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Abstract

We show how to construct, from any weak pseudorandom function, a 3-round symmetric-key
authentication protocol that is secure against man-in-the-middle attacks. The construction is
very efficient, requiring both the secret key and communication size to be only 3n bits long. Our
techniques also extend to certain classes of randomized weak-PRFs, chiefly among which are
those based on the classical LPN problem and its more efficient variants such as Toeplitz-LPN
and Ring-LPN. Building a man-in-the-middle secure authentication scheme from any weak-PRF
resolves a problem left open by Dodis et al. (Eurocrypt 2012), while building a man-in-the-
middle secure scheme based on any variant of the LPN problem solves the main open question
in a long line of research aimed at constructing a practical light-weight authentication scheme
based on learning problems, which began with the work of Hopper and Blum (Asiacrypt 2001).

1 Introduction

The need for light-weight cryptography is increasing rapidly due to the growing deployment of
low-cost devices, such as smart cards and RFID tags, in the real world. One of the most common
cryptographic protocols required on these devices is a symmetric key authentication protocol in
which the prover (usually referred to as the Tag) authenticates his identity to the verifier (usually
referred to as the Reader). The most direct way in which this protocol can be constructed is by
using a pseudorandom function f (e.g. AES) for which the Tag and the Reader share a common
key. Then the authentication protocol simply consists of the Reader sending a challenge c to
which the Tag replies with f(c), and the Reader verifies that the received evaluation of c is indeed
correct. The main problem with this approach is that the pseudorandom function, whether it
is a “provably-secure” one based on some mathematical assumption or an “ad-hoc” block cipher
like AES, is usually quite costly for light-weight devices. For this reason, researchers have worked
on designing block ciphers specifically for low-cost devices (e.g. [LPPS07, BKL+07]). A different
approach for addressing this problem is constructing authentication schemes from building blocks
that have weaker security properties than block ciphers or pseudorandom functions. In the present
work, we follow this latter avenue of research.

1.1 Authentication from LPN

The Learning Parity with Noise (LPN) problem was initially shown to have cryptographic applica-
tions by Blum et al.[BFKL93], and then used as a basis for authentication schemes by Hopper and
Blum in their HB scheme [HB01]. In this latter paper, a simple LPN-based authentication scheme
was proposed that was secure in the passive attack model. Later work by Juels and Weis [JW05],
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and also by Katz and Shin [KS06], modified this protocol (the result was called HB+) to be secure
against active adversaries. Nevertheless, even these schemes had a serious security shortcoming.
If the adversary were allowed to modify the communication between the Tag and the Reader and
observe the response of the reader to verification queries, then, as shown by Gilbert et al. [GRS05],
there exists a very simple attack that can recover the secret key in polynomial time. Because such a
man-in-the-middle attack can be mounted with relatively small effort, schemes that fall to it cannot
be considered secure enough for real-world applications that require some decent level of security.
It was thus a major open problem to construct an efficient LPN-based authentication scheme that
remains secure against man-in-the-middle attacks.

A notable advance was made by Gilbert et al. [GRS08b] who proposed a scheme (termed HB#)
that was able to resist the attack from [GRS05] and was shown to be secure against restricted man-
in-the-middle adversaries. A second contribution of this work was to offer a solution to another
problematic feature of previous LPN-based protocols. All protocols that are based on LPN require
either the key size or the communication complexity to be square in the security parameter. Thus
either the key size or the communication complexity would have to be on the order of hundreds of
thousands of bits. Since the main motivation for LPN-based protocols is low-cost hardware, this is
clearly unacceptable. To this end, [GRS08b] proposed a protocol based on a related assumption,
called Toeplitz-LPN (see Section 2.2 for definitions), where the communication complexity was
small and the secret key had some structured form which allowed for compact representations.
While there has been no known weakness caused by using the Toeplitz-LPN assumption, it did
turn out that the restricted man-in-the-middle model introduced in [GRS08b] was not sufficient to
prevent all practical attacks, and one such attack was shown by Ouafi et al. [OOV08].

There have been many other proposals, some without security proofs, others with claimed proofs
that attempted to solve this problem, but all of these methods were ultimately shown to be flawed
(see [GRS08a] for a small overview). A breakthrough finally came in a series of recent papers by
Kiltz et al. [KPC+11] and Dodis et al. [DKPW12] who constructed relatively-efficient MACs based
on the hardness of the LPN problem. Because MACs immediately give rise to man-in-the-middle
secure authentication schemes, their work also resolved the problem of building such schemes from
the LPN problem. This LPN MAC, however, suffered from the same drawback as other LPN-
based schemes – the key size was prohibitively large. Thus in order to be useful in practice, the
proof techniques would have to be adapted to work with more compact LPN-related assumptions,
such as Toeplitz-LPN. But the constructions of [KPC+11] and [DKPW12] made use of certain
algebraic structure of the LPN-problem, and the proofs turn out to be incompatible with other
previously-considered versions of LPN.

1.2 Authentication from Weak-PRFs

Weak pseudo-random functions are keyed functions whose outputs on random inputs are indistin-
guishable from uniform. Weak PRFs are considered to be much “weaker” primitives than PRFs,
and in particular, it is not known how to transform a weak-PRF into a PRF except by using tree
techniques similar to the classical GGM construction [GGM86]. Additionally, it also appears to be
much easier to build secure weak-PRFs than PRFs. For example, the function fa(x) = xa mod p
is a weak-PRF based on the DDH assumption, whereas the construction of a PRF based on DDH
is much less efficient [NR97], requiring n multiplications in addition to the exponentiation in the
weak-PRF. Similarly, the recent construction of lattice-based PRFs [BPR12] first builds a relatively
efficient weak-PRF (which is just fa(x) = Round(x · a mod p), where x, a ∈ Znp , and the Round(·)
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function drops some number of least-significant bits) and then converts it to a full PRF using
techniques similar to [NR97, NRR02]. The resulting lattice-based PRF is both less efficient and
requires a stronger computational assumption than the underlying weak-PRF.

Due to efficiency advantages and lower security requirements, there has been some research on
constructions of cryptographic primitives such as symmetric encryption and stream ciphers built
directly from weak-PRFs (e.g. [DN02, MS07, Pie09]). The work along this theme that is most
related to ours is the aforementioned one of of Dodis et al. [DKPW12], where it is shown how
to build a 3-round authentication scheme secure against active attacks from any weak-PRF. As
we mentioned earlier, the active security model, where the adversary is not allowed to send any
verification queries to the Reader, is not considered strong enough for real-world applications. And
so the problem of constructing man-in-the-middle secure authentication schemes from arbitrary
weak-PRFs remained open.

1.3 Our Results

Our first result is a construction, from any weak pseudorandom function, of a 3-round symmetric-
key authentication protocol that is secure against man-in-the-middle attacks. Our scheme has the
exact same communication complexity as the actively-secure scheme of [DKPW12], and only has
one extra key element. To be more precise, the secret keys in our scheme consist of the key of
the weak-PRF plus the description of a pairwise-independent hash function, which requires an
additional two elements whose size is the output length of the weak-PRF. So if we assume that
both the domain and range of the weak-PRF is n bits, then the total key size is 3n.

We then extend our construction of a weak-PRF scheme to randomized weak-PRFs. Random-
ized weak-PRFs are keyed functions that become computationally indistinguishable from uniform
when their outputs are perturbed by some low-entropy noise. Noisy learning problems such as
LPN and LWE [Reg09] can be equivalently viewed as problems of distinguishing the outputs of a
randomized weak-PRF from the uniform distribution. To get a man-in-the-middle secure authen-
tication scheme from a randomized weak-PRF, we require just one more secret key element than
our weak-PRF based scheme.

Our constructions, and to some extent their security proofs as well, turn out to be surprisingly
simple. The main insight is that one should embed the n-bit output of the (randomized) weak-PRF
into a finite field of size 2n. Then, in addition to the secret keys associated to the function, we
also create secret keys in the field which end up being masked by the presumed indistinguishability
from uniform of the (randomized) weak-PRF. We then show how the interplay in the field between
the weak-PRF and the additional secret keys results in protocols that have the desired man-in-the-
middle security.

We prove security of our schemes in the sequential man-in-the-middle model, in which the
adversary simultaneously interacts with one copy of the Tag and Reader (see Figure 1). There
is a stronger notion of concurrent man-in-the-middle security where the adversary is allowed to
simultaneously communicate with multiple clones of the Tag and Reader possessing the same secret
key, but we do not prove security in this model.1 While the concurrent model is theoretically
stronger, we do not believe that it is practically relevant to the low-cost device setting considered
in this paper. In particular, there is no reason that a low-cost Tag would have the need (or even

1In Appendix A, we show that for certain instantiations of a randomized weak-PRF there indeed exists a concurrent
man-in-the-middle attack.
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Protocol #r
Security Complexity

assumption active MIM key size com.

weak-PRF [DKPW12] 3 weak-PRF
√
ε ? 2n 3n

weak-PRF [this work] 3 weak-PRF qv ·
√
ε 3n 3n

HB+ [JW05, KS06] 3 LPNn,τ
√
ε X [GRS05] 2n 2n2

Random-HB# [GRS08b] 3 LPNn,τ
√
ε X [OOV08] 2n2 3n

HB# [GRS08b] 3 Toeplitz-LPNn,τ
√
ε X [OOV08] 4n 3n

MAC1 [KPC+11] 2 LPNn,τ ε 2λ · ε 2n2 4n

MAC2 [KPC+11] 2 LPNn,τ ε Q · ε λn2 4n

Lapin [HKL+12] 2 Ring-LPNn,τ ε ? 2n 3n

MAC1 + Lapin 2 Ring-LPNn,τ ε 2λ · ε 6n+ 2λ 4n

3
LPNn,τ

qv ·
√
ε

n2

3nLPN-based [this work] Toeplitz-LPNn,τ 5n
Ring-LPNn,τ 4n

Table 1: Authentication Protocols Based on Weak-PRFs and the LPN-related Assumptions.
Listed is the amount of authentication rounds #r, the security properties achieved by the protocol and
its complexity (with lower order terms dropped) according to the key size and the communication. Let
ε be the advantage in breaking the assumption, then the term depending on ε is proven to be the best
possible advantage of breaking the protocol in the given model. Q is the amount of tag and verification
queries whereas qv is defined as the amount of verification queries, which is qv = 1 in the active model. n
parameterizes the hardness of the assumption and λ is the statistical security parameter. [DKPW12] gives
an alternate construction of MAC1 and MAC2 with better computational complexity, but the rest of the
properties are basically the same.

ability) to simultaneously participate in more than one authentication session. Furthermore, it also
seems unlikely that in an ecosystem where one wants to have relatively strong security, secret keys
would be shared among the Tags. Still, constructing an efficient authentication scheme from generic
weak-PRFs that is secure in the concurrent man-in-the-middle model remains an interesting open
problem. 2

1.4 Comparison to Other Works

Table 1 compares the results obtained in this paper with those of previous works. Compared to
the protocols that only achieve active security, our scheme achieves the much stronger man-in-
the-middle security at a fairly small cost. In the case of protocols based on a generic weak-PRF,
we extend the security to the man-in-the middle model at the cost of only one extra secret key
element and one extra field multiplication. We get similar results when comparing our protocol
with actively-secure LPN-based ones.

It is also interesting to compare our LPN protocol to the MAC constructions in [KPC+11].
There are three advantages to the MAC constructions – they are only two rounds, they have
slightly tighter reductions to LPN, and they are secure in the concurrent man-in-the-middle model,
whereas our scheme is secure in the sequential man-in-the-middle model. The advantages of our
construction are that the key sizes and the communication complexities are smaller.

2We note that our current scheme is still secure in the concurrent model against active attacks.
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The above-listed differences between our LPN scheme and the MAC schemes are, in our opinion,
fairly minor with several pluses and minuses on both sides. In practice, it makes almost no difference
whether the authentication scheme is 2 or 3 rounds since the Tag is the one who starts the protocol
– thus a 2-round protocol essentially becomes a 3-round one. And while security tightness is
certainly a desirable property, it is very unclear what effects it has in practice. Similar public key
authentication schemes, such as GQ [GQ88] and Schnorr [Sch91], have been studied for a long time,
yet do not exhibit any weaknesses due to their non-tight reductions.

The major advantage of our construction is that it is generic and can be instantiated with
virtually any version of the LPN function or a randomized weak-PRF satisfying a few mild prop-
erties (see Section 2.1). For example, our construction allows for authentication schemes based on
the fairly well-studied Toeplitz-LPN assumption, which seems to provide a very good compromise
between security and computational efficiency. The constructions of [KPC+11] and [DKPW12], on
the other hand, can only construct MACs from functions with very “algebraic” properties.

The recent work of Heyse et al. [HKL+12] proposed a new LPN-type assumption, called
Ring-LPN, to enable efficient constructions that are compatible with the MAC transformation
in [KPC+11]. The assumption is relatively new, and its unclear at this point whether it has the
same hardness as the more well-studied LPN and Toeplitz-LPN assumptions. Still, even if the
Ring-LPN problem is hard, our LPN protocol can also be instantiated based on this assumption
and is more efficient than the resulting MAC transformation.

2 Preliminaries and Notation

2.1 Function Families and their Properties

In this section we define the important classes of functions that will appear in the paper. As
mentioned earlier, we will be considering embeddings of function outputs into a finite field. The
embedding can be arbitrary, and the simplest one is to simply think of a function output string
s ∈ {0, 1}n as a polynomial in a finite field F = (Zn2 ,+,×). Thus, without loss of generality, we will
assume that all our functions output elements to some finite field F.

Definition 2.1. A function family H : D → F is called pairwise-independent if for all x1 6= x2 ∈
D, y1, y2 ∈ F,

Pr
h

$←H
[h(x1) = y1 ∧ h(x2) = y2] = 1/|F|2

.

Definition 2.2. A function family F : D → F is said to be a weak-PRF family if for any
polynomial-sized k, randomly-chosen f ∈ F , and randomly-chosen r1, . . . , rk ∈ D, the distribution
of (r1, f(r1)), . . . , (rk, f(rk)) is computationally indistinguishable from the uniform distribution over
(D,F)k.

Even if (r1, f(r1)), . . . , (rk, f(rk)) can be distinguished from the uniform distribution over (D,F)k,
it’s possible that the sequence can become indistinguishable if the outputs f(ri) were perturbed
by some noise. Such function families are called randomized weak-PRFs. The noise perturbation
can be anything, but in this paper we will only consider noise distributions with an eye towards
LPN applications. In particular, both the noise and the output of f(ri) are group elements, and
the perturbation consists of adding the two together. This is still consistent with our requirement
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of being able to embed the output of all functions into a finite field F since the group needed for
LPN can simply be the underlying additive group of F (see Section 2.2).

Definition 2.3. For a function f(·) : D → F and a distribution χ over F, we will write fχ(r)
to mean a randomized function that generates an element e ∈ F according to the distribution
χ and outputs f(r) + e. A function family F : D → F is said to be a randomized weak-PRF
family with noise χ if for any polynomial-sized k, randomly-chosen f ∈ F , and randomly-chosen
r1, . . . , rk ∈ D, the distribution of (r1, f

χ(r1)), . . . , (rk, f
χ(rk)) is computationally indistinguishable

from the uniform distribution over (D,F)k.

In order for randomized weak-PRFs to be useful for cryptographic constructions, the range F
and the error distribution should have certain characteristics. For example, the weak-PRFs would
be of very little use if the error distribution χ was just the uniform distribution over F. In this
paper we will assume that the additive group of the field F and the error distribution χ satisfy the
following three properties:

1. There exists a weight function ‖ · ‖ : F → R+ such that the additive group that underlies
the field F satisfies the triangle inequality – that is for all a, b ∈ F, ‖a ± b‖ ≤ ‖a‖ + ‖b‖.
Additionally, ‖a‖ = 0 if and only if a = 0.

2. There exists a positive real τ ′ ∈ R such that Pre∼χ[‖e‖ ≤ τ ′] = 1− n−ω(1).3

3. For a positive real α, let β(α) = {z ∈ F : ‖z‖ ≤ α}. We will assume that |β(2τ ′)|/|F| = n−ω(1).

The first property essentially makes sure that the randomness in the randomized weak-PRF
behaves “nicely” via the triangular inequality.4 The second property determines the completeness
of our protocol. Additionally, because of the way our security proof works, the completeness of the
protocol also plays a role in the soundness of the protocol.5 Thus this value should be very close
to 1. The third property determines the soundness of the protocol. Intuitively, it is related to the
probability that an adversary can randomly guess a response and be accepted by the verifier.

Due to their similarity, we will be presenting our authentication scheme and its proof based on
weak-PRFs together with the ones based on randomized weak-PRFs. Since a weak-PRF is just a
randomized weak-PRF whose error distribution χ has its support entirely on 0, it’s easy to see that
it can trivially be made to satisfy the above three properties. We can define the weight function as
‖x‖ = 1 for all x 6= 0 and set τ ′ = 0. Thus for weak-PRFs we have Pre∼χ[‖e‖ ≤ τ ′] = 1 (and so the
protocol will have perfect completeness) and |β(2τ ′)|/|F| = |{0}|/|F| = 1/|F|.

2.2 Randomized Weak-PRFs from the LPN Problem and its Variants

The classical decisional LPNn,τ assumption states that the uniform distribution over Zn2 × Z2

is computationally-indistinguishable from the following distribution: for a fixed randomly-chosen
vector s ∈ Zn2 , output (r, r · s+ e) where r is chosen uniformly random from Zn2 and e is a Bernoulli

3More formally, τ ′ is a function of n, τ ′(n), but we will omit the n throughout the paper.
4Even though we are using the standard notation for “norm”, the weight function ‖ · ‖ is not quite a norm because

it’s not true that for all integers α, α‖a‖ = ‖αa‖ (since we are working over a finite field).
5This seems to be a common feature of protocols that have man-in-the-middle security because the simulator replies

to the adversary under the assumption that properly-formed responses by the Tag are accepted by the Reader. Even
though it is not stated in [KPC+11, DKPW12], the soundness of their protocols also depends on their completeness
in exactly the same way as in this work.
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random variable that is 1 with probability τ . By the hybrid argument, it is easy to see that if
the fixed secret is now a matrix S ∈ Zm×n2 then the distribution (r, Sr + e), where r is chosen as
before and e is a vector each of whose coefficients is 1 with probability τ , is also computationally-
indistinguishable from the uniform distribution over Zn2 × Zm2 (with a loss of a factor m in the
reduction). We now formulate this latter statement in terms of the randomized weak-PRF notation
from the previous subsection.

Let Bermτ be a distribution over Zm2 where every coordinate is independently chosen to be 1
with probability τ and 0 with probability 1− τ .

Definition 2.4 (LPN). Let F : Zn2 → Zm2 be a function family indexed by matrices S ∈ Zm×n2 .
For a function fS ∈ F and a vector r ∈ Zn2 , define fS(r) := Sr. Then the LPNn,τ assumption
implies that F is a randomized weak-PRF family with noise Bermτ .

In the above definition, the domain D of F is Zn2 . Because we insisted in Definition 2.3 that
the range of the function family F be a finite field (this will be used in our protocol) and the LPN
problem only requires an additive group structure, we have some freedom as to how to define this
field. The LPN assumption requires the range to have the group structure (Zm2 ,+), thus F can be
any finite field that has (Zm2 ,+) as its underlying additive group. The most natural definition is
F = Z2[x]/(g(x)) where g(x) is a polynomial of degree m that is irreducible over Z2, and addition
and multiplication are just standard polynomial addition and multiplications modulo 2 and g(x).
Thus addition in (F,+,×) exactly corresponds to addition in (Zm2 ,+).

The randomized weak-PRF based on LPN can also quite naturally be made to satisfy the
three properties after Definition 2.3. The weight function ‖ · ‖ can be defined to be the Hamming
weight. That is, for any element a ∈ Zm2 , ‖a‖ is the number of 1’s in a. With this definition
of the weight function, one can compute, via the Chernoff bound, a τ ′ such that any element e
chosen according to Bermτ satisfies ‖e‖ ≤ τ ′ with overwhelming probability. To satisfy the third
property, we would need that |β(2τ ′)|/|F| = n−ω(1), which is equivalent to the condition that(
b2τ ′c∑
i=0

(
m
i

))
/2m = n−ω(1). The above conditions are identical to those in other authentication

protocols, such as [KS06, KSS10, GRS08b], and so the LPN parameters needed to make those
schemes secure, also carry over to ours.

Because the LPN problem yields rather inefficient schemes, Gilbert et al. [GRS08b] proposed
protocols based on the hardness of the Toeplitz-LPN problem, which is just like the LPN problem
except that the secret matrix S is a Toeplitz matrix.

Definition 2.5 (Toeplitz-LPN). Let F : Zn2 → Zm2 be a function family indexed by Toeplitz
matrices S ∈ Zm×n2 . For a function fS ∈ F and a vector r ∈ Zn2 , define fS(r) := Sr. Then the
Toeplitz-LPNn,τ assumption implies that F is a randomized weak-PRF family with noise Bermτ .

Heyse et al. [HKL+12] recently introduced the Ring-LPN problem, which also results in more
efficient protocols. While the Ring-LPN problem has not been well-studied, it does have some
resemblance to the better-studied Ring-LWE problem [LPR10] in lattice cryptography, and so
there are some reasons to believe that it might be secure.

Definition 2.6 (Ring-LPN). Let g(x) be a polynomial of degree n in Z2[x] irreducible over Z2

and define the field F to be F = Z2[x]/((g(x)). Let F : F → F be a function family indexed by
polynomials s ∈ F. For a function fs ∈ F and a polynomial r ∈ F, define fs(r) := sr. Then the
Ring-LPNn,τ assumption implies that F is a randomized weak-PRF family with noise Bernτ .
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Tag Adversary Reader

ri - ri + r′i -

ci + c′i� ci�

zi - zi + z′i -

replyi = accept/reject�

Figure 1: Man-in-the-Middle Attack Model.

2.3 Security Models

All authentication schemes are protocols in which the Tag and the Reader possess some secret key
sk and then perform an interaction in which the Tag must convince the Reader of his identity.
The difference in the security models depends on the strength that we give the adversary. The
three most natural security models are passive, active, and man-in-the-middle. All three models
consist of two stages. In the first stage, depending on the model, the Adversary is allowed to have
some interaction with the Tag and the Reader. In the second stage, in all three models, he loses
the interaction with the Tag and must interact with the Reader in hopes of getting the latter to
accept the interaction. We now briefly describe the the passive and active attack models, and then
describe in detail the man-in-the-middle model.

Passive Adversary. The weakest adversary is a passive one. In the first stage of the security
game, the Adversary simply observes the interaction between the Tag and the Reader, and in the
second stage he interacts with the Reader in hopes of convincing the latter to accept the interaction.
Such a scheme is very simple to construct from any weak-PRF. The secret key is a random weak-
PRF f ∈ F , and the protocol consists of the Reader sending a random r ∈ D and the Tag replying
with z = f(r). The Reader accepts the interaction iff z = f(r). To the passive adversary, the pairs
(r, f(r)) look uniformly-random, and it’s easy to finish the proof by showing that an adversary
who is able to get the reader to accept can be used to distinguish the weak-PRF outputs from
uniform. The same idea can also be used to build a scheme based on a randomized weak-PRF,
where the reader sends a random r ∈ D, the tag replies with z = fχ(r), and the reader accepts iff
‖f(r) − z‖ ≤ τ ′. This idea was used by Hopper and Blum to construct a passive authentication
scheme based on the LPN problem [HB01].

Active Adversary. A somewhat stronger adversary is one who, in addition to just watching
the interaction between the Tag and the Reader in the first stage, can also interact with the Tag
(although he is not able to interact with the Reader, and in particular, not allowed to make any
verification queries). After the first stage, the Adversary loses access to the Tag and interacts with
the Reader in hopes of being accepted. The first actively-secure protocol based on the LPN problem
was built by Juels and Weis [JW05], and then simplified and improved by Katz and Shin [KS06].
The LPN construction of [KS06] was generalized by Dodis et al. to any weak-PRF [DKPW12].
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Man-in-the-Middle Adversary. The strongest type of Adversary is one who in the first stage
is able to simultaneously interact with the Tag and the Reader and make verification queries to the
Reader. In the second stage, the Adversary again loses access to the Tag, and interacts with the
Reader hoping to make the latter accept. In this paper, the protocols we will be constructing will
be sigma protocols (i.e. have three rounds usually referred to as commit, challenge, and response)
and will use a model that is simpler to describe and is at least as secure as the man-in-the-middle
one. We now describe the security game and the Adversary’s condition for winning it:

Setup: Generate a secret key and give it to the Tag T and the Reader R.

Attack: Invoke the Adversary A who has access to T and R and let him interact with them t
times. Each of the interactions is as follows (see Figure 1):

A receives a commitment ri from T and sends a commitment ri+ r′i to R. R responds with a
challenge ci and A sends a challenge ci + c′i to T . T answers with a valid response zi. A can
now send his response zi+z′i for verification to R. R answers with accept, if (ri+r′i,c

′
i,zi+z′i)

is valid, otherwise he answers with reject.

Winning Condition: We say that the Adversary A wins the game if at some point he makes a
query to R such that (r′i, c

′
i, z
′
i) 6= (0, 0, 0) and the Reader R sends reply = accept.

Notice that if there is an Adversary who can win the two stage Man-in-the-Middle game (i.e.
where he loses access to the Tag in the second stage and must get the reader to accept), then he
can also win the game described above since he can simply ignore the messages sent by the Tag in
the second stage. Thus security in the model that we will be using in this paper implies security
in the “more natural” two stage model.

3 Construction Based on a (randomized) weak-PRF

In this section we present our main construction, an authentication protocol secure against man-
in-the-middle attacks from any weak-PRF or a randomized weak-PRF that satisfies the three
properties stated after Definition 2.3. The protocol based on a weak-PRF is very similar to the
one based on a randomized weak-PRF, and so we present them together in Figure 2. The security
proofs are also very similar, and we also present them together in the next section.

The underlying building blocks of the protocol in Figure 2 are a pairwise-independent function
family H and a family F of randomized weak-PRFs with noise χ. If F is a family regular (non-
randomized) weak-PRFs, then it’s the same as a randomized weak-PRF with noise χ, where χ has
all of its support on 0 – thus for all f ∈ F , fχ(·) = f(·). The secret keys of the authentication
scheme are randomly chosen f ∈ F , h ∈ H, and s ∈ F. In the case that F is a regular weak-PRF
family, we do not need the extra key s, and in the protocol we can assume that s = 1. In the case
that F is a randomized weak-PRF family, we assume that it satisfies the three properties after
Definition 2.3. Thus there is an associated weight function ‖ · ‖ and a value τ ′ such that the error
e chosen from χ satisfies ‖e‖ ≤ τ ′ with overwhelming probability.

In the first step of the protocol, the Tag picks a random element r ∈ D and sends it to the Reader.
The reader chooses a random c ∈ F and sends it to the Tag. In its turn, the Tag evaluates fχ(r)
and h(r), and sends z = fχ(r)s+ h(r)c back to the Reader, where all addition and multiplication
operations take place in the field F. In the case that F is a regular weak-PRF family, the response

9



F : D→ F (a randomized weak-PRF family with noise χ)
H : D→ F (a pairwise-independent function family)

Keys: f
$← F , h

$← H, s
$← F

Tag Reader

r
$← D r -

c
$← F

c�

z ← fχ(r)s+ h(r)c
z -

Accept iff ‖f(r)− s−1 (z − h(r)c) ‖ ≤ τ ′

Figure 2: Authentication Protocol Based on a (randomized) weak-PRF. If the weak-PRF is not
randomized, (i.e. the support of the distribution χ is 0 and τ ′ = 0), then we can set s = 1. In this case, the
condition ‖f(r)− s−1 (z − h(r)c) ‖ ≤ τ ′ simplifies to f(r) = z − h(r)c.

of the Tag is simply z = f(r) + h(r)c. The Reader accepts the Tag if ‖f(r)− s−1(z− h(r)c)‖ ≤ τ ′.
In case of a regular weak-PRF family without noise, this condition is equivalent to f(r) = z−h(r)c.

Efficiency Note. As in most 3-round authentication schemes, it is only necessary for the chal-
lenge c to have as much entropy as the security of the scheme. Thus if the the field F is very
large, it is fine to restrict the domain of c to some arbitrary, large enough, subset of F. This would
slightly reduce the communication complexity of the protocol and possibly make the multiplication
h(r)c more efficient. Similarly, the secret key s need not be chosen uniformly from all of F either.
The only time the randomness of s is used in the proof is in Lemma 4.3, and there it is enough
for s to also be chosen from a large enough subset of F. Restricting the domain of s would make
the multiplication by it more efficient and also slightly decrease the key size of all our LPN-based
instantiations. So for example, the Toeplitz-LPN and Ring-LPN instances in Table 1 would have
key sizes 4n+λ and 3n+λ instead of 5n and 4n. For simplicity, in this paper we just pretend that
s and c get chosen from all of F.

Example Instantiation. We now give an example instantiation of the protocol using the LPNn,τ

assumption from Definition 2.4. The noise distribution χ is Bermτ and to choose the secret key f ,
a random S ∈ Zn×m2 is picked and fχ(r) := Sr + e where e ∼ Bermτ . Thus f maps the domain Zn2
to Zm2 . As in the discussion following Definition 2.4, the field F is defined to be Z2[x]/(g(x)) where
g(x) is any irreducible polynomial of degree m. The simplest definition of a pairwise independent
function family that maps Zn2 to F is to index the family by two polynomials in F. To pick a random
element of the family, one randomly picks a1, a2 ∈ F and defines h(r) = a1r+a2, where r is treated
like a polynomial in F and multiplication and addition is performed over F.6 The final secret key
is a random polynomial s ∈ F. Thus the secret keys are (S, a1, a2, s).

6To be able to treat r as an element of F, it is important that m ≥ n. If m < n, then one can define the
pairwise-independent function differently (e.g. h(r) = a1r1 + . . . akrk + ak+1), where r = r1| · · · |rk).

10



In the protocol, the Tag chooses an r ∈ Zn2 and sends it to the Reader, who replies with a
randomly-chosen c ∈ F. The Tag receives the c computes fχ(r) = Sr + e ∈ Zm2 , and treats the
result as a polynomial in F. He then multiplies it by s and adds it to h(r)c = (a1r+a2)c, and sends
the resulting z = fχ(r)s+h(r)c to the Reader. The reader computes f(r) = Sr and s−1(z−h(r)c),
and accepts if the weight of f(r)− s−1(z − h(r)c) is less than or equal to τ ′.

Notice that the protocol would be exactly the same for the Toeplitz-LPNn,τ problem, with the
only difference being how S is defined. By having S be a Toeplitz matrix, the key storage space
shrinks from mn+ 3m to n+ 4m, and the matrix-vector multiplication Sr can be computed more
efficiently. The Ring-LPNn,τ protocol would also work in essentially the same way. In this case, we
set m = n and have D = F. The secret key S will just be a random polynomial in F just like s, a1,
and a2. Thus Sr will simply be a multiplication of two polynomials in the field F.

Lemma 3.1. The completeness of the authentication protocol is Pre∼χ[‖e‖ ≤ τ ′]. And in particular,
if the weak-PRF is not randomized, the completeness is 1.

Proof. The Tag sets z ← fχ(r)s+ h(r)c = (f(r) + e)s+ h(r)c, where e ∼ χ. Thus f(r)− s−1(z −
h(r)c) = e, and so the Reader accepts whenever ‖f(r)− s−1(z − h(r)c)‖ = ‖e‖ ≤ τ ′.

4 Security of the Authentication Scheme

Theorem 4.1. Suppose that the authentication protocol in Figure 2 has completeness κ and there is
a man-in-the-middle adversary who successfully breaks this scheme with probability ε while making
at most qv verification queries. Then there exists an algorithm which, in the same amount of time,

has advantage 1
2

(
κqv−1 (ε/qv − 1/|F|)2 − β(2τ ′)/|F|

)
in breaking the uniformity assumption of the

(randomized) weak-PRF family F .

Proof. If an adversary making qv verification queries wins the game, then one of these qv queries can
be thought of as the “winning query”. By “winning query”, we mean that it is the first accepted
query such that (r′i, c

′
i, z
′
i) 6= (0, 0, 0) (where r′i, c

′
i, z
′
i are as in Figure 1). Once the Adversary sends

such a query, he wins the game. If the Adversary has an ε success probability of winning the MIM-
game, then by an averaging argument there must be some integer i∗ ≤ qv such that the probability
that the Adversary wins the game and query number i∗ is the “winning query” is at least ε/qv. For
the rest of the proof, we will assume that we know this i∗ (which can be determined a priori by
running the adversary on known inputs.)

The Challenger gives us ordered pairs (ri, yi) ∈ D × F where the ri are uniformly random in
D and the yi are either uniformly random in F or equal to fχ(ri) (where f is a randomly-chosen
function from the (randomized) weak-PRF family F with noise χ). We will show how to use the
adversary who breaks the authentication protocol with the i∗th winning query to decide which of
the two distribution the Challenger is outputting.

We now proceed to show how to simulate the Tag and the Reader before the Adversary’s i∗th
verification query (see Figure 3). We pick a random s ∈ F and h ∈ H as the secret keys, and upon
receiving a pair (ri, yi) from the Challenger, we send ri to the Adversary. The Adversary can then
modify this and forward ri + r′i to the Reader. The Reader picks a random ci ∈ F, sends it to the
adversary, who then sends the possibly modified challenge ci+c

′
i to the Tag. The Simulator playing

as the Tag computes h(ri)(ci + c′i) using his secret key h, and then uses the yi received from the
challenger together with his other secret key s, to send zi = yis+ h(ri)(ci + c′i). After receiving zi,
the Adversary may send zi + z′i to the verifier and make a verification query.
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Ch. Simulator (Tag) Adv. Simulator (Reader)

s
$← F, h $← H

(ri, yi)- ri - ri + r′i-

ci
$← F

ci + c′i� ci�

zi ← yis+ h(ri)(ci + c′i)

zi - zi + z′i-
if (r′i, c

′
i, z
′
i) = (0, 0, 0)

then replyi ← “accept′′

else replyi ← “reject′′

replyi�

Figure 3: Simulating the Tag and the Reader before the Adversary’s i∗th verification query. If
the weak-PRF is not randomized, then we set the secret key s=1 instead of choosing it at random from F.

Case 1: The Challenger’s distribution is not random. Notice that if the Challenger sends
(ri, yi = fχ(ri)), then the responses of the Tag are exactly what they should be if the secret
key were (f, s, h). Thus if (r′i, c

′
i, z
′
i) = (0, 0, 0), the Reader who always sends “accept” is correct

with probability κ (the completeness of the protocol). And if (r′i, c
′
i, z
′
i) 6= (0, 0, 0), the response

of “reject” is also correct since the i∗th verification query has not yet been reached. Because
the simulator has faithfully simulated the valid Tag and Reader up to this point with probability
κqv−1, the Adversary’s i∗th query will be the “winning one” (i.e. (r′, c′, z′) 6= (0, 0, 0) and ‖f(r +
r′) − s−1 ((z + z′)− h(r + r′)c) ‖ ≤ τ ′) with probability κqv−1ε/qv. In the next section we show
that if the Adversary sends this winning query, then the simulator will be able to detect that it
is indeed correct, and thus reply to the Challenger that the distribution is not random. The way
that the simulator does the detection depends on whether r′ = 0 or r′ 6= 0. If r′ = 0, then the
detection is performed as in Figure 4 and the proof that the detection works (with probability 1)
is in Lemma 4.3. On the other hand, if r′ 6= 0, then we perform the detection as in Figure 5. For
this part of the proof, we will need to rewind the adversary and have him respond correctly for
two different challenges, which will happen with probability κqv−1 (ε/qv − 1/|F|)2 by Lemma B.1.
If the Adversary does successfully respond for two different queries, then in Lemma 4.5 we show
that we can detect this (again with probability 1) and thus correctly reply that the Challenger’s
distribution is not random. We summarize the preceding paragraph with the following Lemma:

Lemma 4.1. If the Challenger sends non-random ordered pairs (ri, yi = fχ(ri)), then the simulator
responds “not random” with probability at least κqv−1 (ε/qv − 1/|F|)2.

Case 2: The Challenger’s distribution is uniformly random. We now move to the case that
the Challenger sends uniformly random pairs (ri, yi) ∈ (D,F). We will show that in this case, even
an all-powerful adversary cannot make the simulator reply “not random” to the challenger except
with negligible probability. Notice that in the case that the yi are uniform and independent of
the ri, the secret keys h, s chosen by the simulator are information-theoretically hidden throughout
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Ch. Simulator (Tag) Adv. Simulator (Reader)

(r, y)- r - r -

c
$← F

c+ c′� c�

z ← ys+ h(r)(c+ c′)

z - z + z′-
if ‖s−1 (z′ + h(r)c′) ‖ ≤ 2τ ′

then reply ← “not random′′

else reply ← “random′′

reply�

Figure 4: Answering the Challenger after the Adversary’s i∗th verification query if r′=0.

the interaction in Figure 3. In the next section, we use this fact as well as the field properties
of F and the pairwise-independence of the function h to show that even an all-powerful adversary
cannot fool the simulator into replying “not random” to the Challenger with probability greater
than β(2τ ′)/|F| (which is 1/|F| in case F is not randomized). The preceding is proven in Lemmas
4.4 and 4.6, for the cases where r′ = 0 and r′ 6= 0, respectively. This result is summarized in the
following Lemma:

Lemma 4.2. If the Challenger sends uniformly random ordered pairs (ri, yi) ∈ (D,F), then the
simulator responds “not random” with probability at most β(2τ ′)/|F|.

The statement of the Theorem follows by combining Lemmas 4.1 and 4.2.

4.1 Answering the Challenger when r′ = 0

We now proceed to explain how to use the Adversary’s i∗th verification query to construct a
response for the Challenger. In this subsection, we deal with the case that when the Adversary
makes this query, he does not change the commitment r – in other words r′ = 0. If r′ = 0, then it
means that the value of f(r) will be included in two places in the case that the Challenger sends
pairs of the form (r, y = fχ(r)). First, the Challenger’s output y = fχ(r) contains something
close to f(r), and second the winning query of the Adversary contains f(r) since it must be that
‖f(r) − s−1(z + z′ − h(r)c)‖ ≤ τ ′ in order for the query to be accepted. In Lemma 4.3, we show
that by simply using the triangular inequality (Property 1 following Definition 2.3), it must be the
case that ‖s−1(z′ + h(r)c′)‖ ≤ 2τ ′.

On the other hand, if the queries sent by the Challenger are uniformly random, then, as we
already observed in the previous section, the view of the Adversary is independent of the secret
keys s and h. Therefore the Adversary’s behavior will be exactly the same as in the case where s
and h are chosen after he outputs his i∗th query. In Lemma 4.4, we use this to show that even
an all-powerful adversary cannot produce a query z + z′ such that ‖s−1(z′ + h(r)c′)‖ ≤ 2τ ′, except
with probability β(2τ ′)/|F|.

13



Lemma 4.3. If the challenger sent a valid pair, i.e. (r, y = fχ(r)), and the adversary’s response
is valid, i.e. ‖f(r)− s−1 (z + z′ − h(r)c) ‖ ≤ τ ′, then ‖s−1 (z′ + h(r)c′) ‖ ≤ 2τ ′.

Proof. Because we set z to fχ(r)s + h(r)(c + c′), we know that ‖f(r) − s−1(z − h(r)(c + c′))‖ ≤
τ ′. Since the adversary’s response is valid, we also have that ‖f(r) − s−1 (z + z′ − h(r)c) ‖ ≤ τ ′.
Thus subtracting the first value from the second and using the triangular inequality, we obtain
‖s−1 (z′ + h(r)c′) ‖ ≤ 2τ ′.

Lemma 4.4. If the ordered pair (r, y) sent by the challenger is uniformly random in D × F,
then the probability that even an all-powerful adversary can output (c′, z′) 6= (0, 0) such that
‖s−1 (z′ + h(r)c′) ‖ ≤ 2τ ′ is at most |β(2τ ′)|/|F|.

Proof. We first handle the case where f is a weak-PRF without any noise (i.e. the support of the
distribution χ is 0 and τ ′ = 0). In this case, the extra random key s is not necessary in the protocol
(i.e. s = 1) and so the condition ‖s−1 (z′ + h(r)c′) ‖ ≤ 2τ ′ becomes 0 = z′ + h(r)c′. Since y is
uniformly random in F and independent of everything else, the value z that the adversary receives
is also uniformly random and independent of the pairwise independent hash function h. Thus the
adversary will behave in the same way if the function h were chosen after the adversary chooses c′

and z′. Notice that the adversary must set c′ 6= 0 because otherwise z′ is also necessarily 0. Thus,

∀r ∈ D, z′ ∈ F, c′ ∈ F \ {0},Pr
h

[0 = z′ + h(r)c′] = Pr
h

[h(r) = −z′c′−1] = 1/|F|.

We now move to the case where the support of χ is not restricted to 0, and thus the secret key s
is chosen uniformly at random from F. Again, since y is uniformly random in F, the distribution of
z = ys+ h(r)(c+ c′) is uniform and independent of s and h. Thus the adversary would behave the
same way if the values of s and h are chosen after the adversary chooses c′ and z′. By definition,
there are |β(2τ ′)| elements t ∈ F such that ‖t‖ ≤ 2τ ′. If t 6= 0, we have

∀r ∈ D, z′, c′ ∈ F, t ∈ β(2τ ′) \ {0},Pr
s

[s−1(z′ + h(r)c′) = t] = Pr
s

[s = t−1(z′ + h(r)c′)] = 1/|F|.

If t = 0, then we necessarily have c′ 6= 0 (otherwise z′ = 0 as above) and so

∀r ∈ D, z′ ∈ F, c′ ∈ F \ {0},Pr
h

[s−1(z′ + h(r)c′) = 0] = Pr
h

[h(r) = −z′c′−1] = 1/|F|.

Therefore, we have that

Pr
s,h

[‖s−1(z′ + h(r)c′)‖ ≤ 2τ ′] = Pr
s,h

[s−1(z′ + h(r)c′) ∈ β(2τ ′)] = |β(2τ ′)|/|F|.

4.2 Answering the Challenger when r′ 6=0

In this subsection, we deal with the case that when the Adversary makes the i∗th verification query,
he changes the commitment r to r + r′ where r′ 6= 0. As in the previous subsection where r′ = 0,
in order to detect that the Adversary indeed answered the query correctly, we need to obtain the
value of f(r + r′) twice. In the previous section, we had this because r′ was 0. If r′ 6= 0, then we
can obtain this value twice by rewinding the Adversary and thus having him provide two winning
queries that use the same commitment r + r′ (see Figure 5). Thus we will have two equations
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Ch. Simulator (Tag) Adv. Simulator (Reader)

(r, y)- r- r + r′-

c0, c1
$← F

c0 + c′0� c0�

z0 ← ys+ h(r)(c0 + c′0)

z0- z0 + z′0-

c1 + c′1� c1�

z1 ← ys+ h(r)(c1 + c′1)

z1- z1 + z′1-
if ‖s−1((z0 + z′0)− (z1 + z′1)−

h(r + r′)(c0 − c1))‖ ≤ 2τ ′

then reply ← “not random′′

else reply ← “random′′

reply�

Figure 5: Answering the Challenger after the Adversary’s i∗th verification query if r′ 6=0.

containing f(r + r′) that we will be able to subtract from each other so that the result has no
dependence on f .

When the Adversary sends the commitment r + r′, we first send the challenge c0, which the
Adversary possibly modifies and forwards to the Tag as c0 + c′0. The simulator playing as the tag
sends z0 = ys+ h(r)(c0 + c′0) to the Adversary, who then possibly modifies it and sends z0 + z′0 to
the Reader. We then rewind the adversary to the point after he sent r+ r′ and send him a random
challenge c1, which he forwards to the Tag as c1 + c′1, receives the response z1 = ys+ h(r)(c1 + c′1)
and forwards it to the Reader as z1 + z′1. If both of the Adversary’s responses are correct (which
happens with probability (ε/qv − 1/|F|)2 by Lemma B.1 because all the randomness except the
challenge is exactly the same in both runs), then, as shown in Lemma 4.5, it will be always true
that

‖s−1((z0 + z′0)− (z1 + z′1)− h(r + r′)(c0 − c1))‖ ≤ 2τ ′.

On the other hand, if the Challenger’s outputs were uniformly random in (D,F), then as we
previously noted, until the i∗th verification query, the secret keys s, h are information-theoretically
hidden from the adversary. Because of the rewinding in the i∗th step, some information about h does
get revealed - in particular, because we send both z0 = ys+h(r)(c0+c′0) and z1 = ys+h(r)(c1+c′1),
we are in fact committing to the value h(r). But because h is pairwise-independent, nothing is
known about h(r + r′) for a non-zero r′, and this is used in Lemma 4.6 to conclude that even an
all-powerful adversary cannot fool the simulator except with probability β(2τ ′)/|F|.

Lemma 4.5. If both of the adversary’s responses are valid, i.e. ‖f(r + r′) − s−1(z0 + z′0 − h(r +
r′)c0)‖ ≤ τ ′ and ‖f(r + r′) − s−1(z1 + z′1 − h(r + r′)c1)‖ ≤ τ ′, then ‖s−1((z0 + z′0) − (z1 + z′1) −
h(r + r′)(c0 − c1))‖ ≤ 2τ ′.
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Proof. The claim is obtained by subtracting the first two equations from each other and using the
triangle inequality.

Lemma 4.6. If the ordered pair (r, y) sent by the challenger is uniformly random in D × F, and
r′ 6= 0, and c0 6= c1, then the probability that even an all-powerful adversary can output z′0 and z′1
such that ‖s−1((z0 + z′0)− (z1 + z′1)− h(r + r′)(c0 − c1))‖ ≤ 2τ ′ is at most |β(2τ ′)|/|F|.

Proof. For simplicity, we will define w = (z0+z′0)−(z1+z′1). The information given to the adversary
(in the two rewindings) by the simulator playing as the tag is z0 = ys + h(r)(c0 + c′0) and z1 =
ys+h(r)(c1+c′1). This is exactly the same as receiving z0 and z̃ = z0−z1 = h(r)(c0+c′0−(c1+c′1)).
Notice that since z0 contains the term ys, the value of z0 is uniform and independent of the function
h. The value of z̃, on the other hand, does depend on h(r). So the behavior of the adversary would
be unchanged if we chose z0 uniformly at random, chose a random element u for h(r) and set z̃ =
h(r)(c0+c′0−(c1+c′1)), and then after the adversary picks z′0, z

′
1, we finally choose h (conditioned on

the already set value of h(r)). Thus we have that ∀t ∈ β(2τ ′), c0 6= c1 ∈ F, r ∈ D, r′ 6= 0, w, s, u ∈ F

Pr
h

[s−1(w−h(r+r′)(c0− c1)) = t |h(r) = u] = Pr
h

[h(r+r′) = (w−st)(c0− c1)−1 |h(r) = u] = 1/|F|,

where (c0 − c1)
−1 exists since we assumed c0 6= c1 and the last equality is true because h is a

pairwise-independent function and r′ 6= 0.
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A A Concurrent Attack Against Randomized Weak-PRFs

The security proof of Lemma 4.6 gives a hint as to why our scheme may not be secure in the
concurrent model against man-in-the-middle attacks. When rewinding the adversary, we also in
a sense rewind the Tag, and as a consequence end up committing to one value of the pairwise-
independent hash function h. In the proof, it was crucial that h was still free to be set to any value
for any other input. If the adversary were to have access to multiple copies of the Tag, he could
query all of them after the rewinding, and we would end up committing to multiple positions in h,
which would in essence define the whole function.

We will show a possible attack in the concurrent model for function families which satisfy a
certain homomorphic property, like LPN. Suppose that F : D → F is a family of randomized
weak-PRF’s that is homomorphic under addition. In other words, for f ∈ F we have f(r1 + r2) =
f(r1) + f(r2). Also, without loss of generality, suppose that a part of the secret key is a pairwise
independent hash function h defined as h(r) = s1r + s2. Then the Adversary’s man-in-the-middle
attack proceeds as follows (see Figure 6):

Tag1 and Tag2 Adv. Reader

r1, r2- r = r1 + r2-
c1 := r1cr

−1 c�
c1, c2� c2 := c1 + c
z1, z2- z1 + z2-

Figure 6: Concurrent Attack Against Randomized Weak-PRFs.

The adversary instantiates two copies of the Tag whose secret keys are (f, s, s1, s2) and receives
two commitments r1, r2 from it. It sends the sum of their commitments r = r1 + r2 to the Reader.
The reader sends the challenge c, and the adversary forwards c1 = r1cr

−1 to the first copy of the
Tag, and c2 = c1 + c to the second copy. He receives responses z1 = (f(r1) + e1)s + h(r1)c1 and
z2 = (f(r2) + e2)s + h(r2)c2 from the Tags. We will now show that if the error e1 + e2 is small,

18



then z1 + z2 could be a valid response. This could be problematic for the protocol’s security since
it will reveal something about the size of the errors in z1 and z2. In fact, similar information was
used in the attack of [OOV08] against the scheme in [GRS08b] to recover the secret key. We now
show that if ‖e1 + e2‖ ≤ τ ′, then the Reader will accept the adversary’s response of z1 + z2. The
reader will accept iff ‖f(r)− s−1((z1 + z2)− (s1r + s2)c)‖ ≤ τ ′, where

‖f(r)− s−1((z1 + z2)− (s1r + s2)c)‖
= ‖f(r)− (f(r1) + f(r2))− (e1 + e2)− s−1(s2(c1 + c2) + s1(r1c1 + r2c2)− (s1r + s2)c)‖
= ‖ − (e1 + e2)− s−1(s1(r1c1 + (r − r1)(c1 + c))− s1rc)‖
= ‖ − (e1 + e2)− s−1s1(rc1 + rc− r1c− rc)‖ = ‖ − (e1 + e2)− s−1s1(rr1cr−1 − r1c)‖
= ‖ − (e1 + e2)‖.

B (Slightly) Extended Reset Lemma

For the rewinding step of the proof, it is necessary to show that we can use an adversary to extract
two different valid responses. This issue was already elegantly addressed by Bellare and Palacio in
their Reset Lemma [BP02, Lemma 3.1] whenever the only difference in the randomness given to
an adversary during the rewinding is the challenge itself. We have to slightly extend their lemma
to handle the MIM case. Our proof very closely follows theirs.

First we describe all of the used algorithms as deterministic algorithms, receiving their ran-
domness as auxiliary inputs or parameters. Now we’re able to guarantee that all the randomness
beside the challenge is for every algorithm in both rewinding cases exactly the same by fixating
their inputs.

Further, we want to modularize the behavior of the Adversary A during the protocol allowing
us to analyze it more easily. A very common way to do this is to explicitly use the state St of A.
A has auxiliary input a, Tag T t and Reader R r.

Lemma B.1 (extended Reset Lemma). Given the random tape R, the deterministic algorithms
ComT (t), RspT (t, CMT,CH), DecR(r, CMT,CH,RSP ) and challenge set ChSetR representing
Tag T (t) and Reader R(r). Then acc(a, t, r) is the probability for d = 1 for an algorithm A(a,R)
in the following experiment:

St← A(a,R); CMT ← ComT (t); (CMT ′, St)← A(CMT, St);

CH
$← ChSetR; (CH ′, St)← A(CH,St); RSP ← RspT (t, CMT,CH ′); RSP ′ ← A(RSP, St);

d← DecR(r, CMT ′, CH,RSP ′)

res(a, t, r) is the probability d being d = 1 in this experiment:

St← A(a,R); CMT ← ComT (t); (CMT ′, St)← A(CMT, St);

CH1
$← ChSetR; (CH ′1, St1)← A(CH1, St); RSP1 ← RspT (t, CMT,CH ′1); RSP ′1 ← A(RSP1, St1);

CH2
$← ChSetR; (CH ′2, St2)← A(CH2, St); RSP2 ← RspT (t, CMT,CH ′2); RSP ′2 ← A(RSP2, St2);

d1 ← DecR(r, CMT ′, CH1, RSP
′
1); d2 ← DecR(r, CMT ′, CH2, RSP

′
2); d = (d1 ∧ d2 ∧ (CH1 6= CH2))
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Then the following statement holds:

acc(a, t, r) ≤ 1

|ChSetR|
+
√
res(a, t, r)

Proof. Under normal circumstances Adversary A will have advantage acc(a, t, r) for a random
challenge CH1. Now we’re able to run him twice to receive another valid response for a challenge
CH2. Since CH1 was chosen independently uniform exactly as CH2, the advantage of A is the
same in both cases. We want to show now, that the probability to get two different, valid results,
as it is necessary for the rewinding, is lower bounded by acc(a, t, r).

The output behavior of DecR depends on the random tape R, the challenge CH and the
behavior of T and R which are determinate by t and r. CMT ′(a,R, t) and RSP ′(a,R,CH, t) are
the determinate outputs of A depending only on a, t, R and CH.

Now we define the functions: X : {0, 1}l → {0, 1} and Y : {0, 1}l → {0, 1} for R ∈ {0, 1}l:

X(R) := Pr[DecR(r, CMT ′(a,R, t), CH,RSP ′(a,R,CH, t)) = 1]

Y (R) := Pr

 DecR(r, CMT ′(a,R, t), CH1, RSP
′(a,R,CH1, t)) = 1 ∧

DecR(r, CMT ′(a,R, t), CH2, RSP
′(a,R,CH2, t)) = 1 ∧

CH1 6= CH2


and for every R ∈ {0, 1}r

Y (R) = X(R) ·X(R) ·
(

1− 1

|ChSetR|

)
≥ X(R) ·

(
X(R)− 1

|ChSetR|

)
,

since r, a, R and t are fixed and only the challenge is different. The last step of the proof is
exactly the same as in the proof of the Reset Lemma. We define p := 1/|ChSetR| and relate the

expectation values of X(R) and Y (R) for an uniform random R
$← {0, 1}l:

res(a, t, r) = E(Y )

≥ E(X · (X − p))
= E(X2)− p · E(X)

≥ E(X)2 − p · E(X) = acc(a, t, r)2 − p · acc(a, t, r)

We’re completing the squares:

acc(a, t, r)2 − p · acc(a, t, r) ≤ res(a, t, r)

⇔
(
acc(a, t, r)− p

2

)2
≤ res(a, t, r) +

p2

4

⇔acc(a, t, r) ≤
√
res(a, t, r) +

p2

4
+
p

2
≤
√
res(a, t, r) + p

This holds, since
√
res(a, t, r) + p2

4 ≤
√
res(a, t, r) +

√
p2

4 .
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