     
 
Now, consider the case, when an authenticated channel is realized first, followed by 
realization of secure messaging over authF -hybrid: 
 

initF →AUTH/ initF →SMT/ authF →KE/ smtF : 

Here, we consider a pure symmetric key approach. Pre-assigned shared long term 
keys are assumed ( initF ). Such a master key is broken into two parts, used for long 
term encryption and long term authentication, respectively. A UC-secure 
authenticated channel is built up in initF –hybrid model against static adversaries, 
where shared MAC uses long term shared key and therefore different instances access 
this primitive by JUC-technique (see e.g. Walfish [24] Th.3.5). Next, smt-channel is 
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realized in authF -hybrid model against a static adversary using ind-CPA encryption 
and JUC approach.  

Note, smt-channel could be UC-realized even against full adaptive adversary 
in authF -hybrid model using non-committing public key encryption (e.g. in case, 
when authenticated channels were guaranteed physically), however, here we wanted 
uniform assumptions against the adversary along the chain of hybrids as well as a 
symmetric key approach.  
 
UC-secure key exchange is trivial over UC-secure SMT channel. Note, the encrypt-
then-MAC paradigm is also followed.   
□ 
 
Example 14 (Otway-Rees protocol): 
Consider the following (modified) Otway-Rees (O-R) session key-transfer protocol 
 
1. A→B: A| NA        (1) 
2. B→S: A| B| NA| NB 
3. S→B: {NA| A| B| k}KAS, {NB| A| B| k}KBS 
4. B→A: {NA| A| B| k}KAS 
 
Shared long term keys are pre-assigned. In the UC-approach, environment Z chooses 
a sid and gives it to all parties of the instance. In contrary, in realizations, the sid is 
built up during the run of the instance in several steps; typically, initialized by the 
party, which sends the first protocol message, then all the others get to know it and 
contribute to the build-up of the sid, when they receive their first message. In O-R 
protocol  
 
sid=(A,B, NA,NB),  
 
where A and B are party identifiers, NA and NB are nonces, sent by A and B, 
respectively. The intention of the designer is to realize smt-channel. Assume, for a 
moment, already there exist ideal smt-channels in both direction. Over an smtF -
hybrid, the protocol simplifies to:   
 
1. S→A: k      (2)  
2. S→B: k 
 
Protocol (2) is UC-secure (over smt-channels) (the simulation is trivial). The real 
question is the security of the O-R realization of smtF .  In protocol (1) the encryption 
operations are “overloaded”: using a single encryption and the redundancy of the 
message, the designer intended to realize both an authentic and a private channel.  

Consider first the task of authentication, which, in turn, consists of two 
subtasks; party identification and integrity protection. The integrity of the message is 
checked first, and if this is successful then the step of identification follows.  

Let 2
nI V⊂  denote the set of identifiers, which are n-bit strings. Let’s assume, 

when a fake encrypted message is produced without knowing the key, then ideally, it 
decodes into a random message. Under this assumption the probability of event of 
“false accept of integrity” becomes: 
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P(false accept of integrity) = ( ) 2| | 1 / 2 nI − .   
 
For instance, for a system with 28 parties and 32 bit long identifiers this probability is 
~ 2-56. Note, we need non-malleable encryption (e.g. CCA2 secure encryption) to 
prevent the modification of the identifier behind encryption.   
 
Returning to the provable security in the UC-framework, the main problem here is 
with the double exploitation of a single encryption. The tasks of authentic channel and 
private channel are independent and formal security proof assumes independent keys, 
furthermore the design has to follow the encrypt-then-MAC paradigm.  
□ 
 
Example 15 (Needham-Schroeder-Lowe protocol): 
The Needham-Schroeder-Lowe session key protocol was analyzed in [3] using 
BPW’s approach together with the composable cryptolibrary [4]. This is a timed 
protocol and time is not modeled in cryptolibrary [4], therefore the authors of [3] 
substituted time with nonces (cryptolibrary [4] includes nonces). After such 
simplification, the protocol was proved to be secure in the BPW’s framework.  
In this public key protocol the sign-then-encrypt technique [2] securely realizes the 
sequential composition of the corresponding authentic and private channels, relying 
on PKI setup providing public key certificates.   
Security proved in [3] is essentially equivalent to (base) UC-security. In Chapter 4, 
we will return more detailed to the corresponding aspects of the BPW’s approach as 
well as to the problem of time modeling. 
□ 
 
 
4. Symbolic analysis and composable cryptolibraries 
 
Up to this chapter we considered the composable design and analysis in the 
(Canetti’s) UC-framework, where the cryptographic task was decomposed into 
subtasks and the proof went by subtasks in hybrid models. Here we go down to more 
granular cryptographic building elements, to the level of cryptographic primitives. In 
this chapter we consider the corresponding BPW’s approach and provide comments to 
its relationship with the UC-approach.   
 
 
4.1. Analysis in the BPW’s framework 
 
When we analyze a protocol by the BPW’s approach, the real cryptographic 
primitives are substituted by ideal primitives using the composable cryptolibrary. If 
the protocol contains only library primitives, then such a substitution results in a 
deterministic, symbolic protocol, where cryptography (with randomness and 
computational complexity assumptions) is completely eliminated.  The next step is to 
show that for honest parties this deterministic protocol provides the security service 
according to the security goal against. The elimination of the cryptographic details 
largely simplifies the proof of simulatability at the service interface and opens the 
potential for an automation of the analysis. Using the terms of Section 3, by the 
elimination of the real primitives we arrive to a hybrid protocol.  
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Note, the output at the service interface, which is checked by the analysis, is only a 
part of the global output. One might miss mentioning the interface between the 
environment and the adversary in this sketchy description of the analysis: black box 
simulation is carried out, where we have to define a simulator, which “translates” 
between the ideal primitives and the real adversary in an indistinguishable way for the 
real adversary.           
 
The technique of invariants is a valuable tool in proving the security requirements on 
symbolic protocols.  Invariants of the symbolic system are statements about the state 
of the symbolic system which hold at all times in all runs of the system. When 
proving the invariant, we prove, that if an invariant holds at time t in a run of the 
system it will still hold at time t+1 (one time unit is needed for the system to make 
one step). For the application of the BPW’s framework in the analysis, we mention 
[18], [19] for secure routing protocols, [22] for secure anonymity protocols. Non-
malleable public key encryption within BPW’s framework is discussed in [21]. In 
[20] this terminology is used for the definition and analysis of an UC-secure hash 
function.   
 
 
4.2. The Canetti’s and the BPW’s approach 
  
BPW’s approach is essentially equivalent to a base UC approach of Canetti. In the 
BPW’s approach, different instances of the same or different protocols use common 
primitives. There is a common public key encryption/decryption primitive, a common 
digital signature primitive etc.  
 
The ideal model of a primitive differs from the Canetti’s style (UC) of ideal 
functionality, which describes the functionality of a single instance. At the level of the 
main protocol, which uses different primitives once or several times during an 
invocation, all the primitives are turned into their ideal model resulting in a multi-
hybrid protocol.  The main entity in the ideal system is called trusted host (TH). TH 
starts running with the first invocation of an instance of the protocol. TH runs the 
multi-hybrid protocol; receives commands to different primitives and “forwards” 
them to the ideal model of them; stores all the usages during the lifetime of the 
protocol together with all the corresponding items.   

In the BPW’s ideal model of a primitive the whole history of its usage is 
stored.  In the UC approach, session identifiers separate the instances. In the BPW’s 
approach the access to the cryptographic objects (produced during the run and stored 
in the trusted host (plaintexts, keys etc.)) are controlled by so called handles. Those 
participants, which have a handle (to a stored entry corresponding) to a secret key, 
have access to the given key and are able to do decryption. If an adversary corrupts a 
party then it inherits all the handles of the party.  

 
Figure 5 illustrates the access to a common ideal functionality of a cryptographic 
primitive (ρ) by two different instances ( 1π  and 2π ) of the main protocolπ . The 
common functionality ρ stores the history of all of its invocations.  Figure 6 illustrates 
the corresponding UC (JUC) approaches. Each main instance ( 1π as well as 2π ) 
invokes its own, independent instance of ρ in case of (base) UC. JUC arrangement 
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shows some resemblance to Figure 5 by the common access to an extended ideal 
functionality ρ , however, here sub-sid’s separate the different invocations and within 
ρ separate ρ-instances are “running”. This hierarchical structure of sid’s in the UC- 
approach cannot appear in the BPW’s approach, where handles are “PID-associated” 
and not “instance-associated”.  
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Fig.5: Trusted host in BPW’s approach 
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From an application point of view, the main conceptual difference between the two 
approaches is the following: 

• in UC the aim is to reduce the task of the definition/design/analysis down to a 
single instance to make the approach (the proof of simulatability) as simple as 
possible;  

• in the BPW’s approach the aim was to transform the protocol (safely, i.e. in a 
cryptographically sound way) into a version which is amenable even for an 
automated analysis by eliminating all computationally secure elements 
(cryptographic primitives) and arriving to a purely deterministic (hybrid) 
protocol.  

  
Nevertheless, it seems that the BPW’s trusted host (“all-in-one”) model carries the 
possibility to bring it closer to the UC’s single instance approach: 
 
Let’s consider a target instance and extract (by appropriate indexing) all its references 
from the database of the TH and, by this way, separate the database entries of the 
target instance from all the other (past or concurrent) instances (e.g. in Figure 5, 
entries corresponding to PIDs Aj…Al). The access control approach (implemented by 
handles) in the BPW’s ideal models simply define the expected secure separation of 
“items” coming from the target instance and all other instances, as well as separation 
of “items” within the target instance. Informally, by this way, we avoid unwanted 
interaction between different instances potentially induced by the adversary. This 
observation is formed as:    
 
The BPW’s trusted host model involves the single instance approach by appropriately 
sorting the entries stored in the trusted host.   
 
BPW’s approach provides an essentially equivalent UC assessment. From an 
application point of view, it arises also a corresponding question: How much we 
loose, if we analyze “just” at (base) UC / BPW level instead of GUC? 

Assume we have a shared functionality used by our protocol, but instead of 
GUC we do the analysis in UC framework. Recall, the special advantage of the GUC 
approach comes ahead in case of full adaptive adversary. In case of static adversary 
there is no difference between the usefulness of the two approaches.  
 
 
4.3. Analysis of timed protocols: “random-time” server 
 
Example 15 mentions the analysis of modified (weaker) Needham-Schroeder-Lowe 
session key protocol in BPW’s approach, where time was substituted with nonces.  
 
Note, time can be considered as a special shared functionality T in a GUC approach. 
The i-th sample is not taken (independently) from a distribution (like in case of CRS), 
but from a space [ , )it ∞  of real numbers, where 1 2 ... it t t< < < . If within an instance, 
there are m time elements (1) (2) ( )... mt t t< < <  then the sid of this instance is 
(essentially) (1) (2) ( )[ , ,..., ]mt t t .  
 
Those protocol messages, which carry also time elements are (expectedly) secured by 
authentication/encryption. If such a message is involved in commitment during the 
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simulation (of honest messages), then it is necessary to place the time elements 
correctly into the message to escape a simulation failure during corruption. This can 
be done for instance in case of public key encryption, but surely not in cases, when 
the key stuff is not available for the simulator (e.g. symmetric key primitives; 
encryption, MAC or digital signature). Note, however, there is a more fundamental 
problem with (real) time as a shared functionality: the ideal system should run in time 
synchrony with the real system. Indeed, environment Z as a distinguisher, which has 
access to the shared functionality of time, should not be able to distinguish timing 
incoherence between the run of the two systems.   
 
Therefore we give up some of our ambition (with global time) and we try to remain 
within the UC framework. We reinforce this similarity: assume a “random-time” 
server (RTS), which on a request replies with a “random time”, which is accessible 
only for the parties of the given instance.  The timed protocol modified (weakened) by 
relying on RTS setup instead of real time functionality T, similar to substitution by 
nonces ([3]) referred in Example 15, however, here we placed the problem in a 
somewhat wider picture.  
 Summarizing the above ideas, we conjecture that:  
 
Conjecture 2: 
(a) Timed protocols cannot be analyzed in the natural model of global time as a 
shared functionality.    
(b) Within the UC framework, the natural way of analysis is in the “random-time” 
server (RTS) setup.  

Note, only a weakened version of the protocol can be analyzed this way. We 
drop essential properties of time and loose valuable information: the comparison of 
different samples (earlier/later) and the (time-) distance between different timed 
events.    
 
The roots of the problem are deeper then just an “UC or GUC” debate:  
(c) The problem with functionality T is a special case of dependent sampling from a 
distribution (i.e. instead of independent sampling).     
 
Note, RTS shows some resemblance to the CRS (Common Random String) setup 
functionality. The point here is to examine, if by this way we could inherit also results 
corresponding to CRS setup functionality in the UC framework. 
 
In [23] we proposed an alternative way for the analysis of time-aware protocols. In 
particular, we introduced an event-driven clock (e-time) and discussed a few 
properties of e-time relevant to an analysis.   
 
Conjecture 3: The event-driven clock (e-time) approach is the natural way to catch 
the closest notion to functionality T in the emulation of an ideal process approach of 
security for time-aware protocols. 
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