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Abstract. Generic side-channel distinguishers aim at revealing the cor-
rect key embedded in cryptographic modules even when few assumptions
can be made about their physical leakages. In this context, Kolmogorov-
Smirnov Analysis (KSA) and Partial Kolmogorov-Smirnov analysis (PKS)
were proposed respectively. Although both KSA and PKS are based on
the Kolmogorov-Smirnov (KS) test, they really differ a lot from each
other in terms of construction strategies. Inspired by this, we construct
nine new variants by combining their strategies in a systematic way. Fur-
thermore, we explore the effectiveness and efficiency of all these twelve
KS test based distinguishers under various simulated scenarios in a uni-
variate setting within a unified comparison framework, and also inves-
tigate how these distinguishers behave in practical scenarios. For these
purposes, we perform a series of attacks against both simulated traces
and real traces. Evaluation metrics such as Success Rate (SR) and Guess-
ing Entropy (GE) are used to measure the efficiency of key recovery at-
tacks in our evaluation. Our experimental results not only show how to
choose the most suitable KS test based distinguisher in a particular sce-
nario, but also clarify the practical meaning of all these KS test based
distinguishers in practice.

Keywords: Side-Channel Analysis, Distinguisher, Kolmogorov-Smirnov
Test, Construction, Evaluation

1 Introduction

Side-channel attack aims at identifying the secret information embedded in a
cryptographic device from its physical leakages. One of the most famous side-
channel attacks is Differential Power Analysis (DPA), which was proposed by
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Kocher in his seminal work [1]. Generally, DPA employs some type of statis-
tics (also referred to as distinguisher in side-channel cryptanalysis) to reveal the
correct key hypothesis about the secret key or part of it within a set of candi-
dates. In side-channel attacks, the most famous two distinguishers known are
distance-of-means introduced by Kocher in [1], Pearson correlation coefficient in
Correlation Power Analysis (CPA) proposed by Brier in [3]. Meanwhile, other
variants of these two distinguishers, such as Multi-bit DPA [2] and Proposi-
tion Power Analysis (PPA) [4], are also proposed to enhance the performance
of DPA and CPA respectively. Concerning these distinguishers, a recent work
by Mangard et al. [5] has shown that DPA, CPA and even Gaussian templates
[22] are in fact asymptotically equivalent to each other, given that they are pro-
vided with the same a priori information about the leakages. The results of [5]
are further complimented by [6] where Doget et al. stduy if the statement in
[5] also hold in non-asymptotic contexts (when the number of measurements is
reasonably small). Therefore, these distinguishers are collectively called CPA-
like distinguishers throughout this paper. Essentially, all these CPA-like distin-
guishers exploit linear dependency between key-dependent hypothetical power
consumptions and physical leakages.

Even though CPA-like distinguishers are well capable of measuring linear
dependency between hypothetical power consumptions and physical leakages,
they become less efficient when the dependency is not strictly linear [11]. In
light of this, Mutual Information Analysis (MIA) was proposed by Gierlichs in
[7] to measure total dependency (both linear and nonlinear) between the hy-
pothetical power consumptions and the physical leakages. Consequently, MIA
is considered to be generic because it is capable of dealing with the total de-
pendency. Although MIA is generic, it also bears some technical challenges. For
example, the probability density function estimation (PDF) in MIA is widely
accepted to be a difficult problem [8–10]. Experiments in [11–13] confirmed that
the PDF estimation methods have a decisive impact on the performance of MIA.
Among those different methods, the histogram estimation method was adopted
in [7]. The performance of histogram based MIA can also be greatly affected
by the power model and noise. In [11], Charvillon and Standaert showed that
kernel estimation methods can improve the performance of MIA. However, ker-
nel estimation methods based MIA requires a considerable number of traces to
attain a good performance in key recovery attacks. Therefore, the performance
of MIA depends on the accuracy of the estimation methods. Considering the
probability density function of MIA is hard to estimate accurately, Kolmogorov-
Smirnov Analysis (KSA) [11] and Partial Kolmogorov-Smirnov analysis (PKS)
[15] were independently proposed. KSA and PKS use cumulative density function
estimation, instead of probability density function estimation, to avoid explicit
probability density function estimation. Both KSA and PKS sound like promis-
ing alternatives for MIA, but which one is a better alternative for MIA in key
recovery attacks?

On the one hand, although both KSA and PKS are based on the Kolmogorov-
Smirnov (KS) test, they differ a lot from each other in terms of construction
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strategies, such as partition method, similarity measure used by KS test, as-
sumption about leakages and normalization. One natural yet important question
is that whether we can construct more efficient distinguishers via combining dif-
ferent construction strategies by both KSA and PKS. For all these KS test based
distinguishers, how can we choose the most suitable KS test based distinguisher
in a certain scenario? For all these KS test based distinguishers, to what extent
do they pose severe threats on the implementations of cryptographic modules
in practice? In order to answer these relevant questions above, we will investi-
gate the efficiency of all these KS test based distinguishers in a comprehensive
comparison framework. Since it seems difficult to study the relationship of all
KS test based distinguishers theoretically, we will explore the advantages and
limitations of the KS test based distinguishers experimentally.

Note that we only compare the KS test based distinguishers in a univariate
setting, due to the fact that PKS does not have multivariate extensions.

1.1 Our contributions

The contributions of this paper are threefold. First, we show how to system-
atically construct the KS test based distinguishers via combining different con-
struction strategies by both KSA and PKS. Specifically, nine new variants of the
KS test based distinguishers are constructed.

Second, we investigate the effectiveness and efficiency of all twelve KS test
based distinguishers in a comprehensive comparison framework. In the frame-
work, we consider the impacts of leakage function, noise level and power model to
these KS test based distinguishers in simulated experiments. Evaluation metrics
such as Success Rate (SR) and Guessing Entropy (GE) are used to evaluate the
efficiency of these KS test based distinguishers. We believe that each of these KS
test based distinguishers has both pros and cons, and will give a balanced view
of all these KS test based distinguishers in simulated experiments. Experimental
results show that how to choose the most suitable distinguisher in a certain sce-
nario. For example, three out of these nine distinguishers, which are MP-KSA,
C-KSA and MPC-KSA, outperform both KSA and PKS in terms of success rate
for a given number of traces in a certain scenario, respectively.

Third, we also demonstrate the practical meaning of all these KS test based
distinguishers in practice. For example, MPC-KSA is better than CPA when they
are against the unprotected hardware AES implementation on Xilinx Virtex-5
FPGA provided by DPA Contest v2. Specifically, the number of traces required
for MPC-KSA to achieve a partial success rate of 80% is 6,000, while that of
CPA is 15,000, and the number of traces required for MPC-KSA to achieve the
global success rate of 80% is 14,500, while that of CPA is 16,900.

The rest of this paper is organized as follows. Section 2 introduces KS test,
and then briefly recalls both KSA distinguisher and PKS distinguisher. Section
3 analyzes the construction strategies by both KSA and PKS, and then nine
new variants of KS test based distinguishers are proposed. Section 4 presents
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the comparison framework, and then shows our findings in different leakage sce-
narios. Conclusions are given in Section 5.

2 Preliminaries

In this section, we will first introduce the KS test, and then briefly recall KSA
distinguisher and PKS distinguisher.

2.1 Kolmogorov-Smirnov Test

In statistics, the Kolmogorov-Smirnov (KS) test is a nonparametric test whose
main target is to determine if two distributions differ significantly. Therefore,
one can use the Kolmogorov-Smirnov test to measure the similarity of two dis-
tributions in terms of their distance. Assume that the random variable X has n
samples. Its empirical cumulative distribution function is Fn(x) =

1
n

∑n
i=1 IAi6x.

IAi6x is the indicator function, where its value is 1 when Ai 6 x, otherwise 0.
For a given cumulative distribution function F (x), formula (1) is used to test
their similarity.

Dn = supx|Fn(x)− F (x)| (1)

where supx is the supremum of the set of distances. Specifically, the largest
distance between two distributions represents the similarity between two distri-
butions. On the other hand, p-value can also be used to measure the similarity
of two distributions. The smaller of the p-value, the less similar between the two
distributions.

2.2 KSA Distinguisher

KSA distinguisher is based on two-sample KS test. Its central idea is to mea-
sure the maximum distance between the global trace distribution L and the
conditional trace distribution L|M , and then average the distances over the pre-
diction space, where M denotes hypothetical power consumption model. Denote
l the leakages, and m the hypothetical power consumption values. Denote Pr
the probability. KSA is shown in the formula (2).

EmϵM (DKS(Pr[L = l|M = m]||Pr[L = l])) (2)

KSA can be extended to a normalized version (norm-KSA) that is shown in
the formula (3). The starting point of norm-KSA is the distance of each partition
plays an equal role in deciding which key hypothesis is the correct one.

EmϵM (
1

|L|M = m|
DKS(Pr[L = l|M = m]||Pr[L = l]))) (3)

Example 2.1 : We illustrate the working principle of KSA via a very simple ex-
ample consisting of an AES implementation leaking the Hamming Weight (HW)



Construction and Evaluation of the KS based Distinguishers 5

of the first S-box with a signal-to-noise ratio (SNR, defined as V ar(Signal)
V ar(Noise) ) of 64.

Figure 1(a) shows partitions of leakages (in blue) under the correct key hypoth-
esis, where the red line represents the global CDF of leakages and the blue lines
stand for partitions of leakages under the correct key hypothesis. Figure 1(b)
shows partitions of leakages (in blue) under the wrong key hypothesis, where
the red line represents the global CDF of leakages and the blue lines stand for
partitions of leakages which correlated with the wrong key hypothesis. It is ex-
pected that only the correct key hypothesis produces a large average difference.
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Fig. 1. KSA is based on the largest distance between the CDFs of two leakages.

2.3 PKS Distinguisher

In power analysis attacks, for each single point of a power trace, the power con-
sumption of one cryptanalysis device can be modeled as the sum of an operation-
dependent component Pop, a data-dependent component Pdata, electronic noise
component Pel−noise, and a constant component Pconst [17]. For most crypto-
graphic devices, it is valid to approximate the distribution of the data-dependent
component Pdata of the power consumption by a normal distribution if the pro-
cessed data is uniformly distributed [17]. In light of this, [15] proposed a generic
distinguisher, namely PKS, based on single-sample KS test. Leakages L and the
hypothetical power consumptions M should be processed by Z-score transfor-
mation in PKS. p is an empirical parameter in PKS from zero to one. N(0,1)
represents the standard normal distribution. PKS is shown in the formula (4).

Pvalue(DKS(Pr[L = l|M ≤ p]||N(0, 1))) (4)

PKS will return the smallest p-value when the key hypothesis is correct. PKS
with a single test in the formula (4) only tests partial leakages, so PKS will lose
some important information of the other leakages. To overcome this problem,
[15] introduced another PKS enhancement: two-partial KS test, as is shown in
the formula (7).

DKSl
= Pvalue(DKS(Pr[L = l|M ≤ p]||N(0, 1))) (5)
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DKSr
= Pvalue(DKS(Pr[L = l|M > p]||N(0, 1))) (6)

DPKS = DKSl
×DKSr (7)

Example 2.2 : We describe the working principle of PKS using the same setting
as that in Example 2.1 . In Figure 2(a), the red line represents the global CDF of
standard normal distribution and the blue lines stand for partial samples which
correlated with the key hypothesis. In Figure 2(b), the red line represents the
global CDF of standard normal distribution and the blue lines stand for the
partial samples which correlated with the incorrect key hypothesis. PKS will
return the smallest p-value when the key hypothesis is correct.
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Fig. 2. PKS is based on the smallest p-value between the CDFs of standard normal
distribution and paritial leakages

3 Systematic Construction of the KS Test based
Side-Channel Distinguishers

From section 2, we learn that both KSA and PKS are based on the KS test, and
they are able to recover the correct key by partitioning the leakages correctly.
However, KSA and PKS are really different from each other in terms of their
construction strategies. Therefore, we will show how to construct other new vari-
ants of the KS test based distinguishers by combining their different construction
strategies in a systematic way. For this purpose, we will analyze the construction
strategies using by KSA and PKS, and then we will present nine new variants
of the KS test based distinguishers.

3.1 Construction strategies of KSA and PKS

In this subsection, we will compare the construction differences between KSA
and PKS in four aspects: partition method, similarity measure used by the KS
test, assumption about leakages, and normalization.
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Partition method. In a partition attack [20], leakages are divided into several
sets p1k, p

2
k, ..., p

n
k according to each key hypothesis k. These sets are built accord-

ing to a power model H. It directly yields a hypothetical power consumption
mq

k, where q is the plaintext or ciphertext. In this paper, partition method is
classified as non-cumulative partition method and cumulative partition method.
Examples of hypothetical leakages that can be used to partition 16-element leak-
ages will be shown in Table 1. Specifically, the non-cumulative partition method
used by KSA is shown in the left part of Table 1, while the cumulative partition
method used by PKS is shown in the right part of Table 1.

Table 1. Examples of the non-cumulative partition method (left) and the cumulative
partition method (right)

p1k p2k p3k p4k p5k
l5 l2 l1 l3 l14

l7 l4 l6
l9 l8 l12
l16 l10 l13

l11

p1k p2k p3k p4k p5k
l5 l5 l5 l5 l5

l2 l2 l2 l2
l7 l7 l7 l7
l9 l9 l9 l9
l16 l16 l16 l16

l1 l1 l1
l4 l4 l4
l8 l8 l8
l10 l10 l10
l11 l11 l11
l15 l15 l15

l3 l3
l6 l6
l12 l12
l13 l13

l14

Similarity measure used by KS test. Distance is used by KSA to measure
the similarity of two distributions. In contrast, p-value is adopted in PKS to
indicate whether or not partial leakages follow a normal distribution.

Assumption about leakages. PKS distinguisher considers that leakages fol-
low a normal distribution, while KSA makes no assumption about leakages.

Normalization. [11] suggested that normalization could improve the perfor-
mance of KSA. The performance of normal-KSA is also verified with attacks
against the power traces provided by DPA Contest v1. However, our question
is whether or not the normalization is always effective in some typical scenarios
for KSA. We will also try to answer this question in this work.
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3.2 Nine New Variants of the KS Test based Distinguishers

In subsection 3.1, we analyzed the construction strategies of both KSA and PKS.
We find that KSA and PKS have different choices for a specific construction
strategy. One natural yet pertinent question is that is it possible to construct
other (more efficient) KS test based distinguisher by combining the construction
methods of both KSA and PKS ? To answer this question, we combine the con-
struction strategies using by both KSA and PKS to construct nine new variants
of the KS test based distinguishers, in a systematic way.

For convenience, we will label each strategy that was used by KSA and PKS.
Denote A0 the non-cumulative partition method, and A1 the cumulative parti-
tion method. Denote B0 the expectation of distance as the similarity measure
of the KS test, and B1 the product of p-value as the similarity measure of the
KS test. Denote C0 the distinguisher that makes no assumption about leakage
distribution, and C1 the distinguisher that assumes the leakage follows a normal
distribution. Denote D0 that we perform normalization on a distinguisher, and
D1 that we do not.

By combining these strategies systematically, one can, in total, construct six-
teen (16 = 24) KS test based distinguishers. Among these 16 distinguishers, three
are existing and they are KSA (A0,B0,C0,D1), PKS (A1,B1,C1,D1) and norm-
KSA (A0,B0,C0,D0).On the other hand, note that B1 and D0 conflict with each
other, therefore four combinations (A1,C1,B1,D0; A1,C0,B1,D0; A0,C1,B1,D0;
A0,C0,B1,D0) do not make any sense. Additionally, three combinations , which
are (A0, B0, C1, D1), (A0, B0, C0 and D0) and (A0,B1,C1,D1), fail to work in
the key recovery attacks. We free the limitation of Z-score on hypothetical power
consumptions of D-PKS (A1, B0, C1, D1), norm-D-PKS (A1, B0, C1, D0) and
PKS (A1,B1,C1,D1) to form C-PKS (A1, B0, C1, D1), norm-C-PKS (A1, B0,
C1, D0) and MPC-PKS (A1, B1, C1, D1). Therefore, we only construct 9(=
24 − 4− 3− 3 + 3) new variants of the KS test based distinguishers. These nine
new distinguishers are as follows.

MP-KSA distinguisher. A0, B1, C0 and D1 are selected to construct the
product of Multiple P-values based KSA (MP-KSA) distinguisher. In order to
avoid arithmetic underflow, one typically applies the logarithm to the MP-KSA
distinguisher. MP-KSA is shown in the formula (8).

log2(
∏
mϵM

Pvalue(DKS(Pr[L = l|M = m]||Pr[L = l]))) (8)

MP-KSA will return the smallest product of p-values under the correct key hy-
pothesis.

C-KSA distinguisher. A1, B0, C0 and D1 are selected to construct Cumulative
partition method based KSA (C-KSA) distinguisher. C-KSA is shown in the
formula (9).

EmϵM (DKS(Pr[L = l|M 6 m]||Pr[L = l])) (9)
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C-KSA will return the largest expected distance under the correct key hypoth-
esis.

norm-C-KSA distinguisher. A1, B0, C0 and D0 are selected to construct
normalized C-KSA (norm-C-KSA) distinguisher. norm-C-KSA is shown in the
formula (10).

EmϵM (
1

|L|M = m|
DKS(Pr[L = l|M 6 m]||Pr[L = l])) (10)

norm-C-KSA will return the largest expected normalized distance under the cor-
rect key hypothesis.

MPC-KSA distinguisher. A1, B1, C0 and D1 are selected to construct the
product of Multiple P-values and Cumulative partition method based KSA
(MPC-KSA) distinguisher. In order to avoid arithmetic underflow, one typi-
cally applies the logarithm to the MPC-KSA distinguisher. MPC-KSA is shown
in the formula (11).

log2(
∏
mϵM

Pvalue(DKS(Pr[L = l|M 6 m]||Pr[L = l]))) (11)

MPC-KSA will return the smallest the product of p-values under the correct key
hypothesis.

D-PKS distinguisher. A1, B0, C1 and D1 are selected to construct Distance
based PKS (D-PKS) distinguisher. It is assumed that the distribution of the
leakages follows normal distribution. L and M should be processed by Z-score
transformation before processing by D-PKS. p is an empirical parameter for
D-PKS. D-PKS is shown in the formula (12).

E(DKS(Pr[L = l|M 6 p]||N(0, 1))) (12)

D-PKS will return the largest expected distance under the correct key hypoth-
esis.

norm-D-PKS distinguisher. A1, B0, C1 and D0 are selected to construct
normalized D-PKS (norm-D-PKS) distinguisher. It is assumed that the distri-
bution of the leakages follows normal distribution. L and M should be processed
by Z-score transformation before processing by norm-D-PKS. p is an empirical
parameter for norm-D-PKS. norm-D-PKS is shown in the formula (13).

E(
1

|L|M 6 p|
DKS(Pr[L = l|M 6 p]||N(0, 1))) (13)

norm-D-PKS will return the largest expected normalized distance under the cor-
rect key hypothesis.
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C-PKS distinguisher. A1, B0, C1 and D1 are selected to construct Cumula-
tive partition method based PKS (C-PKS) distinguisher. It is assumed that the
distribution of the leakages follows normal distribution. L should be processed
by Z-score transformation before processing by C-PKS. C-PKS is shown in the
formula (14).

EmϵM (DKS(Pr[L = l|M 6 m]||N(0, 1))) (14)

C-PKS will return the largest expected distance under the correct key hypoth-
esis.

norm-C-PKS distinguisher. A1, B0, C1 and D0 are selected to construct nor-
malized C-PKS (norm-C-PKS) distinguisher. It is assumed that the distribution
of the leakages follows normal distribution. L should be processed by Z-score
transformation before processing by norm-C-PKS. norm-C-PKS is shown in the
formula (15).

EmϵM (
1

|L|M 6 m|
DKS(Pr[L = l|M 6 m]||N(0, 1))) (15)

norm-C-PKS will return the largest expected normalized distance under the cor-
rect key hypothesis.

MPC-PKS distinguisher. A1, B1, C1 and D1 are selected to construct the
product of Multiple P-values and Cumulative partition method based PKS
(MPC-PKS) distinguisher. It is assumed that the distribution of the leakages
follows normal distribution. L should be processed by Z-score transformation
before processing by MPC-PKS. In order to avoid arithmetic underflow, one
typically applies the logarithm to the MPC-PKS distinguisher. MPC-PKS is
shown in the formula (16).

log2(
∏
mϵM

Pvalue(
1

|L|M 6 m|
DKS(Pr[L = l|M 6 m]||N(0, 1)))) (16)

MPC-PKS will return the smallest the product of p-values under the correct key
hypothesis.

4 A Comprehensive Evaluation of All Twelve KS Test
based Side-Channel Distinguishers

So far, we have constructed nine new variants of the KS test based distinguishers.
The performance of these KS test based distinguishers in a univariate setting has
a huge impact on how to choose the most suitable KS test based distinguisher
in a certain scenario. Consequently, we will evaluate the performance of all these
KS test based distinguishers by amounting key recovery attacks, and analyze
their effectiveness and efficiency by using the evaluation metrics such as Success
Rate (SR) and Guessing Entropy (GE) in typical scenarios. On the one hand,
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we will evaluate the performance of these KS test based distinguishers in in
a unified comparison framework inspired by [14]. In this framework, we will
evaluate the influence of different factors, such as leakage function, noise level
and power model, on the performance of each KS test based distinguisher. We
will compare the attacking efficiency of these distinguishers in terms of SR, and
we also provide the results in terms of GE in Appendix A. On the other hand, we
will perform a series of attacks against the real traces from both OpenSCA and
DPA Contest v2, respectively. With these practical attacks, we will demonstrate
the practical meaning of all these KS test based distinguishers. Note that we do
not compare the running cost for different distinguishers.

4.1 A Comprehensive Comparison Framework

According to previous studies, target function [16], leakage function [14], power
model, noise level and evaluation metrics are very important factors in the evalu-
ation of different distinguishers. Therefore, the performance of each distinguisher
should be evaluated in different scenarios taking all these factors into consider-
ation [14]. We will describe these factors in the following.

Target Function. Different target functions may lead to different evaluation
results. In this paper, we will select the output of commonly-used S-box of the
first AES round as our target function.

Leakage Function. Leakage function is used to test the adaptability of the KS
test based distinguishers. Therefore, in simulated experiments, we select three
typical leakage scenarios, and they are Hamming weight (HW) leakage function,
an Unevenly Weighted Sum of the Bits (UWSB) leakage function, and highly
nonlinear leakage function. In practical experiments, however, the leakage func-
tions are unknown.

Power Model. The characterization abilities, namely power model, of an adver-
sary pose a great impact on the performance of a distinguisher. So we consider
the adversary who has two kinds of characterization abilities. The first one is
that the adversary is able to fully characterize the leakage. The second one is
that adversary only can partially characterize the leakage. In detail, HW model
in the HW leakage scenario represents the fact that the adversary can accurately
characterize the leakage; while HW model and Identity (ID) model in the other
scenarios stand for the fact that the adversary is unable to fully characterize the
leakages.

The Influence of Noise. Normally, noises have negative effects on the per-
formance of side-channel distinguishers exploiting the noisy leakages. In this
paper, we consider the influence of noise level on the performance of the KS
test based distinguishers, and assume that noise follows a normal distribution.
Specifically, we consider the performance of KS test based distinguishers under
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seven Signal-to-noise ratios, which are 0.125, 1, 8, 16, 32, 64 and positive infinity.

Evaluation Metric. Evaluation Metric is of importance to the fair comparison
of the KS test based distinguishers. In this paper, Success Rate (SR) and Guess-
ing Entropy (GE) [19] are used to evaluate the efficiency of the KS test based
distinguishers.

4.2 Simulated Experiments

In simulated scenarios, we use the output of the first S-box of the first round AES
operation as the target intermediate value, and the chosen target intermediate
values will be mapped to pure leakages by three typical leakage functions, i.e. HW
leakage function, UWSB leakage function and highly nonlinear leakage function.
Finally, we take the sum of the pure leakages and some independent Gaussian
noise to be simulated leakages. Noise level in simulated leakages is measured
by SNR. We particularly employ seven SNRs, i.e. 0.125, 1, 8, 16, 32, 64 and
positive infinity, to test the influence of Gaussian noise level on KS test based
distinguishers.

In each scenario, we perform key recovery attacks using all twelve KS test
based distinguishers ¶ and MIA · as well. For each one of these fourteen kinds
of attacks, we repeat it 300 times by choosing different plaintexts, in order to
evaluate its average performance.

Our experiments are also carefully organized in order to make them under-
stood more easily. Specifically, we divide the results of all these thirteen distin-
guishers into three groups, and denote these groups by A, B and C respectively.
Group A consists of four existing distinguishers and they are PKS, KSA, norm-
KSA and MIA. For each scenario, we select the most efficient one from Group
A, and the selected one is set to be a benchmark for this scenario. Next, the
other new nine KS test based distinguishers are classified into two groups, ac-
cording to their relative efficiency over the selected benchmark. Namely, for each
scenario, those distinguishers that are more efficient than the benchmark are set
into Group B, while the others that are less efficient than the benchmark are
put into Group C.

Hamming Weight Leakage
In these scenarios, we assume that the leakage of a cryptographic device consists
of HW of target intermediate value and Gaussian noise. Under this reasonable
assumption, we will investigate the performance of different distinguishers with
two adversarial characterization abilities.
- An Adversary with a Perfect Power Model. Figure 3 shows the success
rate of twelve KS test based distinguishers and MIA using a HW model against

¶We use the enhancement of PKS shown in formula (7) as our PKS distinguisher
in this context. Note that PKS and its variants use different parameters.

·Number of bins used in MIA are equal to the number of power model images. For
example, MIA(HW,bins=9) and MIA(ID,bins=256).
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HW leakage of the first AES S-box. We divide all these distinguishers into three
groups, and they are Group A, Group B and Group C. Group A only consists of
four existing generic distinguishers and they are PKS(HW), KSA(HW), norm-
KSA(HW) and MIA(HW), and the best of these four distinguishers will be
selected as the benchmark accordingly. Group B and Group C contain nine new
variants of KS test based distinguishers. Distinguishers in Group B are those
more efficient than the benchmark, while distinguishers in Group C are those
less efficient than the benchmark. For example, when the SNR is 0.125, the
selected benchmark from Group A (see Figure 3(a)) is PKS (HW,p=0.618).
In this case, Group B (see Figure 3(d)) consists of three distinguishers and
they are C-KSA(HW), C-PKS(HW) and MPC-PKS(HW), while Group C (see
Figure 3(g)) consists of six distinguishers and they are MP-KSA(HW), MPC-
KSA(HW), norm-C-KSA(HW), D-PKS(HW), norm-D-PKS(HW) and norm-C-
PKS(HW). In detail, Figure 3(a), 3(b), 3(c) and 3(ci) show the performance of
existing KS test based distinguishers in Group A under four noise levels. Figure
3(d), 3(e), 3(f) and 3(fi) show the performance of KS test based distinguishers
in Group B under four noise levels. Figure 3(g), 3(h), 3(i) and 3(ii) show the
performance of KS test based distinguishers in Group C under four noise levels.

In Group A, KSA(HW) outperforms norm-KSA(HW) in terms of SR. As it
is stated in [15], p using by PKS(HW) has a straightforwardly impact on the
performance of PKS(HW). Figure 3(a) and 3(b) show that PKS(HW,p=0.618)
is the best distinguisher when the SNRs are 0.125 and 1 respectively. Figure 3(c)
and 3(ci) show that KSA(HW) is the most efficient distinguisher when the SNR
is 8 and positive infinity. The best distinguisher in Group A will be selected as
the benchmark to verify the effectiveness of the nine new variants of the KS
test based distinguisher in Group B and Group C. When the SNR is 0.125,
PKS(HW,p=0.618) in Figure 3(a) is used as the benchmark for Figure 3(d) and
3(g). Figure 3(d) shows that, C-KSA(HW), MPC-PKS(HW) and C-PKS(HW)
are better than the benchmark, and C-KSA(HW) is the best distinguisher. Dis-
tinguishers in Figure 3(g) are less efficient than the benchmark, so we do not
explain them in more details. When the SNR is 1, PKS(HW,p=0.618) in Fig-
ure 3(b) is also selected as the benchmark for Figure 3(e) and 3(h). Due to
fact that Figure 3(e) and 3(h) can be analyzed in the similar way as that of
Figure 3(d) and 3(g), we do not explain them in more details. When the SNR
is 8, KSA(HW) is selected as the benchmark for Figure 3(f) and 3(i). Figure
3(f) shows that, MP-KSA(HW) and MPC-PKS(HW) exhibit consistently bet-
ter than KSA(HW), and MP-KSA(HW) is the best distinguisher. Distinguishers
in Figure 3(i) are less efficient than the benchmark, so we do not explain them
in more details. When the SNR is positive infinity, KSA(HW) is also selected as
the benchmark. In this case, Figure 3(fi) and 3(ii) can be analyzed in the similar
way as that of Figure 3(f) and 3(i).

In summary, C-KSA(HW) is the best choice of all twelve KS test based
distinguishers when the SNRs are 0.125 and 1 respectively, while MP-KSA(HW)
is the best choice in all KS test based distinguishers when the SNR is 8 and
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positive infinity. Additionally, MPC-PKS(HW) is better than the benchmark
when the SNRs are 0.125, 1 and 8 respectively.

- An Adversary with a Generic Power Model. Figure 4 shows the success
rate of twelve KS test based distinguishers and MIA using an ID model against
HW leakage of the first AES S-box. In this scenario, we organize the experimental
results in the same way as those used in the An Adversary with a Perfect
Power Model scenario.

In Group A, KSA(ID), norm-KSA(ID) and MIA(ID) all fail to reveal the cor-
rect key, while both PKS(ID,p=0.25) and PKS(ID,p=0.618) succeeds to do that.
PKS(ID,p=0.618) is the most efficient distinguisher when the SNRs are 0.125,
1, 8, and positive infinity. The best distinguisher in Group A will be selected
as the benchmark to verify the effectiveness of the nine new variants of the KS
test based distinguisher in Group B and Group C. Therefore, PKS(ID,p=0.618)
will be chosen as the benchmark when the SNRs are 0.125, 1, 8, and positive
infinity. For example, PKS(ID,p=0.618) is chosen as the benchmark in Figure
4(d) and 4(g) when the SNR is 0.125. Figure 4(d) shows that C-KSA(ID), norm-
C-KSA(ID), MPC-KSA(ID), C-PKS(ID), norm-C-PKS(ID) and MPC-PKS(ID)
are more efficient than the benchmark, and they have the similar performance.
Distinguishers in Figure 4(g) are less efficient than the benchmark, so we do not
explain them in more details. When the SNRs are 1, 8, and positive infinity, they
can be analyzed in the similar way as that of SNR of 0.125.

In a word, although C-KSA(ID), norm-C-KSA(ID), MPC-KSA(ID), C-PKS(ID),
norm-C-PKS(ID) and MPC-PKS(ID) are more efficient than the benchmark
and they have similar performance under four noise levels, C-KSA(ID), norm-C-
KSA(ID) and MPC-KSA(ID) are slightly more efficient than C-PKS(ID), norm-
C-PKS(ID) and MPC-PKS(ID).

An Unevenly Weighted Sum of the Bits Leakage Scenario.
In these scenarios, we consider the performance of different distinguishers in the
case that the adversary does not have a precise power model. Motivated by [21],
we focus the case that the device leaks an Unevenly Weighted Sum of the Bits
(UWSB). In our experiments, we assume that the least significant bit dominates
in the leakage function with a relative weight of 10 and other bits with a rel-
ative weight of 1. We will investigate the performance of twelve KS test based
distinguishers and MIA with two adversarial characterization abilities.

- An Adversary with an Imprecise Power Model. Figure 5 shows the
success rate of twelve KS test based distinguishers and MIA using a HW model
against UWSB leakage of the first AES S-box. In this scenario, we organize the
experimental results in the same way as those used in the An Adversary with
a Perfect Power Model scenario.

In Group A, KSA(HW) outperforms norm-KSA(HW) in terms of SR. In
this scenario, p using by PKS(HW) also has a straightforwardly impact on the
performance of PKS(HW). For example, PKS(HW,p=0.618) is more efficient
than PKS(HW,p=0.25). In detail, when the SNRs are 0.125 and 1, KSA(HW)
and PKS(HW) are more efficient than MIA(HW), while PKS(HW,p=0.618) is
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Fig. 3. Success rate of different distinguishers against the first AES S-box in Hamming
Weight leakage
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Fig. 4. Success rate of different distinguishers against the first AES S-box in Hamming
Weight leakage
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slightly more immune to noise compared with KSA(HW) (see Figure 5(a) and
5(b)). When the SNRs are 8 and positive infinity, neither of three existing dis-
tinguishers is better than MIA(HW) (see Figure 5(c) and 5(ci)). The best dis-
tinguisher in Group A will be selected as the benchmark to verify the effec-
tiveness of the nine new variants of the KS test based distinguisher in Group
B and Group C. For example, when the SNR is 0.125, PKS(HW,p=0.618) in
Figure 5(a) will be chosen as the benchmark for Figure 5(d) and Figure 5(g).
Figure 5(d) shows that C-KSA(HW) exhibits consistently better performance
compared with the benchmark. Distinguishers in Figure 5(g) are less efficient
than the benchmark, so we do not explain them in more details. When the SNR
is 1, PKS(HW,p=0.618) in Figure 5(b) is also selected as the benchmark for
Figure 5(e) and 5(h). Due to the fact that Figure 5(e) and 5(h) can be analyzed
in the similar way as that of Figure 5(d) and 5(g), so we do not explain them
in more details. When the SNR is 8, MIA(HW) in Figure 5(c) is selected as
the benchmark for Figure 5(f) and 5(i). Figure 5(f) shows that, C-KSA(HW),
MP-KSA(HW) and MPC-KSA(HW) are more efficient than the benchmark, and
C-KSA(HW) is the most efficient distinguisher. Distinguishers in Figure 5(i) are
less efficient than the benchmark, so we do not explain them in more details. In
this case, Figure 5(ii) can be analyzed in the similar way as that of Figure 5(f)
and 5(i).

In summary, C-KSA(HW) is the best choice of all twelve KS test based
distinguishers when the SNRs are 0.125, 1 and 8 respectively, while MIA(HW)
is the best choice when the SNR goes into positive infinity. Additionally, MPC-
KSA(HW) is no worse than the benchmark.

- An Adversary with a Generic Power Model. Due to the computation
cost, we select the SNRs of 16, 32, 64 and positive infinity in this scenario. Figure
6 shows the success rate of twelve KS test based distinguishers and MIA using
an ID model against UWSB leakage of the first AES S-box. In this scenario,
we organize the experimental results in the same way as those used in the An
Adversary with a Perfect Power Model scenario.

In Group A, Figure 6 shows that, KSA(ID), norm-KSA(ID) and MIA(ID)
fail to recover the correct key, while PKS(ID) can not reveal the correct key
with a relative small number of traces. The best distinguisher in Group A will
be selected as the benchmark to verify the effectiveness of the nine new variants
of the KS test based distinguisher in Group B and Group C. Since none of the
distinguishers in Group A can reveal the correct key with a relative small number
of traces, so we divide the distinguishers into Group B and Group C respectively.
The distinguishers in Group B can recover the correct key with a trace number
of 4,000, while the distinguishers in Group C fail to do that. For example, when
the SNR is 0.125, C-KSA(ID), norm-C-KSA(ID) and MPC-KSA(ID) in Group
B can recovery the correct key (see Figure 6(d)), while other new variants of KS
test based distinguishers in Figure 6(g) to do that with 4,000 of power traces.
Additionally, C-KSA(ID) is most efficient in terms of SR under the four noise
levels.
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Fig. 5. Success rate of different distinguishers against the first AES S-box in UWSB
leakage
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To sum up, C-KSA(ID), norm-C-KSA(ID) and MPC-KSA(ID) are more ef-
ficient than the benchmark, and C-KSA(ID) is the best choice of all twelve KS
test based distinguishers when the SNRs are 0.125, 1, 8 and positive infinity.

Highly Nonlinear Leakage Scenario. In highly nonlinear leakage scenario,
we mean that the leakage function of cryptographic device is a highly nonlinear
function. Without loss of generality, S-box is used in this leakage scenario[18].
Our experimental results show that all twelve KS test based distinguishers fail
to recover the correct key in this scenario.

Note: When SNR goes into positive infinity, the performance of PKS with a
fixed parameter may decrease with the increase of the trace number. This in-
dicates that the parameter in PKS is critical to the performance of PKS, as is
shown in [15].

4.3 Practical Experiments

In order to show how these twelve KS test based distinguishers behave in prac-
tical scenarios, we perform attacks against the unprotected software AES imple-
mentation on 8-bit microcontroller and the unprotected hardware AES imple-
mentation on Xilinx Vertex-5 FPGA respectively. These power traces are from
OpenSCA ¶ (Case 1) and from DPA Contest v2 · (Case 2) respectively.

In the view of an adversary, we will choose the power model according to
our priori knowledge. Specifically, we will use the Hamming weight model in
Case 1, and Hamming distance (HD) model in Case 2. We will choose SR as our
evaluation metric to evaluate the efficiency, by amounting key recovery attacks
300 times. In this part, the experiments are also organized exactly in the same
way as that in our simulated experiments ¸, except that we also perform CPA
attacks. This means that we place CPA distinguisher in Group D. That is to
say, in practical experiments, we will show the performance of traditional CPA
distinguisher, which is widely believed to be well capable of characterizing linear
leakages.

Case 1: Unprotected Software AES Implementation Provided by Open-
SCA
In this scenario, the output of the first S-box of the first round of AES operation
is chosen as the target. We divide the distinguishers into four groups, and they
are Group A, Group B, Group C and Group D. Group A only consists of four ex-
isting distinguishers and they are PKS(HW), KSA(HW), norm-KSA(HW) and

¶We uses power traces in the OpenSCA DPA Demo folder, available at
http://www.cs.bris.ac.uk/home/eoswald/opensca.html

·We use power traces in folder DPA contest2 public base diff vcc a128 2009 12 23
with the secret key used being 0x08 0x2e 0xfa 0x98 0xec 0x4e 0x6c 0x89
0x45 0x28 0x21 0xe6 0x38 0xd0 0x13 0x77. These traces are availavle at
http://www.dpacontest.org/v2/download.php

¸We use PKS distinguisher shown in formula (7).
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Fig. 6. Success rate of different distinguishers against the first AES S-box in USWB
leakage
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MIA(HW), and the best of these four distinguishers will be selected as the bench-
mark accordingly. Group B and Group C contain nine new variants of KS test
based distinguishers. Distinguishers in Group B are those more efficient than
the benchmark, while distinguishers in Group C are those less efficient than the
benchmark. In Group D, we will compare the best distinguisher in Group B
with CPA. For example, in this scenario, Group B consists of one distinguishers,
and it is MP-KSA(HW). Group C consists of eight distinguishers, and they are
C-KSA(HW), norm-C-KSA(HW), MPC-KSA(HW), D-PKS, norm-D-PKS, C-
PKS(HW), norm-C-PKS(HW) and MPC-PKS(HW). In Group A, Figure 7 (a)
shows that, KSA (HW) exhibits the best performance among three existing KS
test based distinguishers, so KSA(HW) is used as the benchmark for Figure 7(b)
and 7(c). In Group B, Figure 7(b) shows that, MP-KSA(HW) is more efficient
than the benchmark. In Group C, Figure 7(c) shows that, other new variants of
KS test based distinguishers are less efficient than the benchmark. In Group D,
Figure 7(d) shows that, MP-KSA(HW) is less efficient than CPA(HW).
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Fig. 7. Success rate for KS test based distinguishers with HW model, MIA(HW) and
CPA(HW) in attacks against the first AES S-box

In summary, MP-KSA(HW) is the best choice in all these KS test based
distinguishers in this case. In the view of an adversary, CPA is an ideal distin-
guisher. This indicates that, when the leakage of a cryptographic device could
be accurately characterized, CPA is the best choice compared with all KS test
based distinguishers.
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Case 2: Unprotected Hardware AES Implementation Provided by
DPA Contest v2
In this scenario, the input of the first S-box of the last round of AES operation
is chosen as the target. That is to say, we try to attack the last round of AES
encryption¶. In Group A, Figure 8(a) shows that, both PKS(HD) and MIA(HD)
can reveal the correct key, while KSA(HD) and norm-KSA(HD) fail to do that.
The empirical parameter in PKS(HD) can largely improve the performance of
PKS(HD). Therefore, PKS(HD,p=0.01) is selected as the benchmark for finding
the most promising variants in this case. In Group B, Figure 8(b) shows that,
MPC-KSA(HD) and MPC-PKS(HD) outperform PKS(HD,p=0.01) in terms of
achieving a partial success rate of 80%. In Group C, other KS test based distin-
guishers are less efficient than the benchmark, so we do not discuss them into
detail. In Group D, Figure 8(d) shows that, MPC-KSA(HD) is even better than
CPA(HD).
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Fig. 8. Success rate for the KS test based distinguishers with HD model, MIA(HD)
and CPA(HD) in attacks against the first AES S-box of the last round

In order to enhance the understanding on whether or not MPC-KSA is a
reasonable alternative for CPA, we perform attacks on all 16 bytes of AES en-

¶The target intermediate value is selected as the official website of DPA Contest v2
has suggested.
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Table 2. Number of Traces Required to Achieve Partial Success Rate of 80% on
individual byte

byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 byte 8

MPC-KSA 5,300 6,100 5,700 9,800 9,600 5,500 4,800 6,800

CPA 12,500 10,000 6,900 7,000 12,700 6,000 5,900 7,400

byte 9 byte 10 byte 11 byte 12 byte 13 byte 14 byte 15 byte 16

MPC-KSA 4,500 5,200 9,200 3,500 4,100 14,500 6,000 5,500

CPA 6,800 3,600 10,000 3,000 6,600 16,900 15,000 5,100
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Fig. 9. To achieve partial success rate of 80%, the benefit of MPC-KSA compared
with CPA

cryption. Table 2¶ shows the number of traces required to achieve a partial
success rate of 80% of attacks on individual bytes. Compared with CPA, MPC-
KSA is more efficient on 12 bytes (byte 1, byte 2, byte 3, byte 5, byte 6, byte
7, byte 8, byte 9, byte 11, byte 13, byte 14, byte 15), and less efficient on other
4 bytes (byte 4, byte 10, byte 12, byte 16). The number of required traces for
MPC-KSA to achieve a partial success rate of 80% is 6,000, while that of CPA
is 15,000 for byte 15. However, the number of required traces for MPC-KSA to
achieve a partial success rate of 80% is 9,800, while that of CPA is 7,000 for byte
4. Therefore, MPC-KSA does not perform consistently better than CPA, but it
performs better than CPA on 75% of bytes, as it is shown in Figure 9. As a whole,
MPC-KSA is more efficient than CPA in terms of the required number of traces
to achieve the global success rate of 80%. In summary, MPC-KSA is the best
choice in this case. This experimental result indicates that, when the leakages
of a cryptographic device could not been accurately characterized, MPC-KSA
exhibits better performance than CPA in terms of SR, as the former is capable
of measuring the total dependency between hypothetical power consumptions
and physical leakages.

¶Since traces provided by OpenSCA only contain the leakages of the output of the
first S-box of AES in its first encryption round, we do not compare the performance of
KS test based distinguishers in terms of global success rate.
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5 Conclusions

Distinguishers play an vital role in exploiting physical leakages in side-channel
attacks. Due to the capability of dealing with both linear and nonlinear de-
pendencies, generic side-channel distinguishers are being increasingly popular.
Among those are KS test based distinguishers, such as KSA and PKS. In this
paper, we constructed nine variants of the KS test based distinguishers via com-
bining different construction strategies of KSA and PKS, and then explored the
effectiveness and efficiency of twelve KS test based distinguishers and MIA in
typical simulated scenarios and practical scenarios.

In simulated scenarios, we considered the influence of different factors, such
as leakage function, noise level and power model. Experimental results provide a
balanced view of how to choose the most suitable KS test based distinguisher in a
certain scenario. Specifically, experimental results show that, MP-KSA exhibits
better performance than other KS test based distinguishers when the SNR is
moderately high. MPC-KSA and C-KSA are more robust to noise than the
other KS test based distinguishers in terms of low SNR. An interesting point
is that C-KSA and MPC-KSA share generic potential with PKS, and are more
efficient than PKS.

In practical scenarios, we performed attacks against two typical unprotected
AES implementations. Experimental results show the realistic meaning of KS
test based distinguishers in practice. For example, we find that MPC-KSA is
more efficient than CPA against the unprotected hardware AES implementation
on Xilinx Vertex-5 FPGA in DPA Contest v2.

In a whole, we experimentally investigated the performance of the KS test
based distinguishers, and provided some helpful guides on how to choose a suit-
able distinguisher. However, we did not provide any theoretical analysis yet about
why this happens, which could be part of our future work.
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6 Appendix A

In this part, we provide the results of simulated experiments in terms of Guessing
Entropy(GE). These results are shown in Figure 10, 11, 12 and 13. Such figures
contain the results of key recovery attacks using the twelve KS test based dis-
tinguishers and MIA as well. For ease of analysis and comparison, these results
are also organized in the same way as those used in Section 4.2.
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Fig. 10. Guessing entropy of different distinguishers against the first AES S-box in
Hamming Weight leakage
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Fig. 11. Guessing entropy of different distinguishers against the first AES S-box in
Hamming Weight leakage



Construction and Evaluation of the KS based Distinguishers 29

Group A

500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

Number of traces

G
ue

ss
in

g 
en

tr
op

y

(a) SNR=0.125

 

 

KSA(HW)
norm−KSA(HW)
PKS(HW,p=0.25)
PKS(HW,p=0.618)
MIA(HW)

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

Number of traces

G
ue

ss
in

g 
en

tr
op

y

(b) SNR=1

 

 

KSA(HW)
norm−KSA(HW)
PKS(HW,p=0.25)
PKS(HW,p=0.618)
MIA(HW)

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

Number of traces

G
ue

ss
in

g 
en

tr
op

y

(c) SNR=8

 

 

KSA(HW)
norm−KSA(HW)
PKS(HW,p=0.25)
PKS(HW,p=0.618)
MIA(HW)

50 100 150 200 250 300
0

10

20

30

40

50

Number of traces

G
ue

ss
in

g 
en

tr
op

y

(ci) SNR=Positive infinity

 

 

KSA(HW)
norm−KSA(HW)
PKS(ID,p=0.25)
PKS(ID,p=0.618)
MIA(HW)

Group B
500 1000 1500 2000 2500 3000 3500 4000

0

10

20

30

40

50

60

70

80

Number of traces

S
uc

ce
ss

 r
at

e

(d) SNR=0.125

 

 

PKS(HW,p=0.618)
C−KSA(HW)

200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14

Number of traces

S
uc

ce
ss

 r
at

e

(e) SNR=1

 

 

PKS(HW,p=0.618)
C−KSA(HW)
MPC−KSA(HW)

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

Number of traces

S
uc

ce
ss

 r
at

e

(f) SNR=8

 

 

MIA(HW)
MP−KSA(HW)
C−KSA(HW)
MPC−KSA(HW)

Group C

500 1000 1500 2000 2500 3000 3500 4000
0

20

40

60

80

100

Number of traces

S
uc

ce
ss

 r
at

e

(g) SNR=0.125

 

 

PKS(HW,p=0.618)
MP−KSA(HW)
MPC−KSA(HW)
norm−C−KSA(HW)
D−PKS(HW,p=0.25)
norm−D−PKS(HW,p=0.25)
D−PKS(HW,p=0.618)
norm−D−PKS(HW,p=0.618)
C−PKS(HW)
norm−C−PKS(HW)
MPC−PKS(HW)

200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

Number of traces

S
uc

ce
ss

 r
at

e

(h) SNR=1

 

 

PKS(HW,p=0.618)
MP−KSA(HW)
norm−C−KSA(HW)
D−PKS(HW,p=0.25)
norm−D−PKS(HW,p=0.25)
D−PKS(HW,p=0.618)
norm−D−PKS(HW,p=0.618)
C−PKS(HW)
norm−C−PKS(HW)
MPC−PKS(HW)

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

Number of traces

S
uc

ce
ss

 r
at

e

(i) SNR=8

 

 

MIA(HW)
norm−C−KSA(HW)
D−PKS(HW,p=0.25)
norm−D−PKS(HW,p=0.25)
D−PKS(HW,p=0.618)
norm−D−PKS(HW,p=0.618)
C−PKS(HW)
norm−C−PKS(HW)
MPC−PKS(HW)

50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

Number of traces

G
ue

ss
in

g 
en

tr
op

y

(ii) SNR=Positive infinity

 

 

C−KSA(HW)
norm−C−KSA(HW)
MPC−KSA(HW)
D−PKS(HW,p=0.25)
norm−D−PKS(HW,p=0.25)
D−PKS(HW,p=0.618)
norm−D−PKS(HW,p=0.618)
C−PKS(HW)
norm−C−PKS(HW)
MPC−PKS(HW)
MIA(HW)

Fig. 12. Guessing entropy of different distinguishers against the first AES S-box in
UWSB leakage
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Fig. 13. Guessing entropy of different distinguishers against the first AES S-box in
USWB leakage


