
Between a Rock and a Hard Place: Interpolating Between MPC and FHE

A. Choudhury, J. Loftus, E. Orsini, A. Patra and N.P. Smart

Dept. Computer Science,
University of Bristol,

United Kingdom.
{Ashish.Choudhary,Emmanuela.Orsini,Arpita.Patra}@bristol.ac.uk,

{loftus,nigel}@cs.bris.ac.uk

Abstract. We present a computationally secure MPC protocol for threshold adversaries which is parametrized
by a value L. When L = 2 we obtain a classical form of MPC protocol in which interaction is required for
multiplications, as L increases interaction is reduced, in that one requires interaction only after computing a higher
degree function. When L approaches infinity one obtains the FHE based protocol of Gentry, which requires no
interaction. Thus one can trade communication for computation in a simple way. Our protocol is based on an
interactive protocol for “bootstrapping” a somewhat homomorphic encryption (SHE) scheme. The key contribution
is that our presented protocol is highly communication efficient enabling us to obtain reduced communication when
compared to traditional MPC protocols for relatively small values of L.

1 Introduction

In the last few years computing on encrypted data via either Fully Homomorphic Encryption (FHE) or Multi-Party
Computation (MPC) has been subject to a remarkable number of improvements. Firstly, FHE was shown to be possible
[29]; and this was quickly followed by a variety of applications and performance improvements [9, 12, 11, 30, 31, 39,
40]. Secondly, whilst MPC has been around for over thirty years, only in the last few years we have seen an increased
emphasis on practical instantiations; with some very impressive results [8, 22, 37].

We focus on MPC where n parties wish to compute a function on their respective inputs. Whilst the computational
overhead of MPC protocols, compared to computing “in the clear”, is relatively small (for example in practical proto-
cols such as [25, 37] a small constant multiple of the “in the clear” cost), the main restriction on practical deployment
of MPC is the communication cost. Even for protocols in the preprocessing model, evaluating arithmetic circuits over
Fp, the communication cost in terms of number of bits per multiplication gate and per party is a constant multiple of
the bit length, log p, of the data being manipulated for a typically large value of the constant. This is a major drawback
of MPC protocols since communication is generally more expensive than computation. Theoretical results like [19]
(for the computational case) and [20] (for the information theoretic case) bring down the per gate per party communi-
cation cost to a very small quantity; essentially O( logn

n · log |C| · log p) bits for a circuit C of size |C|. While these
results suggest that the communication cost can be asymptotically brought down to a constant for large n, the constants
are known to be large for any practical purpose. Our interest lies in constructing efficient MPC protocols where the
efficiency is measured in terms of exact complexity rather than the asymptotic complexity.

In his thesis, Gentry [28] showed how FHE can be used to reduce the communication cost of MPC down to
virtually zero for any number of parties. In Gentry’s MPC protocol all parties encrypt to each other their inputs under a
shared FHE public key. They then compute the function homomorphically, and at the end perform a shared decryption.
This implies an MPC protocol whose communication is limited to a function of the input and output sizes, and not to
the complexity of the circuit. However, this reduction in communication complexity comes at a cost, namely the huge
expense of evaluating homomorphically the function. With current understanding of FHE technology, this solution is
completely infeasible in practice.

A variant of Gentry’s protocol was presented by Asharov et al. in [1] where the parties outsource their computation
to a server and only interact via a distributed decryption. The key innovation in [1] was that independently generated

This article is based on an earlier article: Asiacrypt 2013, IACR 2013, http://dx.doi.org/10.1007/
978-3-642-42045-0_12.



(FHE) keys can be combined into a “global” FHE key with distributed decryption capability. We do not assume such
a functionality of the keys (but one can easily extend our results to accommodate this); instead we focus on using
distributed decryption to enable efficient multi-party bootstrapping. In addition the work of [1], in requiring an FHE
scheme, as opposed to the SHE scheme of our work, requires the assumption of circular security of the underlying
FHE scheme (and hence more assumptions).

In [25], following on the work in [7], the authors propose an MPC protocol which uses an SHE scheme as an
“optimization”. Based in the preprocessing model, the authors utilize an SHE scheme which can evaluate circuits of
multiplicative depth one to optimize the preprocessing step of an essentially standard MPC protocol. The optimiza-
tions, and use of SHE, in [25] are focused on the case of computational improvements. In this work we invert the use
of SHE in [25], by using it for the online phase of the MPC protocol, so as to optimize the communication efficiency
for any number of parties.

In essence we interpolate between the two extremes of traditional MPC protocols (with high communication but
low computational costs) and Gentry’s FHE based solution (with high computation but low communication costs).
Our interpolation is dependent on a parameter, which we label as L, where L ≥ 2. At one extreme, for L = 2 our
protocol resembles traditional MPC protocols, whilst at the other extreme, for L = ∞ our protocol is exactly that
of Gentry’s FHE based solution. We emphasize that our construction is general in that any SHE can be used which
supports homomorphic computation of depth two circuits and threshold decryption. Thus the requirements on the
underlying SHE scheme are much weaker than the previous SHE (FHE) based MPC protocols, such as the one by
Asharov et al. [1], which relies on the specifics of LWE (learning with errors) based SHE i.e. key-homomorphism and
demands homomorphic computation of depth L circuits for big enough L to bootstrap.

The solution we present is in the preprocessing model; in which we allow a preprocessing phase which can compute
data which is neither input, nor function, dependent. This preprocessed data is then consumed in the online phase. As
usual in such a model our goal is for efficiency in the online phase only. We present our basic protocol and efficiency
analysis for the case of passive threshold adversaries only; i.e. we can tolerate up to t passive corruptions where t < n.
We then note that security against t active adversaries with t < n/3 can be achieved for no extra cost in the online
phase. For the active security case, essentially the same communication costs can be achieved even when t < n/2, bar
some extra work (which is independent of |C|) to eliminate the cheating parties when they are detected. The security
of our protocols are proven in the standard UC framework [13].

We note that our focus is on the MPC protocols providing robustness and fairness1, which is impossible to achieve
in general without assuming t < n/2 [15, 32]. Indeed in several real-life applications it may be desirable to have these
properties. However we stress that we could deal with the dishonest majority setting (i.e. t < n) by utilizing additional
zero-knowledge proof techniques to show that the distributed decryptions are performed correctly; however as our
goal is to achieve low exact communication complexity (as opposed to low asymptotic complexity) we feel that such
a discussion would deviate from the thrust of our work. In adding the corresponding associated proofs of correctness
we would still achieve an asymptotic improvement in communication complexity over other MPC protocols with
dishonest majority; but this is not our focus and so in the rest of the paper, we avoid discussing about the setting of
dishonest majority.

Finally we note that our results on communication complexity, both in a practical and in an asymptotic sense, in
the computational setting are comparable (if not better) than the best known results in the information theoretic and
computational settings. Namely the best known optimally resilient statistically secure MPC protocol with t < n/2
has (asymptotic) communication complexity of O(n) per multiplication [5], whereas ours is O(n/L) (see Section 9
for the analysis of our protocol). With near optimal resiliency of t < ( 1

3 − ε)n, the best known perfectly secure MPC
protocol has (asymptotic) communication complexity of O(polylog n) per multiplication [20], but a huge constant
is hiding under the O. In the computational settings, with near optimal resiliency of t < ( 1

2 − ε)n, the best known
MPC protocol has (asymptotic) communication complexity of O(polylog n) per multiplication [19], but again a huge
constant is hiding under the O. All these protocols can not win over ours when exact communication complexity is
compared for even small values of L.

1 Informally robustness means that the adversary cannot deny the honest parties from obtaining the correct output, while fairness
guarantees that either everyone receives the output or no one obtains the output.

2



Overview: Our protocol is intuitively simple. We first take an L-levelled SHE scheme (strictly it has L + 1 levels,
but can evaluate circuits with L levels of multiplications) which possesses a distributed decryption protocol for the
specific access structure required by our MPC protocol. We assume that the SHE scheme is implemented over a ring
which supports N embeddings of the underlying finite field Fp into the message space of the SHE scheme. Almost all
known SHE schemes support such packing of the finite field into the plaintext slots in an SIMD manner [30, 40]; and
such packing has been crucial in the implementation of SHE in various applications [21, 25, 31].

Clearly with such a setup we can implement Gentry’s MPC solution for circuits of multiplicative depth L. All that
remains is how to “bootstrap” from circuits with multiplicative depth L to arbitrary circuits. The standard solution
would be to bootstrap the FHE scheme directly, following the blueprint outlined in Gentry’s thesis. However, in the
case of applications to MPC we could instead utilize a protocol to perform the bootstrapping. In a nutshell that is
exactly what we propose.

The main issue then is show how to efficiently perform the bootstrapping in a distributed manner; where efficiency
is measured in terms of computational and communication performance. Naively performing an MPC protocol to
execute the bootstrapping phase will lead to a large communication overhead, due to the inherent overhead in dealing
with homomorphic encryptions. But on its own this is enough to obtain our asymptotic interpolation between FHE
and MPC; we however aim to provide an efficient and practical interpolation. That is one which is efficient for small
values of L. It turns out that a special case of a suitable bootstrapping protocol can be found as a sub-procedure of the
MPC protocol in [25]. We extract the required protocol, generalise it, and then apply it to our MPC situation.

To ease exposition we will not utilize the packing from [30] to perform evaluations of the depth L sub-circuits;
we see this as a computational optimization which is orthogonal to the issues we will explore in this paper. In any
practical instantiation of the protocol of this paper such a packing could be used, as described in [30], in evaluating the
circuit of multiplicative depth L. However, we will use this packing to perform the bootstrapping in a communication
efficient manner.

The bootstrapping protocol runs in two phases. In the first (offline) phase we repeatedly generate sets of ciphertexts,
one set for each party, such that all parties learn the ciphertexts but only the given party learns their underlying
messages (which are assumed to be packed). The offline phase can be run in either a passive, covert or active security
model, irrespective of the underlying access structure of the MPC protocol following ideas from [22]. In the second
(online) phase the data to be bootstrapped is packed together, a random mask is added (computed from the offline
phase data), a distributed decryption protocol is executed to obtain the masked data which is then re-encrypted, the
mask is subtracted and then the data is unpacked. All these steps are relatively efficient, with communication only
being required for the distributed decryption.

To apply our interactive bootstrapping method efficiently we need to make a mild assumption on the circuit being
evaluated; this is similar to the assumptions used in [19, 20, 26]. The assumption can be intuitively seen as saying
that the circuit is relatively wide enough to enable packing of enough values which need to be bootstrapped at each
respective level. We expect that most circuits in practice will satisfy our assumption, and we will call the circuits which
satisfy our requirement “well formed”.

We pause to note that the ability to open data within the MPC protocol enables one to perform more than a simple
evaluation of an arithmetic circuit. This observation is well known in the MPC community, where it has been used
to obtain efficient protocols for higher level functions [14, 18]. Thus enabling a distributed bootstrapping also enables
one to produce more efficient protocols than purely FHE based ones.

We instantiate our protocol with the BGV scheme [10] and obtain sufficient parameter sizes following the method-
ology in [22, 31]. Due to the way we utilize the BGV scheme we need to restrict to MPC protocols for arithmetic
circuits over a finite field Fp, with p ≡ 1 (mod m) with m = 2 ·N and N = 2r for some r. The distributed decryp-
tion method uses a “smudging” technique which means that the modulus used in the BGV scheme needs to be larger
than what one would need to perform just the homomorphic operations. Removing this smudging technique, and hence
obtaining an efficient protocol for distributed decryption, for any SHE scheme is an interesting open problem; with
many potential applications including that described in this paper.

We show that even for a very small value of L, in particular L = 5, we can achieve better communication effi-
ciency than many practical MPC protocols in the preprocessing model. Most practical MPC protocols such as [8, 25,
37] require the transmission of at least two finite field elements per multiplication gate between each pair of parties.
In [25] a technique is presented which can reduce this to the transmission of an average of three field elements per

3



multiplication gate per party (and not per pair of parties). Note the models in [8] (three party, one passive adversary)
and [25, 37] (n party, dishonest majority, active security) are different from ours (we assume honest majority, active
security); but even mapping these protocols to our setting of n party honest majority would result in the same com-
munication characteristics. We show that for relatively small values of L, i.e. L > 8, one can obtain a communication
efficiency of less than one field element per gate and party (details available in Section 9).

Clearly, by setting L appropriately one can obtain a communication efficiency which improves upon that in [19,
20]; albeit we are only interested in communication in the online phase of a protocol in the preprocessing model whilst
[19, 20] discuss total communication cost over all phases. But we stress this is not in itself interesting, as Gentry’s
FHE based protocol can beat the communication efficiency of [19, 20] in any case. What is interesting is that we can
beat the communication efficiency of the online phase of practical MPC protocols, with very small values of L indeed.
Thus the protocol in this paper may provide a practical tradeoff between existing MPC protocols (which consume high
bandwidth) and FHE based protocols (which require huge computation).

Our protocol therefore enables the following use-case: it is known that SHE schemes only become prohibitively
computationally expensive for large L; indeed one of the reasons why the protocols in [22, 25] are so efficient is
that they restrict to evaluating homomorphically circuits of multiplicative depth one. With our protocol parties can
a priori decide the value of L, for a value which enables them to produce a computationally efficient SHE scheme.
Then they can execute an MPC protocol with communication costs reduced by effectively a factor of L. Over time
as SHE technology improves the value of L can be increased and we can obtain Gentry’s original protocol. Thus our
methodology enables us to interpolate between the case of standard MPC and the eventual goal of MPC with almost
zero communication costs.

2 Well Formed Circuits

In this section we define what we mean by well formed circuits, and the pre-processing which we require on our
circuits. We take as given an arithmetic circuit C defined over a finite field Fp. In particular the circuit C is a directed
acyclic graph consisting of edges made up of nI input wires, nO output wires, and nW internal wires, plus a set of
nodes being given by a set of gates G. The gates are divided into sets of Add gates GA and Mult gates GM , with
G = GA ∪ GM , with each Add/Mult gate taking two wires (or a constant value in Fp) as input and producing one
wire as output. The circuit is such that all input wires are open on their input ends, and all output wires are open on
their output ends, with the internal wires being connected on both ends. We let the depth of the circuit d be the length
of the maximum path from an input wire to an output wire. Our definition of a well formed circuit is parametrized by
two positive integer values N and L.

We now associate inductively to each wire in the circuit an integer valued label as follows. The input wires are
given the label one; then all other wires are given a label according to the following rule (where we assume a constant
input to a gate has label L)

Label of output wire of Add gate = min(Label of input wires),
Label of output wire of Mult gate = min(Label of input wires)− 1.

Thus the minimum value of a label is 1− d (which is negative for a general d). Looking ahead, the reason for starting
with an input label of one is when we match this up with our MPC protocol this will result in low communication
complexity for the input stage of the computation.

We now augment the circuit, to produce a new circuit Caug which will have labels in the range [1, . . . , L], by
adding in some special gates which we will call Refresh gates; the set of such gates are denoted as GR. A Refresh gate
takes as input a maximum of N wires, and produces as output an exact copy of the specified input wires. The input
requirement is that the input wires must have label in the range [1, . . . , L], and all that the Refresh gate does is relabel
the labels of the gate’s input wires to be L. At the end of the augmentation process we require the invariant that all
wire labels in Caug are then in the range [1, . . . , L], and the circuit is now essentially a collection of “sub-circuits” of
multiplicative depth at most L − 1 glued together using Refresh gates. However, we require that this is done with as
small a number of Refresh gates as possible.

Definition 1 (Well Formed Circuit). A circuit C will be called well formed if the number of Refresh gates in the
associated augmented circuit Caug is at most 2·|GM |

L·N .

4



We expect that “most” circuits will be well formed due to the following argument: We first note that the only gates
which concern us are multiplication gates; so without loss of generality we consider a circuit C consisting only of
multiplication gates. The circuit has d layers, and let the width of C (i.e. the number of gates) at layer i be wi.
Consider the algorithm to produce Caug which considers each layer in turn, from i = 1 to d and adds Refresh gates
where needed. When reaching level i in our algorithm to produce Caug we can therefore assume (by induction) that all
input wires at this layer have labels in the range [1, . . . , L]. To maintain the invariant we only need to apply a Refresh
operation to those input wires which have label one. Let pi denote the proportion of wires at layer i which have label
one when we perform this process. It is clear that the number of required Refresh gates which we will add into Caug

at level i will be at most d2 · pi ·wi/Ne, where the factor of two comes from the fact that each multiplication gate has
two input wires.

Assuming a large enough circuit we can assume for most layers that this proportion pi will be approximately 1/L,
since wires will be refreshed after their values have passed through L multiplication gates. So summing up over all
levels, the expected number of Refresh gates in Caug will be:

d∑
i=1

⌈
2 · wi
L ·N

⌉
≈ 2
L ·N

·
d∑
i=1

wi =
2 · |GM |
L ·N

.

Note, we would expect that for most circuits this upper bound on the number of Refresh gates could be easily met.
For example our above rough analysis did not take into account the presence of gates with fan-out greater than one
(meaning there are less wires to Refresh than we estimated above), nor did it take into account utilizing unused slots
in the Refresh gates to refresh wires with labels not equal to one.

Determining an optimum algorithm for moving from C to a suitable Caug, with a minimal number of Refresh
gates, is an interesting optimization problem which we leave as an open problem; however clearly the above outlined
greedy algorithm will work for most circuits.

3 Threshold L-Levelled Packed Somewhat Homomorphic Encryption (SHE)

In this section, we present a detailed explanation of the syntax and requirements for our Threshold L-Levelled Packed
Somewhat Homomorphic Encryption Scheme. The scheme will be parametrized by a number of values; namely the
security parameter κ, the number of levels L, the amount of packing of plaintext elements which can be made into
one ciphertext N , a statistical security parameter sec (for the security of the distributed decryption) and a pair (t, n)
which defines the threshold properties of our scheme. In practice the parameter N will be a function of L and κ. The
message space of the SHE scheme is defined to be M = FNp , and we embed the finite field Fp into M via a map
χ : Fp −→M. See Section 7 for a discussion as to the various choices one has for χ when we specialise to the BGV
SHE scheme.

Let C(L) denote the family of circuits consisting of addition and multiplication gates whose labels follow the con-
ventions in Section 2; except that input wires have label L and whose minimum wire label is zero. Thus C(L) is the
family of standard arithmetic circuits of multiplicative depth at most L which consist of 2-input addition and multi-
plication gates over Fp, whose wire labels lie in the range [0, . . . , L]. Informally, a threshold L-levelled SHE scheme
supports homomorphic evaluation of any circuit in the family C(L) with the provision for distributed (threshold) de-
cryption, where the input wire values vi are mapped to ciphertexts (at level L) by encrypting χ(vi).

As remarked in the introduction we could also, as in [30], extend the circuit family C(L) to include gates which
process N input values at once as

N -Add (〈u1, . . . , uN 〉, 〈v1, . . . , vN 〉) := 〈u1 + v1, . . . , uN + vN 〉,
N -Mult (〈u1, . . . , uN 〉, 〈v1, . . . , vN 〉) := 〈u1 × v1, . . . , uN × vN 〉.

But such an optimization of the underlying circuit is orthogonal to our consideration. However, the underlying L-
levelled packed SHE scheme supports such operations on its underlying plaintext (we will just not consider these
operations in our circuits being evaluated).

We can evaluate subcircuits in C(L); and this is how we will describe the homomorphic evaluation below (this
will later help us to argue the correctness property of our general MPC protocol). In particular if C ∈ C(L), we

5



can deal with sub-circuits Csub of C whose input wires have labels lin1 , . . . , l
in
`in

, and whose output wires have labels
lout1 , . . . , lout`out

, where lini , l
out
i ∈ [0, . . . , L]. Then given ciphertexts c1, . . . , c`in encrypting the messages m1, . . . ,m`in ,

for which the ciphertexts are at level lin1 , . . . , l
in
`in

, the homomorphic evaluation function will produce ciphertexts
ĉ1, . . . , ĉ`out , at levels lout1 , . . . , lout`out

, which encrypt the messages corresponding to evaluating Csub on the compo-
nents of the vectors m1, . . . ,m`in in a SIMD manner. More formally:

Definition 2 (Threshold L-levelled Packed SHE). An L-levelled public key packed somewhat homomorphic en-
cryption (SHE) scheme with the underlying message space M = FNp , public key space PK, secret key space SK,
evaluation key space EK, ciphertext space CT and distributed decryption key spaceDKi for i ∈ [1, . . . , n] is a collec-
tion of the following PPT algorithms, parametrized by a computational security parameter κ and a statistical security
parameter sec:

1. SHE.KeyGen(1κ, 1sec, n, t)→ (pk, ek, sk, dk1, . . . , dkn): The key generation algorithm outputs a public key pk ∈
PK, a public evaluation key ek ∈ EK, a secret key sk ∈ SK and n keys (dk1, . . . , dkn) for the distributed
decryption, with dki ∈ DKi.

2. SHE.Encpk(m, r) → (c, L): The encryption algorithm computes a ciphertext c ∈ CT , which encrypts a plaintext
vector m ∈M under the public key pk using the randomness2 r and outputs (c, L) to indicate that the associated
level of the ciphertext is L.

3. SHE.Decsk(c, l) → m′: The decryption algorithm decrypts a ciphertext c ∈ CT of associated level l where
l ∈ [0, . . . , L] using the decryption key sk and outputs a plaintext m′ ∈ M. We say that m′ is the plaintext
associated with c.

4. SHE.ShareDecdki(c, l) → µ̄i: The share decryption algorithm takes a ciphertext c with associated level l ∈
[0, . . . , L], a key dki for the distributed decryption, and computes a decryption share µ̄i of c.

5. SHE.ShareCombine((c, l), {µ̄i}i∈[1,...,n]) → m′: The share combine algorithm takes a ciphertext c with associ-
ated level l ∈ [0, . . . , L] and a set of n decryption shares and outputs a plaintext m′ ∈M.

6. SHE.Evalek(Csub, (c1, l
in
1 ), . . . , (c`in , l

in
`in

)) → (ĉ1, l
out
1 ), . . . , (ĉ`out , l

out
`out

): The homomorphic evaluation algo-
rithm is a deterministic polynomial time algorithm (polynomial in L, `in, `out and κ) that takes as input the
evaluation key ek, a sub-circuit Csub of a circuit C ∈ C(L) with `in input gates and `out output gates as well as
a set of `in ciphertexts c1, . . . , c`in , with associated level lin1 , . . . , l

in
`in

, and outputs `out ciphertexts ĉ1, . . . , ĉ`out ,
with associated levels lout1 , . . . , lout`out

respectively, where each lini , l
out
i ∈ [0, . . . , L] is the label associated to the

given input/output wire in Csub.
Algorithm SHE.Eval associates the input ciphertexts with the input gates of Csub and homomorphically evaluates
Csub gate by gate in an SIMD manner on the components of the input messages. For this, SHE.Eval consists
of separate algorithms SHE.Add and SHE.Mult for homomorphically evaluating addition and multiplication
gates respectively. More specifically, given two ciphertexts (c1, l1) and (c2, l2) with associated levels l1 and l2
respectively where l1, l2 ∈ [0, . . . , L] then3:

– SHE.Addek((c1, l1), (c2, l2)) → (cAdd,min (l1, l2)): The deterministic polynomial time addition algorithm
takes as input (c1, l1), (c2, l2) and outputs a ciphertext cAdd with associated level min (l1, l2).

– SHE.Multek((c1, l1), (c2, l2)) → (cMult,min (l1, l2) − 1): The deterministic polynomial time multiplication
algorithm takes as input (c1, l1), (c2, l2) and outputs a ciphertext cMult with associated level min (l1, l2)− 1.

– SHE.ScalarMultek((c1, l1),a) → (cScalar, l1): The deterministic polynomial time scalar multiplication algo-
rithm takes as input (c1, l1) and a plaintext a ∈ M and outputs a ciphertext cScalar with associated level
l1.

7. SHE.Packek((c1, l1), . . . , (cN , lN )) → (c,min(l1, . . . , lN )): If ci is a ciphertext with associated plaintext χ(mi),
then this procedure produces a ciphertext (c,min(l1, . . . , lN )) with associated plaintext m = (m1, . . . ,mN ).

8. SHE.Unpackek(c, l) → ((c1, l), . . . , (cN , l)): If c is a ciphertext with associated plaintext m = (m1, . . . ,mN ),
then this procedure produces N ciphertexts (c1, l), . . . , (cN , l) such that ci has associated plaintext χ(mi).

2 In the paper, unless it is explicitly specified, we assume that some randomness has been used for encryption.
3 Without loss of generality we assume that we can perform homomorphic operations on ciphertexts of different levels, since we

can always deterministically downgrade the ciphertext level of any ciphertext to any value between zero and its current value
using SHE.LowerLevelek.

6



9. SHE.LowerLevelek((c, l), l′) → (c, l′): This procedure, for l′ < l, produces a ciphertext with the same associated
plaintext as (c, l), but at level l′. 2

We require the following homomorphic property to be satisfied:

– Somewhat Homomorphic SIMD Property: Let Csub : F`inp → F`outp be any sub-circuit of a circuit C in the family
C(L) with respective inputs m1, . . . ,m`in ∈ M, such that Csub when evaluated N times in an SIMD fashion on
the N components of the vectors m1, . . . ,m`in , produces N sets of `out output values m̂1, . . . , m̂`in ∈ M.
Moreover, for i ∈ [1, . . . , `in] let ci be a ciphertext of level lini with associated plaintext vector mi and let
(ĉ1, l

out
1 ), . . . , (ĉ`out , l

out
`out

) = SHE.Evalek(Csub, (c1, l
in
1 ), . . . , (c`in , l

in
`in

)). Then the following holds with prob-
ability one for each i ∈ [1, . . . , `out]:

SHE.Decsk(ĉi, louti ) = m̂i.

We also require the following security properties:

– Key Generation Security: Let S and Di be the random variables which denote the probability distribution with
which the secret key sk and the ith key dki for the distributed decryption is selected from SK and DKi by
SHE.KeyGen for i = 1, . . . , n. Moreover, for a set I ⊆ {1, . . . , n}, let DI denote the random variable which
denote the probability distribution with which the set of keys for the distributed decryption, belonging to the
indices in I , are selected from the corresponding DKis by SHE.KeyGen. Then the following two properties hold:
• Correctness: For any set I ⊆ {1, . . . , n} with |I| ≥ t + 1, H(S|DI) = 0. Here H(X|Y ) denotes the

conditional entropy of a random variable X with respect to a random variable Y [16].
• Privacy: For any set I ⊂ {1, . . . , n} with |I| ≤ t, H(S|DI) = H(S).

– Semantic Security: For every set I ⊂ {1, . . . , n} with |I| ≤ t and all PPT adversaries A, the advantage of A in
the following game is negligible in κ:
• Key Generation: The challenger runs SHE.KeyGen(1κ, 1sec, n, t) to obtain (pk, ek, sk, dk1, . . . , dkn) and sends

pk, ek and {dki}i∈I to A.
• Challenge: A sends plaintexts m0,m1 ∈ M to the challenger, who randomly selects b ∈ {0, 1} and sends

(c, L) = SHE.Encpk(mb, r) for some randomness r to A.
• Output: A outputs b′.

The advantage of A in the above game is defined to be | 12 − Pr[b′ = b]|.
– Correct Share Decryption: For any (pk, ek, sk, dk1, . . . , dkn) obtained as the output of SHE.KeyGen, the following

should hold for any ciphertext (c, l) with associated level l ∈ [0, . . . , L]:

SHE.Decsk(c, l) = SHE.ShareCombine((c, l), {SHE.ShareDecdki(c, l)}i∈[1,...,n]).

– Share Simulation Indistinguishability: There exists a PPT simulator SHE.ShareSim, which on input a subset
I ⊂ {1, . . . , n} of size at most t, a ciphertext (c, l) of level l ∈ [0, . . . , L], a plaintext m and |I| decryp-
tion shares {µ̄i}i∈I outputs n − |I| simulated decryption shares {µ̄∗j}j∈I with the following property: For any
(pk, ek, sk, dk1, . . . , dkn) obtained as the output of SHE.KeyGen, any subset I ⊂ {1, . . . , n} of size at most t, any
m ∈M and any (c, l) where m = SHE.Decsk(c, l), the following distributions are statistically indistinguishable:

({µ̄i}i∈I ,SHE.ShareSim((c, l),m, {µ̄i}i∈I))
s
≈
(
{µ̄i}i∈I , {µ̄j}j∈I

)
,

where for all i ∈ [1, . . . , n], µ̄i = SHE.ShareDecdki(c, l). We require in particular that the statistical distance
between the two distributions is bounded by 2−sec. Moreover

SHE.ShareCombine((c, l), {µ̄i}i∈I ∪ SHE.ShareSim((c, l),m, {µ̄i}i∈I))

outputs the result m. Here I denotes the complement of the set I; i.e. I = {1, . . . , n} \ I .

In Section 7 we instantiate the abstract syntax with a threshold SHE scheme based on the BGV scheme [10]. We
pause to note the difference between our underlying SHE, which is just an SHE scheme which supports distributed
decryption, and that of [1] which requires a special key homomorphic FHE scheme.

7



4 MPC from SHE – The Semi-honest Settings

In this section we present our generic MPC protocol for the computation of any arbitrary depth d circuit using an
abstract threshold L-levelled SHE scheme. For the ease of exposition we first concentrate on the case of semi-honest
security, and then we deal with active security in Section 5.

Functionality Ff

Ff interacts with the parties P1, . . . , Pn and the adversary S and is parametrized by an n-input function f : Fnp → Fp.

– Upon receiving (sid, i, xi) from the party Pi for every i ∈ [1, . . . , n] where xi ∈ Fp, compute y = C(x1, . . . , xn), send
(sid, y) to all the parties and the adversary S and halt. Here C denotes the (publicly known) well formed arithmetic circuit
over Fp representing the function f .

Fig. 1. The Ideal Functionality for Computing a Given Function

Without loss of generality we make the simplifying assumption that the function f to be computed takes a single
input from each party and has a single output; specifically f : Fnp → Fp. The ideal functionality Ff presented in
Figure 1 computes such a given function f , represented by a well formed circuitC. We will present a protocol to realise
the ideal functionality Ff in a hybrid model in which we are given access to an ideal functionality FSETUPGEN which
implements a distributed key generation for the underlying SHE scheme. In particular the FSETUPGEN functionality
presented in Figure 2 computes the public key, secret key, evaluation key and the keys for the distributed decryption
of an L-levelled SHE scheme, distributes the public key and the evaluation key to all the parties and sends the ith key
dki (for the distributed decryption) to the party Pi for each i ∈ [1, . . . , n]. In addition, the functionality also computes
a random encryption c1 with associated plaintext 1 = (1, . . . , 1) ∈ M and sends it to all the parties. Looking ahead,
c1 will be required while proving the security of our MPC protocol. The ciphertext c1 is at level one, as we only need it
to pre-multiply the ciphertexts which are going to be decrypted via the distributed decryption protocol; thus the output
of a multiplication by c1 need only be at level zero. Looking ahead, this ensures that (with respect to our instantiation
of SHE) the noise is kept to a minimum at this stage of the protocol.

Functionality FSETUPGEN

FSETUPGEN interacts with the parties P1, . . . , Pn and the adversary S and is parametrized by an L-levelled SHE scheme.

– Upon receiving (sid, i) from the party Pi for every i ∈ [1, . . . , n], compute (pk, ek, sk, dk1, . . . , dkn) =
SHE.KeyGen(1κ, 1sec, n, t) and (c1, 1) = SHE.LowerLevelek((SHE.Encpk(1, r), 1) for 1 = (1, . . . , 1) ∈ M and
some randomness r. Finally send (sid, pk, ek, dki, (c1, 1)) to the party Pi for every i ∈ [1, . . . , n] and halt.

Fig. 2. The Ideal Functionality for Key Generation

4.1 The MPC Protocol in the FSETUPGEN-hybrid Model

Here we present our MPC protocol Π SH
f in the FSETUPGEN-hybrid model. Let C be the (well formed) arithmetic circuit

representing the function f andCaug be the associated augmented circuit (which includes the necessary Refresh gates).
The protocolΠ SH

f (see Figure 3) runs in two phases: offline and online. The computation performed in the offline phase
is completely independent of the circuit and (private) inputs of the parties and therefore can be carried out well ahead
of the time (namely the online phase) when the function and inputs are known. If the parties have more than one

8



input/output then one can apply packing/unpacking at the input/output stages of the protocol; we leave this minor
modification to the reader.

In the offline phase, the parties interact with FSETUPGEN to obtain the public key, evaluation key and their respective
keys for performing distributed decryption, corresponding to a threshold L-levelled SHE scheme. Next each party
sends encryptions of ζ random elements and then additively combines them (by applying the homomorphic addition
to the ciphertexts encrypting the random elements) to generate ζ ciphertexts at level L of truly random elements
(unknown to the adversary). Here ζ is assumed to be large enough, so that for a typical circuit it is more than the
number of refresh gates in the circuit, i.e. ζ > GR. Looking ahead, these random ciphertexts created in the offline
phase are used in the online phase to evaluate refresh gates by (homomorphically) masking the messages associated
with the input wires of a refresh gate.

During the online phase, the parties encrypt their private inputs and distribute the corresponding ciphertexts to all
other parties. These ciphertexts are transmitted at level one, thus consuming low bandwidth, and are then elevated to
level L by the use of a following Refresh gate (which would have been inserted by the circuit augmentation process).
Note that the inputs of the parties are in Fp and so the parties first apply the mapping χ (embedding Fp into the message
spaceM of SHE) before encrypting their private inputs.

The input stage is followed by the homomorphic evaluation of Caug as follows: The addition and multiplication
gates are evaluated locally using the addition and multiplication algorithm of the SHE. For each refresh gate, the parties
execute the following protocol to enable a “multiparty bootstrapping” of the input ciphertexts: the parties pick one of
the random ciphertext created in the offline phase (for each refresh gate a different ciphertext is used) and perform
the following computation to refresh N ciphertexts with levels in the range [1, . . . , L] and obtain N fresh level L
ciphertexts, with the associated messages unperturbed:

– Let (c1, l1), . . . , (cN , lN ) be the N ciphertexts with associated plaintexts χ(z1), . . . , χ(zN ) with every zi ∈ Fp,
that need to be refreshed (i.e. they are the inputs of a refresh gate).

– The N ciphertexts are then (locally) packed into a single ciphertext c, which is then homomorphically masked
with a random ciphertext from the offline phase.

– The resulting masked ciphertext is then publicly opened via distributed decryption, This allows for the creation of
a fresh encryption of the opened value at level L.

– The resulting fresh encryption is then homomorphically unmasked so that its associated plaintext is the same as
original plaintext prior to the original masking.

– This fresh (unmasked) ciphertext is then unpacked to obtain N fresh ciphertexts, having the same associated
plaintexts as the original N ciphertexts ci but at level L.

By packing the ciphertexts together we only need to invoke distributed decryption once, instead ofN times. This leads
to a more communication efficient online phase, since the distributed decryption is the only operation that demands
communication. Without affecting the correctness of the above technique, but to ensure security, we add an additional
step while doing the masking: the parties homomorphically pre-multiply the ciphertext c with c1 before masking.
Recall that c1 is an encryption of 1 ∈ M generated by FSETUPGEN and so by doing the above operation, the plaintext
associated with c remains the same. During the simulation in the security proof, this step allows the simulator to set the
decrypted value to the random mask (irrespective of the circuit inputs), by playing the role of FSETUPGEN and replacing
c1 with c0, a random encryption of 0 = (0, . . . , 0). Furthermore, this step explains the reason why we made provision
for an extra multiplication during circuit augmentation by insisting that the refresh gates take inputs with labels in
[1, . . . , L], instead of [0, . . . , L]; the details are available in the simulation proof of security of our MPC protocol.

Finally, the function output y is obtained by another distributed decryption of the output ciphertext. However, this
step is also not secure unless the ciphertext is randomized again by pre-multiplication by c1 and adding n encryptions
of 0 where each party contributes one encryption. In the simulation, the simulator gives encryption of χ(y) on behalf
of one honest party and replaces c1 by c0, letting the output ciphertext correspond to the actual output y, even though
the circuit is evaluated with zero as the inputs of the honest parties during the simulation (the simulator will not know
the real inputs of the honest parties and thus will simulate them with zero). A similar idea was also used in [23]; details
can be found in the security proof.

Intuitively, privacy follows because at any stage of the computation, the keys of the honest parties for the distributed
decryption are not revealed and so the adversary will not be able to decrypt any intermediate ciphertext. Correctness

9



Protocol Π SH
f

Let Caug denote an augmented circuit for a well formed circuit C over Fp representing f and let SHE be a threshold L-levelled
SHE. Moreover, let P = {P1, . . . , Pn} be the set of n parties For the session ID sid the parties do the following:

Offline Computation: Every party Pi ∈ P does the following:
– Call FSETUPGEN with (sid, i) and receive (sid, pk, ek, dki, (c1, 1)).
– Randomly select ζ plaintexts mi,1, . . . ,mi,ζ ∈ M, and compute (cmi,k , L) = SHE.Encpk(mi,k, ri,k). Send

(sid, i, (cmi,1 , L), . . . , (cmi,ζ , L)) to all parties in P .
– Upon receiving (sid, j, (cmj,1 , L), . . . , (cmj,ζ , L)) from all parties Pj ∈ P , apply SHE.Add for 1 ≤ k ≤ ζ, on

(cm1,k , L), . . . , (cmn,k , L), set the resultant ciphertext as the kth offline ciphertext cmk with the (unknown) associated plain-
text mk = m1,k + · · ·+ mn,k.

Online Computation: Every party Pi ∈ P does the following:
– Input Stage: On having input xi ∈ Fp, compute (cxi , 1) = SHE.LowerLevelek(SHE.Encpk(χ(xi), ri), 1) with randomness
ri and send (sid, i, (cxi , 1)) to each party. Receive (sid, j, (cxj , 1)) from each party Pj ∈ P .

– Computation Stage: Associate the ciphertexts received with the corresponding input wires ofCaug and then homomorphically
evaluate the circuit Caug gate by gate as follows:
• Addition Gate and Multiplication Gate: Given (c1, l1) and (c2, l2) associated with the input wires of the gate where

l1, l2 ∈ [1, . . . , L], locally compute (c, l) = SHE.Addek((c1, l1), (c2, l2)) with l = min (l1, l2) for an addition gate and
(c, l) = SHE.Multek((c1, l1), (c2, l2)) with l = min (l1, l2) − 1 for a multiplication gate; for the multiplication gate,
l1, l2 ∈ [2, . . . , L], instead of [1, . . . , L]. Associate (c, l) with the output wire of the gate.

• Refresh Gate: For the kth refresh gate in the circuit, the kth offline ciphertext (cmk , L) is used. Let (c1, l1), . . . , (cN , lN )
be the ciphertexts associated with the input wires of the refresh gate where l1, . . . , lN ∈ [1, . . . , L]:
∗ Packing: Locally compute (cz, l) = SHE.Packek({(ci, li)}i∈[1,...,N ]) where l = min (l1, . . . , lN ).
∗ Masking: Locally compute (cz+mk , 0) = SHE.Addek(SHE.Multek((cz, l), (c1, 1)), (cmk , L))
∗ Decrypting: Locally compute the decryption share µ̄i = SHE.ShareDecdki(cz+mk , 0) and send (sid, i, µ̄i)

to every other party. On receiving (sid, j, µ̄j) from every Pj ∈ P , compute the plaintext z + mk =
SHE.ShareCombine((cz+mk , 0), {µ̄j}j∈[1,...,n]).

∗ Re-encrypting: Locally re-encrypt z + mk by computing (ĉz+mk , L) = SHE.Encpk(z + mk, r) using a publicly
known (common) randomness r, (This can simply be the zero string for our BGV instantiation, we only need to map
the known plaintext into a ciphertext element).

∗ Unmasking: Locally subtract (cmk , L) from (ĉz+mk , L) to obtain (ĉz, L).
∗ Unpacking: Locally compute (ĉ1, L), . . . , (ĉN , L) = SHE.Unpackek(ĉz, L) and associate (ĉ1, L), . . . , (ĉN , L) with

the output wires of the refresh gate.
– Output Stage: Let (c, l) be the ciphertext associated with the output wire of Caug where l ∈ [1, . . . , L].
• Randomization: Compute a random encryption (ci, L) = SHE.Encpk(0, r

′
i) of 0 = (0, . . . , 0) and send (sid, i, (ci, L))

to every other party. On receiving (sid, j, (cj , L)) from every Pj ∈ P , apply SHE.Add on {(cj , L)}j∈[1,...,n] to obtain
(c0, L). Compute (ĉ, 0) = SHE.Addek(SHE.Multek((c, l), (c1, 1)), (c0, L)).

• Output Decryption: Compute γ̄i = SHE.ShareDecdki(ĉ, 0) and send (sid, i, γ̄i) to every party. On receiving (sid, j, γ̄j)
from every Pj ∈ P , compute y = SHE.ShareCombine((ĉ, 0), {γ̄j}j∈[1,...,n]), output y and halt, where y = χ−1(y).

Fig. 3. The Protocol for Realizing Ff against a Semi-Honest Adversary in the FSETUPGEN-hybrid Model

10



follows from the properties of the SHE and the fact that the level of each ciphertext in the protocol remains in the
range [1, . . . , L], thanks to the refresh gates. So even though the circuit C may have any arbitrary depth d > L, we can
homomorphically evaluate C using an L-levelled SHE.

We work in the standard Universal Composability (UC) framework of Canetti [13], with static corruption. The UC
framework introduces a PPT environment Z that is invoked on the security parameter 1κ and an auxiliary input z and
oversees the execution of a protocol in one of the two worlds. The “ideal” world execution involves dummy parties
P1, . . . , Pn, an ideal adversary S who may corrupt some of the dummy parties, and a functionalityF . The “real” world
execution involves the PPT parties P1, . . . , Pn and a real world adversary A who may corrupt some of the parties. In
either of these two worlds, a PPT adversary can corrupt t parties out of the n parties. The environment Z chooses the
input of the parties and may interact with the ideal/real adversary during the execution. At the end of the execution, it
has to decide upon and output whether a real or an ideal world execution has taken place.

We let IDEALF,S,Z(1κ, z) denote the random variable describing the output of the environment Z after in-
teracting with the ideal execution with adversary S, the functionality F , on the security parameter 1κ and z. Let
IDEALF,S,Z denote the ensemble {IDEALF,S,Z(1κ, z)}κ∈N,z∈{0,1}∗ . Similarly let REALΠ,A,Z(1κ, z) denote the
random variable describing the output of the environment Z after interacting in a real execution of a protocol Π with
adversary A, the parties P , on the security parameter 1κ and z. Let REALΠ,A,Z denote the ensemble {REALΠ,A,Z
(1κ, z)}κ∈N,z∈{0,1}∗ .

Definition 3. For n ∈ N, let F be an n-ary functionality and let Π be an n-party protocol. We say that Π securely
realizes F if for every PPT real world adversary A, there exists a PPT ideal world adversary S, corrupting the same
parties, such that the following two distributions are computationally indistinguishable:

IDEALF,S,Z
c
≈ REALΠ,A,Z .

We consider the above definition where it quantifies over different adversaries: passive or active, that corrupts only
certain number of parties.

Theorem 1. Let f : Fnp → Fp be a function over Fp represented by a well formed arithmetic circuit C of depth d over
Fp. Let Ff (presented in Figure 1) be the ideal functionality computing f and let SHE be a threshold L-levelled SHE
scheme. Then the protocol Π SH

f UC-secure realizes Ff against a static, semi-honest adversary A, corrupting upto
t < n parties in the FSETUPGEN-hybrid Model.

Proof. We prove the theorem with respect to a generic L-levelled SHE scheme and first consider the correctness.
Suppose in the protocol party Pi has input xi ∈ Fp. Then we claim the following invariant to hold for each wire w of
the circuit Caug during the execution of the protocol: if (c, l) is the ciphertext associated with w during the execution
of the protocol where level l ∈ [1, . . . , L], then SHE.Decsk(c, l) = χ(z), where z ∈ Fp is the value that would have
been associated with w during the evaluation of Caug with input x = (x1, . . . , xn). Before proving the claim, we first
recall that due to the introduction of the Refresh gates in Caug and the way circuit is evaluated, every wire in the circuit
Caug has label in the range [1, . . . , L] and the corresponding ciphertext associated with the wire (during the protocol
execution) has level in the range [1, . . . , L]. In addition the level of the ciphertext associated to a wire is equal to the
label of the wire.

Our invariant is clearly true for the input wires. Assuming that the evaluation of the refresh gates is correct, the
invariant is also true for the output of the Refresh gates. That the invariant holds for the rest of the circuit follows from
the homomorphic property of the SHE scheme. Finally, the correctness of the refresh gate evaluation follows from the
correctness of SHE.Pack, SHE.Unpack, the homomorphic of the underlying SHE; and the fact that all the ciphertexts
that are used in evaluating a refresh gate have levels in the range [0, . . . , L].

We next prove the security. Let A be a real-world semi-honest adversary corrupting t < n parties and let T ⊂
P denote the set of corrupted parties. We now present an ideal-world adversary (simulator) SSH

f for A in Figure 4.
The high level idea for the simulator is the following: the simulator takes the input {xi}Pi∈T and interacts with Ff to
obtain the function output y. The simulator then invokes A with the inputs {xi}Pi∈T and simulates each message that
A would have received in the protocol Π SH

f from the honest parties and from the functionality FSETUPGEN, stage by
stage.

11



Simulator S SH
f

Let SHE be an L-levelled SHE scheme. The simulator plays the role of the honest parties and simulates each step of the
protocol Π SH

f as follows. The communication of the Z with the adversary A is handled as follows: Every input value re-
ceived by the simulator from Z is written on A’s input tape. Likewise, every output value written by A on its output tape is
copied to the simulator’s output tape (to be read by the environmentZ). The simulator then does the following for the session ID sid:

Offline Computation:

– On receiving the message (sid, i) to FSETUPGEN from A for each Pi ∈ T , the simulator invokes (pk, ek, sk,
dk1, . . . , dkn) = SHE.KeyGen(1κ, 1sec, n, t), computes (c0, 1) = SHE.LowerLevelek(SHE.Encpk(0, ·), 1), and on the behalf
of FSETUPGEN sends (sid, pk, ek, {dki}Pi∈T , (c0, 1)) to A.

– For each Pj 6∈ T , the simulator computes (cmjk , L) = SHE.Encpk(mj,k, ·) for k ∈ [1, . . . , ζ] for a randomly chosen
mj,k ∈M and sends (sid, j, (cmj,1 , L), . . . , (cmj,ζ , L)) to A on the behalf of the honest parties.

– On receiving (sid, i, (cmi,1 , L), . . . , (cmi,ζ , L)) from A for every Pi ∈ T , the simulator decrypts the ciphertexts to get
their associated plaintexts mi,1, . . . ,mi,ζ ; i.e. mi,k = SHE.Decsk(cmi,k , L). The simulator then applies SHE.Add on
(cm1,k , L), . . . , (cmn,k , L) and sets the resultant ciphertext as the kth offline ciphertext. Furthermore it sets mk = m1,k +
. . .+ mn,k as the kth offline plaintext.

Online Computation:

– Input Stage: For every party Pj ∈ P \ T , the simulator computes a random encryption (cxj , 1) =
SHE.LowerLevelek(SHE.Encpk(χ(0), ·), 1) and sends (sid, j, (cxj , 1)) to A on the behalf of every Pj ∈ P \ T . The sim-
ulator receives (sid, i, (cxi , 1)) from A and obtains the associated plaintext xi. On the behalf of the parties Pi ∈ T , the
simulator sends (sid, i, xi) to the functionality Ff and receives y, where xi = χ−1(xi) ∈ Fp,

– Computation Stage: The simulator performs the local computation (required for the addition, multiplication and refresh gates)
as specified in the protocol in order to be synchronized with the adversary with respect to the ciphertexts associated with the
wires in the circuit. For the refresh gates, the simulator simulates to A the communication from the honest parties as follows:
• Refresh Gate: Let this be the kth refresh gate and let (cmk , L) be the kth offline ciphertext with the associated plaintext

mk, which are known to the simulator while simulating the offline computation. Let (c, 0) be the ciphertext obtained after
the masking operation. Since c1 is replaced by c0 in the simulation, c is associated with message mk. For each Pi ∈ T ,
on receiving (sid, i, µ̄i) fromA as the decryption shares of (c, 0), the simulator computes the simulated decryption shares
{µ̄∗j}Pj 6∈T = SHE.ShareSim((c, 0),mk, {µ̄i}Pi∈T ). The simulator then sends the simulated shares {µ̄∗j}Pj 6∈T to A as
the decryption shares on the behalf of the honest parties.

– Output Stage:
• Randomization: On receiving (sid, i, (ci, L)) for every Pi ∈ T from A, the simulator computes encryptions of χ(0) for

every honest party, except for one honest party, say Ph, it encrypts χ(y). The simulator sends these ciphertexts to A on
the behalf of the honest parties and then follows the protocol steps to obtain (ĉ, 0) corresponding to the output wire. Note
that the plaintext associated with ĉ is χ(y), since c1 is replaced by c0 in the simulation and one of the ciphertexts on the
behalf of an honest party (for randomization) encrypts χ(y).

• On receiving the decryption share (sid, i, γ̄i) for every Pi ∈ T from A, the simulator computes the simulated decryp-
tion shares {γ̄∗j }Pj∈P\T = SHE.ShareSim((ĉ, 0), χ(y), {γ̄i}Pi∈T ) for the the honest parties Pj ∈ P \ T and sends
(sid, j, γ̄∗j ) as the decryption shares to A.

The simulator then outputs A’s output.

Fig. 4. Simulator for the semi-honest adversary A corrupting t parties in the set T ⊂ P .

12



We will now prove that IDEALFf ,SSH
f ,Z

c
≈ REALΠSH

f ,A,Z via a series of hybrids. The output of each hybrid is
always just the output of the environment Z . Starting with HYB0 = REALΠSH

f ,A,Z , we gradually make changes to
define HYB1, HYB2, HYB3 and HYB4.

HYB1: Same as HYB0, except that the decryption shares of the honest parties corresponding to the ciphertext ĉ asso-
ciated with the output wire (obtained after the randomization) are computed using SHE.ShareSim, by inputting to
it the decryption shares of the corrupted parties corresponding to ĉ, the ciphertext ĉ and the plaintext χ(y), where
y is the function output.

HYB2: Same as HYB1, except that c1 obtained from FSETUPGEN is replaced by c0 and the circuit is computed as
in protocol with c0 being used in place of c1. Moreover, during the randomization step while performing the
distributed decryption of the output wire ciphertext, the randomizing ciphertext (ci, L) of one of the honest parties
(which is an encryption of 0), say Ph, is replaced by a random encryption of χ(y) .

HYB3: Same as HYB2, except that SHE.ShareSim is used while computing the decryption shares of the honest
parties for performing the distributed decryption during the evaluation of the refresh gates.

HYB4: Same as HYB3, except that the real inputs of the honest parties are replaced by χ(0) during the Input Stage
and the circuit is evaluated using encryptions of the χ(0)s as the encrypted inputs of the honest parties.

Our proof will conclude, as we show that every two consecutive hybrids are computationally indistinguishable and
HYB4 = IDEALFf ,SSH

f ,Z .

HYB0
c
≈ HYB1: This follows from the share simulation indistinguishability property of SHE.

HYB1
c
≈ HYB2: To show the indistinguishability, we rely on the semantic security of SHE. In fact, we use a vari-

ant of the semantic security notion, where the adversary gives two pairs of messages to the challenger and the
challenger picks a random pair and gives the encryptions for that pair to the adversary. We call this as the double
message semantic security. It follows by a standard hybrid argument that a scheme offering semantic security also
offers double message semantic security with a security loss of a factor of two.
We now show how a distinguisher Z for the hybrids HYB1 and HYB2 can be used to break the double message
semantic security of the underlying SHE. Let R be the attacker that wants to break the double message semantic
security of the underlying SHE;R usesZ to do so as follows:R receives the public key pk, evaluation key ek and t
keys corresponding to the corrupted parties for performing the distributed decryption. The attackerR then invokes
Z (in her head), which gives back the input set (x1, . . . , xn) ∈ Fnp for all the parties. Using this outputR computes
the function output y and prepares two pairs of messages for the challenger, (1,0) and (0, χ(y)) and hands them
over to the challenger. Let R receive back the encrypted pair (c′, L), (c, L) from the challenger. The algorithm R
now applies SHE.LowerLevel to reduce the first of these to level one, (by abuse of notation we shall still refer to
it as c′). Now R evaluates the circuit by generating offline data honestly and using (c′, 1) in place of (c1, 1) (that
was to be returned by FSETUPGEN) and (c, L) in place of the randomization ciphertext (namely an encryption of 0)
on the behalf of the honest party Ph (which Ph would have given to randomize the output wire ciphertext). Finally
R outputs what Z outputs.
It is easy to note that if the challenger had given encryptions of the first pair of messages, namely (1,0), then Z is
in HYB1, else it is in HYB2. Thus the distinguishing probability of Z is translated to the winning probability
of R in the double message semantic security game. This implies that our claim is true and there exists no PPT
distinguisher Z for the above two hybrids.

HYB2
c
≈ HYB3: This can be shown by relying on the share simulation indistinguishability property of SHE and

by defining GR hybrids over the number of refresh gates, where the ith hybrid is same as HYB2, except that
SHE.ShareSim is invoked for the first i refresh gates (assuming topological ordering of the gates) to compute the
decryption shares of the honest parties and for the (i + 1)th refresh gate onwards, the decryption shares of the
honest parties are computed as in real protocol using SHE.ShareDec.

HYB3
c
≈ HYB4: We resort to the semantic security of the underlying SHE scheme. We let H = |P \ T | denote the

number of honest parties and without loss of generality assume that the first H parties are the honest parties. We
introduce H + 1 hybrids HYB0

3 = HYB3,HYB1
3, . . . ,HYBH3 = HYB4 over the number of honest parties so

that the ith hybrid HYBi3 is same as the (i − 1)th hybrid HYBi−1
3 , except that the input of the ith honest party

is replaced by χ(0). We now show that HYBi−1
3

c
≈ HYBi3 for i ∈ [1, . . . ,H] which will let us conclude that

13



HYB3
c
≈ HYB4. We fix an i and show that any Zi that tells apart HYBi−1

3 and HYBi3 can be turned into an
attacker that can break semantic security of the SHE scheme.
Let R be the attacker that wants to break the semantic security of the SHE. The attacker participates in the se-
mantic security game and receives from the challenger pk, ek and t keys corresponding to the corrupted parties
for performing the distributed decryption. It then invokes Zi (in head) to receive the inputs for the parties, say
(x1, . . . , xn) and computes the function output y. The attacker prepares two messages, χ(0) and χ(xi) for the
challenger, the latter being received from Zi as the input of Pi (namely xi). In return, the attacker gets back
(cxi , L) which either encrypts χ(0) or χ(xi). Now the attacker computes encryptions of χ(0) for the first (i− 1)
parties, for Pi the attacker uses cxi received from the challenger and for the remaining parties, the attacker com-
putes encryptions of χ(xi+1), . . . , χ(xn). The attacker R then honestly evaluates the circuit on these encrypted
inputs, ensuring all the similarities between HYBi−1

3 and HYBi3. Namely, the the attacker performs the offline
computation honestly and uses (c0, 1) (an encryption of 0) instead of (c1, 1) (as received from the FSETUPGEN).
Moreover, while performing the randomization during the distributed decryption of the output wire ciphertext, the
attacker uses an encryption of χ(y) as the randomizing ciphertext on the behalf of the honest party Ph (instead of
an encryption of 0), so as to make the output wire ciphertext an encryption of χ(y). Furthermore, the attacker uses
SHE.ShareSim to compute the decryption shares for the honest parties while performing the distributed decryp-
tion for the refresh gates and for the output wire. Note that the attacker will know the plaintext associated with the
ciphertext to be decrypted (both for the refresh gates as well as for the output wire) while using SHE.ShareSim,
even without knowing the actual circuit input of the party Pi (namely the plaintext associated with the challenge
ciphertext (cxi , L)) used for the circuit evaluation. This is because now c0 (instead of c1) is multiplied with the
ciphertexts that are to be decrypted in the protocol and so the post-multiplication ciphertexts have associated plain-
text 0, irrespective of the actual circuit inputs. This allowsR to invoke SHE.ShareSim on a ciphertext for which it
knows the associated plaintext even without knowing the inputs to the circuit. More specifically, for every refresh
gate,R now knows the plaintext associated with the ciphertext to be decrypted, since it solely depends on the data
created in offline computation which will be known to R. On the other hand, for the output wire, R knows the
plaintext associated with the ciphertext to be decrypted, since it is nothing but the circuit output χ(y). Finally at
the end of the circuit evaluation as above,R outputs what Zi outputs.
Now note that if the challenge ciphertext (cxi , L) is an encryption of χ(xi), then Zi is in HYBi−1

3 , else it is in
HYBi3. The above reduction thus shows that R can distinguish between encryptions of χ(xi) and χ(0) with the
same probability with which Zi can distinguish between HYBi−1

3 and HYBi3. This implies that our claim is true.
HYB4

s
≈ IDEALFf ,SSH

f ,Z : Follows from the inspection that the following steps have been performed in HYB4 as
well IDEALFf ,SSH

f ,Z : (1) c1 is replaced by c0, (2) the inputs of the honest parties are replaced by χ(0)s, (3)
SHE.ShareSim is invoked to compute the decryption shares of the honest parties corresponding to all the refresh
gates as well as in the output computation stage and (4) One of the honest party’s randomizing ciphertext is an
encryption of χ(y) instead of an encryption of 0.

Thus we have proved the following claim that in turn concludes the theorem.

Claim. IDEALFf ,SSH
f ,Z

c
≈ REALΠSH

f ,A,Z .
ut

5 MPC from SHE – The Active Setting

The functionalities from Section 4 are in the passive corruption model. In the presence of an active adversary, the
functionalities will be modified as follows: the respective functionality considers the input received from the majority
of the parties and performs the task it is supposed to do on those inputs. For example, in the case of Ff , the func-
tionality considers for the computation those xis, corresponding to the Pis from which the functionality has received
the message (sid, i, xi); on the behalf of the remaining Pis, the functionality substitutes 0 as the default input for the
computation. Similarly for FSETUPGEN, the functionality performs its task if it receives the message (sid, i) from the
majority of the parties. These are the standard notions of defining ideal functionalities for various corruption scenar-
ios and we refer [32] for the complete formal details; we will not present separately the ideal functionality Ff and
FSETUPGEN for the malicious setting.

14



A closer look at Π SH
f shows that we can “compile” it into an actively secure MPC protocol tolerating t active

corruptions if we ensure that every corrupted party “proves” in a zero knowledge (ZK) fashion that it constructed the
following correctly: (1) The ciphertexts in the offline phase; (2) The ciphertexts during the input stage and (3) The
randomizing ciphertexts during the output stage.

Apart from the above three requirements, we also require a “robust” version of the SHE.ShareCombine method
which works correctly even if up to t input decryption shares are incorrect. In Section 6 we show that for our specific
SHE scheme, the SHE.ShareCombine algorithm (based on the standard error-correction) is indeed robust, provided
t < n/3. For the case of t < n/2 we also show that by including additional steps and zero-knowledge proofs
(namely proof of correct decryption), one can also obtain a robust output. Interestingly the MPC protocol requires
the transmission of at most O(n3) such additional zero-knowledge proofs; i.e. the communication needed to obtain
robustness is independent of the circuit. We stress that t < n/2 is the optimal resilience for computationally secure
MPC against active corruptions (with robustness and fairness) [15, 33]. To keep the protocol presentation and its
proof simple, we assume a robust SHE.ShareCombine (i.e. for the case of t < n/3), which applies error correction
for the correct decryption. In the same section, we further present a more efficient offline phase attaining a linear
communication overhead (asymptotically) in the number of preprocessed ciphertexts.

Functionality FRZK

FRZK interacts with a prover Pi ∈ {P1, . . . , Pn} and the set of n verifiers P = {P1, . . . , Pn} and the adversary S.

– Upon receiving (sid, i, (x,w)) from the prover Pi ∈ {P1, . . . , Pn}, the functionality sends (sid, i, x) to all the verifiers in
P and S if R(x,w) is true. Else it sends (sid, i,⊥) and halts.

Fig. 5. The Ideal Functionality for ZK

The actively secure MPC protocol is given in Figure 5, it uses an ideal ZK functionality FRZK, parametrized with
an NP-relation R. We apply this ZK functionality to the following relations to obtain the functionalities FRencZK and
FRzeroencZK . We note that UC-secure realizations of FRencZK and FRzeroencZK can be obtained in the CRS model, similar
techniques to these are used in [2]. Finally we do not worry about the instantiation of FSETUPGEN as we consider it a
one time set-up, which can be done via standard techniques (such as running an MPC protocol).

– Renc = {((c, l), (x, r)) | (c, l) = SHE.Encpk(x, r) if l = L ∨ (c, l) = SHE.LowerLevelek(SHE.Encpk(x,
r), 1) if l = 1}: we require this relation to hold for the offline stage ciphertexts (where l = L) and for the input
stage ciphertexts (where l = 1).

– Rzeroenc = {((c, L), (x, r)) | (c, L) = SHE.Encpk(x, r) ∧ x = 0}: we require this relation to hold for the
randomizing ciphertexts during the output stage.

We are now ready to present the protocol ΠMAL
f (see Figure 6) in the (FSETUPGEN,FRencZK ,FRzeroencZK )-hybrid model

and assuming a robust SHE.ShareCombine based on error-correction (i.e. for the case t < n/3).

Theorem 2. Let f : Fnp → Fp be a function represented by a well-formed arithmetic circuit C over Fp. Let Ff
(presented in Figure 1) be the ideal functionality computing f and let SHE be a threshold L-levelled SHE scheme
such that SHE.ShareCombine is robust. Then the protocol ΠMAL

f UC-secure realises Ff in the (FSETUPGEN,FRencZK ,

FRzeroencZK )-hybrid Model against a static, active adversary A corrupting t parties.

Proof. Since the robust SHE.ShareCombine works correctly even in the presence of t active corruptions, the correct-
ness of our MPC protocol follows from the properties of FRencZK and FRzeroencZK by using the same arguments as used
in Theorem 1. More specifically, the properties of FRencZK ensures that during the offline computation, each corrupted
Pi knows the plaintext mik associated with the ciphertext cmik

. Due to the same reason, each corrupted Pi knows the
plaintext (namely the input) χ(xi) associated with the ciphertext cxi . Moreover, the property of FRzeroencZK ensures that

15



Protocol ΠMAL
f

Let C be the well formed arithmetic circuit over Fp representing the function f , let Caug denote an augmented circuit associated
with C, and let SHE be a threshold L-levelled SHE scheme. For session ID sid the parties in P = {P1, . . . , Pn} do the following:

Offline Computation: Every party Pi ∈ P does the following:

– Call FSETUPGEN with (sid, i) and receive (sid, pk, ek, dki, (c1, 1)).
– Same as in the offline phase of Π SH

f , except that for every message mik for k ∈ [1, . . . , ζ] and the corresponding ciphertext
(cmik , L) = SHE.Encpk(mik, rik), callFRencZK with (sid, i, ((cmik , L), (mik, rik))). Receive (sid, j, (cmjk , L)) fromFRencZK

for k ∈ [1, . . . , ζ] corresponding to each Pj ∈ P . If (sid, j,⊥) is received from FRencZK for some Pj ∈ P , then consider ζ
publicly known level L encryptions of random values fromM as (cmjk , L) for k ∈ [1, . . . , ζ].

Online Computation: Every party Pi ∈ P does the following:

– Input Stage: On having input xi ∈ Fp, compute level L ciphertext (cxi , 1) = SHE.LowerLevelek(SHE.Encpk(χ(xi), ri), 1)
with randomness ri and call FRencZK with the message (sid, i, ((cxi , 1), (χ(xi), ri))). Receive (sid, j, (cxj , 1)) from FRencZK

corresponding to each Pj ∈ P . If (sid, j,⊥) is received from FRencZK for some Pj ∈ P , then consider a publicly known level
1 encryption of χ(0) as (cxj , 1) for such a Pj .

– Computation Stage: Same as Π SH
f , except that now the robust SHE.ShareCombine is used.

– Output Stage: Let (c, l) be the ciphertext associated with the output wire of Caug where l ∈ [1, . . . , L].
• Randomization: Compute a random encryption (ci, L) = SHE.Encpk(0, r

′
i) of 0 = (0, . . . , 0) and call FRzeroencZK

with the message (sid, i, ((ci, L), (0, r′i))). Receive (sid, j, (cj , L)) from FRzeroencZK corresponding to each Pj ∈ P . If
(sid, j,⊥) is received from FRzeroencZK for some Pj ∈ P , then consider a publicly known level L encryption of 0 as
(cj , L) for such a Pj .

• The rest of the steps are same as in Π SH
f , except that now the robust SHE.ShareCombine is used.

Fig. 6. The Protocol for Realizing Ff against an Active Adversary in the (FSETUPGEN,FRencZK ,FRzeroencZK )-hybrid Model

16



each corrupted Pi has indeed contributed an encryption of 0 as a randomizing ciphertext during the distributed decryp-
tion of the output wire ciphertext. The homomorphic property of the SHE ensures that the addition and multiplication
gates are evaluated correctly. We next argue that even the refresh gates are evaluated correctly. This follows because
once the parties have access to the offline data, each refresh gate can be evaluated correctly if the parties are able to
decrypt the corresponding masked ciphertext cz+m. However since SHE.ShareCombine works even in the presence
of t active corruptions, it follows that the parties can decrypt cz+m. Due to the same reason, the parties will be able to
decrypt the ciphertext associated with the output wire and hence can obtain the function output.

We next prove the security. Let A be a real-world active adversary up to t parties and let T ⊂ P denote the set
of corrupted parties. We now present an ideal-world adversary (simulator) SMAL

f for A in Figure 7; for simplicity, we
assume that an SHE with a robust, non-interactive SHE.ShareCombine (i.e. for t < n/3) has been used in the MPC
protocol. The indistinguishability between the real and ideal world now follows mostly by the similar arguments given
for semi-honest case (see the proof of Theorem 1).

ut

17



Simulator SMAL
f

Let SHE be a threshold L-levelled SHE scheme. The simulator plays the role of the honest parties and simulates each step of the
protocol ΠMAL

f as follows. The communication of the Z with the adversary A is handled as follows: Every input value received by
the simulator from Z is written on A’s input tape. Likewise, every output value written by A on its output tape is copied to the
simulator’s output tape (to be read by the environment Z). The simulator then does the following for session ID sid:

Offline Computation:

– On receiving the message (sid, i) to FSETUPGEN from A for each Pi ∈ T , invoke (pk, ek, sk, dk1, . . . , dkn) = SHE.KeyGen(
1κ, n), compute (c0, 1) = SHE.LowerLevelek(SHE.Encpk(0, ·), 1), and send (sid, pk, ek, {dki}Pi∈T , (c0, 1)) to A.

– For each party Pj 6∈ T and k ∈ [1, . . . , ζ], compute (cmjk , L) = SHE.Encpk(mjk, ·) for a randomly chosen mjk ∈ M and
send (sid, j, (cmjk , L)) toA on the behalf ofFRencZK . For each Pi ∈ T on receiving (sid, i, (cmik , L), (mik, rik)) as a message

to FRencZK from A for k ∈ [1, . . . , ζ], verify if (cmik , L)
?
= SHE.Encpk(mik, rik). If the verification fails for some Pi ∈ T

then send (sid, i,⊥) ζ times (corresponding to ζ ciphertexts) to A and set ζ publicly known level L encryptions of random
values fromM as (cmik , L) for k ∈ [1, . . . , ζ] . Compute the kth ciphertext and the kth plaintext of the offline phase as in
ΠMAL
f . The later can be computed by the simulator since it knows all the plaintexts.

Online Computation:

– Input Stage:
• For every party Pj ∈ P \ T , compute a random encryption (cxj , 1) = SHE.LowerLevelek(SHE.Encpk(χ(0), ·), 1) and

send (sid, j, (cxj , 1)) to A on the behalf of FRencZK . For each Pi ∈ T on receiving (sid, i, (cxi , 1), (χ(xi), ri)) as a

message to FRencZK from A, verify (cxi , 1)
?
= SHE.LowerLevelek(SHE.Encpk(χ(xi), ri)) and send (sid, i,⊥) to A if

verification fails. Use publicly known ciphertext (cxi , 1) encrypting xi = χ(0) on the behalf of any such Pi.
• Send (sid, i, xi) to Ff on the behalf of each Pi ∈ T and receive the function output y.

– Computation Stage: The simulator acts in the same way as in S SH
f except that whenever A sends the decryption shares

corresponding to the parties in T during the evaluation of the refresh gates, the simulator ignores them; instead it computes the
decryption shares by itself using the keys dki (for the distributed decryption) corresponding to Pi ∈ T (the simulator knows
dki for every Pi ∈ T since it generated them by itself). These new decryption shares are then fed to SHE.ShareSim to obtain
the simulated decryption shares corresponding to the honest parties, which the simulator then sends to A on behalf of the
honest parties.

– Output Stage:
• Randomization: Let H = P \ T be the set of honest parties and let Ph be some party in H . For every Pj ∈ H \ {Ph}

compute a random encryption (cj , L) = SHE.Encpk(0, ·), while for Ph ∈ H compute a random encryption (ch, L) =
SHE.Encpk(χ(y), ·). For every Pj ∈ H , send (sid, j, (cj , L)) to A on the behalf of FRzeroencZK .

• For each Pi ∈ T on receiving (sid, i, (ci, L), (0, r′i)) as a message to FRzeroencZK from A, verify if (ci, L)
?
=

SHE.Encpk(0, r
′
i). If the verification fails for some Pi ∈ T then send (sid, i,⊥) to A and consider a publicly known

level L encryption of 0 as (ci, L) for such a Pi.
• On receiving the decryption shares from A corresponding to the parties Pi ∈ T , the simulator ignores them and instead

recomputes them using the dkis and feed them to SHE.ShareSim to compute the simulated decryption shares for the
honest parties. Finally it sends the simulated shares to A on behalf of the honest parties.

The simulator then outputs A’s output.

Fig. 7. Simulator for the active adversary A corrupting t parties in the set T ⊂ P .

18



6 Obtaining a Robust Protocol

In this section we discuss how to achieve a robust SHE.ShareCombine for our precise SHE scheme, then we present a
modified offline phase with linear communication overhead.

Recall that in our concrete SHE scheme, the SHE.ShareCombine algorithm takes as input a set of shares ob-
tained via Shamir Secret sharing over the ring Rq0 . From this observation it is clear, by the standard error correction
properties of the Reed-Solomon codes (upon which the Shamir secret sharing is based), that one can obtain a robust
SHE.ShareCombine algorithm immediately in the case of t < n/3.

All that remains is to present a robust SHE.ShareCombine for the case t < n/2. We present the protocol (note
that SHE.ShareCombine will be now a protocol instead of a local algorithm as it may involve interaction among the
parties) in Figure 8 that uses the dispute-control framework proposed in [3] and the fact that Reed-Solomon codes can
detect up to t < n/2 errors. The protocol also invokes the ZK functionality for the relationRsharedec a limited number
of times for the proof of correct (distributed) decryption, where Rsharedec is given below.

Rsharedec = {(((c, l), µ̄i), dki) | µ̄i = SHE.ShareDecdki(c, l)}

Unlike the functionality FRZK defined in Figure 5 that treats all the parties in P as the verifiers, it is enough if the
functionality for Rsharedec is defined in a single prover and a single verifier setting. However we avoid elaborating
more on this to keep simplicity.

Our robust SHE.ShareCombine realises the following idea: For distributed decryption, as usual, every party sends
the decryption shares to every other party. A party Pi on receiving the decryption shares first check whether all of
them lie on a unique polynomial of degree at most t (namely error detection). If no error is detected then the secret can
be safely reconstructed. However if some error is detected then Pi “complains” to the parties, asking them to prove
the correctness of their respective decryption shares sent earlier; the parties respond back with ZK proofs by calling
the FRsharedecZK functionality. Now Pi can “identify” the incorrect decryption share providers and ignore their shares
in the future instances of distributed decryption. Each party Pi keeps a list Hi of the parties who it believes to be
honest so far. Proper care has to be taken to ensure that the honest parties do not respond back “too many times” to
the “false” complaints issued by the corrupted parties. This is resolved via keeping counters for the complaints. The
idea is that an honest Pj will complain to an honest Pi at most t times and thus all the complaints from Pj after tth
complaint clearly indicates that the complaint is false and Pj is corrupted. It is now easy to see that by using this trick,
the total number of calls to FRsharedecZK in the MPC protocol will be O(n3), which is independent of the circuit size;
this is because a party may have to provide ZK proof to another party (by calling FRsharedecZK ) in at most t instances of
distributed decryption. For large circuit sizes the extra communication cost to obtain a robust SHE.ShareCombine in
the case n/3 ≤ t < n/2 can be safely ignored.

19



SHE.ShareCombine

Each party Pi maintains its local copy Hi of a list all the parties which it currently assumed to be honest. Initially each Hi =
{P1, . . . , Pn}. Apart from this, every party Pi maintains n counters cnti,1, . . . , cnti,n, where cnti,j is used to maintain a count
of number of times an error message has been received from the party Pj ; initially all these counters are set to 0. To execute an
SHE.ShareCombine((c, l), {µ̄j}j∈{1...,n}) operation, where µ̄j has been sent by Pj , party Pi performs the following steps:

– Ignore all µ̄j wherePj 6∈ Hi. If the remaining µ̄js lie on a unique polynomial of degree at most t, then output the corresponding
secret (namely the constant term of the polynomial). Otherwise, send a message (sid, i,Errori, (c, l)) to every party Pj ∈ Hi.

– If an error message (sid, j,Errorj , (c, l)) has been received from some Pj ∈ Hi then check whether cnti,j < t. If cnti,j < t,
then call FRsharedecZK with the message (sid, i, j, (((c, l), µ̄i), dki)) and set cnti,j := cnti,j + 1. Else if cnti,j ≥ t then remove
Pj from the listHi.

– If an error message (sid, i,Errori, (c, l)) has been sent in the first step, then execute the following: receive
(sid, j, i, ((c, l), µ̄j)) from FRsharedecZK for every Pj ∈ Hi. If for some Pj ∈ Hi, the message (sid, j, i,⊥) is received from
FRsharedecZK then remove Pj from Hi. Using the µ̄js corresponding to the Pj ∈ Hi, interpolate the polynomial of degree at
most t, output its constant term as the secret.

Fig. 8. Robust SHE.ShareCombine For t < n/2

6.1 An Improved Offline Phase (sketch)

From the analysis in Section 9, we find that the online communication complexity of our protocol is Cost = O(n ·
|GM |) (in the asymptotic sense). We now sketch that how we can modify our offline computation so that asymptotically
the communication complexity of the offline phase is O(n · ζ), where ζ > GR is the number of random ciphertexts
generate in the offline phase. We need the following three tools:

– Multi-valued Broadcast with O(n) Overhead [27]: This protocol allows a sender Sen ∈ {P1, . . . , Pn} to send a
message m of size ` “identically” to all the n parties (even if Sen is corrupted). The protocol can tolerate up to
t < n/2 faults (even if the adversary is computationally unbounded) and has communication complexity O(n`)
provided ` = Ω(n3).

– Randomness Extraction [33, 24]: Given a set of n encryptions of random values t of which may be known to the
adversary, the randomness extraction algorithm based on superinvertible matrix [33] or Vandermonde matrix [24]
allows the parties to (locally) compute encryptions of (n− t) random values unknown to the adversary.

– Non-interactive Zero Knowledge Proofs: We require UC-secure instantiation of FRencZK , such that a party Pi ∈
{P1, . . . , Pn} on computing encryptions of ` random values can publicly prove to anyone that it knows the associ-
ated plaintexts by “attaching” a proof of sizeO(`). Such proofs can be obtained, for example using the techniques
of [2].

Now the offline phase protocol will proceed as follows: every party Pi computes encryptions of L random elements
along with a NIZK proof that it knows the associated plaintexts where L = ζ

(n−t) . Party Pi then broadcasts the
ciphertexts along with the proof by acting as a Sen and invoking the instance of a multi-valued broadcast protocol.
The ciphertexts received from the different parties are then perceived as L batches of ciphertexts, where the lth batch
consists of the lth ciphertext broadcasted by each party for l ∈ [1, . . . ,L]. Finally, the randomness extraction algorithm
on each batch of ciphertext to obtain (n−t) random ciphertexts from each batch and in total L·(n−t) = ζ ciphertexts.
Assuming L = Ω(n3), the total communication cost for the offline phase is now O(n · ζ): each instance of broadcast
protocol has communication complexity O(n · L) = O(L), as (n − t) = Θ(n). It is easy to see that the output
ciphertexts are indeed random as there exists at least (n− t) honest parties corresponding to each batch of ciphertexts.
Note that we do not require any powerful (but somewhat complex) tools like player elimination, as used in the MPC
protocol of [33] (whose communication complexity is also O(n · ζ)).

20



7 Instantiating our FHE using BGV

In this section we show an instantiation of SHE based on the scheme of Brakerski, Gentry and Vaikuntanathan (BGV)
([10]). As in [6] we make use of Shamir secret sharing to share the secret key among the parties and pseudorandom
secret sharing (PRSS) [17] to non-interactively share a pseudorandom value from a chosen interval. We describe a
variant of the BGV-type cryptosystems based on the ring learning with error (RLWE) assumption ([36]), naturally
supporting the packing operations described in Section 3.

7.1 Preliminaries

Plaintext Space: We define the polynomial ring R := Z[x]/(f(x)), where f(x) is a monic irreducible polynomial. For
our purposes it will suffice to fix f(x) as the cyclotomic polynomial Φm(x) = xm/2 + 1 with m a power of two. We
set N = φ(m) = m/2, where φ is the Euler totient function. The ring R is the ring of integers of the mth cyclotomic
number field Q(ζm), with ζm anmth root of unity. Denote byRq := R/qR, for an integer q the reduction ofRmodulo
q, i.e. the set of all integer polynomials of degree at most N − 1 with coefficients in (−q/2, q/2].

Looking ahead the plaintext space of the scheme will be defined to be Rp := R/pR for some prime p such that
p ≡ 1 mod m. Since p ≡ 1 (mod m), the polynomial Φm(x) splits into distinct linear factors Fi(x) modulo p:

M := Rp ∼= Zp[x]/F1(x)× · · · × Zp[x]/FN (x) ∼= FNp ,

where each factor corresponds to an independent “plaintext slot”, holding an element of the finite field Fp. Thus
each message m ∈ M actually corresponds to N messages in Fp and can be represented as an N -vector (m
mod Fi)i=1,...,N . By the Chinese Remainder Theorem addition and multiplication in Rp correspond to SIMD (Single
Instruction Multiple Data) operations on the slots and this allows to process N input values at once as described in
Section 3.

If we consider the Galois group Gal of Q(ζm), then Gal = Gal(Q(ζm)/Q) ∼= Z∗m and it is formed by the mappings
σi : a(x) 7→ a(xi) mod Φm(x) for all i ∈ Z∗m. It is well known ([30]) that Gal transitively acts on plaintext slots, i.e.
∀i, j ∈ {1, . . . , N} there exists an element σi→j ∈ Gal which sends an element in slot i to an element in slot j.

Random Values: During our construction we will need to sample elements from different distributions over Rq . We
will use the following distributions over R, and then map to Rq as appropriate.

– HWT (h,N): This generates a vector of length N with elements chosen from {−1, 0, 1} such that the number of
non-zero elements is equal to h.

– ZO(0.5, N): This generates a vector of length N with elements chosen from {−1, 0, 1} such that the coefficient
probabilities are p−1 = 1/4, p0 = 1/2 and p1 = 1/4.

– DG(σ2, N): This generates a vector of length N with elements chosen according to the discrete Gaussian distri-
bution DZN ,σ .

– RC(0.5, σ2, N): This generates a triple of elements (a, b, c) where a is sampled from ZOs(0.5, N) and b and c
are sampled from DGs(σ2, N).

– U(q,N): This generates a vector of length N with elements generated uniformly modulo q.

Pseudorandom Secret Sharing Over Polynomial Rings: Pseudorandom secret sharing was first introduced in [17]. Given
a setup, a PRSS scheme allows parties to generate almost unlimited number of Shamir sharings of pseudorandom val-
ues at the cost of no communication. Furthermore, the setup is generated once and for all and therefore can be reused
many times. While known PRSS works over fields or rings [17, 6], for our purposes we will require a PRSS defined
over the polynomial rings Rql

.
In [17] the construction of a PRSS was presented. This was used in [6] to construct a PRSS over Zq , where

q =
∏
pi for n parties, such that each pi is prime with pi > n. This construction immediately extends to Rq by

computing the underlying PRF N times. For completeness we overview the construction here: Given an element
s ∈ Rq , we use [s] for the Shamir’s sharing of s, [s]i = si for the ith component of the sharing of s, i = 1, . . . , n. We

21



assume a prior one-time setup which distributes a vector of shared keys kA = (k0,A, . . . , kN−1,A) to each party in A
for every subset A of size n − t. These keys will be used as the keys of a keyed pseudorandom function PRF family,
{ψk(·)}k∈K. The pseudorandomness of the output of the following algorithm can be reduced to the PRF security of
the underlying PRF at the cost of security loss by a factor of 1/N .

1. The parties in P agree on N elements tj ∈ Zq for j ∈ {0, . . . , N − 1}.
2. For j = 0, . . . , N−1, every party Pi ∈ P computes [sj ]i =

∑
A⊂P:|A|=n−t,Pi∈A ψkj,A(tj) ·fA(i). Where fA(X)

denotes the polynomial of degree at most t, such that fA(0) = 1 and fA(l) = 0 for every Pl 6∈ A.
3. For j = 0, . . . , N − 1, the value sj =

∑
A⊂P:|A|=n−t,Pi∈A ψkj,A(tj) denotes the jth pseudorandom shared value

from Zq . Define the associated element in Rq by the polynomial
∑
sjX

j .

If the underlying PRF family has range [−T, . . . , T ] over Zq then the output of the above PRSS is an element in Rq
whose coefficients lie in the range [−

(
n
t

)
T,
(
n
t

)
T ]. To ease notation we write s =

∑
A⊂P:|A|=n−t,Pi∈A ψkA(t) for the

shared value in Rq , and [s]i =
∑
A⊂P:|A|=n−t,Pi∈A ψkA(t) · fA(i) for the shares themselves. We note that in general(

n
t

)
becomes exponentially large, specially if t is a constant fraction of n; however in most practical applications of

threshold cryptography, the number of parties n is indeed expected to be small.

Canonical Embedding Norm: Here we recall some results on cyclotomic fields that we need to estimate the parameters
of our protocol instantiations. For details regarding properties of canonical norms we refer to [31, 30, 25]. Given a
polynomial a ∈ R we denote by ‖a‖∞ = max0≤i≤N−1 |ai| the standard l∞-norm. All estimates of noise are taken
with respect to the canonical embedding norm ‖a‖can∞ = ‖σ(a)‖∞, where σ is the canonical embedding R → Cφ(m)

defined by σ : a 7→ a(ζkm), k ∈ Z∗m and ζm a fixed primitive mth root of unity. When a ∈ Rq , for some modulus q,
we need the canonical embedding norm reduced modulo q:

|a|canq = min{‖a′‖can∞ : a′ ∈ R and a′ ≡ a (mod q)}.

To map from norms in the canonical embedding to norms on the coefficients of the polynomials defining the elements
in R we note that we have ‖a‖∞ ≤ cm · ‖a‖can∞ , where cm is the ring constant. Since we fix the choice of our base
field polynomial as a 2kth cyclotomic polynomial, we have cm = 1.

7.2 The Basic L-levelled Packed BGV-type Cryptosystem

We review the BGV L-levelled Packed SHE scheme. The scheme is parametrized by a security parameter κ, for a fixed
number of levels L+ 1. Note, we use L+ 1 levels in our scheme description to make the presentation consistent with
the abstract scheme from Section 3. For l = 0, . . . , L, fix a chain of moduli ql =

∏l
i=0 pi, with pi a prime number.

Encryption generates level L ciphertexts with respect to the largest modulus qL. In the lth level of the scheme cipher-
texts consist of two elements in Rql

, l = 0, . . . , L. Throughout homomorphic evaluation we will force a universal
bound B on the noise contained in ciphertexts (when measured in the canonical embedding norm reduced modulo q)
after a SHE.LowerLevel execution. Since ‖a‖∞ ≤ ‖a‖can∞ ≤ B this provides an upper bound also on the coefficients
used in the underlying decryption algorithm, for such outputs of SHE.LowerLevel. For a description of the algorithm
SHE.LowerLevel see [31]; where it is called modulus switching.

However, when applying decryption, or distributed decryption, we will apply the procedure to a ciphertext which
is not the direct output of a SHE.LowerLevel operation. In particular we assume that the canonical norm of the noise
of an element passed to the decryption procedure will be bounded by Bdec. The decryption procedures will then return
the correct output if we have Bdec ≤ q0/2. For distributed decryption we will need to “boost” this bound to 2exp ·Bdec,
where exp is a “closeness parameter” relating to the statistical security parameter sec. Thus distributed decryption will
be work if and only if 2exp · Bdec < q0/2. Below we specify the basic algorithms for the BGV scheme; we will then
discuss the extensions to cope with the full syntax of our scheme in Definition 2.

Before presenting the methods we need to pause briefly to remind the reader about modulus switching: A ciphertext
at level l is given by a pair c = (c0, c1) ∈ R2

ql
and the decryption procedure computes, for the global secret key sk ∈ R,

[c0 − sk · c1]ql
= c0 − sk · c1 (mod ql)

22



where we take the symmetric modular operation in the range [−ql/2, . . . , ql/2]. The value [c0− sk · c1]ql
can be inter-

preted as an element in R, and the associated noise value of the ciphertext is the canonical norm of this element. After
each homomorphic operation the norm of the noise in the ciphertexts increases. To reduce it the modulus switching
technique ([11, 10]) is used. This procedure takes as input a ciphertext c = (c0, c1) ∈ R2

ql
, with estimated noise ν and

transforms it into a ciphertext c′ ∈ R2
ql′

at level l′, with noise magnitude ν′, by scaling down c by a factor ql′/ql and
then rounding to get back an integer ciphertext. The ciphertext c′ = (c′0, c

′
1) satisfies [c0 − sk · c1]ql

≡ [c′0 − sk · c′1]ql′

mod p and ν′ < ν. This modulus switching operation corresponds to our operation SHE.LowerLevel from Definition
2.

1. SHE.KeyGen(1κ) → (pk, ek, sk): Outputs a secret key sk ← HWT (h,N), a common public key pk = (a, b)
such that a← Us(qL, N) and b = a · sk + p · e, with e← DG(σ2, N). This algorithm also outputs the evaluation
key ek which consists of N + 1 public “key-switching matrices” Wsk2→sk and Wσi(sk)→sk and σi ∈ Gal for
i = 1, . . . , N . See [31] for how these are defined.

2. SHE.Encpk(m)→ (c, L): Given a plaintext m ∈ Rp, the encryption algorithm samples (v, e0, e1)← RCs(0.5, σ2, N)
and then computes in RqL ,

c0 = b · v + p · e0 + m and c1 = a · v + p · e1.

3. SHE.Decsk(c, l) → m′: Note, this algorithm is never called in our scheme, we just present it here so as to define
correctness and to define what we mean by a message associated to a ciphertext. The algorithm takes as input a
ciphertext c = (c0, c1) ∈ R2

ql
and outputs a plaintext m′ ∈ Rp. This algorithm uses the secret key sk to compute

µ = c0 − sk · c1 = m′ + p · (e · v + e0 − s · e1) = m′ + p · u

in Rql
and then obtains m′ = (µ mod p). We denote by ν the estimated noise magnitude obtained by using

the canonical embedding norm and we require that ν < Bdec. This decryption procedure will correctly work if
Bdec < ql/2.

4. SHE.Evalek(Csub, (c1, l
in
1 ), . . . , (c`in , l

in
`in

)) → (ĉ1, l
out
1 ), . . . , (ĉ`out , l

out
`out

): This consists of three separate algo-
rithm SHE.Add, SHE.Mult and SHE.ScalarMult for homomorphically evaluating addition and multiplication
gates.

– SHE.Addek((c1, l1), (c2, l2)): It produces a ciphertext cAdd in R2
ql

, with l = min{l1, l2}. This is performed by
first applying c′i = SHE.LowerLevelek((ci, li), l) and then taking the coordinate-wise addition of c′1 and c′2.
The noise magnitude of the resulting ciphertext is at most the sum of the noise in c1 and c2.

– SHE.Multek((c1, l1), (c2, l2)): This produces a ciphertext cMult in R2
ql

, with l = min{l1, l2} − 1. This is done
in one of two ways (so as to minimize the overall parameter sizes in our scheme).
• If l 6= 1 then one first applies c′i = SHE.LowerLevelek((ci, li), l), then the resulting ciphertexts are ten-

sored. This results in a ciphertext c̃ is a vector of higher dimension ([12]) and corresponding to a valid
ciphertext of the SIMD-product of the associated plaintexts m1 ·m2 with respect to a secret key sk′ that
is the tensor product of the secret key sk with itself. The Key Switching procedure ([31]) is then applied,
using the matrix Wsk2→sk, to obtain a valid ciphertext cMult ∈ R2

ql
with respect to the original secret key

sk. The noise magnitude in cMult is at approximately product of norms of the noise in c′1 and c′2.
• If l = 1 then one applies the tensor operation to c1 and c2 directly, then the key switching is performed

and only then is a SHE.LowerLevel operation performed. This results in us needing a larger prime p1 than
one would otherwise need, but more importantly a smaller p0.

– SHE.ScalarMultek((c, l),a): If c = (c0, c1) then one can obtain a homomorphic scalar multiplication by
evaluating c′ = (a·c0,a·c1). This procedure increases the noise, but not by as much as a normal multiplication.
Therefore we shall ignore the noise increase produced by scalar multiplication in our analysis.

Using the evaluation key we can also define an addition homomorphic operation as in [30, 31],

– SHE.Permuteek((c, l), σ) → (ĉPermute, l): Given σ ∈ Gal and a ciphertext c = (c0, c1) ∈ R2
ql

, corresponding to a
plaintext m ∈ Rp, this generates a ciphertext ĉPermute = (ĉ0, ĉ1) ∈ R2

ql
corresponding to σ(m), with respect to the

secret key σ(sk). Key switching is then applied, using the keyswitching matrix Wσ(sk)→sk to produce a ciphertext,
ĉPermute decryptable under sk.

23



7.3 Defining SHE.Pack and SHE.Unpack for BGV

Despite our scheme being a packed SHE scheme it can still evaluate unpacked ciphertexts; indeed many of the in-
stances of packed SHE schemes were originally conceived in the unpacked case by taking the map χ to be χ(m) =
(m,m, . . . ,m), i.e. the diagonal embedding. For example this is the case with the schemes in [39, 12, 11, 9] etc all
of which have packed counterparts. However, such a choice of χ is not efficient if one is interested in packing and
unpacking encryptions of elements in Fp. We wish to define two functions SHE.Pack and SHE.Unpack; the first of
which takes N ciphertexts ci at level li with the associated plaintext vector χ(mi) for mi ∈ Fp, and produces a single
ciphertext c at level min(li) with the associated plaintext vector m = (m1, . . . ,mN ) ∈ M. The second function
performs the reverse operation.

In what follows we let ei denote the i-th unit vector inM, i.e. the element which is zero except for a one in the i-th
position. To ease notation we let⊕ and⊗ denote the operations of applying the SHE.Add and SHE.Mult/SHE.ScalarMult
operations respectively, we also let σ(c) denote applying the SHE.Permute operation to a ciphertext c and map σ ∈ Gal.
If we define χ by the diagonal embedding then SHE.Pack can be defined in the following way

SHE.Pack(c1, . . . , cN ) =
N⊕
i=1

ei ⊗ ci,

i.e. SHE.Pack is an O(N) operation. However, SHE.Unpack needs to be performed as follows for i = 1, . . . , N ,

SHE.Unpack(c) =

 N⊕
j=1

σ1→j(e1 ⊗ c), . . . ,
N⊕
j=1

σN→j(eN ⊗ c)


i.e. SHE.Unpack is an O(N2) operation. On the other hand, if we define χ to be the map χ(m) = (m, 0, . . . , 0) then
we can define SHE.Pack and SHE.Unpack by the following O(N) operations;

SHE.Pack(c1, . . . , cN ) =
N⊕
i=1

σi→j(ci), SHE.Unpack(c) = (e1 ⊗ c, σ2→1(e2 ⊗ c), . . . , σN→1(eN ⊗ c)) .

Thus we will utilize the mapping χ(m) = (m, 0, . . . , 0) in our proposal.

7.4 Distributed Decryption Protocol

All that remains to define our Threshold L-levelled Packed SHE system based on BGV is to present the distributed de-
cryption protocol. Note that we do not use the key-homomorphic properties of RLWE schemes as previously used in [1,
35, 2]. Instead, we follow the approach of [6], where the authors construct a threshold variant of Regev’s cryptosystem
([38]); we adapt this method to our situation.

At a high level the method works as follows: we modify the SHE.KeyGen algorithm so that it also outputs for each
party Pi a key dki for performing distributed decryption. The key dki consists of two components; i.e. dki = (ski,ki).
The values ski form a Shamir sharing over the ring Rq0 of the secret key sk, with threshold t. The value ki are the
associated keys for the PRSS described above. Given a common ciphertext c = (c0, c1) ∈ Rql

as input (for decryption),
the parties first apply SHE.LowerLevel to reduce the ciphertext to level zero. Then each party Pi computes a decryption
share µ̄i using his private ski and a PRSS over Rq0 as described earlier. The underlying PRF we assume produces
values in the range [

− (2exp − 1) ·Bdec

p ·
(
n
t

) ,
(2exp − 1) ·Bdec

p ·
(
n
t

) ]
,

where Bdec is the bound on the canonical norm of an element being decrypted mentioned earlier, and hence an upper
bound on the size of the coefficients of the noise polynomial reconstructed during the standard decryption procedure.
See Section 8 for a detailed discussion of Bdec. The choice of this range of the underlying PRF family means that
the values output by the PRSS will be shares of elements in Rql

whose coefficients lie in the range [−(2exp − 1) ·

24



Bdec/p, (2exp − 1) ·Bdec/p]. Note, that
(
n
t

)
for t ≈ n/2 grows very fast, and so the for the above range of the PRF to

be suitably large we require that n is small. In our discussion we implicitly assume n to be small, say n < 10.
Recall distributed decryption is defined by two algorithms SHE.ShareDec and SHE.ShareCombine. These are

defined by the following procedures:

– SHE.ShareDecdki((c, l))→ µ̄i:
1. Apply SHE.LowerLevelek((c, l), 0) to obtain the ciphertext (c0, c1) at level zero (unless c is already at level

zero).
2. Compute µi = [µ]i = [c0 − sk · c1]i = c0 − ski · c1 where the computation is in Rq0 .
3. Execute the PRSS, using the PRF keys ki, to obtain a Shamir’s share ri of a “random” value r ∈ Rq0 such

that r =
∑

kA
ψkA(t) and ‖r‖∞ < ((2exp − 1) · Bdec)/p, for some agreed vector of values t which are a

function of the input ciphertext c.
4. Compute µ̄i = [µ̄]i = [µ+ p · r]i = µi + p · ri and output µ̄i as the decryption share.

– SHE.ShareCombine((c, l), {µ̄i}i∈[1,...,n]) → m′: given a set n of decryption shares µ̄i and (in the malicious
setting) an error correction procedure, reconstruct µ̄ = µ + p · r by applying the error correction procedure to
{µ̄i}i∈[1...,n] and output m′ = (µ̄ mod p).

Note decryption will work as long as the reconstructed value µ̄ is less than q0/2, i.e. we require 2exp · Bdec < q0/2
(see the next section for details).

We pause to note the different situations where one obtains correct message recovery from SHE.ShareCombine.
In the case of passive adversaries we will show (in the next section) that the above distributed decryption procedure
is secure as long as t < n. Since we are using Shamir sharing, in the presence of t < n/3 active corruptions, using
the natural error correction properties (namely Reed-Solomon (RS) error correction), we can correctly recover the
message at the end of SHE.ShareCombine.

When t < n/2 a little more work is involved; if an adversary sends an incorrect share then this can be detected,
again because we are using Shamir as the underlying secret sharing scheme. At this point the parties execute a party
elimination strategy in which they require each other to prove in zero-knowledge that the provided share is correct.
Once the cheater party(s) have been determined they are eliminated from the protocol and the protocol resumes. Thus
for active adversaries and t < n/2 we may require a grand total of an extra n2 · t zero-knowledge proofs to be
constructed, irrespective of the size of the circuit in our main protocol; see Section 6 for more details.

7.5 Security of Our Threshold BGV Instantiation

Recall from earlier we require four security properties:

– Key Generation Security.
– Semantic Security.
– Correct Share Decryption.
– Share Simulation Indistinguishability.

We now discuss each of these in turn.

Key Generation Security: The required properties of the keys produced by the key generation algorithm follow from
the security properties of the Shamir secret sharing scheme used to share sk. We note in our main protocol we assume
an ideal functionality to distribute such keys, and so there is no “Key Generation” protocol to analyse.

Semantic Security: The follows from the standard semantic security of the BGV scheme. However, we need to deal
with the fact that the adversary has access to shares of the underlying secret key and the keys to the PRSS. A standard
simulation shows that security in our setting reduces to that in the standard setting.

Correct Share Decryption: The infinity norm of the element µ̄ = µ+p·r produced by the algorithm SHE.ShareCombine
is bounded by Bdec + p · (2exp − 1) ·Bdec/p ≈ 2exp ·Bdec. If 2exp ·Bdec < q0/2 then correct decryption will result.

Share Simulation Indistinguishability: We need to present a PPT algorithm (simulator) SHE.ShareSim which when
given a ciphertext c ∈ R2

ql
with associated plaintext m ∈ Rp, a subset I ⊂ {1, . . . , n} such that |I| = t, and a set

25



of t decryption shares {µ̄i}i∈I , where µ̄i = SHE.ShareDecdki((c, l)), can simulate the remaining (n − t) decryption
shares {µ̄∗j} in such a way that the following two following distributions are statistically indistinguishable:(

{µ̄i}i∈I , {µ̄∗j}j∈Ī
) s
≈
(
{µ̄i}i∈I , {µ̄j}j∈Ī

)
,

where Ī = {1, . . . , n}\I . i.e. one cannot distinguish the real shares for the set Ī (as computed by SHE.ShareDec algo-
rithm) with ones produced by the simulator. Moreover, we require the statistical distance between the two distributions
to be bounded by 2−sec. The simulator is constructed as follows:

1. Let k(I)
A denote the set of keys for the PRSS that have been given to parties Pi where i ∈ I , and let k(Ī)

A denote
the set of keys for the PRSS held by Pj , for j ∈ Ī .

2. The simulator first computes
r′ =

∑
k∈k(I)

A

ψk(t) +
∑

k∈k(Ī)
A

rk,

where each rk ∈ Rql
is chosen such that

‖rk‖∞ <
(2exp − 1) ·Bdec

p ·
(
n
t

) .

In this way ‖r′‖∞ < (2exp−1)·Bdec

p .
3. Let µ̄∗ = m + p · r′. For each j ∈ Ī , the simulator outputs µ̄∗j such that

(
{µ̄∗j}j∈Ī , {µ̄i}i∈I

)
is a consistent vector

of shares of µ̄∗; i.e. the simulator deterministically computes consistent shares for the honest parties via Lagrange
interpolation of the t+ 1 values, µ̄∗ and {µ̄i}i∈I .

Before proving the properties of the simulation, we recall the following lemma from [2]:

Lemma 1 (Smudging Lemma [2]). Let B1 and B2 be positive integers and let e1 ∈ [−B1, B1] be a fixed integer and
let e2 ∈ [−B2, B2] be chosen uniformly and randomly. Then the statistical distance between the distribution of e2 and
e2 + e1 is B1/B2.

To prove the properties of the simulation, we first note that similar to the last stage of the simulation above, the
real shares for the honest parties can be constructed (deterministically) from µ̄ and the shares held by the t dishonest
parties. Thus, to prove indistinguishability of the real and simulated shares, it suffices to prove that µ̄∗ = m + p · r′
and µ̄ = µ + p · r are statistically close4. To see this is indeed the case, we first note that µ + p · r and µ + p · r′
are indistinguishable (by construction) and that r′ is uniform in an exponentially larger range than µ (recall that
‖µ‖∞ < Bdec and ‖r′‖∞ < (2exp−1)·Bdec

p ). By application of the Smudging lemma, the statistical distance between the
distribution of µ+ p · r′ and the uniform distribution of polynomials with coefficients in [−(2exp − 1) · Bdec, (2exp −
1) ·Bdec] is exactly N/(2exp − 1).

To conclude the proof, we next claim that the distribution of m + p · r′ is statistically indistinguishable from the
uniform distribution of polynomials with coefficients [−(2exp − 1) · Bdec, (2exp − 1) · Bdec]. This follows from the
fact that the statistical distance between the two distributions is N ·p

Bdec·(2exp−1) (which itself follows from the Smudging
Lemma and the fact that m ∈ Rp). It follows from the triangle inequality that the overall statistical distance between
the distribution of µ̄∗ = m + p · r′ and µ̄ = µ+ p · r is upper bounded by N ·(p+Bdec)

Bdec·(2exp−1) . Choose

exp = sec + max
(

log2

(
N · (p+Bdec)

Bdec

)
, log2(N)

)
.

Since p < Bdec this simplifies to exp = sec + log2(N) + 1, and we can therefore ensure the statistical distance is
bounded by 2−sec which can be made arbitrarily small by our choice of exp.

4 For statistically close distributions X
s
≈ Y and any deterministic procedure A applied to those distributions it is the case that

A(X)
s
≈ A(Y ).

26



7.6 Batch Distributed Decryption

Using a well known technique presented in [4, 24], we can perform a batch of t + 1 = Θ(n) distributed decryption,
and hence evaluate a batch of t+1 Refresh gates at the communication cost of performing two distributed decryptions.
The following technique applies to our main MPC protocol if the batch of refresh gates are independent, meaning the
output wire of one does not lead to the input of the other.

Given a value shared among the parties, its public reconstruction requires each party to send the share (of the value)
it holds to every other party. This requires n · (n− 1) pair-wise communication of shares. So for t+ 1 shared values,
the public reconstruction will require O(n3) pair-wise communication of shares. In what follows, it is shown how the
above can be achieved with the same cost of public reconstruction of a single value, namely with a communication of
2 · n · (n− 1) = O(n2) shares. The idea was used in the information theoretically secure MPC protocols of [4, 24].

Let u(1), . . . , u(t+1) be t + 1 shared values. First the t + 1 shared values are “expanded” to n shared values, say
v(1), . . . , v(n) by applying a linear function locally. Specifically, if the underlying LSS is Shamir, then we can interpret
u(1), . . . , u(t+1) as the coefficients of a polynomial of degree at most t, say u(·) and let v(1), . . . , v(n) be the n distinct
points on this polynomial. Now notice that obtaining v(1), . . . , v(n) from u(1), . . . , u(t+1) is a linear function and
by (locally) applying the same linear function on the sharings of u(1), . . . , u(t+1), the parties can obtain sharings of
v(1), . . . , v(n). Now each v(i) is reconstructed only to Pi and this costsO(n2) communication of shares. Finally every
Pi sends v(i) to every other party (which costs another O(n2) communication) and then every party can reconstruct
u(·) and hence u(1), . . . , u(t+1).

In our setting all of the above sharing is done using Shamir over the ring Rq0 . It is easy to see that the above can be
carried out with no change to the underlying SHE scheme. Thus assuming our initial circuit is large enough, i.e. there
are enough independent Refresh gates at each level, we can obtain a performance improvement of (t+ 1)/2.

8 Parameter Calculation

In [31] a concrete set of parameters for the BGV SHE scheme was given for the case of binary message spaces, and
arbitrary L. In [22] this was adapted to the case of message space Rp for 2-power cyclotomic rings, but only for the
schemes which could support one level of multiplication gates (i.e. for L = 1). In this section we combine these
analyses to produce parameter estimations for the case we require of arbitrary L and messages defined by a “large
prime”, e.g. p ≈ 232, 264 or 2128. We assume in this section that the reader is familiar with the analysis and algorithms
from [31]; we mainly point out the differences in estimates for our case.

Our analysis will make extensive use of the following fact: If a ∈ R be chosen from a distribution such that the
coefficients are distributed with mean zero and standard deviation σ, then if ζm is a primitive mth root of unity, we
can use 6 · σ to bound a(ζm) and hence the canonical embedding norm of a. If we have two elements with variances
σ2

1 and σ2
2 , then we can bound the canonical norm of their product with 16 · σ1 · σ2.

Recall from Section 7 that we require a chain of moduli q0 < q1 . . . < qL corresponding to each level of the
scheme, where qL = q0 ·

∏i=L
i=1 pi. Note that we evaluate a depth L circuit from a chain of L + 1 moduli. Also note,

that we apply a SHE.LowerLevel (a.k.a. modulus switch) algorithm before a multiplication operation, except when
multiplying at level one. This often leads to lower noise values in practice (which a practical instantiation can make
use of). In addition it eliminates the need to perform a modulus switch after encryption.

We utilize the following constants described in [22], which are worked out for the case of message space defined
modulo p (the constants in [22] make use of an additional parameter n, arising from the key generation procedure. In
our case we can take this constant equal to one).

BClean =N · p/2 + p · σ ·
(

16 ·N√
2

+ 6 ·
√
N + 16 ·

√
h ·N

)
BScale =p ·

√
3 ·N ·

(
1 +

8
3
·
√
h

)
BKs =p · σ ·N ·

(
1.49 ·

√
h ·N + 2.11 · h+ 5.54 ·

√
h+ 1.96

√
N + 4.62

)

27



The constants are used in the following manner: A freshly encrypted ciphertext at level L has noise bounded byBClean.
In the worst case, when applying SHE.LowerLevel to a ciphertext at level l with noise bounded by B′ one obtains a
new ciphertext at level l− 1 with noise bounded by

B′

pl
+BScale.

When applying the tensor product multiplication operation to ciphertexts of a given level l of noise B1 and B2 one
obtains a new ciphertext with noise given by

B1 ·B2 +
BKs · ql
P

+BScale,

where P is a value to be determined later. As in [31] we define a small “wiggle room” ξ which we set to be equal to
eight; this is set to enable a number of additions to be performed without needing to individually account for them in
our analysis.

A general evaluation procedure begins with a freshly encrypted ciphertext at level L with noise BClean. When en-
tering the first multiplication operation we first apply a SHE.LowerLevel operation to reduce the noise to our universal
bound B. We therefore require

ξ ·BClean

pL
+BScale ≤ B,

i.e.

pL ≥
8 ·BClean

B −BScale
. (1)

We now turn to dealing with the SHE.LowerLevel operation which occurs before a multiplication gate at level
l ∈ [2, . . . , L − 1]. We perform a worst case analysis and assume that the input ciphertexts are at level l − 1. We
can then assume that the input to the tensoring operation in the previous multiplication gate (just after the previous
SHE.LowerLevel ) was bounded by B, and so the output noise from the previous multiplication gate for each input
ciphertext is bounded by B2 + BKs · ql/P + BScale. This means the noise on entering the SHE.LowerLevel operation
is bounded by ξ times this value, and so to maintain our invariant we require

ξ ·B2 + ξ ·BScale

pl
+
ξ ·BKs · ql
P · pl

+BScale ≤ B.

Rearranging this into a quadratic equation in B we have

ξ

pl
·B2 −B +

(
ξ ·BScale

pl
+
ξ ·BKs · ql−1

P
+BScale

)
≤ 0.

We denote the constant term in this equation by Rl−1. We now assume that all primes pl are of roughly the same size,
and noting the we need to only satisfy the inequality for the largest modulus l = L− 1. We now fix RL−2 by trying to
ensure that RL−2 is close to BScale · (1 + ξ/pL−1) ≈ BScale, so we set RL−2 = (1− 2−3) ·BScale(1 + ξ/pL−1), and
obtain

P ≈ 8 · ξ ·BKs · qL−2

BScale
, (2)

since BScale · (1 + ξ/pL−1) ≈ BScale.
To ensure we have a solution we require 1 − 4 · ξ · RL−2/pL−1 ≥ 0, which implies we should take, for i =

2, . . . , L− 1,
pi ≈ 4 · ξ ·RL−2 ≈ 32 ·BScale. (3)

28



Recall that the final multiplication is executed in a different manner. We do not modulus switch before the multi-
plication, but afterwards. We analyse the implication of this, for the size of p1, from the point of view of our concrete
application to our MPC protocol. The final multiplication will be of a ciphertext with noise

ξ · (B2 +BScale) +
ξ ·BKs · q1

P
,

and a ciphertext with noise B (namely c1). The input to the final key switch will have noise value approximately
ξ · B3; we make this simplifying assumption which makes little difference to the final values. The output noise from
the keyswitch is then equal to

ξ ·B3 +BScale +
BKs · q1

P
.

We then perform a modulus switch to obtain a ciphertext as output of the multiplication gate with noise bounded by

ξ ·B3 +BScale

p1
+
BKs · p0

P
+BScale.

We again require this to be less than B, so we have now the cubic equation

ξ

p1
·B3 −B +

(
BScale

p1
+
BKs · p0

P
+BScale

)
≤ 0.

Substituting in our existing estimate for P , namely 8 ·ξ ·BKs ·qL−2/BScale we find the inequality is roughly equivalent
to, assuming L > 2 and p1 � BScale (i.e. qL−2 � BScale · p0),

ξ

p1
·B3 −B +

BScale

p1
+BScale ≈

ξ

p1
·B3 −B +

(
BScale

p1
+
BScale · p0

8 · qL−2
+BScale

)
≤ 0.

If we set B ≈ 2 ·BScale, then this means we have (approximately)

ξ

p1
· 8 ·B3

Scale −BScale +
BScale

p1
≤ 0,

and so
p1 ≈ 8 · (ξ + 1) ·B2

Scale (4)

will therefore guarantee the result.

We now need to estimate the size of p0. Due to the above choice of p1 the ciphertext to which we apply the
distributed decryption has norm bound by B, to which we add on a random encryption of zero at level L. To do this
we need to apply LowerLevel to this encryption of zero, and hence the noise level of the ciphertext we finally pass into
SHE.ShareDec in our main MPC protocol has noise bounded by Bdec = 2 ·B This means that we require

q0 = p0 ≥ 2sec +2 ·B, (5)

to ensure a valid distributed decryption.

Finally, set the Hamming weight h of the secret key sk to be 64 as in [31, 22]. Plugging this into our equations (1),
(2), (3), (4), and (5), we obtain

p0 ≈ 309 · 2sec · p ·
√
N,

p1 ≈ 107736 · p2 ·N,

pi ≈ 1237 · p ·
√
N, for 2 ≤ i ≤ L− 1,

pL ≈ 2.34 · σ ·
√
N,

P ≈ 0.404 · 1237L · σ · 2exp · pL ·N (L+3)/2,

qL−1 ≈ 21.76 · 1237L · 2exp · pL+1 ·N (L+1)/2.

29



The largest modulus used in our key switching matrices, i.e. the largest modulus used in an LWE instance, is given by
QL−1 = P · qL−1; where using the above estimates we have

QL−1 ≈ 8.79 · 12372·L · σ · 4exp · p2·L+1 ·NL+2.

Recall from Section 7.5 we have the following relationship between exp and our statistical security parameter sec;
exp = sec + log2(N). To ensure security we use the estimates of Lindner and Peikert [34], we require at the κ-bit
security level we require

N > (κ+ 110) · log(QL−1/σ)/7.2.

9 Estimating the Consumed Bandwidth

In Section 8 we determined the parameters for the instantiation of our SHE scheme using BGV by adapting the analysis
from [22, 31]. In this section we use this parameter estimation to show that our MPC protocol can in fact give improved
communication complexity compared to the standard MPC protocols, for relatively small values of the parameter L.
We are interested in the communication cost of our online stage computation. To ease our exposition we will focus on
the passively secure case from Section 4; the analysis for the active security case with t < n/3 is exactly the same (bar
the additional cost of the exchange of zero-knowledge proofs for the input stage and the output stage). For the case of
active security with t < n/2 we also need to add in the communication related to the dispute control strategy outlined
in Section 6 for attaining robust SHE.ShareCombine with t < n/2; but this is a cost which is proportional to O(n3).

To get a feel for the parameters from Section 8, we now specialise to the case of finite fields of size p ≈ 264,
statistical security parameter sec of 40, and for various values of the computational security level κ. Resolving the
various inequalities (from Section 8), we then estimate in Table 1 the value of N , assuming a small value for n (we
need to restrict to small n to ensure a large enough range in the PRF needed in the distributed decryption protocol; see
Section 7.4).

L κ = 80 κ = 128 κ = 256

2 16384 16384 32768
3 16384 16384 32768
4 16384 32768 32768
5 32768 32768 65536
6 32768 32768 65536
7 32768 32768 65536
8 32768 65536 65536
9 32768 65536 65536

10 65536 65536 65536

Table 1. The value of N for various values of κ and L

Since a Refresh gate requires the transmission of n − 1 elements (namely the decryption shares) in the ring Rq0
from party Pi to the other parties, the total communication in our protocol (in bits) is

|GR| · n · (n− 1) · |Rq0 |,

where |Rq0 | is the number of bits needed to transmit an element in Rq0 , i.e. N · log2 p0. Assuming the circuit meets
our requirement of being well formed, this implies that total communication cost for our protocol is

2 · |GM | · n · (n− 1) ·N · log2 p0

L ·N
=

2 · n · (n− 1) · |GM |
L

· log2(309 · 2sec · p ·
√
N).

Using the batch distributed decryption technique (of efficiently and parallely evaluating t+1 independent Refresh gates
simultaneously) from Section 7.6 this can be reduced to

Cost =
4 · n · (n− 1) · |GM |

L · (t+ 1)
· log2(309 · 2sec · p ·

√
N).

30



We are interested in the overhead per multiplication gate, in terms of equivalent numbers of finite field elements in
Fp, which is given by Cost/(|GM | · log2 p), and the cost per party is Cost/(|GM | · n · log2 p).

At the 128 bit security level, with p ≈ 264, and sec = 40 (along with the above estimated values of N ), this means
for n = 3 parties, and at most t = 1 corruption, we obtain the following cost estimates:

L 2 3 4 5 6 7 8 9 10
Total Cost Cost/(|GM | · log2 p) 12.49 8.33 6.31 5.05 4.21 3.61 3.19 2.84 2.55

Per party Cost Cost/(|GM | · n · log2 p) 4.16 2.77 2.10 1.68 1.40 1.20 1.06 0.94 0.85

Note for L = 2 our protocol becomes the one which requires interaction after every multiplication, for L = 3
we require interaction only after every two multiplications and so on. Note that most practical MPC protocols in the
preprocessing model have a per gate per party communication cost of at least 2 finite field elements, e.g. [25]. Thus,
even when L = 5, we obtain better communication efficiency in the online phase than traditional practical protocols
in the preprocessing model with these parameters.

10 Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO, by EPSRC via grant
EP/I03126X, and by Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory
(AFRL) under agreement number FA8750-11-2-00795. The second author was supported by an Trend Micro Ltd, and
the fifth author was supported by in part by a Royal Society Wolfson Merit Award.

References

1. G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. Multiparty computation with low communi-
cation, computation and interaction via threshold FHE. In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science,
pages 483–501, 2012.

2. G. Asharov, A. Jain, and D. Wichs. Multiparty computation with low communication, computation and interaction via threshold
FHE. IACR Cryptology ePrint Archive, 2011:613, 2011.

3. Z. BeerliováTrubı́niová and M. Hirt. Efficient multi-party computation with dispute control. In TCC, volume 3876 of Lecture
Notes in Computer Science, pages 305–328, 2006.

4. Z. BeerliováTrubı́niová and M. Hirt. Perfectly-secure MPC with linear communication complexity. In TCC, volume 4948 of
Lecture Notes in Computer Science, pages 213–230, 2008.

5. E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-linear unconditionally-secure multiparty computation with a dishonest minor-
ity. In CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 663–680, 2012.

6. R. Bendlin and I. Damgård. Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems. In TCC, volume
5978 of Lecture Notes in Computer Science, pages 201–218, 2010.

7. R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and multiparty computation. In EURO-
CRYPT, volume 6632 of Lecture Notes in Computer Science, pages 169–188, 2011.

8. D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast privacy-preserving computations. In ESORICS,
volume 5283 of Lecture Notes in Computer Science, pages 192–206, 2008.

9. Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. In CRYPTO, volume 7417 of
Lecture Notes in Computer Science, pages 868–886, 2012.

10. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without bootstrapping. In ITCS,
pages 309–325. ACM, 2012.

11. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard) LWE. In FOCS, pages 97–106.
IEEE, 2011.

5 The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of Defense Advanced Research Projects Agency
(DARPA) or the U.S. Government.

31



12. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security for key dependent messages.
In CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 505–524, 2011.

13. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS, pages 136–145, 2001.
14. O. Catrina and A. Saxena. Secure computation with fixed-point numbers. In Financial Cryptography, volume 6052 of Lecture

Notes in Computer Science, pages 35–50, 2010.
15. R. Cleve. Limits on the security of coin flips when half the processors are faulty (Extended abstract). In STOC, pages 364–369.

ACM, 1986.
16. T. M. Cover and J. A. Thomas. Elements of Information theory. Wiley, 2006.
17. R. Cramer, I. Damgård, and Y. Ishai. Share conversion, pseudorandom secret-sharing and applications to secure computation.

In TCC, volume 3378 of Lecture Notes in Computer Science, pages 342–362, 2005.
18. I. Damgård, M. Fitzi, E. Kiltz, J.B. Nielsen, and T. Toft. Unconditionally secure constant-rounds multi-party computation for

equality, comparison, bits and exponentiation. In TCC, volume 3876 of Lecture Notes in Computer Science, pages 285–304,
2006.

19. I. Damgård, Y. Ishai, M. Krøigaard, J.B. Nielsen, and A. Smith. Scalable multiparty computation with nearly optimal work
and resilience. In CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages 241–261, 2008.

20. I. Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty computation and the computational overhead of
cryptography. In EUROCRYPT, volume 6110 of Lecture Notes in Computer Science, pages 445–465, 2010.

21. I. Damgård, M. Keller, E. Larraia, C. Miles, and N.P. Smart. Implementing AES via an actively/covertly secure dishonest-
majority mpc protocol. In SCN, volume 7485 of Lecture Notes in Computer Science, pages 241–263, 2012.

22. I. Damgard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical covertly secure mpc for dishonest majority –
or: Breaking the SPDZ limits, 2013.

23. I. Damgård and J. B. Nielsen. Universally composable efficient multiparty computation from threshold homomorphic encryp-
tion. In CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 247–264, 2003.

24. I. Damgård and J. B. Nielsen. Scalable and unconditionally secure multiparty computation. In CRYPTO, volume 4622 of
Lecture Notes in Computer Science, pages 572–590, 2007.

25. I. Damgård, V. Pastro, N.P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic encryption. In
CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 643–662, 2012.

26. I. Damgård and S. Zakarias. Constant-overhead secure computation for boolean circuits in the preprocessing model. In TCC,
volume 7785 of Lecture Notes in Computer Science, pages 621–641, 2013.

27. M. Fitzi and M. Hirt. Optimally efficient multi-valued Byzantine agreement. In PODC, pages 163–168. ACM, 2006.
28. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University, 2009. crypto.stanford.edu/

craig.
29. C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178. ACM, 2009.
30. C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with polylog overhead. In EUROCRYPT, volume 7237

of Lecture Notes in Computer Science, pages 465–482, 2012.
31. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the AES circuit. In CRYPTO, volume 7417 of Lecture

Notes in Computer Science, pages 850–867, 2012.
32. O. Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press, 2004.
33. M. Hirt and J.B. Nielsen. Robust multiparty computation with linear communication complexity. In CRYPTO, volume 4117

of Lecture Notes in Computer Science, pages 463–482, 2006.
34. R. Lindner and C. Peikert. Better key sizes (and attacks) for LWE-based encryption. In CT-RSA, volume 6558 of Lecture Notes

in Computer Science, pages 319–339, 2011.
35. A. López-Alt, E. Tromer, and V. Vaikuntanathan. Cloud-assisted multiparty computation from fully homomorphic encryption.

IACR Cryptology ePrint Archive, 2011:663, 2011.
36. V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over rings. In EUROCRYPT, volume

6110 of Lecture Notes in Computer Science, pages 1–23, 2010.
37. J.B. Nielsen, P.S. Nordholt, C. Orlandi, and S.S. Burra. A new approach to practical active-secure two-party computation. In

CRYPTO, volume 7417 of Lecture Notes in Computer Science, pages 681–700, 2012.
38. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, pages 84–93, 2005.
39. N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small key and ciphertext sizes. In PKC, volume

6056 of Lecture Notes in Computer Science, pages 420–443, 2010.
40. N.P. Smart and F. Vercauteren. Fully homomorphic SIMD operations. To Appear in Designs, Codes and Cryptography, 2012.

32


