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Abstract

We initiate the study of quantum-secure digital signatures and quantum chosen ciphertext
security. In the case of signatures, we enhance the standard chosen message query model
by allowing the adversary to issue quantum chosen message queries: given a superposition of
messages, the adversary receives a superposition of signatures on those messages. Similarly,
for encryption, we allow the adversary to issue quantum chosen ciphertext queries: given a
superposition of ciphertexts, the adversary receives a superposition of their decryptions. These
adversaries model a natural ubiquitous quantum computing environment where end-users sign
messages and decrypt ciphertexts on a personal quantum computer.

We construct classical systems that remain secure when exposed to such quantum queries. For
signatures, we construct two compilers that convert classically secure signatures into signatures
secure in the quantum setting and apply these compilers to existing post-quantum signatures.
We also show that standard constructions such as Lamport one-time signatures and Merkle
signatures remain secure under quantum chosen message attacks, thus giving signatures whose
quantum security is based on generic assumptions. For encryption, we define security under
quantum chosen ciphertext attacks and present both public-key and symmetric-key constructions.

Keywords: Quantum computing, signatures, encryption, quantum security

1 Introduction

Recent progress in building quantum computers [IBM12] gives hope for their eventual feasibility.
Consequently, there is a growing need for quantum-secure cryptosystems, namely classical systems
that remain secure against quantum computers. Post-quantum cryptography generally studies the
settings where the adversary is armed with a quantum computer, but users only have classical
machines. In this paper, we go a step further and study the eventuality where end-user machines
are quantum. In these settings, an attacker may interact with honest parties using quantum queries,
as discussed below, potentially giving the attacker more power. The challenge is to construct
cryptosystems that remain secure when exposed to such quantum queries. We emphasize that all
the systems we consider are classical and can be easily implemented on a classical computer. Our
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goal is to construct classical systems that remain secure even when implemented on a quantum
computer, thereby potentially giving the attacker the ability to issue quantum queries.

Along these lines, Zhandry [Zhal2b] showed how to construct pseudorandom functions (PRFs)
that remain secure even when the adversary is allowed to issue quantum queries to the PRF. A
quantum query is a superposition of inputs Y, ¥, |z) of the attacker’s choice. The response
is a superposition >, v, |z, F(k,x)) where F(k,z) is the value of the PRF at a point z under
key k. Zhandry showed that certain PRFs are secure even under such a powerful query model.
More recently, Boneh and Zhandry [BZ13] showed how to construct message authentication codes
(MACs) that remain secure even when the attacker is allowed to issue quantum chosen message
queries. That is, for a superposition of messages Y, ¥m |m) of the attacker’s choice, the attacker is
given Y, ¥, |m, S(k,m)) where S(k,m) is the tag on message m using key k. They showed that
some classically secure MACs become insecure under quantum chosen message queries and they
constructed several quantum-secure MAC families.

Our contributions. In this paper, we construct the first quantum-secure signatures and quantum-
secure chosen ciphertext encryption systems.

We begin by defining security for digital signatures under a quantum chosen message attack.
A quantum chosen message query [BZ13] gives the attacker the signatures on all messages in a
quantum superposition. In more detail, a quantum chosen message query is the transformation

> U [m) — > U |m, S(sk,m))

where S(sk,z) is the signature on z using signing key sk. The attacker can sample the response
to such a query and obtain one valid message-signature pair. After ¢ such queries, it can obtain ¢
valid message-signature pairs. We say that a signature scheme is existentially unforgeable under a
quantum chosen message attack if, after ¢ quantum chosen message queries, the attacker cannot
produce g + 1 valid message-signature pairs.

Next, we present several compilers that convert a signature scheme that is secure under classical
queries into one secure under quantum queries. In particular, we give the following constructions:

e Using a chameleon hash [KR00], we show how to transform any signature that is existentially
unforgeable under a classical random message into a signature scheme that is existentially
unforgeable under a quantum chosen message attack. We apply this conversion to several
existing signature schemes, giving constructions whose quantum security is based on the
quantum hardness of lattice problems.

o We show that any universally unforgeable signature under a classical random message attack
can be made existentially unforgeable under a quantum chosen message attack in the random
oracle model. For example, this conversion applies to a randomized variant of GPV signa-
tures [GPVO08], proving security of the scheme even under a quantum chosen message attack.
We also separately show that the basic deterministic GPV scheme is secure in this setting.

e Finally, we prove that classical constructions such as Lamport one-time signatures and Merkle
signatures are existentially unforgeable under a quantum chosen message attack. These results
show how to build quantum-secure signatures from any collision resistant hash function. We
leave open the problem of basing security on one-way functions. We also note that the



version of Lamport signatures that we prove secure is non-optimized, and can potentially be
made more efficient using standard combinatorial techniques. Unfortunately, we cannot prove
quantum-security of an optimized Lamport signature and leave that as an interesting open
problem.

Turning to encryption, we first explain how to adapt the chosen ciphertext security game to
the quantum setting. In the classical game, the attacker is given classical access to a decryption
oracle used to answer chosen ciphertext queries and to an encryption oracle used to create challenge
ciphertexts. In the quantum setting, the decryption oracle accepts a superposition of ciphertexts
and returns a superposition of their decryptions:

Z¢c ) — Z¢c le, D(sk,c)) .

One might also try to allow quantum access to the encryption oracle; however, we show that the
resulting concept is unsatisfiable. We therefore restrict the encryption oracle to be classical.

Armed with this definition of security, we construct quantum-secure chosen ciphertext systems
in both the public-key and symmetric-key settings:

e Our symmetric-key construction is built from any secure PRF, and follows the encrypt-then-
MAC paradigm. The classical proof that encrypt-then-MAC is secure for generic encryption
and generic MAC schemes does not carry over to the quantum setting, but we are able to
prove security for our specific construction.

e We show that public-key quantum chosen ciphertext security can be obtained from any identity-
based encryption scheme that is selectively secure under a quantum chosen identity attack.
Such an identity-based encryption scheme can, in turn, be built from lattice assumptions.
This construction is the quantum analogue of the CHK transformation from identity-based
encryption to public-key chosen ciphertext security [BCHKO04].

Motivation. Allowing the adversary to issue quantum queries is a natural and conservative
security model and is therefore an interesting one to study. Constructing signature and encryption
schemes that remain secure in these models gives confidence in the event that end-user computing
devices eventually become quantum. Nevertheless, one might imagine that in a future where all
computers are quantum, the last step in a signature or decryption procedure is to sample the final
quantum state. This ensures that the results are always classical, thereby preventing quantum
superposition attacks. Security in this case relies on a physical hardware assumption, namely that
the final “classicalization” step is implemented correctly and cannot be circumvented by a quantum
adversary. In contrast, using systems that are inherently secure against superposition attacks frees
the hardware designer from worrying about the security of the classicalization step.

As further motivation, we note that our results are the tip of a large emerging area with many
open questions. For any cryptographic primitive modeled as an interactive game, one can ask how
to design primitives that remain secure when the interaction between the adversary and its given
oracles is quantum. For example, can we design quantum-secure threshold signatures and group
signatures? Can we construct a quantum-secure PRF for a large domain from a quantum-secure PRF
for a small domain? In particular, do the CBC-MAC or NMAC constructions give quantum-secure
PRFs?



Other related work. Several recent works study the security of cryptographic primitives when
the adversary can issue quantum queries. Boneh et al. [BDF*11] and Zhandry [Zhal2a] prove the
classical security of signatures, encryption, and identity-based encryption schemes in the quantum
random oracle model, where the adversary can query the random oracle on superpositions of inputs.
In these papers, the interaction with the challenger is classical. These results show that many, but
not all, random oracle constructions remain secure in the quantum random oracle model. The
quantum random oracle model has also been used to prove security of Merkle’s Puzzles in the
quantum setting [BS08, BHK™11]. Damgérd et al. [DFNS11] examine secret sharing and multiparty
computation in a model where an adversary may corrupt a superposition of subsets of players, and
build zero knowledge protocols that are secure, even when a dishonest verifier can issue challenges
on superpositions.

Some progress toward identifying sufficient conditions under which classical protocols are also
quantum immune has been made by Unruh [Unr10] and Hallgren et al. [HSS11]. Unruh shows that
any scheme that is statistically secure in Cannetti’s universal composability (UC) framework [Can01]
against classical adversaries is also statistically secure against quantum adversaries. Hallgren et al.
show that for many schemes, this is also true in the computational setting. These results, however,
do not apply to cryptographic primitives such as signatures and encryption and do not consider
quantum superposition attacks.

2 Preliminaries: Background and Techniques

We will let [n] denote the set {1,...,n}. Functions will be denoted by capital letters (such as F'), and
sets by capital script letters (such as X'). We will let 244D for some distribution D denote drawing

x according to D, and 22 X for some set X denote drawing a random element from X. Given
a function F : X — )Y and a subset S C X, the restriction of F' to § is the function Fs:S — Y
where Fs(z) = F(x) for all x € S. A distribution D on F induces a distribution Ds on Fs. We
say that D is k-wise independent if each of the distributions Dg are truly random distributions on
functions from S to )Y, for all sets S of size at most k. A set F of functions from X to ) is k-wise
independent if the uniform distribution on F is k-wise independent. A non-negative function f(n)
is negligible if, for any ¢, f(n) < 1/n° for all sufficiently large n. If a function g(n) can be written
as h(n) = f(n) where f(n) is negligible, we write g(n) = h(n) £ negl.

2.1 Quantum Computation

We give a short introduction to quantum computation. A quantum system A is a complex Hilbert
space H together with and inner product (-|-). The state of a quantum system is given by a vector
|¢) of unit norm ((¢[¢p) = 1). Given quantum systems H; and Hz, the joint quantum system is
given by the tensor product H; ® Hz. Given |¢;) € Hy and [1),) € Ha, the product state is given
by |¢1)]19) € H1 ® Ha. Given a quantum state |¢)) and an orthonormal basis B = {|bg), ..., |ba—1)}
for H, a measurement of |1/) in the basis B results in the value i with probability |(b;|1)|?, and the
quantum state collapses to the basis vector |b;). If |¢)) is actually a state in a joint system H @ H/',

then [¢) can be written as
d—1

) = o b))

1=0



for some complex values a; and states [1}) over H'. Then, the measurement over H obtains the
value i with probability |c;|? and in this case the resulting quantum state is [b;)[1}).

A unitary transformation over a d-dimensional Hilbert space H is a d X d matrix U such that
UU' = I;, where U' represents the conjugate transpose. A quantum algorithm operates on a
product space Hip ® Hout @ Huwork and consists of n unitary transformations Uy, ..., U, in this space.
‘Hin represents the input to the algorithm, H,y,: the output, and Hqorr the work space. A classical
input z to the quantum algorithm is converted to the quantum state |z,0,0). Then, the unitary
transformations are applied one-by-one, resulting in the final state

¢) = Up...U1[z,0,0) .

The final state is then measured, obtaining the tuple (a, b, ¢) with probability |(a, b, ¢[t,)|>. The
output of the algorithm is b. We say that a quantum algorithm is efficient if each of the unitary
matrices U; come from some fixed basis set, and n, the number of unitary matrices, is polynomial
in the size of the input.

Quantum-accessible Oracles. We will implement an oracle O : X — ) by a unitary transfor-
mation O where
Olz,y,2) = |2,y + O(x), 2)

where + : X x X — X is some group operation on X. Suppose we have a quantum algorithm that
makes quantum queries to oracles Oy, ..., Q4. Let [¢hg) be the input state of the algorithm, and let
Uy, ..., U, be the unitary transformations applied between queries. Note that the transformations
U; are themselves possibly the products of many simpler unitary transformations. The final state
of the algorithm will be

U,0,...U;0,Ugpg)

We can also have an algorithm make classical queries to O;. In this case, the input to the oracle
is measured before applying the transformation O;. We call a quantum oracle algorithm efficient if
the number of queries ¢ is a polyomial, and each of the transformations U; between queries can be
written as the product polynomially many unitary transformations from some fixed basis set.

Tools. Next we state several lemmas and definitions that we will use throughout the paper. Some
have been proved in other works, and the rest are proved in Appendix B. The first concerns partial
measurements, and will be used extensively throughout the paper:

Lemma 2.1. Let A be a quantum algorithm, and let Pr[z] be the probability that A outputs x. Let
A’ be another quantum algorithm obtained from A by pausing A at an arbitrary stage of execution,
performing a partial measurement that obtains one of k outcomes, and then resuming A. Let Pr'[z]
be the probability A’ outputs x. Then Pr'[x] > Pr[z]/k.

This lemma means, for example, that if you measure just one qubit, the probability of a particular
output drops by at most a factor of two. We also make use of the following lemma, proved by
Zhandry [Zhal2a], which allows us to simulate random oracle efficiently using k-wise independent
functions:

Lemma 2.2 ([Zhal2al]). Let H be an oracle drawn from a 2q-wise independent distribution. Then
the advantage any quantum algorithm making at most q queries to H has in distinguishing H from
a truly random function is identically 0.



The next definition and lemma are given by Zhandry [Zhal2b] and allow for the efficient
simulation of an exponentially-large list of samples, given only a polynomial number of samples:

Definition 2.3 (Small-range distributions [Zhal2b]). Fiz sets X and Y and a distribution D on Y.
Fiz an integer r. Let 'y = (y1,...,yr) be a list of r samples from D and let P be a random function
from X to [r]. The distributions on'y and P induce a distribution on functions H : X — Y defined
by H(z) = Yp(z)- This distribution is called a small-range distribution with r samples of D.

Lemma 2.4 ([Zhal2b]). There is a universal constant Cy such that, for any sets X and Y,
distribution D on Y, any integer £, and any quantum algorithm A making q queries to an oracle
H: X =Y, the following two cases are indistinguishable, except with probability less than Coq>/¢:

o H(x) =1y, wherey is a list of samples of D of size |X|.
e H is drawn from the small-range distribution with £ samples of D.
We use Lemma 2.4 to prove the following corollary:

Lemma 2.5. Let X and Y be sets, and for each x € X, let D, and D; be distributions on Y
such that |D, — D.| < € for some value € that is independent of x. Let O : X — ) be a function
where, for each x, O(x) is drawn from D, and let O'(x) be a function where, for each z, O'(x) is
drawn form D!.. Then any quantum algorithm making at most q queries to either O or O’ cannot

distinguish the two, except with probability at most \/8Cyqe.

Zhandry [Zhal2b] proves this corollary for the special case where all of the D, distributions are
the same and all of the D/, distributions are the same. Lastly, we need the following lemma:

Lemma 2.6. Fix sets X and Y, and distributions D, on Y for each x € X. Let H be a function
from X to Y where, for each x, H(x) is drawn independently according to D,. Then any quantum
algorithm making q quantum queries to H can only produce q + 1 input/output pairs of H with
probability at most (¢ + 1)/ PH“JJ , where Hoy be the minimum over all x € X of the min-entropy of
the distribution D,,.

A special case of this theorem is when F' is a constant function and each of the distirbutions D,
are the uniform distribution. In this case, Lemma 2.6 reduces to the following result of Boneh and
Zhandry [BZ13]: any quantum algorithm making ¢ queries to a random oracle H from X to ) can
output ¢ + 1 input/output pairs of H with probability at most (¢4 1)/|Y|. We prove Lemma 2.6 by

reducing the general case to this special case with || = PHM .

3 Quantum-Secure Signatures

Our goal is to construct signatures that are resistant to a quantum chosen message attack, where the
adversary submits quantum superpositions of messages and receives the corresponding superpositions
of signatures in return. First, we need a suitable definition of what a signature scheme is in our
setting, and what it means for such a scheme to be secure. Correctness for a stateless signature
scheme is identical to the classical setting: any signature produced by the signing algorithm must
verify. There is some subtlety, however, for stateful signature schemes. If the state of the signing
algorithm depends on the messages signed, and if the adversary mounts a quantum chosen message



attack, the signing algorithm and adversary will become entangled. To keep the state of the
signing algorithm classical and unentangled with the adversary, we therefore restrict the state to be
independent of the messages signed so far. We note that many stateful signature schemes, such as
stateful Merkle signatures, satisfy this requirement. We arrive at the following definition:

Definition 3.1. A signature scheme S is a tuple of efficient classical algorithms
(G, Sign, Ver) where

e G(\) generates a private/public key pair (sk, pk).

e Sign(sk, m, state) outputs a signature o and new state state. If the output state is ever non-
empty, we say that algorithm Sign is stateful and we require that the state does not depend in
any way on the messages that have been signed so far. If the output state is always empty, we
say that Sign is stateless and we drop the state variables altogether.

e Ver(pk,m, o) either accepts or rejects. We require that valid signatures are always accepted,
that is if o is the output of Sign(sk, m, state) then Ver(pk,m, o) accepts.

For security, we use a notion similar to that for message authentication codes defined by Boneh
and Zhandry [BZ13]. There are two issues in defining security under a quantum chosen message
attack:

e Randomness. When using a randomized signature scheme, there are several choices for how
the randomness is used. One option is to choose a single randomness value for each chosen
message query, and sign every message in the superposition with that randomness. Another
approach is to choose fresh randomness for each message in the superposition. The drawback
of the second approach is that whomever is implementing the scheme on a quantum device
needs to guarantee that every message in the superposition is signed with fresh independent
randomness.

The first approach, where the same randomness is used to sign all messages in a superposition, is
much simpler for implementers and we therefore design signature schemes secure in this setting.
Fortunately, there is a simple transformation that converts a scheme requiring independent
randomness for every message into a scheme that is secure when a single randomness value
is used for an entire query: when signing, choose a fresh random key k for a quantum
pseudorandom function (QPRF). This will be the single per-query randomness value. To
sign a superposition of messages, sign each message m in the superposition using randomness
obtained by applying the QPRF to m using the key k. From the adversary’s point of view,
this is indistinguishable from choosing independent randomness for each message. Using
Lemma 2.2, we can replace the QPRF with a function drawn from a pairwise independent
function family, which is far more efficient than using a QPRF. Hence, requiring global
randomness per query does not complicate the signature scheme much, but greatly simplifies
its implementation.

e Forgeries. Each quantum chosen message query can be a superposition of every message in the
message space. Sampling the returned superposition will result in a single message/signature
pair for a random message. Therefore, the classical notion of existential forgery being a
signature on a new message is ill-defined when we allow quantum access. Instead, for security
we require that the adversary cannot produce g + 1 valid message/signature pairs with ¢



quantum chosen message queries. Security definitions in this style were previously used in the
context of blind signatures [PS96].

We arrive at the following definition of security:

Definition 3.2 (Quantum Security). A signature scheme S = (G, Sign, Ver) is strongly existentially
unforgeable under a quantum chosen-message attack (EUF-qCMA secure) if, for any efficient
quantum algorithm A and any polynomial q, A’s probability of success in the following game is
negligible in \:

Key Gen The challenger runs (sk, pk) <= G()\), and gives pk to A.

Signing Queries The adversary makes a polynomial q chosen message queries. For each query,
the challenger chooses randomness r, and responds by signing each message in the query using
r as randomness:

Z¢m,t|m, t) — Zwm,t|m, t @ Sign(sk,m;r))
m,t

m,t

Forgeries The adversary is required to produce q + 1 message/signature pairs. The challenger then
checks that all the signatures are valid, and that all message/signature pairs are distinct. If
so, the challenger reports that the adversary wins. O

In this paper, we will also be using several weaker notions of security. The first is for a classical
chosen message attack:

Definition 3.3. S is existentially unforgeable under a classical random message attack (EUF-CMA
secure) if every signing query is measured before signing, so that only a single classical message is
stgned per query.

Next, we define random message security:

Definition 3.4. S is existentially unforgeable under a random message attack (EUF-RMA secure)
if the adversary is not allowed any signing queries, but instead receives q message/signature pairs
for uniform random messages at the beginning of the game.

We can weaken the security definition even further, to get universal unforgeability:

Definition 3.5. S is universally unforgeable under a random message attack (UUF-RMA secure)
if, along with receiving q message/signature pairs for random messages, the adversary receives n
additional random messages, and all of the ¢ + 1 messages for which a signature is forged must be
among the g+ n messages received.

All of the above security definitions also have weak variants, where in addition to requiring that
message/signature forgery pairs be distinct, we also require that the messages themselves be distinct.
Finally, all of the above security definitions also have k-time variants for any constant k, where
the value of ¢ is bounded to at most k. When the distinction is required, we refer to the standard
unbounded ¢ notion as many-time security.



3.1 A Separation Example

Next we show that quantum chosen message queries give the adversary more power than clas-
sical chosen message queries. In particular, we present a signature scheme that is secure under
classical queries, but completely insecure once an adversary can make quantum queries. Let
Se = (G, Sign,, Ver.) be a signature scheme that is secure under classical chosen message queries.
We augment S, by choosing a random secret prime p and storing p in the secret signing key. We
modify the signature scheme so that the signature on the message m = p includes the entire secret
key. As long as the adversary does not learn p, she should not be able to learn the secret key. We
also add some auxiliary information to the signatures such that, under classical queries, p is hidden,
but a single quantum query suffices to recover p. Our signature scheme is as follows:

Construction 3.6. Fiz positive integers N, N'. Let M be the interval [0, N). Let S. = (G, Sign,., Ver,)
be a signature scheme that signs messages in M and PRF be a pseudorandom function with domain
M. Let RPrime(N’) denote a procedure that samples a random prime in the interval [N'/2, N").
We build a new signature scheme S = (G, Sign, Ver) as follows:

G(N) : (ske, pko)EGe(N), k210,11, p<ERPrime(N')
output sk = (ske, k, p), pk = pk,

Sign((ske, k,p),m) : s1 + PRF(k, m mod p)

k ifm=
o sk ifm=p
0 m#p

O $— SignC(Skc, (m7 S1, 82))

output (o, s1, $2)
Ver(pk, m, (0, s1,s2)) : output Ver(pk, (m, s1, $2),0)

Theorem 3.7. If S, is existentially unforgeable under a classical chosen message attack, and PRF
is secure against classical queries, then for an appropriate choice of N,N', S is also existentially
unforgeable under a classical chosen message attack, but is totally broken under a quantum chosen
message attack.

Proof. Let N’ be an integer that grows exponentially in the security parameter, and let N be the
smallest power of 2 greater than 4N"2. The proof is in two parts: first we argue the classical security
of our scheme, and then we break the scheme using quantum queries. Suppose we have an adversary
that breaks the scheme with probability e. We will prove classical security though a sequence of
games:

Game 0. This is the standard attack game, where the adversary can ask for a polynomial number
of signatures on messages of his choice, and must produce a signature on a new message. By
assumption, the adversary succeeds with probability e.

Game 1. Instead of using PRF to compute s, choose a random function H at the start of the
game, and let s; = H(m mod p). The classical security of PRF implies that the adversary’s success
probability is still negligibly close to e.



Define Bad as the event that the adversary either queries on p, or on two messages differing by
a (non-zero) multiple of p. We now analyze the probability that Bad occurs. Suppose that, after
the ith query, Bad has not occurred. Then all of the s; values are drawn independently at random
for different m, and all the sy values are 0. The adversary learns nothing about p other than the
fact that p is not equal to one of his queries, and does not divide the differences between any of his
queries. Since each message is at most O(N'?), but p is at least Q(N’), each difference is divisible
between at most 2 different p. Since there are (;) differences after i queries, the adversary has ruled
out at most 2(3) +4 € O(i?) different values for p. There are Q(N’/log N') primes in the interval
[N"/2,N'"), so the fraction of primes ruled out is negligible. By similar logic, when the adversary
makes query i + 1, she can attempt to rule out at most 2i + 1 € O(i) additional values of p. Bad
occurs for query ¢+ 1 exactly when the actual p is one of these values. Therefore, the probability that
Bad occurs at query i + 1, given that it hasn’t occurred yet, is at most O( (ilog N')/N’). Therefore,
the probably that Bad occurs in any query is then O( (¢%log N’)/N’), which is negligible.

Game 2. Now choose a random oracle H', and let s; = H'(m) and s2 = 0. As long as Bad does
not occur in Game 1, Games 1 and 2 are identical. Since Bad only occurs with negligible probability,
the adversary still succeeds in Game 2 with probability negligibly close to e.

Now a signature on m is just a triple (Sign.(sk., (m,O(m),0)), O(m),0). It is straightforward
to show that any adversary breaking the security of this signature scheme can be modified to break
the security of S.. Therefore, ¢ must be negligible, showing that & is secure.

Now we explain how quantum queries can be used to recover sk. We can turn our quantum
signing oracle outputting (o, s1, s2) into an oracle that outputs only s; by using standard tricks for
quantum oracles. Then, our choices for N and N’ allow us to use the period finding algorithm of
Boneh and Lipton [BL95] to recover p with only a single quantum query. Once we have p, we can
easily recover sk by making a single classical query on the message p. Therefore, S is completely
insecure under quantum chosen message queries. O

Since classically, signatures and pseudorandom functions can be built from one-way functions,
we immediately get the following corollary:

Corollary 3.8. Assuming the existence of one-way functions, there exists a signature scheme S
that is existentially unforgeable under a classical chosen message attack, but is totally broken under
a quantum chosen message attack.

3.2 Quantum-Secure Signatures from Classically-Secure Signatures

Now we move to actually building signature schemes that are secure against quantum chosen message
attacks. In this section, we show a general transformation from classically secure signatures to
quantum secure signatures. The building blocks for our construction are chameleon hash functions
and signatures that are secure against a classical random message attack. First, we will define a
chameleon hash function. The definition we use is slightly different from the original definition from
Krawczyk and Rabin [KRO00], but is satisfied by the known lattice constructions:

Definition 3.9. A chameleon hash function H is a tuple of efficient algorithms (G, H, Inv,Sample)
where:

e G(A) generates a secret/public key pair (sk, pk).
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e H(pk,m,r) maps messages to some space Y

e Sample(\) samples r from some distribution such that, for every pk and m, H(pk,m,r) is
uniformly distributed.

e Inv(sk, h,m) produces an r such that H(pk, m,r) = h, and r is distributed negligibly-close to
Sample(\) conditioned on H(pk,m,r) = h

We say that a chameleon hash function is collision resistant if no efficient quantum algorithm,
given only pk, can find collisions in H(pk, -,-). Cash et al. [CHKP10] build a simple lattice-based
chameleon hash function, and prove that it is collision resistant, provided that the Shortest Integer
Solution problem (SIS) is hard for an appropriate choice of parameters. The idea behind our
construction is to first hash the message with the chameleon hash function and then sign the hash.
In order to be secure against quantum queries, care has to be taken in how the randomness for the
hash and the signature scheme is generated. In what follows, for any randomized algorithm A, we
let A(z;7) denote running A on input x with randomness 7.

Construction 3.10. Let H = (Gg,H,Inv,Sample) be a chameleon hash function, and S, =
(Gg, Sign,, Ver.) a signature scheme. Let Q and R be families of pairwise independent functions
mapping messages to randommness used by Inv and Sign., respectively. We define a new signature
scheme S = (G, Sign, Ver) where:

c’

G(A) : (skir, Pk )¢ Grr(N), (ske, Pke) €-Ge(N)
output sk = (pky,ske), pk = (pkg, pk.)

Sign((pkg, ske),m) : QL0 RER
r < Sample(\; R(m)), s < Q(m), h < H(pky, m,r)
o « Sign(pk,, h; s), output (r,0)

Ver((pky, pk.), m, (r,0)) : h <= H(pkg, m,r), output Ver(pk,, h,o)

We note that the chameleon secret key is not used in Construction 3.10, though it will be used
in the security proof. Classically, this method of hashing with a chameleon hash and then signing
converts any non-adaptively secure scheme into an adaptive one. We show that the resulting scheme
is actually secure against an adaptive quantum chosen message attack.

Theorem 3.11. If S, is weakly (resp. strongly) EUF-RMA secure and H is a secure chameleon
hash function, then S in Construction 3.10 is weakly (resp. strongly) EUF-qCMA secure. Moreover,
if S¢ is only one-time secure, then S is also one-time secure.

Theorem 3.11 shows that we can take a classically EUF-RMA secure signature scheme, combine
it with a a chameleon hash, and obtain a quantum-secure signature scheme. In particular, the
following constructions will be quantum secure, assuming SIS is hard:

e A slight modification to the signature scheme of Cash et al. [CHKP10], which combines their
chameleon hash function with an EUF-RMA secure signature scheme. The only difference in
their scheme is that the values r and s are sampled directly, rather than setting them to be
the outputs of pairwise independent functions.
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e A modification of the signature scheme of Agrawal, Boneh, and Boyen [ABB10], where we
hash the message using a chameleon hash before applying the signature.

We now prove Theorem 3.11:

Proof. We first sketch the proof idea. Given an S, signature o on a random hash h, we can
construct an S signature on any given message m: use the chameleon secret key sk to compute a
randomness r such that H(pky,m,r) = h, and output the signature (r, o). Thus, we can respond to
a classical chosen message attack, given only signatures on random messages.

If the adversary issues a quantum chosen message query, we need to sign each of the exponentially
many messages in the query superposition. Therefore, using the above technique directly would
require signing an exponential number of random hashes. Instead, we use small-range distributions
and Lemma 2.4 to reduce the number of signed hashes required to a polynomial. The problem is
that the number of hashes signed is still a very large polynomial, whereas the number of signatures
produced by our adversary is only g + 1, so we cannot rely on the pigeon-hole principle to argue
that one of the S forgeries is in fact a S, forgery. We can, however, argue that two of the forgeries
must, in some sense, correspond to the same query. If we knew which query, we could perform a
measurement, observing which of the (polynomially many) random hashes were signed. Lemma 2.1
shows that the adversary’s advantage is reduced by only a polynomial factor. For this query, we
now only sign a single random hash, but the adversary produces two forgeries. Therefore, one of
these forgeries must be a forgery for S.. Of course, we cannot tell ahead of time which query to
measure, so we just pick the query at random, and succeed with probability 1/g.

We now give the complete proof. There are four variants to the theorem (one-time vs many
time, strong vs weak). We will prove the many-time strong security variant, the other proofs being
similar. Let A be an adversary breaking the EUF-qCMA security of S in Construction 3.10 with
non-negligible probability e. We prove security through a sequence of games.

Game 0. This is the standard attack experiment, where A receives pk, and pky, and is allowed
to make a polynomial number of quantum chosen message queries. For query 4, the challenger
produces pairwise independent functions R and Q(?, and responds to each message in the query
superposition as follows:

o Let 7’7(7? = Sample(\; R (m)) and s,(ﬁ? = QW (m).

e Compute A = H(pkH,m,ﬁ(zL))

e Compute o) = Sign,.(ske, hy: s%))
(@ (1)

e Respond with the signature (7, , o).

In the end, A must produce g+1 distinct triples (mj, 7%, o}) such that Ver(pk,., H(pkz, m;, %), of)
accepts. By definition, A wins with probability €, which is non-negligible. Therefore, there is some
polynomial p = p(\) such that p(A) > 1/¢(A) for infinitely-many .
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Game 1. We make two modifications: first, we choose R® and Q) as truly random functions,
which amounts to generating rﬁ,i) < Sample(A) and picking sgl) at random for each i, m. According
to Lemma 2.2, the view of the adversary is unchanged. Second, we modify the conditions in which
A wins by requiring that no two (mj,rj) pairs form a collision for H. The security of H implies
that A succeeds in Game 1 with probability at least ¢ — negl.

Game 2. Generate s%) as before, but now draw h%) uniformly at random. Additionally, draw

uniform randomness tg,?. We will sample 7"7(7? from the set of randomness making H(pk, m, r,(fl)) = h%).

That is, let r,(fL) = Inv(sk, h,(v?, m; t%)). The only difference from A’s perspective is the distribution

of the 7“7(%) values. For each m, the distribution of r%) is negligibly-close to that of Game 1, so the
oracles mapping m to n(q? are indistinguishable from those in Game 1 by Lemma 2.5. Therefore,

the success probability is at least e — negl.

Game 3. Let ¢ = 2Cogp where Cj is the constant from Lemma 2.4. At the beginning of the
game, for i = 1,...,q and j = 1, ..., ¢, sample values fzg-z) and let 63@ = Signc(skc,ﬁy)). Also pick ¢
random functions O; mapping m to [¢]. Then let h%) = ilgz (m) and a%) = &gz (m)* Let T; be random

functions, and let t%) = T;(m). The only difference between Game 2 and Game 3 is that the h,(fl)
and aﬁ,? values were generated by ¢ small-range distributions on £ samples. FEach of the small-range
distributions is only queried once, so Lemma 2.4 implies that the success probability is still at least

€ —negl — 1/2p.

Game 4. Let the O; and T; be pairwise independent functions. The adversary cannot tell the
difference.

Notice that Game 4 can now be simulated efficiently, and A wins in this game with probability
e —negl —1/2p. Let hj = H(pk, mj,r}) be the hashes of the forgeries. Since we have no collisions in

H, the pairs (hf, o) are distinct. Let H(®) = {Bgz)} be the set of / values used to answer query i,
and H be the union of the (). There are two possibilities:

e At least one of the hj is not in H, or two of them are equal. In this case, we can obtain a
forger By for S, which is given pk,. and simulates Game 4 exactly: To generate the (E§1)7 63(.1))
pairs, By asks its own challenger for signatures on ¢f random messages. When A responds
with forgeries (my,ry, o%), Bo computes hj = H(pky, my, ), and finds the &k value such that
hy ¢ H, or the kg, k1 such that hg, = hy,- In the latter case, one of the a;';b was not the result
of a signing query, so let k = k. It then outputs the pair (hy,o}). Then By never received
the signature o} on hj, so this is a valid forgery. Therefore, this event happens with negligible
probability.

o All of the hj values are distinct and lie in H. In this case, there is some 7 such that two hj
values are in H® for the same i. Notice that this event happens, and all the forgeries are
valid, with probability € — negl — 1/2p.

Game 5. Now we guess a random query ¢* and add a check that all the h} values lie in H, and
that two of them are distinct and lie in H). Without loss of generality, assume these two h* values
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are h{y and hj. A then wins in this game with probability €/q — negl — 1/2pq. Let j; be the j such
that hj = h{t) for b =0, 1.

Game 6. On query i*, measure the value of O;(m), to get a value j*. O; takes values in [{], so

Lemma 2.1 says the adversary’s success probability is still at least €/qf — negl — 1/2pgf. Notice now
(&) AU
* J

that for query ¢*, the challenger only needs to sign izj values

was never signed.

, and therefore, one of the hy =

Game 7. Now guess at the beginning of the game the value of j*, and at the end, check that the
guess was correct. The adversary still wins with probability €/qf? — negl — 1/2pgf?.

We now describe an adversary B that breaks the security of S.. Ask the RMA challenger for

)

— 1)/ + 1 random messages and corresponding signatures. For j # j*, choose A% randomly. Set
q g ponding sig J#7 J y

the rest of the ﬂgl) values to be the signed messages, and set &§i) to be the corresponding signatures.
Now play the role of challenger to A in Game 7 using these values for ;ng) and 6. As discussed

above, B; will never have to sign a message it does not have a signature for. Now if A wins, it

(@)
A (5% j

on hy ), this is a valid forgery. The security of S. implies therefore that ¢/qf?> — negl — 1/2pqf? is

negligible. Thus e — 1/2p is negligible. Since € > 1/p infinitely often, we then have 1/2p < negl

infinitely often, a contradiction. Therefore, € is negligible. O

means that it it produced an S, signature for some A\ with j # j*. Since Bj never saw a signature

We note that for one-time security, this security reduction signs only a single message, so we
only need to rely on the one-time security of S..

3.3 Signatures in the Quantum Random Oracle Model

In this section we present a generic conversion from any classical signature scheme to a scheme
secure against quantum chosen message attacks in the quantum random oracle model. We also show
that the deterministic signature scheme of Gentry, Peikert, and Vaikuntanathan [GPV08] is secure
in this model.

Recall that when a random oracle scheme is implemented in the real-world, the random oracle
is replaced by a concrete hash function H, thereby enabling a quantum adversary to evaluate H
on a superposition of inputs. Therefore, security proofs in the random oracle model must allow all
parties, including the adversary, to issue quantum queries to H. This model is called the quantum
random oracle model [BDFT11] and is the one we use here.

3.3.1 A Generic Conversion

First, we demonstrate a simple generic conversion from a classical signature scheme to one that is
secure against an adaptive quantum chosen message attack in the quantum random oracle model.
The construction is quite simple: use the random oracle to hash the message along with a random
salt, and send the signature on the hash, together with the salt. This construction is very appealing
since messages are often hashed anyway before signing. The results in this section then show that
only minor modifications to existing schemes are necessary to make them quantum immune.
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Construction 3.12. Let S, = (G, Sign,, Ver.) be a signature scheme, H be a hash function, and
Q be a family of pairwise independent functions mapping messages to the randomness used by Sign,,
and k some polynomial in \. Define S = (G, Sign, Ver) where:

G(A) = Ge(A)

Sign(sk,m) : QL&o, 7‘&{0, 1}k
s < Q(m), h <« H(m,r), o < Sign.(sk, h;s), output (r,0)

Ver(pk,m, (r,0)) : h <= H(m,r), output Ver.(pk, h,o)

We note that Construction 3.12 is similar to Construction 3.10: instead of the chameleon hash
H(pk, -, ) we have a random oracle H(-,-), and instead of generating a different r for each message
in the superposition, we just generate a single r for the entire superposition. We can achieve
security for Construction 3.12, assuming only a very weak form of security for S., namely, universal
unforgeability under a random message attack (UUF-RMA security):

Theorem 3.13. If S, is strongly (resp. weakly) UUF-RMA secure, then S in Construction 3.12 is
strongly (resp. weakly) EUF-qCMA secure in the quantum random oracle model. Moreover, if S; is
only one-time secure, then S is also one-time secure.

Before proving Theorem 3.13, we explain how to realize the strong UUF-RMA notion of security.
We note that any strongly EUF-RMA or EUF-CMA secure signature scheme satisfies this security
notion. We also note that some weaker primitives do as well. The first is pre-image sampleable
functions, defined by Gentry et al. [GPV08]:

Definition 3.14 (PSF). A pre-image sampleable trapdoor function (PSF) is a tuple of algorithms
PSF = (G, Sample, F, F~1) with the following properties:

e G()\) generates a secret/public key pair (sk, pk).
o F(pk,-) is a function from set Xy to set Yy.
e Sample(\) samples an x from some on Xy, such that F(pk,z) is uniform over Y.

o F~1(sk,y) takes an image y € Yy, and outputs an x such that F(pk,x) = y, and x is
distributied negligibly-close to Sample(\) conditioned on F(pk,x) = y.

The two general notions of security we are interested in for PSFs are one-wayness and collision
resistance. If we let Sign(sk,m) = F~!(sk,m) and Ver(pk, m, o) = F(pk, o) == m, then one-wayness
plus collision resistance implies strong UUF-RMA security.

Corollary 3.15. If PSF is a collision resistant and one-way PSF, then Construction 3.12 instanti-
ated with PSF is strongly EUF-qCMA secure in the quantum random oracle model.

Gentry et al. [GPV08] show how to construct a PSF that is collision-resistant and one-way under
the assumption that SIS is hard. Therefore, we can construct efficient signatures in the quantum
random oracle model based on SIS. Later, we also show that the basic GPV signature scheme is
secure in the quantum random oracle model, though the proof is very different.

A trapdoor permutation is a PSF where D) is the uniform distribution and F'(pk-) is bijective.
Trapdoor permutations are trivially collision resistant, since they have no collisions.
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Corollary 3.16. If F is a one-way trapdoor permutation, then Construction 3.12 instantiated with
F is strongly EUF-qCMA secure in the quantum random oracle model.

Next, we observe that any adversary A breaking the universal unforgeability of S. by mounting
a random message attack can easily be transformed into an adversary B breaking Construction 3.12
under a classical chosen message attack in the classical random oracle model:

e When B receives the public key pk for S in Consutrction 3.12, B forwards the public key to A.

e A requests ¢ message/signature pairs for random messages, and n additional random messages.
To respond, B queries its signing oracle on ¢ arbitrary distinct points m;, obtaining ¢ pairs
(ri,04), where o; is a valid S, signature of h; = H(m;,r;). B queries its random oracle on
m;,T; to obtain h;, and sends the ¢ pairs (h;, 0;) as the message/tag pairs to A. Additionally,
B queries its random oracle on n additional arbitrary points m},r}

7,77, obtaining A}, and sends
the h} to A as the n additional messages.

e Finally, A outputs a new signature o} for one on the messages h;, or potentially one of the

h; if we are interested in strong security. B simply figures out which pre-image (m},r}) this
forgery corresponds to, and outputs the tuple (m},r},c*).

Together with Theorem 3.13, this roughly means that quantum chosen message queries and

quantum random oracle queries do not help the adversary break Construction 3.12. Therefore, if a

scheme matches the form of Construction 3.12, it is only necessary to prove classical security. This

is formalized by the following corollary:

Corollary 3.17. If S in Construction 3.12 is weakly (resp. strongly) existentially unforgeable under
a classical chosen message attack performed by a quantum adversary, then it is also weakly (resp.
strongly) exististentially unforgeable under a quantum chosen message attack.

We now sketch the proof of Theorem 3.13. The complete proof is in Appendix A.1.

Proof sketch. Given the similarities between Constructions 3.10 and 3.12, the proof is similar to
that of Theorem 3.11. For classical security in the classical random oracle model, the adversary only
sees a polynomial number of outputs of H. We can set these outputs to be exactly the messages
produced by the S, challenger. Moreover, we can set the outputs in a way so that we can answer
signing queries using the signatures provided by the S. challenger with non-negligible probability.
For quantum security in the quantum random oracle model, using this approach directly would
require the S, challenger to output exponentially many random messages, and sign an exponential
number of them. Similar to the proof of Theorem 3.11, we can overcome this difficulty using
small-range distributions. However, now the number of signatures received from the S, challenger is
a large polynomial, whereas the adversary only produces ¢ + 1 S forgeries. To show that one of the
forgeries still corresponds to an S, forgery, we perform a partial measurement on one of the queries,
so that the adversary only sees a single signature for that query. Since the adversary produced ¢ + 1
forgeries, two of them must correspond to the same query, so one of the S forgeries must actually
be an S, forgery. O

3.3.2 Deterministic GPV Signatures

Now we show that the basic deterministic GPV signature scheme is secure. For completeness, we
present the GPV signature scheme built from pre-image sampleable functions and PRFs, and prove
its security:
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Construction 3.18. Let PSF = (G5, Sample, F, F~1) be a pre-image sampleable function, PRF
be a pseudorandom function, and H a hash function. Let S = (G, Sign, Ver) where

G(A) : (sk', pk') ¢ G p (N), k€2{0, 1}
output sk = (sk’, k), pk = pk’

Sign((sk, k), m) : 7 < PRF(k,m) h < H(m), output o = F~'(sk, h;r)
Ver(pk,m, o) : h < H(m), h' + F(pk,o), accept if and only if h = b’

We say that PSF has large pre-image min-entropy if, for all pk,
max Pr[z < Sample()) : F(pk, ) = y] < 27«(o8A)
ye

We note that the PSF given by Gentry et al. [GPV08] has large pre-image min-entropy.

Theorem 3.19. If PSF is collision resistant and has large pre-image min-entropy, then S from
Construction 8.18 is EUF-qCMA secure.

Proof. We prove security via a sequence of games:
Game 0. This is the standard security game. The adversary wins with probability e.

Game 1. Replace PRF with a truly random function. The security of PRF implies that the
adversary wins with probability at least € — negl.

Game2. We change the way we answer signing queries and oracle queries as follows: Pick a
random function J that maps messages to the randomness used by Sample(A). We implement
the signing oracle as S(m) = Sample(\; J(m)). That is, signatures are random samples from D),
where the randomness used in the sampling is obtained by J(m). We implement the random
oracle as H(m) = F(pk,S(m)). The adversary wins if he can produce ¢ + 1 (m;, 0;) pairs where
H(m;) = F(pk,o;). This corresponds to F(pk,S(m;)) = F(pk,o;). In other words, S(m;) and o;
form a collision. By the collision resistance of PSF, we must have S(m;) = o; for all 4, except with
negligible probability. This means that we make g queries to the oracle S and a polynomial number
of queries to the oracle F'(pk,S(:)), and output ¢ + 1 input/output pairs of S with probability
€ — negl.

Even if the adversary is able to completely learn the oracle H(-) = F'(pk, S(-)), the oracle S(-)
is unpredictable to the adversary. In particular, S(m) is a random pre-image of H(m), which has
minentropy at least Ho, = w(logA). Therefore, Game 2 satisfies the conditions of Lemma 2.6,
meaning the probability A wins in Game 2 is at most (¢ + 1)/ {2H°°J < (g +1)270°eN which is
negligible. Therefore, A wins in Game 0 with negligible probability, as desired. O

3.4 Signatures from Generic Assumptions

In this section, we show how to construct signatures from generic assumptions. We first construct
one-time signatures from one-way functions using the basic Lamport construction [Lam79]. We
then expand the message space to handle arbitrary-length messages using collision resistance, and
finally plug these one-time signatures into the Merkle signature scheme [Mer87]. The end result is a
signature scheme whose quantum security relies only on the existence of collision-resistant functions:
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Theorem 3.20. If there exists a collision-resistant hash function, then there exists a strongly
EUF-qCMA secure signature scheme.

Lamport Signatures. We now give the basic Lamport scheme [Lam79] and prove its security:

Construction 3.21. Let F' be a one-way function. We define the following signature scheme for
n-bit messages:

G(A) : for each i € [n],b € {0,1}: xi,bi{O, 1}, yzbﬁF(:pl)
output sk = (T;p)icn) be{0,1}> PK = (Yib)ic[n] befo,1}

Sign(sk,m) : write sk = (Ii’b)ie[n]ﬁe{(]’l}

output (i m, )ie[n]

Ver(pk,m, o) : write pk = (Yip)ic[n] befo,1}> 0 = (¥7)iem]
accept if and only if F(z}) = yim, for all i € [n]

Theorem 3.22. If F is one-way (resp. second pre-image resistant), then the Lamport signature
scheme built from F' is weakly (resp. strongly) one-time EUF-CMA secure.

Proof. We prove the weak security case; the strong security case is almost identical. Let A be an
adversary that makes a single quantum query to Sign and outputs a pair of valid message/signature
pairs for different messages with probability e. We prove security through a sequence of games.

Game 0. This is the standard attack game, where A wins with probability e.

Game 1. Pick a random value i* € [n]. Abort if both messages in A’s forgery are the same for
index i*. A still wins with probability €/n.

Game 2. For the quantum chosen message query, measure the bit ¢* of the message superposition.
Lemma 2.1 shows that A still wins with probability €/2n.

Game 3. At the beginning of the game, guess a bit b* at random, and abort if the outcome of
the measurement in Game 2 is b*. A still wins with probability €/4n.
We can now describe an adversary B that inverts F. On input y, B guesses i* € [n] and
b* € {0,1}, and sets y;« p» = y. For (i,b) # (i*,b*), B picks z;}; at random, and lets y; , = F(x;p).
Now B simulates Game 3. With probability at least ¢/4n, B is able to answer A’s query, and
A produces valid forgeries whose messages differ on bit ¢*. This means A produces pre-images
Tje s T fOT Yix 0,y 1. B outputs xj. ., which is a valid pre-image for yi.;x = y.
O

The signatures from Construction 3.21 have public keys that are much longer than the messages
being signed. In order to use Lamport signatures in the Merkle signature scheme, we need to be
able to sign much larger messages. In the classical setting, it is possible to expand the message
space using target collision resistant functions. These can in turn be built from one-way functions,
showing that classical signatures can be built from the minimal assumption of one-way functions.
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Unfortunately, the notion of target collision resistance no longer makes sense in the quantum setting,
and we therefore have to resort to collision resistance. We can thus build one-time signatures for
arbitrary-length messages assuming only collision resistance.

Merkle Signatures. Now we show how to use such signatures to build Merkle many-time
signatures [Mer87]. For completeness, we give the construction. We will have a tree of depth d,
where each non-leaf node contains a pair of private/public key pairs for the one-time signature
scheme, one for each child. The private/public keys for the system will be the keys for the root. To
sign a message, a random leaf node is chosen. For each non-leaf node in the path from root to leaf,
sign the node’s public keys with the corresponding secret key of the parent. Then use the correct
secret key from the leaf’s parent to sign the message. This tree is exponential in size, so we will use
a PRF to generate the keys. In more detail:

Construction 3.23. Let Sot = (Got, Sign,;, Very) be a one-time signature scheme. Also let F be a
secure PRF. The stateless Merkle signature scheme S = (G, SignVer) is defined as follows:

o G(\): run Gy twice to get two secret/public key pairs (sky, pky) for b =0,1. Also choose a
random \-bit string k. The secret key is sk = (sko,ski, k) and the public key is pk = (pkg, pk;).

e Sign(sk,m): to sign a message m, first pick a random bit string a in {0,1}%. Then for
i=1, . d—1,

- Let (T(a[lyi],oy T(a[17i]71)ﬂ Sa[l’i]) = F(k7 a[l,i})'
- Let (Sk(a[l,i],b), pk(a[Li],b)) = Got()‘v T(a[u],b)) fOT b = 07 1
— Let Oap .y = Signot(ska[l’i], (pk(a[l’im, pk(a[lﬂ_]’l)); Sﬁ[l,i])

Let Ea - (a7 (pk(a170)7 pk(al,l)a Ual)? ey (pk(a[lyd,ll,oﬁ pk(a[l’d,”,l)))7
and let o4(m) = Sign,,(ska, m). Output the signature (Xa,0a(m)).

o Ver(pk,m,3,0): parse X as (&, (PK(a, 0y PK(as,1)» Tar ) -+ (Pk(a[m_l],o)a pk(a[l,d_l],l)))' Fori =
1,od—1,

- If Vero,g(pka[u]7 (pk(a[u]yo), pk(a[l’i]’l))) rejects, then reject and stop.

Then output the output of Very(pky, m, o).

We note that if we allow state, we can pick the random bit string a incrementally for each query.
Then we can actually save the sk(a[l’i%b), pk(a[l,i%b), Tap values until we do not need them any more,
and remove the need for a PRF to generate randomness. In this way, we obtain the stateful Merkle
signature scheme.

Theorem 3.24. If S, is weakly (resp. strongly) one-time EUF-qCMA secure, then both the stateless
and stateful Merkle Signatures built from Sy are weakly (resp. strongly) EUF-qCMA secure.

Proof sketch. The proof is very similar to the classical proof. Notice that each secret key
in all but the bottom level are used to sign exactly one message: the pair of public keys in the
corresponding child. Moreover, the secret keys on the bottom level are used to answer only one
(potentially quantum) signature query. Therefore, the security of the one-time signature scheme
implies that no adversary can forge messages for the Merkle signature scheme. For completeness,
we give the complete proof in Appendix A.2. O
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4 Quantum-Secure Encryption Schemes

We now turn to encryption schemes where we first discuss an adequate notion of security under
quantum queries. In what follows, we will discuss symmetric key schemes; the discussion for public
key schemes is similar. At a high level, our notion of security allows quantum encryption and
decryption queries, but requires challenge queries to be classical. One might hope for an entirely
quantum game, where challenge queries are quantum as well, but we show that such fully-quantum
security definitions are unsatisfiable.

We start by developing a notion of CPA security where encryption queries are allowed to be
quantum. Since finding an attainable definition is non-trivial we first present a few alternatives and
then converge to a workable definition (Definition 4.5). Once we arrive at a suitable definition for
CPA security we will also obtain a corresponding definition for CCA security. Our first attempt at
defining quantum CPA security is as follows:

Definition 4.1. A symmetric key encryption scheme € = (Enc, Dec) is indistinguishable under a
fully quantum chosen plaintext attack (IND-fqCPA secure) if no efficient adversary A can win the
following game, except with probability at most 1/2 4 negl:

Key Gen The challenger picks a random key k and a random bit b.

Encryption Queries A is allowed to make chosen message queries on superpositions of message
pairs. For each such query, the challenger chooses randomness r, and encrypts the appropriate
message in each pair using v as randommness:

Z wmo,mhc‘m(]: my, C> — Z ¢m0,m1,c’m07 my, C@EnC(k,mb;T)>

mo,mi,c mp,mi,c
Guess A produces a bit b, and wins if b="V.

Definition 4.1 captures a scheme where we can encrypt a superposition of messages by encrypting
each message in the superposition separately, and no efficient adversary can learn anything about
the plaintext superposition. Unfortunately, this definition is not achievable:

Theorem 4.2. No encryption scheme £ satisfies the security notion of Definition 4.1.

Proof. We construct a generic adversary A. A prepares three registers: two plaintext registers
and a ciphertext register. A puts a uniform superposition of all messages in the first register, and
0 in the second plaintext and ciphertext registers. A submits these three registers as a chosen
message query. If b = 0, the ciphertext register will contain the encryptions of the messages in the
superposition. If b = 1, it will contain the encryption of 0. A then measures the ciphertext register.
If b = 0, the resulting state will be the purely classical state (m, 0, Enc(k,m)) for a random message
m. If b = 1, the measurement does nothing, so the first register still contains a superposition of
all messages. A now performs the quantum Fourier transform to the first message register and
measures. If b = 0, the transform will place a uniform superposition of all messages in the first
register, and measuring will give a random message. If b = 1, the transform will place 0 in the first
register. Thus, A distinguishes b = 0 from b = 1 with probability exponentially-close to 1. 0

The problem with Definition 4.1 is that the message query is entangled with the ciphertext
response, and this entanglement depends on which register gets encrypted. Another reasonable idea
is to encrypt both message registers, but flip which register each ciphertext is written to depending
on the value of b:
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Definition 4.3. A symmetric key encryption scheme & = (Enc, Dec) is indistinguishable under a
fully quantum chosen left-right plaintext attack (IND-IrCPA secure) if no efficient adversary A can
win in the following game, except with probability at most 1/2 + negl:

Key Gen The challenger picks a random key k and a random bit b.

Encryption Queries A is allowed to make chosen message queries. For each such query, the
challenger chooses randommness ro,r1, and responds with the encryptions of both messages in
the pair, but in an order determined by b:

g wmo,ml,cl,CQ‘mm my, c1, C2> >
mo,m1,C1,C2

Z ¢m0,m1,cl,02 |m07 my, €1 D Enc(k:, mp; 7ﬁO)y c2 B Enc(k:, m1—b; 7’1)>

mo,m1,C1,C2
Guess A produces a bit V', and wins if b=1V'.

Unfortunately, this definition turns out to be at least as strong as Definition 4.1, and so it is
also unattainable:

Theorem 4.4. No encryption scheme & satisfies the notion of security in Definition 4.3. In
particular, any encryption scheme that is secure in the sense of Definition 4.3 is also secure in the
sense of Definition 4.1.

Proof. Suppose we have an adversary A for Definition 4.1. We will convert it into an adversary
B for Definition 4.3. B simulates A forwarding encryption queries as follows: When A makes an
encryption query, B adds a second ciphertext register, and puts into it a uniform superposition
over all ciphertexts. B then sends the resulting state to its challenger as its encryption query. The
answer to this query does not affect the second ciphertext register, so B can uncompute it. B then
passes the resulting state back to A. B perfectly simulates A’s view, and therefore B breaks the
security of £ under Definition 4.3. O

Our attempts to make the entire security game quantum lead to an adversary that can always
win. Therefore, we must force encryption queries to be classical. We do, however, wish to allow the
adversary to encrypt superpositions of messages, but not have the response depend in any way on b.
Therefore, we propose separating encryption queries into classical challenge queries and quantum
encryption queries. This gives the following definition:

Definition 4.5. A symmetric key encryption scheme & = (Enc, Dec) is indistinguishable under
a quantum chosen message attack (IND-qCPA secure) if no efficient adversary A can win in the
following game, except with probability at most 1/2 + negl:

Key Gen The challenger picks a random key k and a random bit b.
Queries A is allowed to make two types of queries:

Challenge queries A sends two messages mg, my, to which the challenger responds with
c* = Enc(k,my).

Encryption queries For each such query, the challenger chooses randomness r, and encrypts
each message in the superposition using r as randommness:

Z¢m,c’m, c) — Zwm7c|m, ¢ ® Enc(k,m;r))

m,c
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Guess A produces a bit V', and wins if b=1V'.

This definition has another advantage: since challenge queries are classical, when we move to
CCA security, we can check if a ciphertext was the result of a challenge query and reject decryption
queries for these ciphertexts. This gives us the following notion of CCA security:

Definition 4.6. A symmetric key encryption scheme € = (Enc, Dec) is indistinguishable under a
quantum chosen message attack (IND-qCCA secure) if no efficient adversary A can win in the
following game, except with probability at most 1/2 4 negl:

Key Gen The challenger picks a random key k and a random bit b. It also creates a list C which
will store challenger ciphertexts.

Queries A is allowed to make three types of queries:

Challenge queries A sends two messages mg, myi, to which the challenger responds with
¢ = Enc(k,mp). The challenger also adds ¢* to C.

Encryption queries For each such query, the challenger chooses randomness v, and encrypts
each message in the superposition using r as randommness:

Zwm,c’ﬂ% c) — Zwm C\m, ¢ ® Enc(k,m;r))

m,c

Decryption queries For each such query, the challenger decrypts all ciphertexts in the
superposition, except those that were the result of a challenge query:

ch,m‘ca m> — ch,mlca m®f<c)>

where

f(c):{J_ ifceC

Dec(k,c) otherwise
Guess A produces a bit V', and wins if b=1V'.

In the above definition, we need to define the operation m @ L. Since the query responses will
xor | with different messages, we need a convention that makes this operation reversible. Taking |
to be some bit string that lies outside of the message space, and 1 & m to be bitwise xor will suffice.

Note that we implicitly assume that the decryption algorithm is deterministic. This will be true
of our encryption schemes. We note that this is not a limiting assumption since one can always
make the decryption algorithm deterministic by deriving the randomness for decryption from a PRF
applied to the ciphertext. Also, as in the classical case, a simple hybrid argument shows that the
above definition is equivelent to the case where the number of encryption queries is limited to 1.
Lastly, it is straightforward to modify the above definition for public key encryption schemes.

4.1 A Separation Example

Here we show that quantum chosen ciphertext queries give the adversary more power than classical
queries. In particular, we present a public key encryption scheme that is secure under classical queries,
but completely insecure once an adversary can make quantum queries. Let & = (G, Enc., Dec.)
be an encryption scheme that is secure under classical chosen ciphertext queries. The idea of our
construction is similar in spirit to that for signatures. The construction is as follows:
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Construction 4.7. Fiz positive integers N, N'. Let &. = (G, Enc., Dec.) be an encryption scheme
and PRF a pseudorandom function with domain [0, N). Let RPrime(N') denote a procedure that
samples a random prime let than N'. We build a new encryption scheme & = (G, Enc, Dec) as
follows:

G(N) : (ske, pk, )G (), k<2{0,1}*, p<ERPrime(N”)
output sk = (ske, k,p), pk = pk,

Enc(pk., m) : ¢ < Enc.(pk, m)
output (c,0,0)

D(ske, c) ifa=0andb=0

s ifa=0andb#0
Dec((ske, k,p), (¢,a,b)) : ¢ PRF(k,b mod p) ifa=1

sk ifa=2andb=p

L ifa=2andb#p

Theorem 4.8. If &, is secure under a classical chosen ciphertext attack, and PRF is secure against
classical queries, then £ in Construction 4.7 is secure under a classical chosen ciphertext attack, but
totally insecure under a quantum chosen ciphertext attack.

Proof. The proof is very similar to the separation for signature schemes: first we need to argue the
classical security of our scheme, and then we must break the scheme using quantum queries.

For security, similar to signatures, we can modify our decryption oracle so that it always outputs
1 when a = 2, and outputs O(b) when a = 1, for a random oracle O. Any adversary breaking
the original scheme will also win with this decryption oracle. However, now the decryption oracle
for the cases a = 2,3 is completely independent of the original encryption scheme &, so such an
adversary can be modified to break &.. Since &, is secure, £ must be secure as well.

Now we explain how quantum queries can be used to recover sk. In phase 1, the adversary makes
a single quantum query with a = 1 to recover p, and then makes a classical query with a = 2 on the
ciphertext (0,2, p) to recover sk.

O

4.2 Symmetric CCA Security

In this section, we construct symmetric-key CCA secure encryption. We will follow the encrypt-
then-MAC paradigm. Ideally, we would like to show that encrypt-then-MAC, when instantiated
with any IND-qCPA-secure encryption scheme and any EUF-qCMA MAC, would be CCA secure.
However, it is not obvious how to prove security, as the reduction algorithm has no way to tell
which ciphertexts the adversary received as the result of an encryption query, and no way to decrypt
the ciphertexts if it has received them. To remedy these problems, we choose a specific encryption
scheme and MAC and leave the general security proof as an open question. The encryption scheme
allows us to efficiently check if the adversary has seen a particular ciphertext as a result of an
encryption query, and to decrypt in this case. The construction is as follows:
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Construction 4.9. Let F' and G be pseudorandom functions. We construct the following encryption
scheme € = (Enc, Dec) where:

Enc((k1, ko), m) : r={0, 1}*
c1 < F(ky,r)®m, ca « Gk, (r,m))

output (r,c1,c2)

Dec((k1, k2), (r,c1,¢2)) : m <=1 @ F(ky, 1), ¢y < G(kg, (r,m))
if o # b, output L

otherwise, output m

For security, we require F' to be a classically secure PRF, and G to be quantum secure — secure
against queries on a superposition of inputs. Zhandry [Zhal2b] shows how to construct PRFs
meeting this strong notion of security.

Theorem 4.10. If F' and G are quantum-secure pseudrandom functions, then € in Construction 4.9
1s qCCA-secure.

As demonstrated by Zhandry [Zhal2b], quantum-secure pseudorandom functions can be built
from any one-way function. Therefore, Theorem 4.10 shows that quantum chosen ciphertext security
can be obtained from the minimal assumption that one-way functions exist. We now give the proof
of Theorem 4.10:

Proof. We first sketch the proof: we can replace F’ and G with random functions and only negligibly
affect the success probability. Since each encryption query receives a single r for the entire query
superposition, we can answer any encryption query by making a single query to F' on r. It is easy
to check if a ciphertext (17, c1, c2) was computed during an encryption query: just check if r = r’.
We can also decrypt such a ciphertext, since we have seen F(k1,r). Including ca = G(ka, (r,m)) in
the ciphertext guarantees with overwhelming probability that the adversary can only submit valid
ciphertexts if they were ciphertexts received during an encryption query, so we might as well reject
all ciphertexts (7', ¢1,¢2) where v’ was not the randomness used in any encryption query. Now, the
value of my in the challenge query becomes perfectly hidden, which means that the distinguishing
probability is 0.

We now give the complete security proof: assume we have an adversary A that breaks the
indistinguishability of £ in Construction 4.9 with probability e. We prove security through a sequence
of games.

Game 0. This is the standard attack game where A makes g. encryption queries which are
answered using randomness values 7;, ¢. challenge queries which are answered using randomness 77,
and gq decryption queries. Let (mj,m; ) denote the ith challenger query, and (r}, ¢}, d;) be the
response.

Game 1. Replace F' and G with truly random functions. That is, answer the ith encryption query
by mapping m to (r;, F'(r;)@m, G(r;,m)), the ith challenge query with (r}, F'(r;) &m,, G(r;,m},)),
and answer decryption queries accordingly. Since F' and G are quantum-secure pseudorandom
functions, the advantage of A in Game 1 is at least € — negl.
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Game 2. Now we abort if there is a collision among any of the ; or r;. The probability of a
collision is at most (g. + qc)?/2|R| where R is the randomness space. This quantity is negligible, so
A’s advantage is still € — negl.

Notice that we can pick the r; values and 7] value at the start of the game, and query F' on
these values. Let 7; = {r; : j < i} and ;" = {r : j <i}. Alsolet T =T, and T* =T . Notice
that at any point, A never gets to see G(r,m) for any m if r ¢ 7;U7;* where ¢ is the number of
encryption queries made so far and j is the number of challenge queries made so far. Note also that
A only gets to see G(rj, m) where m = mj ;).

Game 3. For a decryption query on a superposition of ciphertexts (r,c,d), let ne be the number
of encryption queries made so far and n. the number of challenge queries. Check that r € 7,,_, and
respond with L for that slot otherwise. We now consider the ciphertexts that would be accepted in
Game 2 but rejected in Game 3. Such ciphertexts come in two forms:

e r €7, : Then r = r; for some i. In order to not be rejected in Game 2, we must have c # ¢}
or d # d}. In the first case, (7, ¢, d) is an encryption of a message m # m;, so the value of
G(ry,m) is hidden to the adversary. Therefore, the probability (r,c,d) is a valid ciphertext is
negligible. In the second case, (r,c,d) is an encryption of m,, but then d is not a valid MAC,
so decryption fails. 7

o r ¢ T,.UT, : Then the value of G(r,m) is completely hidden from the adversary, so the
probability d is a valid MAC is negligible.

Therefore, the probability of rejection for any ciphertext in Game 3 is only negligibly higher than
that in Game 2. This means that with overwhelming probability, we only changed the decryption
oracle on a negligible fraction of inputs, so A can only distinguish Games 2 and 3 with negligible
probability. Therefore, A’s advantage is still € — negl.

Game 4. Now notice that F' is never queried except on the points r; and r;. Therefore, at the
start of the game, we can pick random values f; and f* to correspond to F(r;) and F(rf). We can
also pick random values g; that correspond to G(r;,m;,) (since we only query G on this point
once). The adversary’s view in this game is unchanged, so A’s advantage is at least ¢ — negl.
Notice that we answer the ith challenge query with (r}, f* & myy, g7), and that the values of
Ji and g; are never used again. This means that m;, is statistically hidden from the adversary.

Therefore, A’s advantage in Game 4 is identically 0, so € = negl. O

4.3 Public-key CCA Security

In this section, we construct CCA-secure signatures in the public-key setting. The basic idea is to
first build a selectively secure identity-based encryption scheme — whose security can be based
on the Learning With Errors (LWE) Problem — and then adapt the generic transformation to
CCA-security to the quantum setting:

Let Eipe = (Gipe, Encipe, Decipe, Ext) be an IBE scheme that is selectively secure against quan-
tum queries. It is straightforward to show that the basic IBE scheme of Agrawal, Boneh, and
Boyen [ABB10] meets this security notion assuming LWE is hard. Let S = (Gg, Sign, Ver) be a
strongly EUF-CMA secure one-time signature scheme (quantum security is unnecessary). We now
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construct an encryption scheme using the generic transformation from IBE to CCA security due to
Boneh et al. BCHKO04]:

Construction 4.11. £ = (G, Enc, Dec) where

G(N) : Gipe(N)
Enc(mpk,m) : (sk,vk) < Gs(\)
¢ < Encjpe(mpk, vk, m), o < Sign(sk, ¢)
output (vk, ¢, o)
Dec(msk, (vk,c,0)) : if Ver(vk, ¢, o) rejects, output L
skyk < Ext(msk, vk), m < Decjpe(skyk, ), output m

It is not difficult to adapt the classical security proof to the quantum setting, showing that the
above construction achieves quantum CCA security:

Theorem 4.12. If the LWE problem is hard for quantum computers, then there exists a public key
encryption scheme that is IND-qCCA secure.

5 Conclusion and Open Problems

We defined the notions of a quantum chosen message attack for signatures and quantum chosen
ciphertext attack for encryption. We gave the first constructions of signatures and encryption
schemes meeting these strong notions of security. For signatures, we presented two simpler compilers
that transform classically secure schemes into quantum-secure schemes. We also showed that
signatures can be built from any collision resistant hash function. For encryption, we presented
both a symmetric-key and a public-key construction.

There are many directions for future work. First, can we base quantum security for signatures
on the minimal assumption of one-way functions? Also, it may be possible to mount quantum
superposition attacks against many cryptographic primitives. For example, can we build identification
protocols or functional encryption that remain secure in the presence of such attacks?
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A Signature Proofs

A.1 Proof of Theorem 3.13

Proof. Suppose we have an adversary A that breaks the security of S from Construction 3.12. Let
gs be the number of signing queries made by A, and ¢y be the number of hash queries (including
those used in signing). We will prove security through a sequence of games.

Game 0. This is the standard attack game. A makes ¢ quantum chosen message queries, and
succeeds if it produces ¢ + 1 valid message/signature tuples (m;", Ty, U}‘). Let r; be the random value
produced in the ith query, and Q; be the pair-wise independent functions. A’s success probability
is, by assumption, some non-negligible quantity €. Then there is some polynomial p(A) such that

p(A\) > 1/€(N) infinitely often.

Game 1. Replace the R; with a truly random function, and abort if any of the r; values are
identical. Then the success probability is at least € — ¢? /25! > € — negl. Notice that if all the r; are
distinct, we can replace Q;(m) with Q(m,r;) for a random oracle ) that is fixed across all queries.
That is, we sign the ith query with the oracle that maps m to (r;, Sign.(sk, H(m,r;); Q(m,7;))).
Notice that the function H'(m,r) = (H(m,r),Q(m,r)) is a random function.

Game 2. Let ¢ = 6Copq3;. We now change how H’ is generated. Pick three random oracles U, V
and W, where the codomain of U and V is [¢] , and let H' (m,r) = W(U(m,V(r)),V(r)). What
this distribution represents is, for each V(r) value, picking a random small-range function on ¢
samples. In essence, we have a small-range distribution on small-range distributions. A simple
generalization of Lemma 2.4 shows that this is indistinguishable from Game 1 except with probability

Coq}r/l = 1/3p.

Game 3. Pick the r; values up front, and let R be the set of r; values. Abort if V(r;) = V()
for any i # j. We can assume without loss of generality that V(r;) = i. The probability of this
abort is at most ¢%/2¢ < 1/12Coqup < 1/3p. Therefore, A wins in Game 3 with probability at least
e—2/3p.

The following modifications are indistinguishable to the adversary: before the start of the
game, draw ¢? different hw values. Sign each of them with i < gg using S to get 6; ;. Then let
H(m,r) = ﬁV(T)’U(m,V(T)) and sign the ith query my mapping m to (14,6 y(m,). We can also
generate V and U from 2qp-wise independent functions, and the adversary cannot tell.
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Game 4. Pick a random r;, from R. Add the condition that if the 7} all lie in R, that the two
that are equal must be r;,. This condition is independent of the view of the adversary, so the
adversary wins with probability at least (e —2/3p)/qgs.

Game 5. Measure the value of U(m, ig) for the igth query. The adversary still wins with probability
at least (e —2/3p)/qsl.

Game 6. Pick a random jy € [¢], and abort if the result of the measurement in Game 5 does not
yield jo. We guess right with probability 1/¢, so the adversary still wins with probability at least
(e —2/3p)/qsf?. Now, if we succeed, we never need the values of 6;, ; except for 6;, j,, so we don’t
need to ever sign the others.

We can now describe an adversary B that that attacks the UUF-RMA security of S.. B simulates
the entire Game 6, except for generating the iL” and 6; ;. For these, B asks its S challenger for
q = (gs — 1) + 1 random message/signature pairs, and n = £?> — ¢ additional random messages. It
assigns the g message/signature pairs to h; j and &, ; for i € [gs] \ {io} and &;, j,. The rest of the
ﬁi,j it sets to the n additional messages. When A outputs its qg + 1 forgery candidates, there are
several possibilities:

° r;fl lies outside R for some j;. In this case, since there are no collisions among the (m}*, r;),
hj, =H (mj*l,r;-‘l) was never signed. Therefore, 07} is a signature on a fresh message, so B

wins.

o All of the r} lie in R, and two of them are equal. Assume without loss of generality that
ry =1r] = Ti,. If m{ =mj, then we must have o # o], so one of these is a fresh signature. If
m¢ # mj, then hj # hi, so one of hj and h] was never signed. Therefore, B also wins.

Since S is secure, B wins with negligible probability, meaning (¢ — 2/3p)/qsf?> < negl. This is
equivalent to € — 2/3p < negl. Since € is bounded by 1/p infinitely often, we have that 1/3p < negl
infinitely often, contradicting the fact that p is a polynomial. O

We note that, for one-time security, ¢ = 1, so we only need to rely on the one-time security of S..

A.2 Proof of Theorem 3.24

Proof. We prove security for the stateless case, the stateful case being almost identical. Suppose
we have an adversary A that breaks the EUF-qCMA security of S with non-negligible probability e.
We will prove security through a sequence of games.

Game 0. This is the standard attack game, where A makes ¢ quantum queries. For j =1,...,¢q,
let a/ be the vector generated for query j.

Notice that for any b with |b| < d — 1, we only use the secret key skp, to sign a single classical
message.

Game 1. We now replace F'(k,-) with a truly random function. The security of F' implies that A
still wins with probability negligibly-close to e.

29



Game 2. Now re remove the random function all together. Instead, we keep a table mapping
strings b to tuples (sk(p,0), SK(b,1)s PK(b,0)s PK(b,1), ob). To answer the jth query, pick a random al.
Foreachi=1,...,d — 1,

e Let b=al

L and look up the tuple for b.

e If the tuple exists, we do nothing.

e If the tuple does not exist:

Sample (Sk(b,b)’ pk(b,b)) = Got()\) for b = 0, 1.

— Obtain skp, by looking up the tuple for by ;_q).

— Generate op = Signy(skp, (PK(p,0), PK(b,1)))

Associate b with the tuple (sk, 0, sk, 1), PK(b,0): PK(b,1)» Op)-

Game 3. In this game, we abort if we ever have a/ = a’’ for j/ # j. There are a total of ¢ different
a’ vectors, and they are drawn form a set of size 2¢. Therefore, the probability of abort is at most
q? /241, which is negligible. Therefore, A still wins with probability negligibly close to €.

Notice that in Game 3, since all of the a’ are distinct, we are only using any particular ska
key at most once. The adversary produces g + 1 distinct (my, Xy, 04) pairs. There are two distinct
possibilities:

e One or more of the ¥, is outside all of the ¥_;. In this case, one of the signatures in ¥ is a
forgery for one of the public keys generated in answering the signing queries. We can construct
a forger for S,; by randomly guessing which of the public keys will be forged, plugging the
given public key into that key, and randomly generating all of the other keys ourselves. Such
an forger will successfully forge with probability only polynomially smaller than the probability
3¢ lies outside of the Y¥,;. The assumption that S, is secure shows that this probability is
therefore negligible.

e Two of the ¥, are identical. In this case, there is an a such that we have two forgeries relative
to ska. We can similarly construct a forger for S,y by guessing a random a, and plugging
in the given public key as pk,, and generating the rest of the keys itself. Such a forger will
successfully forge with probability only polynomially-smaller than the probability that two of
the o, are identical. The security of S,; shows that this probability is also negligible.

Therefore, the probability that A wins in Game 3 is negligible, meaning ¢ is negligible. Hence, S
is secure.

O]

B Technical Proofs

B.1 Proof of Lemma 2.1

We prove Lemma 2.1, which states that performing a partial measurement obtaining one of k
outcomes during a computation only decreases any output’s probability by at most a factor of k.
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Proof. Let [1) be the final state of A, and let ‘¢y> be the final state of A’ when the outcome of
the partial measurement is y. Let Pr[y| be the probability that the partial measurement obtains y.
It is straightforward to show that 1)) =37, / Pr[y]ay‘wy> for some oy, of unit norm. Then we have

2
< kY Prlyl|fau,)| = kPr'la
Y

Prle] = |{z|¢)|* = |Z VPriylay(@|v,)
Y

B.2 Proof of Lemma 2.5

Recall that we have two sets X and ), and for each x € X, distributions D, and D! on Y such
that |D, — D.| < e for all z. Let O : X — Y be a function where, for each x, O(z) is drawn from
D, and let O'(x) be a function where, for each x, O'(z) is drawn form D’. We wish to bound the
distinguishing probability of the functions O and O’.

We first suppose that each of the probabilities in each of the distributions D, and D/, are
rational.

Claim B.1. If each of the probabilities in D, and D!, are rational, then any quantum algorithm
making q quantum queries can only distinguish O from O" with probability /8Cyq3e.

Before proving this claim, we explain how it proves Lemma 2.5. Fix any quantum algorithm A.
The distinguishing probability for any rational collection of distributions D, and D/, is bounded by
V/8Coq3 max, [D, — D.|. But the distinguishing probability of A is a continuous function of the
probabilities in the distributions D, and D!, and the pairs of rational distributions are dense in
the set of all pairs of distributions. Therefore, the bound of 1/8C(¢3 max, |[D, — DL.] applies for all
pairs of distributions.

Now we prove the claim:

Proof. Let r be the smallest integer such that each of the probabilities in each of the distributions
D, and D!, can be represented as a rational number with denominator r. Observe that we can
take € to be an integer times 2/r, say 2s/r. Let Z = [s 4+ r|. Let E be the uniform distribution
on [r] and E’ the uniform distribution on [r] +s = {s + 1,...,s + r}. The probabilities in F and
E’ are the same on [s] + (r — s) = {s,...,r}, and are 1/r on[s] and [s] + r respectively. Therefore
|E — E'| = 2s/r = e. We now construct functions f, such that if z < E, f,(y) is distributed
according to D, and if z < E’', f,(y) is distributed according to D’. For each y € Y, let p/r be the
probability under D, and p’/r the probability under D!. Suppose p < p’. Then we will choose p
elements of [s] + (r — s) that have not been chosen before, and let f, evaluate to y on those elements.
We will also choose p’ — p elements of [s] + r and let f, be y on those elements as well. We treat
the p’ < p case similarly. Then f, evaluates to y with the desired probabilities, so it remains to
show that we never run out elements. Since |D, — D’| < 2s/r, we will never run out of elements in
[s] + 7 or [s]. If |D, — D.| < 2s/r, we will run out of elements in [s] + (r — s). When we run out,
however, instead of picking an element in [s] + (7 — s), we can pick two elements, one in each of [s]
and [s] + r, and still have the correct probability.

Now that we can generate D, = f, o E and D), = f, o E’, we can generate O and O’ differently.
Let P be the set of oracles from X to Z where each output is drawn according to E, and let P’
be the set of oracles where each output is drawn from E’. Then letting O(z) = f,(P(z)) and
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O'(x) = f(P'(x)) gives the correct distributions for O and O’. Suppose A distinguishes O from O’
with probability o. Then we can easily construct an algorithm B that distinguishes P and P’ with
probability o.

Let ¢ be some integer to be chosen later. We replace P and P’ with small-range distributions on
¢ samples of F and E’ respectively. Applying Lemma 2.4 twice shows that B must still distinguish
P and P’ with probability at least o — 2Coq>/¢. But now the difference between the distribution P
and P’ is only ¢ samples of either E/ or E’, so the distinguishing probability is at most fe. Thus
o < le+ 2Cyqq /¥ for any £. Setting ¢ = 1/2Cyq>/e minimizes this quantity, yielding /8Cpg3e as
desired. O

B.3 Proof of Lemma 2.6

Recall that we have sets X and ), and distributions D, on Y for each x € X. Let H be a function
from X to ) where, for each x, H(x) is drawn independently according to D,. Let H. be the
minimum over all z € X of the distributions D,. Let A be a quantum algorithm making ¢ queries
to H. We wish to show that A can only produce ¢ + 1 distinct input/output pairs with probability
(q+1)/| 27|

We proceed by converting an algorithm violating Lemma 2.6 to an algorithm violating the
following lemma proved by Boneh and Zhandry [BZ13]

Lemma B.2 ([BZ13]). Fiz sets X and Y, and let H be a random function from X to Y. Then
any quantum algorithm making q quantum queries can only produce q + 1 input/output pairs with
probability at most (¢ + 1)/|Y|.

First, we need the following technical lemma:s:

Lemma B.3. Fiz and integer r. Let D be a distribution of a set X such that Prjx <— D] < 1/r
for all z. Then we can construct a distribution D' on injective functions from [r] into X with the
property that Pr[x : fﬁD',i(ﬁ[s],x «— f(i)] = Pr[z : ZE(ED] for all y. In other words, we can
generate x according D by drawing a random value i in [r], a random injective function f from D',
and evaluating f(i).

Proof. Pick an arbitrary ordering of elements in X. Then there is a one-to-one correspondence
between subsets of X of size r and strictly monotonically increasing functions from [r] to X.
Therefore, it suffices to show how do sample subsets T C X of size r such that sampling T
and then picking a random element of 7 simulates the distribution D. We give the algorithm
SampleSubset, which takes as input a set &X', a distribution D on X, and an integer r such that
where Pr[z <— D] < 1/r, and samples from a distribution of subsets of size r with the desired
properties:

We now prove that SampleSubsets works as promised. We need to show that D’ and D" are
distributions. Since p* is at most the smallest probability in D, all the probabilities in D’ are
non-negative. Moreover, by adding up all the probabilities in D’, we see that they sum to 1, so D’
is in fact a distribution. This means all the probabilities in D" are non-negative as well. Using the
fact that all elements in F have probability 1/r under D’, we see that the probabilities in D" also
sum to 1, so D" is also a distribution. The fact that D’ is a distribution also shows that |F| < r,
since otherwise the probabilities would sum to greater than 1.
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Algorithm 1 SampleSubset(X, D, r)

If r =1, draw = < D, output {z}, and exit.

Otherwise, let p;, be the smallest non-zero probability in D.

Let pg be the largest probability in D.

Let p* « min(pz, % — DH)-

Let 7 be the set of the r elements in X with the smallest non-zero probabilities.
With probability rp*, output 7 and exit.

Otherwise, let D’ be the distribution where

Pr[x(—D]—p* f e 7—
Prfe + D) = {pr[;:sf o

j— otherwise
Let F be the set of  such that Pr[z < D'] = 1.
If |F| = r, then output F and exit.
Otherwise, let D” be the distribution where

0 ifxeF

PI“[:L‘ — D”} = 3 Prlz«D’] th .
W otherwise

Sample Ty from SampleSubset(X, D" r — |F|)
Output Tp U F.

Next, we explain why the recursive call to SampleSubset is valid. That is, that Pr[z + D"] < %
where ' = r — | F|. For D', the maximum probability is at most

pH_ pH _ r < r _ 1
L—rp* “1—(f—pu) r+@=D/py “r+@E-1r
For D", the maximum probability is at most (and in fact less than) % = T_l‘ 7 = L, as

desired. Also, SampleSubset is never called with 7/ = 0, since in this case we would have already
outputted F.
Now, we need to show that this sampling algorithm actually terminates. We look at two cases:

e p* =pr. Let z1, be an element in 7 with Pr[xy, + D] = py. Observe that under D" and hence
D", zy, has probability 0.

e p* =1 —ppy. Let 2y be an element with Pr[zy + D] = py. Under D', Prlzg < D'] =1, so
xy is included in F. Therefore, under D”, xy has probability 0.

This means that in each recursive call to SampleSubset, the number of x with positive probability
decreases by at least 1. Since X is finite, eventually, the number of x with positive probability will
equal 7 (it cannot be less since all probabilities in D are at most than 1/r, meaning there are at
least 7 such elements).

It remains to be proven that our sampling algorithm gives the desired distribution. In the case
r = 1, then we just output sets {x} where x <— D, which is correct. Otherwise, with probability rp*,
we output 7. In this case, drawing a random value from 7 gives us each element with probability p*.
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Since p* is at most py, we have not over-sampled any element. If we do not output 7, we then need
to sample subsets to match the distribution D’. If any x has Pr[z < D] = %, then x must be in
every subset, so we set it aside in the set . We then need to draw r’ = r — | F| additional elements
not in F to match the correct distribution. It is straightforward to show that this is achieved by
calling SampleSubset(X, D", r — |F|).

O

We are now ready to prove Lemma 2.6:

Proof. Recall that we have an algorithm A making ¢ queries to a random oracle H where outputs are
drawn from distributions D, and produces g+ 1 input/output pairs with probability e. Additionally,
for all x € X, the min-entropy of D, is at least Hxo.

We now generate H in a different way: for each x, we know that D, has min-entropy at least
H.. This means that the most probable element in D, has probability at most 1/2He < 1/|2He |,
Let r = [2H>=|. Lemma B.3 shows that there is a distribution D/, on injective functions from [r]

to )V such that sampling from D, is equivalent to sampling a random i&[r], sampling a random

f <£D;’E, and outputting f(i). Therefore, if we let F' be a random oracle from X to [r], and G an
oracle mapping each z € X’ to a function sampled from D!, the oracle that on input & computes
f = G(x) and outputs y = f(z) is distributed identically to H.

We can now construct an algorithm B that violates Lemma B.2. B can make ¢ quantum queries
to a random function F' from X into [r]. B first builds the function G, and then simulates A,
answering A’s queries to H using F' and G as above. Answering A’s queries is potentially problematic
since extra information is computed — the outputs of F' and G. In order for B to properly answer
A’s queries without becoming entangled, B must uncompute these extra values. Since B knows G,
it can uncompute G easily. Uncomputing F' would normally require making a second query to F,
but this is unacceptable since then B would make 2¢q queries instead of q. However, the function f
outputted by G is injective, meaning we can invert it, which allows us to uncompute the output of
F by applying f~! to the output of H. Therefore, each query A makes requires only a single query
to F.

With probability €, A produces ¢+ 1 distinct input/output pairs (x;,y;) for H. B then computes
the functions f; = G(x;), and outputs the pairs (x;, f; *(y;)). These pairs will all be distinct and
valid input/output pairs of F. Since F' is a random oracle, Lemma B.2 shows that ¢ < (¢ + 1)/r.
Since 7 = |21 |, this completes the proof.

O
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