
UC-Secure Multi-Session OT

Using Tamper-Proof Hardware Tokens

Kaoru Kurosawa1 Ryo Nojima2 Le Trieu Phong2

Ibaraki University1, Japan,
kurosawa@mx.ibaraki.ac.jp

NICT, Japan2,
{ryo-no,phong}@nict.go.jp

Abstract

In this paper, we show the first UC-secure multi-session OT proto-
col using tamper-proof hardware tokens. 1 The sender and the receiver
exchange tokens only at the beginning. Then these tokens are reused in ar-
bitrarily many sessions of OT. The proposed scheme is UC-secure against
static adversaries if the DDH assumption holds and a unique signature
scheme exists. There exist a unique signature schemes under the Many
DH assumption or under the DDHE assumption (in the standard model).

Keywords: tamper-proof hardware token, UC-security, multi-session OT

1 Introduction

The framework of Universal Composability (UC), introduced by Canetti [2],
guarantees very strong security properties of cryptographic protocols. UC-
secure protocols are secure even if they are arbitrarily composed with other
instances of the same or other protocols.

In this framework, any ideal functionality can be securely realized if a ma-
jority of the participants are uncorrupted. However, this result does not hold
when half or more of the parties are corrupted. In particular, it does not hold for
the important case of two-party protocols, where each party wishes to maintain
its security [3, 4].

On the other hand, in the common reference string (CRS) model, any func-
tionality can be realized in a universally composable way, regardless of the

1This problem was raised in [7]. But [7] was withdrawn from ePrint on February 5, 2013.

1

number of corrupted parties [3, 5]. However, the CRS model requires a trusted
party who generates the CRS.

Katz introduced an alternative setup assumption which uses tamper-proof
hardware tokens (i.e., smartcards) in order to eliminate such a trusted party
[17]. In this model, each party can send a hardware token T implementing
any polynomial-time functionality F to the other parties, and an adversary can
do no more than observe the input/output of this token. This physical setup
assumption has been studied extensively recently.

1.1 Token Based Commitment

Katz [17] showed a commitment protocol under the DDH assumption using
stateful tokens. Moran and Segev improved his protocol in several directions
[20]. In particular, they showed an unconditionally secure commitment proto-
col.

Chandran et al. showed a commitment protocol using stateless tokens based
on enhanced trapdoor permutations [6]. It uses a concurrent zero knowledge
protocol of [23], and runs in Θ̃(log n) rounds, where n is the security parameter.

Goyal et al. [13] showed that a single stateless token is sufficient to im-
plement statistically secure commitments and statistical zero-knowledge. Fur-
thermore, if stateless tokens can be encapsulated into other stateless tokens,
general statistically secure composable multi-party computation is possible in
this setting.

1.2 Our Contribution

Until now, three UC-secure OT protocols using hardware tokens are known, a
stateful token OT [14], a stateless token OT [14] and a stateful token OT [8].
However, in these protocols, the same tokens cannot be reused in arbitrarily
many OT sessions.

In this paper, we show the first UC-secure multi-session OT protocol. The
sender and the receiver exchange tokens only at the beginning, and these tokens
are reused in arbitrarily many sessions of OT. The proposed scheme is UC-
secure against static adversaries if the DDH assumption holds and a unique
signature scheme exists. There exist a unique signature schemes under the
Many DH assumption [19] or under the DDHE assumption (see Appendix A)
in the standard model.

Our protocol uses 2 stateful tokens and 2n stateless tokens 2, where n is

2The stateless token functionality should allow malicious users to keep state. (Practically,
it’s very hard to verify if a hardware token received from an untrusted source can keep state.

2

single (or bounded) use OT multi-session OT

stateful tokens [14] [8] This paper

stateless tokens [14]

Table 1: UC secure OT protocols using tamper-proof hardare tokens

the security parameter. Further each session of OT runs in constant rounds.
(As shown in Table 1, the previous OT’s are only for single (or bounded) use.)
We construct our protocol by combining an OT protocol of Naor-Pinkas [21]
and the token-based commitment protocol of Katz [17] in a nice way. At the
same time, we present a technique which can prevent the selective randomness
failure attack.

Theoretically speaking, we can construct a UC-secure OT from a UC-secure
commitment [5]. However, this method is very very inefficient because the heavy
Karp reduction must be used. That is, similarly to the GMW compiler [15],
at each step, an NP statement such that each party behaves correctly is trans-
formed to the Hamilton circuit problem, and the protocol of [3] is applied to
the HC problem by using the UC commitment. Such a transformation (known
as Karp reduction) is very very heavy.

2 Preliminaries

2.1 Naor-Pinkas OT protocol

Naor and Pinkas [21] showed an OT protocol based on the DDH assumption
such as follows. Suppose that the sender has two strings (m0,m1) of length ℓ
and the receiver has a choice bit σ as their inputs. Let G be a cyclic group
of prime order p, and let g be a generator. Let H : G → {0, 1}ℓ be a hash
function.

step 1. The receiver chooses a, b, c ∈ Zp randomly, and computes

x = ga, y = gb, zσ = gab, z1−σ = gc. (1)

He then sends (x, y, z0, z1) to the sender.

The point of using stateless tokens is that they don’t *require* state, not that security relies
on their being stateless).

3

step 2. The sender verifies that z0 ̸= z1. She then chooses (r, u, r′, u′) ran-
domly and computes

E0 = (grxu,m0 ⊕H(yrzu0)) (2)

E1 = (gr
′
xu

′
,m1 ⊕H(yr

′
zu

′
1)) (3)

She sends (E0, E1) to the receiver.

step 3. From Eσ = (v, w), the receiver computes mσ as mσ = w ⊕H(vb).

2.2 Ideal Functionality Fmulti−OT

In a multi-session OT protocol, the sender and the receiver can run arbitrarily
many sessions of OT. In the UC framework, the ideal functionality Fmulti−OT

interacts with sender S, receiver R, and the adversary as follows [7].

From sender. Upon receiving an input (send, sid, S,R, ssid, (m0,m1)) from
S, where m0,m1 ∈ {0, 1}ℓ, do:

1. Send (send, sid, S,R, ssid) to R and the adversary.

2. Store (ssid,m0,m1).

From receiver. Upon receiving an input (receive, sid, S,R, ssid, σ) from R,
where σ ∈ {0, 1}, do:

1. Send (receive, sid, S,R, ssid) to S and the adversary.

2. Store (ssid, σ).

Go. Upon receiving an input (Go, sid, S,R, ssid) from the adversary, do:

1. Send (sid, S,R, ssid,mσ) to R.

2. Send (received, sid, S,R, ssid) to S.

2.3 Ideal Functionality Fwrap

The ideal functionality of stateless hardware token Fstateless
wrap , parameterized by

a polynomial p(·) and an implicit security parameter n, is described as follows
[17, 14].

Create. Upon receiving (create, sid, Pi, Pj , mid,M) from Pi, where M is a
Turing machine and mid is machine id, do:

1. Send (create, sid, Pi, Pj , mid) to Pj .

4

2. Store (Pi, Pj , mid,M).

Execute. Upon receiving (run, sid, Pi, mid, msg) from Pj , find the unique stored
tuple (Pi, Pj , mid). If no such tuple exists, do nothing. Run M(msg) for
at most p(n) steps, and let out be the response (out = ⊥ if M does not
halt in p(n) steps). Send (sid, Pi, mid, out) to Pj .

The ideal functionality of stateful hardware token Fstateful
wrap is defined simi-

larly [17].

2.4 Randomness Extractor [10, 11, 9]

Let H∞(A) denote the min-entropy of a random variable A. That is, H∞(A) =
− log(maxa(Pr[A = a]). If H∞(A) ≥ m, then the random variable A is called
an m-source.

The conditional min-entropy of A given B is defined by

H∞(A | B) = − logEb

[
max
a

Pr[A = a | B = b]
]

The statistical distance between two random variables A,B is defined as

SD(A,B) =
1

2

∑
v

|Pr(A = v)− Pr(B = v)|.

We write A ≈ϵ B if SD(A,B) ≤ ϵ. Let Uℓ denote the uniform distribution over
{0, 1}ℓ.

Definition 2.1 A randomized function Ext : M× {0, 1}s → {0, 1}ℓ with ran-
domness of length s is called an (m, ℓ, ϵ)-strong extractor if for any m-source
W on M.

(Ext(W ;Us), Us) ≈ϵ (Uℓ, Us),

where a value of Us is called a seed.

The leftover hash lemma states that if Ext : M × {0, 1}s → {0, 1}ℓ is a
universal function with

ℓ = m+ 2− 2 log(
1

ϵ
),

then it is a (m, ℓ, ϵ)-strong extractor. Here Ext is called universal if for any
w1, w2,

Pr
seed

[Ext(w1; seed) = Ext(w2; seed)] = 2−ℓ.

5

It is generalized to conditional min-entropy without any loss [9, Lemma
2.4]: for any X (possibly dependent on W), if H∞(W | X) ≥ m and ℓ =
m+ 2− 2 log(1ϵ), then

(Ext(W ;Us), Us, X) ≈ϵ (Uℓ, Us, X).

This is called the generalized leftover hash lemma.

3 Our Idea

In this section, we show the idea of our UC-secure multi-session OT protocol
which uses tamper-proof hardware tokens. Let n be the security parameter.

3.1 Basic Scheme

Katz [17] showed a UC-secure commitment scheme using stateful hardware
tokens. We notice that his commit phase is closely related to the OT protocol
of Naor-Pinkas [21] in the following sense.

• In his commit phase, a party P sends a statistically-binding commitment
Scom(σ) to another party P ′ to commit to a bit σ.

• In the OT protocol of Naor-Pinkas, the receiver sends (x, y, z0, z1) of
eq.(1) to the sender at step 1. Here (x, y, z0, z1) can be considered as
a statistically-binding commitment of the choice bit σ.

Our basic idea is to combine these two schemes in such a way that Scom(σ) =
(x, y, z0, z1). Namely, let Katz-Commit denote the commit phase of the Katz
protocol such that Scom(σ) = (x, y, z0, z1). Then our basic scheme is as follows.

(Our Basic Scheme)

1. The receiver commits a choice bit σ by running Katz-Commit.

2. The sender computes (E0, E1) as shown in eq.(2) and eq.(3), and sends
them to the receiver.

To prove the UC-security, we must show a simulator Sim which can extract
σ from a corrupted receiver, and extract (m0,m1) from a corrupted sender. To
extract σ from a corrupted receiver, we can use the simulator given by Katz
[17] because we use his commit phase to commit to σ.

However, we cannot construct a simulator which can extract (m0,m1) from
a corrupted sender. Hence the above scheme is not UC-secure yet.

6

3.2 How to Extract (m0,m1)

We modify our basic scheme as follows. Let Σ = (Gen, Sign, Verify) be a
secure signature scheme. In the setup phase, the receiver R generates public-
key/secret-key (PK2, SK2) of Σ, and sends to the sender S a stateless token TR

in which SK2 is embedded.

(Our First Attempt)
Token Sender Receiver

1. R commits a choice bit σ by running Katz-Commit.

2. S computes (E0, E1) and sends them to R.

3. S sends X = (r, u, r′, u′,m0,m1) to TR.

4. TR computes (E0, E1) from X, and returns τ = SignSK2(E0, E1).

5. S sends τ to R as the evidence that S sent X to TR.

Now a simulator can extract (m0,m1) from a corrupted sender just by ob-
serving the sender’s query X = (r, u, r′, u′,m0,m1) to TR.

However, this protocol is broken by the so called selective input failure at-
tack: A malicious receiver sends a malicious token TR to the sender which
returns ⊥ for some subset of (m0,m1). Then the receiver can learn some in-
formation on (m0,m1) (hence on m1−σ) by observing if the sender aborts or
not.

(Our Second Attempt)
Token Sender Receiver

1. R commits a choice bit σ by running Katz-Commit.

2. S computes (E0, E1) and sends them to R.

3. S sends Y = (r, u, r′, u′) to TR.

4. TR returns τ = SignSK2(g
rxu, gr

′
xu

′
).

5. S sends τ to R as the evidence that S sent Y to TR.

Now this protocol is secure against the selective input failure attack because
(m0,m1) is not the input to the token TR. Also a simulator can compute
(m0,m1) from (E0, E1) and Y = (r, u, r′, u′). However, it is vulnerable to
the selective randomness failure attack such as follows. A malicious receiver
sends a malicious token TR to the sender which returns ⊥ for some subset of

7

(r, u, r′, u′). In other words, the receiver can control the distribution of the
randomness (r, u, r′, u′). Then the receiver would learn some information on
m1−σ.

We solve this problem as follows. In the setup phase, R sends 2n stateless
tokens T 1

R, · · · , T 2n
R to S such that SK2 is embedded in each T i

R.

(Final Scheme)
Tokens Sender Receiver

1. R commits a choice bit σ by running Katz-Commit.

2. S choose r1, · · · , r2n, u1, · · · , u2n such that

r = r1 + · · ·+ rn mod p, r′ = rn+1 + · · ·+ r2n mod p,

u = u1 + · · ·+ un mod p, u′ = un+1 + · · ·+ u2n mod p

randomly, and queries (ri, ui) to T i
R for all i.

3. T i
R returns τi = SignSK2(g

rixui) for i = 1, · · · , 2n.

4. S sends (grixui , τi) to R for i = 1, · · · , 2n.
S chooses seed0 and seed1 randomly, and
sends (w0, seedo) and (w1, seed1) to R such that

w0 = m0 ⊕ Ext(yrzu0 ; seed0), w1 = m1 ⊕ Ext(yr
′
zu

′
1 ; seed1)

Now suppose that σ = 1 and m1−σ = m0. Then from a view point of the
receiver, we can prove that the min-entropy of yrzu0 is greater than log(p)−1 no
matter how malicious tokens T 1

R, · · · , T 2n
R behave. Hence (Ext(yrzu0 ; seed0), seed0)

is a random string due to the (generalized) leftover hash lemma. Therefore S
learns nothing on m1−σ = m0.

Also our simulator can obtain all (ri, ui) by observing the sender’s queries
to T i

R, and then compute (m0,m1).

3.3 On Signature Scheme

The last problem is that a malicious token T i
R may output a signature τi which

includes the information about (ri, ui) if the signature is not unique. Then the
receiver would learn some information on m1−σ. We can prevent this covert
channel attack by using a signature scheme such that the verification algorithm
accepts a unique signature for any message. (We call such a signature scheme
a unique signature scheme.)

8

Lysyanskaya showed a unique signature scheme under the Many DH as-
sumption [19]. It is also easy to construct a unique signature scheme from
a verifiable random function (VRF) such that the proof is unique [19, Sec.3].
Therefore we can construct a unique signature scheme from the VRF of Hohen-
berger and Waters [16] under the DDHE assumption. We present this unique
signature scheme in Appendix A.

4 UC-Secure Multi-Session OT Using Tokens

In this section, we show the first UC-secure multi-session OT protocol using
hardware tokens. The sender and the receiver exchange tokens only at the
setup phase. These tokens are reused in arbitrarily many sessions of OT. We
assume that tokens cannot communicate (this is implied by the definition of
Fwrap).

Let p and q = 2p+1 be two primes. Let G be the subgroup of Z∗
q such that

|G| = p. Let Σ = (Gen, Sign, Verify) be a unique signature scheme which is
unforgeable against chosen message attack. (In a unique signature scheme, the
verification algorithm accepts a unique signature for any message. See Sec.3.3.)

4.1 Setup Phase

The first half of our setup phase is the same as the setup phase of Katz [17].
At a high level,

1. S and R exchange stateful tokens midS and midR.

2. R and midS jointly generate tupleS = (g, h, ĝ, ĥ) ∈ G4, where g and h
are generators of G. R then sends tupleS to S.

3. S acts symmetrically, and sends tupleR to R.

In the second half of our setup phase, R sends 2n stateless tokens midR1 , · · · , midR2nto
S as follows.

1. R generates a public-key/secret-key (PK2, SK2) of the unique signature
scheme Σ.

2. For i = 1, · · · , 2n, R sends (create, sid, receiver, sender, midRi ,Mot) to
Fstateless
wrap , where Mot implements the following functionality:

On input (ssid, g, x, r, u), output τ = SignSK2(ssid, g, x, g
rxu), where

g, x ∈ G and r, u ∈ Zp.

9

4.2 Oblivious Transfer Phase

In each session of OT, the sender is given (ssid,m0,m1) and the receiver is given
(ssid, σ) by an environment Z, where m0,m1 ∈ {0, 1}ℓ and σ ∈ {0, 1}. Let Ext :
G×{0, 1}s → {0, 1}ℓ be a universal hash function which is an (log(p)− 1, ℓ, ϵ)-
strong extractor (see Sec.2.4).

At step B-1, R commits the choice bit σ by using the commit phase of
Katz [17] such that Scom(σ) = (x, y, z0, z1). Given tuple = (g, h, ĝ, ĥ), let
Comtuple(σ) = (gs1hs2 , ĝs1 ĥs2gσ), where s1 and s2 are randomly chosen from
Zp.

(B-1: Katz-Commit) R chooses a, b, c randomly from Zp, and computes

x = ga, y = gb, zσ = gab, z1−σ = gc

Let Scom(σ) = (x, y, z0, z1). He also computes ComtupleR
(σ) randomly,

and sends Scom(σ) and ComtupleR
(σ) to S.

He then gives an interactive witness indistinguishable proof that either (i)
both Scom(σ) and ComtupleR

(σ) are commitments to the same bit σ, or
(ii) tupleS is a DH tuple. (We can construct a constant round protocol
of this easily.)

(B-2) S aborts if z0 ̸= z1. Otherwise for i = 1, · · · , 2n, she chooses ri, ui ∈ Zp

randomly, and queries (ssid, g, x, ri, ui) to midRi to obtain

τi = SignSK2(ssid, g, x, g
rixui).

(B-3) She aborts if midRi returns ⊥ or an invalid signature τi for some i.

Otherwise for i = 1, · · · , 2n, she sends τi and ti = grixui to R.

Next she computes

r = r1 + · · ·+ rn mod p, r′ = rn+1 + · · ·+ r2n mod p,

u = u1 + · · ·+ un mod p, u′ = un+1 + · · ·+ u2n mod p.

v0 = grxu, v1 = gr
′
xu

′

Finally she chooses seed0 and seed1 randomly, and sends (w0, seedo) and
(w1, seed1) to R such that

w0 = m0 ⊕ Ext(yrzu0), w1 = m1 ⊕ Ext(yr
′
zu

′
1).

10

(B-4) R aborts if VerifyPK2((ssid, g, x, ti), τi) = reject for some i.

Otherwise he computes

v0 = t1 × · · · × tn, v1 = tn+1 × · · · × t2n

and outputs mσ = wσ ⊕ Ext(vbσ; seedσ).

5 UC security

In this section, we prove the UC-security of our multi-session OT protocol in
the (Fstateful

wrap ,Fstateless
wrap)-hybrid model against static adversaries.

In the real world, an environment Z runs our multi-session OT protocol,
where the hardware tokens are idealized by Fstateful

wrap and Fstateless
wrap . In the ideal

world, Z interacts with the dummy sender and the dummy receiver, where the
dummy players communicate with the ideal functionality Fmulti−OT which is
given in Sec.2.2.

Let SimS denote the simulator for a corrupted sender, and SimR denote the
simulator for a corrupted receiver given by Katz for his UC-secure commitment
protocol [17]. Note that our setup phase is the same as that of Katz [17] (except
step 5), and step B-1 of our oblivious transfer phase is the same as the commit
phase of Katz [17].

5.1 Sender corruption

Suppose that the sender is corrupted by an adversary A in the real world. We
show a simulator Sim in the ideal world which simulates A. Our Sim runs an
internal copy of A playing a role of the honest receiver, forwarding all mes-
sages from Z to A and vice versa. (This means that Sim generates (PK2, SK2)
honestly.) Let L be a list which is empty first.

(S-1) In the setup phase and at step B-1, Sim behaves in the same way as
SimS .

(S-2) At step B-2, if A queries (ssid, g, x, r, u) to some midRi , then Sim com-
putes t = grxu and τ = SignSK2(ssid, g, x, t), and stores [(ssid, x, r, u), (t, τ)]
in L.

(S-3) At step B-3, suppose that A sends (t1, τ1), · · · , (t2n, τ2n), (w0, seed0) and
(w1, seed1) to the receiver such that each τi is a valid signature.

If there exists some (ti, τi) which does not appear in L, then Sim aborts.

11

(S-4) Otherwise Sim finds (ri, ui) such that (ssid, x, ri, ui), (ti, τi)] ∈ L for
i = 1, · · · , 2n. By using these (ri, ui), Sim computes (v0, v1) in the same
way as step B-3, and computes (m0,m1) as

m0 = w0 ⊕ Ext(vb0; seed0), m1 = w1 ⊕ Ext(vb1; seed1). (4)

(S-5) Sim sends the above (m0,m1) to Fmulti−OT.

Theorem 5.1 Suppose that the underlying unique signature scheme Σ is un-
forgeable against chosen message attack. Then no environment Z can distin-
guish between the ideal world and the real world under the DDH assumption.

(Proof) We consider a sequence of games.

Game0: In this game, Z interacts with a simulator Sim0 only. That is, Sim0

receives both (m0,m1) and σ from Z, and Sim0 plays both roles of the
corrupted sender A and the honest receiver. It then internally simulates a
real execution of the protocol between A and the receiver. Clearly Game0
is identical to the real world.

Game1: In this game, a simulator Sim1 behaves in the same way as as Sim0

except for that Sim1 does (S-2). It is clear that Game0 and Game1 are
identical from a view point of Z.

Game2: In this game, a simulator Sim2 behaves in the same way as as Sim1 ex-
cept for that Sim2 does (S-3). Since the signature scheme Σ is unforgeable,
Game1 and Game2 are indistinguishable.

Game3: In this game, a simulator Sim3 behaves in the same way as as Sim2

except for that Sim3 does (S-4). Sim3 then outputs mσ of eq.(4) as the
output of the receiver. It is easy to see that the receiver outputs the same
mσ as in Game2. Hence Game2 and Game3 are identical.

Game4: In this game, a simulator Sim4 behaves in the same way as as Sim3

except for that Sim4 does (S-1). Then Game3 and Game4 are indistin-
guishable under the DDH assumption as shown in [17].

Game5: This is the ideal world. In particular, Sim extracts (m0,m1) as shown
in (S-4), and sends it to Fmulti−OT. The output of the receiver in this case
is exactly the output in Game4. Thus this game is identical to Game4.

Therefore no Z can distinguish between the real world and the ideal world
under the DDH assumption. Q.E.D.

12

5.2 Receiver corruption

Suppose that the receiver is corrupted by an adversary A in the real world. We
show a simulator Sim in the ideal world which simulates A. Our Sim runs an
internal copy of A playing a role of the honest sender, forwarding all messages
from Z to A and vice versa. Let L be a list which is empty first.

(R-1) In the setup phase and at step B-1, Sim behaves in the same way as
SimR. Note that SimR can extracts σ from A as shown in [17].

(R-2) Sim sends the above σ to Fmulti−OT, and receives mσ.

(R-3) Let m1−σ be a random string. Sim uses this (mσ,m1−σ) at step B-3.

Theorem 5.2 No environment Z can distinguish between the ideal world and
the real world under the DDH assumption.

(Proof) We consider a sequence of games.

Game0: In this game, Z interacts with a simulator Sim0 only. That is, Sim0

receives both (m0,m1) and σ from Z, and Sim0 plays both roles of the
corrupted receiver A and the honest sender. It then internally simulates
a real execution of the protocol between A and the sender. Clearly Game0
is identical to the real world.

Game1: In this game, a simulator Sim1 behaves in the same way as as Sim0

except for that Sim1 does (R-1) and extracts σ. Then as shown in [17],
Game0 and Game1 are indistinguishable under the DDH assumption.

Game2: In this game, a simulator Sim2 behaves in the same way as Sim1 except
for that Sim2 lets m1−σ be a random string. We will show that Game1
and Game2 are indistinguishable below.

Game3: This is the ideal world. It is easy to see that Game2 and Game3 are
indistinguishable.

We finally prove that Game1 and Game2 are indistinguishable. Let Ti be
the set of (ri, ui) such that (a malicious) midRi returns τi correctly on input
(ssid, g, x, ri, ui).

3

3The definition of Ti is meaningful even for (a malicious) midRi which is stateful or prob-
abilistic. Just fix the current state and the current randomness.

13

Lemma 5.1 If |Ti| < p2/2 for i = 1, · · · , n, then the sender aborts at step B-3
with probability more than 1− 1/2n.

(Proof) Let RETi be the event that midRi returns τi correctly. Then

Pr(RETi) = |Ti|/p2 < 1/2

because the honest sender chooses (ri, ui) randomly from Z2
p . Let RET be the

event that all midRi return τi correctly. Note that each RETi is an independent
event because the honest sender chooses (ri, ui) independently. Therefore

Pr(RET) = Pr(RET1 ∧ · · · ∧ RETn) < 1/2n.

Hence the sender aborts at step B-3 with probability more than 1− 1/2n.
Q.E.D.

Let R denote the random variable of (r, u), and V0 denote the random
variable of v0.

Lemma 5.2 If |Ti| ≥ p2/2 for some i ∈ {1, · · · , n}, then

max
(r,u)

Pr(R = (r, u)) ≤ 2/p2.

(Proof) Wlog, suppose that |T1| ≥ p2/2. Let X denote the random variable
of (r1, u1) and X ′ denote the random variable of (r2 + · · ·+ rn, u2 + · · ·+ un).
Hence R = X +X ′ mod p. Then for any (r, u) ∈ Z2

p ,

Pr(R = (r, u)) = Pr(X +X ′ = (r, u) mod p)

=
∑

(α,β)∈T1

Pr(X = (α, β)) Pr(X ′ = (r − α, u− β) mod p)

= 1/|T1|
∑

(α,β)∈T1

Pr(X ′ = (r − α, u− β) mod p)

≤ 2/p2
∑

(α,β)∈T1

Pr(X ′ = (r − α, u− β) mod p) ≤ 2/p2.

Q.E.D.

Lemma 5.3 If |Ti| ≥ p2/2 for some i ∈ {1, · · · , n}, then

H∞(R | V0) ≥ log(p)− 1.

14

(Proof) Note that

H∞(R | V0) = − logEv

[
max
(r,u)

Pr[R = (r, u) | V0 = v]

]

Let qv = max(r,u) Pr[R = (r, u) | V0 = v]. Suppose that qv is given by (r, u) =
(rv, uv). Then v is uniquely determined by (rv, uv) as v = grvxuv . Therefore

qv = Pr[R = (rv, uv) | V0 = v] =
Pr[R = (rv, uv), V0 = v]

Pr(V0 = v)
=

Pr[R = (rv, uv)]

Pr(V0 = v)

Hence

Ev[qv] =
∑
v∈Zp

Pr[R = (rv, uv)]

Pr(V0 = v)
× Pr(V0 = v)

=
∑
v∈Zp

Pr[R = (rv, uv)] ≤ p× 2/p2 = 2/p

from Lemma 5.2. Therefore H∞(R | V0) = − logEv[qv] ≥ log(p)− 1. Q.E.D.

Lemma 5.4 Fix v0 arbitrarily. If z0 ̸= gab, then f(r, u) = yrzu0 is an injection
from {(r, u) | v0 = grxu} to G.

(Proof) Let grxu = gα and yrzu0 = gβ. Then(
1 a
b c

)(
r
u

)
=

(
α
β

)

where x = ga, y = gb, z0 = gc and α is fixed. Since z0 ̸= gab, the 2× 2 matrix of
the left hand side is nonsingular. This means that f(r, u) = yrzu0 is an injection
from {(r, u) | v0 = grxu} to G. Q.E.D.

Lemma 5.5 Game1 and Game2 are indistinguishable.

(Proof)

(Case 1) |Ti| < p2/2 for i = 1, · · · , n.
In this case, from Lemma 5.1, the receiver aborts with probability more
than 1−1/2n at step B-3. Hence Game1 and Game2 are indistinguishable.

15

(Case 2) |Ti| > p2/2 for some i ∈ {1, · · · , n}.
Wlog, suppose that σ = 1. Then H∞((r, u) | V0) ≥ log(p) − 1 from
Lemma 5.3. This means that H∞(yrzu0 | V0) ≥ log(p) − 1 from Lemma
5.4. Therefore (Ext(yrzu0 ; seed0), seed0, v0) and (rand, seed0, v0) are in-
distinguishable from the generalized leftover hash lemma (see Sec.2.4),
where rand is a random string of length ℓ.

Hence Game1 and Game2 are indistinguishable.
Q.E.D.

Therefore no Z can distinguish between the real world and the ideal world.
Q.E.D.

5.3 UC-Security

Now we have the following corollary.

Corollary 5.1 Suppose that Σ is a unique signature scheme which is unforge-
able against chosen message attack. Then our protocol UC-realizes the ideal
functionality Fmulti−OT in the (Fstateful

wrap ,Fstateless
wrap)-hybrid model against static

adversaries under the DDH assumption.

There exist a unique signature schemes under the Many DH assumption
[19] or under the DDHE assumption (see Sec.A) in the standard model.

References

[1] Mihir Bellare, Phillip Rogaway: The Exact Security of Digital Signatures
- How to Sign with RSA and Rabin. EUROCRYPT 1996: pp399-416

[2] Ran Canetti, Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. FOCS 2001. Full version available from Cryptology
ePrint Archive, Report 2000/067 http://eprint.iacr.org/

[3] R. Canetti and M. Fischlin. Universally Composable Commitments.
Crypto 2001.

[4] R. Canetti, E. Kushilevitz, and Y. Lindell. On the Limitations of Univer-
sally Composable Two-Party Computation Without Set-Up Assumptions.
J. Cryptology, 19(2), pp.135-167 (2006)

16

[5] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, Amit Sahai: Universally
composable two-party and multi-party secure computation. STOC 2002,
pp.494-503 (2002)

[6] Nishanth Chandran, Vipul Goyal, Amit Sahai: New Constructions for UC
Secure Computation Using Tamper-Proof Hardware. EUROCRYPT 2008,
pp.545-562 (2008)

[7] Seung Geol Choi and Jonathan Katz and Dominique Schroder and Arkady
Yerukhimovich and Hong-Sheng Zhou: (Efficient) Universally Compos-
able Two-Party Computation Using a Minimal Number of Stateless To-
kens. Cryptology ePrint Archive, Report 2011/689 (2011), Withdrawn
on February 5, 2013

[8] Nico Dottling, Daniel Kraschewski, Jorn Muller-Quade: Unconditional and
Composable Security Using a Single Stateful Tamper-Proof Hardware To-
ken. TCC 2011, pp.164-181 (2011)

[9] Yevgeniy Dodis, Leonid Reyzin, Adam Smith: Fuzzy Extractors: How to
Generate Strong Keys from Biometrics and Other Noisy Data. Cryptology
ePrint Archive, Report 2003/235 (2008)

[10] Yevgeniy Dodis, R.Ostrovsky, Leonid Reyzin, Adam Smith: Fuzzy Ex-
tractors: How to Generate Strong Keys from Biometrics and Other Noisy
Data. EUROCRYPT 2004, pp.523-540 (2004)

[11] Yevgeniy Dodis, Leonid Reyzin and Adam Smith: Fuzzy
Extractors: A Brief Survey of Results from 2004 to 2006.
http://www.cs.bu.edu/ reyzin/papers/fuzzysurvey.pdf

[12] S.Even, O.Goldreich, A.Lempel: A Randomized Protocol for Signing Con-
tracts. Commun. ACM 28(6): 637-647 (1985)

[13] Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, Amit Sahai: Interac-
tive Locking, Zero-Knowledge PCPs, and Unconditional Cryptography.
CRYPTO 2010, pp.173-190 (2010)

[14] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, Akshay
Wadia: Founding Cryptography on Tamper-Proof Hardware Tokens. TCC
2010, pp.308-326 (2010)

[15] Oded Goldreich, Silvio Micali, Avi Wigderson: How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority.
STOC 1987: 218-229

17

[16] S. Hohenberger and B. Waters. Constructing verifiable random functions
with large input spaces. In H. Gilbert, editor, EUROCRYPT, volume 6110
of Lecture Notes in Computer Science, pages 656–672. Springer, 2010.

[17] Jonathan Katz: Universally Composable Multi-party Computation Using
Tamper-Proof Hardware. EUROCRYPT 2007: 115-128 (2007)

[18] Vladimir Kolesnikov: Truly Efficient String Oblivious Transfer Using Re-
settable Tamper-Proof Tokens. TCC 2010: 327-342 (2010)

[19] Anna Lysyanskaya: Unique Signatures and Verifiable Random Functions
from the DH-DDH Separation. CRYPTO 2002: 597-612

[20] Tal Moran, Gil Segev: David and Goliath Commitments: UC Computation
for Asymmetric Parties Using Tamper-Proof Hardware. EUROCRYPT
2008, pp.527-544 (2008)

[21] Moni Naor, Benny Pinkas: Efficient oblivious transfer protocols. SODA
2001. pp.448-457 (2001)

[22] Torben P. Pedersen: Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing. CRYPTO 1991, pp.129-140

[23] Manoj Prabhakaran, Alon Rosen, Amit Sahai: Concurrent Zero Knowledge
with Logarithmic Round-Complexity. FOCS 2002, pp.366-375 (2002)

A Unique Signature Scheme under the DDHE As-
sumption

In this section, we present a unique signature scheme under the DDHE assump-
tion which is obtained from the verifiable random function (VRF) of Hohen-
berger and Waters [16]. (See Sec.3.3.)

The signature scheme is based on a pairing group (G,GT , g, q, e), where
G and GT are groups of prime order q, g is a random generator of G, and
e : G × G → GT is a bilinear map. The ℓ-DDHE assumption claims that
e(g, h)a

ℓ
looks random even if

g, h, ga, · · · , gaℓ−1
, ga

ℓ+1
, · · · , ga2ℓ

are given, where h is a random generator of G, and a is randomly chosen from
Zq.

18

Key Generation. Choose ũ, u0, . . . , un randomly from Zq, and compute

Ũ = gũ, U0 = gu0 , . . . , Un = gun .

Choose a random generator h of G. The secret key is sk = (ũ, u0, . . . , un)
and the public key is pk = (g, h, Ũ , U0, . . . , Un).

Sign. For a message x such that

x = x[1] . . . x[n], where x[i] ∈ {0, 1},

compute

σ = e(g, h)ũu0

∏n

i=1
u
x[i]
i ,

π0 = gũu0

∏n

i=1
u
x[i]
i

and
πk = gũ

∏k

i=1
u
x[i]
i

for 1 ≤ k ≤ n. The signature is (σ, π0, π1, . . . , πn).

Verify. Given x = x[1] . . . x[n] and (σ, π0, π1, . . . , πn), check if

e(π1, g) =

{
e(Ũ , g) if x[1] = 0

e(Ũ , U1) if x[1] = 1

and

e(πi, g) =

{
e(πi−1, g) if x[i] = 0
e(πi−1, Ui) if x[i] = 1

for 2 ≤ i ≤ n. Finally check

e(π0, g) = e(πn, U0)

e(π0, h) = σ.

Return accept if all checks pass, and reject otherwise.

Theorem A.1 In the above signature scheme, the verify algorithm accepts a
unique signature for any message x.

19

(Proof) Suppose two signatures (σ, π0, π1, . . . , πn) and (σ′, π′
0, π

′
1, . . . , π

′
n) are

valid, with respect to a public key pk = (g, h, Ũ , U0, . . . , Un), on a single message
x ∈ {0, 1}n. We prove the signatures are identical. Since all checks at the
verification are passed, we have

e(π1, g) = e(π′
1, g)

so that
π1 = π′

1.

Going on, we have for 2 ≤ i ≤ n,

e(πi, g) =

{
e(πi−1, g) if x[i] = 0
e(πi−1, Ui) if x[i] = 1

and e(π′
i, g) =

{
e(π′

i−1, g) if x[i] = 0
e(π′

i−1, Ui) if x[i] = 1

so that πi = π′
i for 2 ≤ i ≤ n. Also, since e(π0, g) = e(π′

0, g) (both = e(πn, U0)),
we have π0 = π′

0, which in turn yields σ = σ′.
Q.E.D.

Theorem A.2 The above signature scheme is unforgeable against chosen mes-
sage attack under the ℓ-DDHE assumption.

(Proof) The above signature scheme is obtained from the verifiable random
function (VRF) of Hohenberger and Waters [16] such that Fsk(x) = σ and its
proof is (π0, · · · , πn) in a natural way, where they proved that this is a VRF
under the ℓ-DDHE assumption. On the other hand, as noted by Lysyanskaya
[19, Sec.3], a VRF yields a signature scheme which is unforgeable against chosen
message attack. Therefore the above signature scheme is unforgeable against
chosen message attack.

Q.E.D.

20

