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Abstract

The concept of quantum-secure readout of Physical Unclonable Functions (PUFs) has
recently been realized experimentally in an optical PUF system. We analyze the security of
this system under the strongest type of classical attack: the challenge estimation attack. The
adversary performs a measurement on the challenge quantum state in order to learn as much
about it as he can. Using this knowledge he then tries to reconstruct the challenge and to
emulate the PUF. We consider quadrature measurements, which are the most informative
practical measurements known to us. We prove that even under this attack the expected
number of photons detected in the verification mechanism is approximately a factor S + 1
too low; here S is the Quantum Security Parameter, defined as the number of modes in the
optical system divided by the number of photons in the challenge. The photon count allows
for a reliable distinction between an authentic PUF and a challenge estimation attack.

1 Introduction

1.1 Physical Unclonable Functions

Authentication plays an important role in society, providing the trust without which people and
automated systems are unwilling to engage in transactions. Authentication is usually based on
either “something that you know” or “something that you possess”. In the second case it is
highly desirable to possess a token that is difficult to clone, even for the manufacturer of the
token. With the advent of Physical Unclonable Functions (PUFs), physical systems have been
identified which satisfy strong uniqueness and unclonability properties, e.g. phenomena such
as laser speckle based on multiple scattering. A PUF is a complex piece of material that is
difficult to reproduce accurately because its manufacture inherently contains uncontrollable steps
[16, 8, 3, 18, 11, 5, 25, 19, 17]. A stimulus can be applied to the PUF (‘challenge’), leading to
observable behavior (the ‘response’) that depends in a complex way on the challenge and the
minute details of the PUF’s structure. The combination of a challenge and the corresponding
response is called a Challenge-Response Pair (CRP).
A good example of a physical system satisfying the abstract requirements above are the so-called
Optical PUFs. These are three-dimensional diffusive structures containing optical scatterers at
random positions. When an Optical PUF is illuminated by a laser, the transmitted and reflected
light shows a random-looking pattern of dark and bright spots known as speckle. The properties
of the laser beam (such as wavelength, angle, focus) constitute the challenge; the speckle pattern
is the response. It depends strongly on the challenge as well as on the exact positions of the
scatterers. Optical PUFs support a large number of independent CRPs.[20, 12, 23]

1.2 “Hands-off” verification of PUFs; emulation attacks

A PUF-based authentication or anti-counterfeiting system typically has two phases: enrollment
and verification. In the enrollment phase the Verifier applies a limited number of random challenges
to a PUF and records the CRPs in a database, e.g. coupled to an identification number. Later, in
the verification phase, the Verifier has to decide whether a PUF with a given identifier is authentic.
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He looks up the CRPs listed under the given identifier, and by challenging the PUF anew checks
if it produces the listed responses. The procedure sketched above is extremely reliable when the
Verifier has full control over the PUF, e.g. he holds the PUF during the verification phase. There
are many cases, however, where the PUF owner is unwilling or unable to hand over his PUF.
He may not trust the Verifier, or he is too far away from him. In such situations the Verifier
must do verification without having full control. We call this “hands-off” or “remote” verification.
Achieving a high level of security is far more difficult in this setting. There is a serious danger of
emulation attacks (‘spoofing’).
For most PUFs the number of supported independent CRPs is ‘finite’, in the sense that anyone
holding the PUF can, in a feasible amount of time, extract enough information from the PUF to
be able to compute (or look up) the response to any future PUF challenge without having to use
the PUF any more. In other words, in practice most PUFs can be emulated. This also holds for
Optical PUFs, though the emulation may require quite a large database of CRPs. In general, the
stricter the robustness requirements (i.e. reproducibility of responses), the smaller the challenge
space and hence the bigger the danger of emulation attacks.
Given these considerations, it is prudent to assume that for every PUF that has ever been handed
out a fast1 emulation program is publicly available. The traditional way to retain any control
in the “hands-off” setting is to have some means to ensure that no spoofing is going on, e.g. a
trusted measurement device in the field or extra sensors for detecting specific kinds of spoofing.
There is an important drawbacks to this approach: The extra anti-spoofing means add cost to
the verification hardware, while it is difficult to ascertain how secure the system really is. For
instance, remote trusted devices need to be tamper-proofed, but hardware attacks improve with
time. Similarly, new techniques are continuously developed to spoof sensors. Thus, as often the
case in the field of hardware security, it is an arms race between attackers and defenders.

1.3 Quantum readout of PUFs

An elegant way out of this expensive arms race was proposed by Škorić [24]: Quantum Readout
(QR) of PUFs. The physical challenge is a quantum state. The PUF interacts with the challenge
state via unitary evolution and produces a response that is also a quantum state. The Verifier,
knowing from the enrollment phase what the response state is supposed to be, is able to verify
if the response is correct. All this can be done without a trusted remote device, because of the
inherent tamper-resistant properties of single quanta. The No Cloning Theorem [26, 6] states that
an unknown single quantum cannot be copied onto another particle. (It has been exploited spec-
tacularly in Quantum Key Distribution schemes [1]). One of the implications is that the state of an
unknown quantum challenge cannot be fully determined, preventing the emulation: If the attacker
cannot be sure what the challenge is, he cannot reliably run his emulation program.2 (In fact, the
challenge does not have to consist of a single quantum; it is allowed to consist of multiple quanta,
provided that the attacker cannot accurately determine the challenge.) By repeatedly sending
random challenges, the verifier ensures that the probability of successful spoofing is brought down
exponentially. One of the nice aspects of the QR-PUF technique is that the challenge space does
not have to be large, and that the scheme is still secure if the list of responses is publicly known.
Apart from solving the “hands-off” authentication problem, the QR-PUF concept can also be used
to create an authenticated quantum channel without the need for pre-shared entangled particles;
instead the authentication is based on public data. Such a channel could be employed e.g. for
Quantum Key Distribution, removing the need for pre-sharing a secret (e.g. a classical key or an
entangled quantum state).
Quantum Readout of PUFs was first experimentally realized by Goorden et al. [10]. An optical
PUF was used, consisting of a layer of zinc oxide nanoparticles on a substrate. The challenge was

1Authentication protocols have been proposed for PUFs that can be emulated, but only slowly.[13]
2It is assumed that quantum computers do not exist or, if they do, that the emulation on a quantum computer

is not feasible, e.g. too expensive or not fast enough.
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implemented as a weak n-photon coherent light pulse3 with a randomly chosen wavefront. The
scattering in the PUF scrambles the wavefront. The response is the scrambled n-photon light
pulse. The problem of testing the correctness of the few-photon speckle pattern responses was
solved using recently developed wavefront shaping techniques [21, 7, 15].
The response passes through a Spatial Light Modulator (SLM2 in Fig. 1), an array of switchable
phase-rotation pixels. The SLM is programmed to match the phases contained in the wavefront
of the expected response. If the response is correct, the SLM aligns all the pixels in the wavefront
to have the same phase, leading to an essentially parallel beam that can be focused onto a small
area. A sensitive detector measures the number of photons arriving in this area. Only wavefronts
that are close to the enrolled response lead to a significant number of detected photons.

Figure 1: Schematic overview of the setup used in [10]. The components in the dashed box are
under the verifier’s control. The first SLM shapes the wavefront to create the challenge. BS is a
polarizing beam splitter. SLM2 is tuned to ‘decode’ the correct response wavefront into a parallel
beam. The detector counts how many photons pass through the pinhole.

Let K denote the number of momentum modes in the challenge wavefront. The amount of in-
formation contained in the challenge is of order K. By keeping the number of photons (n) well
below K, it is ensured that an attacker who intercepts the photons cannot learn enough about
the challenge to fully reconstruct the wavefront. The ratio S = K/n was dubbed the Quantum
Security Parameter. A heuristic argument showed that the number of detected photons that an
attacker can achieve is approximately a fraction 1/S of what the correct response speckle pattern
would yield.

1.4 Contributions

We analyze the security of the optical QR-PUF system described in Ref. [10] against classical
attacks. We consider the strongest class of classical attacks, ‘challenge estimation’ attacks, in which
the adversary performs a measurement on the challenge state and then constructs a response state
based on his measurement outcome and public information about the PUF. We always assume
that the attacker has perfect optical equipment and perfect detectors.

• We model the action of the Spatial Light Modulator and derive a result for the fraction of
photons that arrives in the detector when the response wavefront is correct. Our result is
consistent with the experiments of Ref. [10].

• We derive a general formula for the number of photons that arrive in the detector given that
the challenge estimation attack takes place, with an arbitrary choice of measurement by the
attacker.

3A coherent pulse with n > 1 was chosen in order to avoid the ‘fragility’ of single-photon states, i.e. the difficulty
and cost of handling them.
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• We specialize to the case where the attacker uses beam splitters and does quadrature mea-
surements. We prove that the best obtainable result for the attacker occurs when the beam
splitting is uniform, i.e. into equal parts. For this attack, the number of expected photons
at the detector is roughly a factor S + 1 lower than for the correct response wavefront. This
discrepancy allows for reliable distinction between an authentic PUF and an attack.

2 Preliminaries

2.1 Notation

Quantum states are represented as vectors in a Hilbert space. We adopt the usual Dirac ‘bra’ and
‘ket’ notation; |ψ〉 stands for a quantum state labelled by some description ψ which summarizes
all the knowable information about the state. The Hermitian conjugate is denoted as 〈ψ|. The
notation for the inner product between two states is 〈ψ1|ψ2〉. We will consider only normalized
states, i.e. satisfying 〈ψ|ψ〉 = 1. Real-valued observables are represented by Hermitian operators
acting on the Hilbert space. The expectation value of an operator A, given state |ψ〉, is denoted
as 〈ψ|A|ψ〉, or in shorthand notation 〈A〉 when it is clear from the context what the state is. The
commutator of two operators is [A,B] = AB −BA. The Hermitian conjugate of A is A†.
Our description of wavefronts follows the standard approach[9, 4] in terms of discrete ‘modes’
labeled by their transverse momentum (wave number). The set of modes in the challenge is
denoted as K, and the modes themselves as two-dimensional wave vectors (in boldface notation)
k ∈ K. We define K = |K|. We consider only a single wavelength of light. The set of modes in
the response is denoted as K′, with K ′ = |K′|. It holds that K ′ ≥ K, since the diffusion in the
PUF causes the area from which light exits to be slightly larger than the illuminated spot.
The creation operator for a photon with wave vector k is written as a†k. We have the commutation
relation [ak, a

†
k′ ] = δkk′ . The vacuum is denoted as |0〉, with ak|0〉 = 0. The photon counting

operator for mode k is Nk = a†kak. The two ‘quadrature’ operators are defined as Xk = (ak+a†k)/2
and Yk = (ak − a†k)/(2i).
The challenge wavefront is fully characterized by a complex vector c = (ck)k∈K satisfying the
normalization

∑
k∈K |ck|2 = 1. We write ck = crek + icimk . We model the action of the PUF

as a complex K by K ′ matrix M , in general non-square, which satisfies MM† = 1K×K (‘semi-
unitary’). Without loss of generality, we consider either pure reflection or pure transmission of the
light. The response speckle pattern is characterized by a normalized complex vector d = (dk)k∈K′ ,
with d = Mc, and

∑
k∈K′ |dk|2 = 1.

2.2 Coherent challenge state and response state

Of all possible quantum states of light, coherent light comes closest to a classical state. We denote
our coherent challenge state as |n, c〉, where c is the challenge wavefront and n the expected
number of photons.

|n, c〉 =
∏
k∈K

exp
[√

n(cka
†
k − c

∗
kak)

]
|0〉. (1)

This state has the following properties:

• If the photon counting operator Nk is measured, the result follows the Poisson distribution
with expectation value 〈Nk〉 = n|ck|2, i.e. Pr[Nk = b] = e−n|ck|2(n|ck|2)b/b!.

• The quadratures Xk and Yk are Gaussian-distributed, with 〈Xk〉 =
√
ncrek , 〈Yk〉 =

√
ncimk ,

〈X2
k〉−〈Xk〉2 = 1/4 and 〈Y 2

k 〉−〈Yk〉2 = 1/4. Note that the standard deviations are typically
much bigger than the averages: for a typical speckle pattern they differ by an order

√
K/n.

This hides the ck values in the noise.

The PUF produces a response state |n,d〉 = |n,Mc〉, of the same coherent form as (1), but with
K ′ modes over which the photons are spread out instead of K.
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2.3 Spatial Light Modulation for response verification

The first contribution of this paper is a description of SLM2’s operation in the response verification
mechanism. The SLM applies a transform on the response wavefront d, finely tuned with the aim
of creating a pure k = 0 wavefront. The SLM must have a number of pixels at least equal to K ′,
in order to be able to address all the important degrees of freedom. Without loss of generality, we
will model the SLM as having exactly K ′ pixels.
The discrete Fourier transform between the wavefront parameters dk in the wave vector domain
and amplitudes d(x) in the spatial domain is given by

d(x) =
∑
k∈K′

eik·xdk ; dk = 1
K′

∑
x

e−ik·xd(x). (2)

We have 1
K′

∑
x |d(x)|2 = 1. Each SLM pixel causes a phase rotation d(x) 7→ d′(x) = Λ(x)d(x)

where Λ(x) = exp iλ(x), with λ(x) ∈ [0, 2π) freely chosen by the verifier. In the wave vector
domain the multiplication Λ(x)d(x) becomes a convolution sum,

dk
SLM7→ d′k =

∑
p∈K′

Λ̃(k − p)dp, (3)

where Λ̃ is the Fourier transform of Λ. The transformation (3) can be written as a matrix product,

d
SLM7→ d′ = Ld (4)

where L is a K ′ ×K ′ unitary marix with the double constraint that it has Toeplitz form, namely
Lkp = Λ̃(k − p), and that the Fourier transform of Lk+p,k with respect to p is a pure phase,
namely Λ(x). After passing through the SLM, the quantum state is

|n,LMc〉, (5)

with expected mode occupations 〈Nk〉/n = |(LMc)k|2.

Lemma 1 Let L be the matrix representing an SLM setting. For all k ∈ K′ it then holds that∑
p∈K

(LM)kp(LM)†pk = 1. (6)

Proof: The left-hand side is equal to [(LM)(LM)†]kk. Since L is unitary and M semi-unitary, the
product LM is semi-unitary; it satisfies (LM)(LM)†=1K′×K′ . �

The optimal concentration of light into k = 0 is achieved when Λ(x) orients the phases of the d′(x)
to be the same for all x. Without loss of generality we consider phase zero. Thus, in the optimal
case the SLM has λopt(x) = − arg d(x), yielding d′opt(x) = |d(x)|. The amount of concentration
into the k = 0 mode is then given by

(d′opt)0 = 1
K′

∑
x

d′opt(x) = 1
K′

∑
x

|d(x)|. (7)

The response d is a random speckle pattern. The right-hand side of (7), which has the form of a
spatial average, becomes very close to the expectation value of |d(x)| over the ensemble of speckle
patterns. The light intensity in the challenge wavefront is given by I(x) = |d(x)|2/K ′. The
light intensity in a speckle pattern, integrated over one speckle area, is known to obey a Gamma
distribution[9] with 〈

√
I(x)〉 = 1

2

√
πK ′. Substitution into (7) yields (d′opt)

2
0 = π/4 ≈ 0.79. Thus,

with perfect optics approximately 79% of the light can be concentrated into one mode.4

4Our derivation of the result π/4 is different from the derivation in [21], but it is based on the same ingredients.
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We briefly comment on the case where the challenge, the PUF and the SLM are not perfectly
matched to each other. We model this situation as an imperfectly configured challenge cimp,

cimp = c
√

1− ε+ e
√
ε, (8)

where ε ∈ [0, 1] is a number parametrizing the imperfection, and e is a random speckle pattern
orthogonal to c, i.e.

∑
k c
∗
kek = 0. Note that cimp · c =

√
1− ε. We find

〈n,LMcimp|N0|n,LMcimp〉
n

= |(LMcimp)0|2 = (1− ε)|(LMc)0|2 +O(
√
ε/K ′). (9)

Here we have used that LMe is a random speckle pattern, i.e. (LMe)k is of order 1/
√
K ′.

Equation (9) is consistent with the behavior 〈N0〉/n ≈ |cimp · c|2|(LMc)0|2 observed in Ref. [10].

3 Security analysis

3.1 Attacker model: the challenge estimation attack

During enrollment a sufficient number of CRPs is measured to completely characterize the PUF.
For instance, after measuring a set of O(K) response speckle patterns including phase information,
any new challenge can be written as a linear superposition of the enrolled challenges, and the
response is the corresponding superposition of enrolled complex-valued speckle patterns.
At authentication time, the verifier chooses a challenge wavefront c from the space {c :

∑
k∈K |ck|2 =

1} uniformly at random. The attacker performs a measurement on the challenge state |n, c〉. The
measurement is represented by a Hermitian operator. (We do not consider actions that are tan-
tamount to quantum computing. As mentioned in Ref. [24], a sufficiently fast combination of
quantum teleportation [2, 14] and quantum computing can break the security of QR-PUFs. Note,
however, that a quantum computer would need K-qubit registers for an attack on the optical
QR-PUF under consideration.)
Based on the obtained information, the attacker computes an estimate of c. We will denote this
estimate as f = (fk)k∈K, with

∑
k∈K |fk|2 = 1. We consider f to be an operator on the challenge

Hilbert space, since it is a function of the attacker’s measurement operator. The attacker prepares
the state |n,Mf〉 and sends it to the verifier.
The above scenario is the strongest attack that can be performed without the use of a quantum
computer. (A quantum computer would emulate the mapping c 7→ Mc based on the public
information M without having to perform a measurement on the challenge state.) We will assume
that the attacker does not have access to an efficient quantum computer.

3.2 General formula for the mode occupation after SLM2

In Ref. [24] a general5 result was derived for the case of a single quantum and a Hilbert size of
dimension K, independent of the physical system. We have not yet been able to obtain a similar
generic bound for the case of n quanta in the challenge. This is left for future work.
First we derive a general formula for the number of photons that arrives in the detector given
that the challenge estimation attack takes place, with an arbitrary measurement chosen by the
attacker. Then (Section 3.3) we specialize to the case where the attacker is somewhat restricted
in his choice: only quadrature measurements are allowed, but the attacker has an unrestricted
number of ideal beamsplitters and ideal detectors. For this restricted attacker model we prove an
upper bound on the probability of passing one round.
SLM2 transforms the fake response into |n,LMf〉, where L is tuned to concentrate the front Mc
into the k = 0 mode. The mismatch between f and c will cause a lack of focusing.

5The verifier is allowed to prepare any state in the Hilbert space as his challenge state, and the attacker is
allowed to choose any Hermitian operator as his measurement.
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Lemma 2 Let the attacker perform the challenge estimation attack as described in Section 3.1.
After SLM2 the modes have the following expected number of photons

〈n,LMf |Nk|n,LMf〉
n

=
∑

p,p′∈K
(LM)kp(LM)†p′k〈n, c|f

∗
p′fp|n, c〉. (10)

Proof: By the properties of the coherent state (Section 2.2), the number of photons in mode k

is Poisson-distributed with average n|(LMf)k|2 = n
∑

p,p′(LM)kp(LM)†p′kf
∗
p′fp. Since f is an

operator on the challenge Hilbert space, we finally need to take the expectation value with respect
to the challenge state |n, c〉. �
Lemma 2 with k set to 0 gives us the fraction of light focused into the detector.

3.3 Challenge estimation by quadrature measurements

In this section we restrict the attacker’s choice of measurement. He is allowed to use lossless
beam splitters. Furthermore, he has an unrestricted number of ideal detectors that can measure
quadratures (in X or Y direction, or at any angle), chosen at will for every mode separately. These
freedoms lead to the following generic setup.

• The attacker splits |n, c〉 into ` parts using his lossless beam splitter(s). This results in `
copies of the wavefront, which we will label with a Greek index, α ∈ {0, . . . , ` − 1}. The
splitting does not have to be equal. We denote the fraction of light in copy α as rα, where∑
α rα = 1. The photon number in copy α is Poisson-distributed with mean nrα. In order

to parametrize the non-uniformity of the splitting, we introduce a constant δ as follows,

(
1
`2

`−1∑
β=0

1
rβ

)−1 = 1− δ2. (11)

For uniform splitting we have rα = 1/` for all α, and δ = 0.

• In copy α the attacker does a quadrature measurement at angle ϕα in every mode k ∈ K
separately. The corresponding operators are

Qαk = Xαk cosϕα + Yαk sinϕα. (12)

Note that Qαk and Qβk commute, and that 〈Qαk〉 =
√
nrα(crek cosϕα + cimk sinϕα), and

〈4Q2
αk〉 = 1/4, where 4Qαk := Qαk − 〈Qαk〉.

• The attacker combines the information from all the copies using a weighted sum,

Ωk =
2
`

`−1∑
α=0

1
√
nrα

eiϕαQαk. (13)

Here the expression eiϕαQαk/
√
nrα represents the best guess for ck based on the information

from Qαk. Note that the expectation value of Ωk is given by 〈Ωk〉 = ck + (c∗k/`)
∑
α e

2iϕα .
The second term can be eliminated, if ` ≥ 2, by setting the angles ϕα maximally apart (see
the Appendix),

ϕα = απ/`. (14)

From this point on we will consider only ` ≥ 2 and use ϕα angles as defined by (14), yielding
〈Ωk〉 = ck.

• Even though the operators Ωk have expectation value ck, the attacker cannot directly use
them as his estimators for the wavefront shape, since the normalization is incorrect. In
fact, the Ωk mostly measure Gaussian noise. If we define 4k = Ωk − ck, then we have
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〈4†k4k〉 = 1
n(1−δ2) ; thus, the noise amplitude

√
〈4†k4k〉 in each mode is of order 1/

√
n

while the expectation value ck is of order 1/
√
K. The expected norm of the vector (Ωk)k∈K

is given by 〈∑
k∈K

Ω†kΩk

〉
=
∑
k∈K

|ck|2 +
∑
k∈K

〈4†k4k〉 = 1 +
K

n(1− δ2)
, (15)

i.e. far away from unity. Furthermore, the norm itself is also subject to strong fluctuations
because of the quadrature property 〈4Q4

αk〉 = 3/16. Hence the best way to obtain a
normalized wavefront from the Ωk operators is to construct the estimate f as

fk =
Ωk√∑
p Ω†pΩp

. (16)

These operators trivially satisfy
∑

k f
†
kfk = 1.

Remark: From (15) we see that, given ` and given α as defined by (14), beamsplitting into equal
parts rα = 1/` (giving δ = 0) yields the lowest expected norm, i.e. a more accurate estimate of c.
Later on we will see that indeed equal splitting leads to the strongest attack.

Lemma 3 Let K > n, K � 1. Let the attacker perform the challenge estimation attack with the
quadrature measurements described above. Then

〈n, c|f†p′fp|n, c〉 =
[
c∗p′cp

n(1− δ2)
K + n(1− δ2)

+
δpp′

K + n(1− δ2)

] [
1−O(

1
K

)
]
. (17)

Proof: See the Appendix.

Theorem 1 Let K > n, K � 1. Let the attacker perform the challenge estimation attack with
the quadrature measurements. Then the occupation of the modes after SLM2 is given by

〈Nk〉
n

=
[

n(1− δ2)
K + n(1− δ2)

|(LMc)k|2 +
1

K + n(1− δ2)

] [
1−O(

1
K

)
]
. (18)

Proof: We substitute Lemma 3 into Lemma 2 and then apply Lemma 1. �

Theorem 1 is the main result of this paper. Setting k = 0 in (18) and dividing by the result for a
correct response, 〈N0〉correct/n = |(LMc)0|2, we obtain

〈N0〉attack
〈N0〉correct

≈ n(1− δ2) + |(LMc)0|−2

K + n(1− δ2)
. (19)

For the attacker it is best to choose δ = 0, i.e. equal splitting. The fraction then becomes

〈N0〉attack
〈N0〉correct

∣∣∣∣
δ=0

≈ 1 + |(LMc)0|−2/n

S + 1
, (20)

where S = K/n is called the Quantum Security Parameter. Note that |(LMc)0|−2 ≥ 4/π, where
the equality holds for ideal optics at the verifier side.
It is interesting to note that the number ` has no impact on the security, as long as ` ≥ 2.
Measuring two quadratures yields as much information as measuring many.
For properly chosen K and n (e.g. such that S > 2 ) the disparity in the detector’s photon count
allows for reliable distinction between an authentic PUF and the quadrature attack, especially
when the authentication protocol contains multiple challenge-response rounds.
Remark: If we set n = 1 and k = 0 in (18) then (18) represents approximately the attacker’s
success probability in one authentication round performed with a single-photon source. The result
in the case of an ideal detector is (1 + π/4)/(K + 1). This is consistent with (namely lower than)
the theoretical upper bound 2/(K + 1) on the false acceptance probability as derived in [22] for
the single-quantum scenario.6

6The journal version [24] contains an unfortunate mistake.
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4 Discussion

We have investigated the security of the optical QR-PUF realization of Ref. [10] under the strongest
class of classical attacks: challenge estimation attacks. We have derived results for the amount
of light focused onto the detector, i.e. in the k = 0 mode, by the SLM. Our theoretical result
matches the experiments in Ref. [10]. Lemma 2 gives the general equation for the number of
detected photons when the challenge estimation attack takes place, for any choice of measurement
by the attacker.
We have investigated the special case where the measurement is constrained to arbitrary beam
splitting and arbitrary quadrature measurements. To our knowledge quadratures are the most
informative practical measurement that can be performed with current technology. We find that
equal splitting and a uniform spreading of quadrature angles yields the strongest attack. Further-
more, we see that splitting beyond two beams does not improve the attack. Theorem 1 is the
main result in this setting, specifying the photon count in each mode after SLM2. Eq. (20) shows
the discrepancy between the case of an authentic PUF and the quadrature measurement attack:
roughly a factor S + 1 in the photon count. This result is consistent with the theoretical bound
2/(K + 1) for the single-photon case.
We conclude that it is very easy to choose operational conditions such that the optical QR-
PUF system is quantum-secure against quadrature-based challenge estimation, especially if the
authentication protocol consists of multiple challenge-response rounds.
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A Proof of Lemma 3

We begin by introducing a constant γ as

γ = (1− δ2)
1
`2

`−1∑
α=0

e2iϕα

rα
. (21)

If ` ≥ 2 and the splitting is uniform (∀α∈{0,...,`−1} : rα = 1/`), then γ = 0. This is seen as follows.
Substitution of rα = 1/` into (21) gives γ = `−1

∑`−1
α=0 e

2iϕα = `−1
∑`−1
α=0 ζ

α, with ζ := ei2π/`

satisfying ζ` = 1. The sum is evaluated as
∑`−1
α=0 ζ

α = (1− ζ`)/(1− ζ) = 0.
Next we define

Hk =
√
n(1− δ2)(Ωk − ck) = 2

√
1− δ2 1

`

∑
α

eiϕα

√
rα
4Qαk, (22)

with Ωk as specified in (13). Given the state |n, c〉, the Hk are Gaussian-distributed with 〈Hk〉 = 0.
As can be seen from the properties of Ωk and Qαk as discussed in Section 3.3, it holds that
〈H†kHk〉 = 1 and 〈H2

k〉 = γ. Since the modes are independent we have 〈H†k′Hk〉 = δkk′ . The
expectation value of any odd power of Hk always yields zero. Furthermore, the quadratures,
being Gaussian, satisfy 〈4Q4

αk〉 = 3/16. This yields, after some algebra, 〈(H†kHk)2〉 = 2 + |γ|2.
Next we define the following operators,

G =
1√
2

∑
p

(c∗pHp + cpH
†
p) ; E =

1√
K
√

1 + |γ|2
(
∑

p

H†pHp −K). (23)

They have convenient properties, which directly follow from the properties of Hk: 〈G〉 = 0,
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〈E〉 = 0, 〈G2〉 = 1 +O(γ), 〈E2〉 = 1. The product f†k′fk can now be written as

f†k′fk =
n(1− δ2)

K + n(1− δ2)

c∗k′ck + c∗k′
Hk√
n(1−δ2)

+ ck
H†

k′√
n(1−δ2)

+
H†

k′Hk

n(1−δ2)

1 +
√
K
√

1+|γ|2
K+n(1−δ2) E +

√
2
√
n(1−δ2)

K+n(1−δ2) G
. (24)

Since 〈E2〉 and 〈G2〉 are both of order 1, the terms (in the denominator) in which E and G appear
are much smaller than 1; we are then allowed to Taylor-expand the fraction 1

1+[··· ]E+[··· ]G . The

small parameter in the expansion is of order O(
√
K/(K + n)) + O(

√
n/(K + n)) = O(1/

√
K).

(This holds for K � 1 and any n < K.) We stop the expansion after the 2nd order.
Using 〈E〉 = 0, 〈G〉 = 0 and 〈EG〉 = 0, we find that the contribution from the c∗k′ck term in the
numerator in (24) is

n(1− δ2)c∗k′ck
K + n(1− δ2)

[
1 +

1
2
〈E2〉 K(1 + |γ|2)

[K + n(1− δ2)]2
+

1
2
〈G2〉 2n(1− δ2)

[K + n(1− δ2)]2
+ · · ·

]
. (25)

Using 〈HkE〉 = 0, 〈HkG〉 = (ck + γc∗k)/
√

2, we find for the contribution from the c∗k′ term

n(1− δ2)c∗k′ck
K + n(1− δ2)

[
− 1 + γc∗k/ck
K + n(1− δ2)

+ · · ·
]
. (26)

The ck term yields an expression analogous to (26), but with γck′/c
∗
k′ instead of γc∗k/ck. For the

H†k′Hk term we use 〈H†k′HkG〉 = 0 (odd power of H), 〈H†k′HkE〉 = δkk′O(1/
√
K) and obtain

δkk′

K + n(1− δ2)

[
1−O(

1
K

)
]
. (27)

Inspecting (25) and (26), we find that the total relative correction term to the expression n(1 −
δ2)c∗k′ck/(K + n(1 − δ2)) is approximately 1

2 (K + 2n)/(K + n)2 − 2/(K + n), which is negative.
The result (17) follows.
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[18] P. Tuyls, G.J. Schrijen, B. Škorić, J. van Geloven, R. Verhaegh, and R. Wolters. Read-
proof hardware from protective coatings. In Cryptographic Hardware and Embedded Systems
(CHES) 2006, volume 4249 of LNCS, pages 369–383. Springer-Verlag, 2006.
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