
State convergence in bit-based stream ciphers∗

Sui-Guan Teo, Harry Bartlett, Ali Alhamdan, Leonie Simpson, Kenneth Koon-Ho Wong
and Ed Dawson †

Institute for Future Environments,
Science and Engineering Faculty,

Queensland University of Technology

11th February 2013

Abstract

Well-designed initialisation and keystream generation processes for stream ciphers should
ensure that each key-IV pair generates a distinct keystream. In this paper, we analyse
some ciphers where this does not happen due to state convergence occurring either during
initialisation, keystream generation or both. We show how state convergence occurs in each
case and identify two mechanisms which can cause state convergence.

1 Introduction

Modern stream cipher applications use a secret key and a publicly known initialisation vector
(IV) to form an initial internal state for the keystream generator, before keystream generation
begins. This approach is common in digital communications, where a single communication in
frame-based applications can consist of multiple frames. A communication will use a single key
for the entire communication and each frame will be encrypted using that key and a distinct
IV. For example, a mobile phone conversation is divided into many frames. Each frame in
the communication is encrypted separately using the same key and using the frame number
as the IV. Given a suitable state size (at least equal to the sum of the key and IV lengths), a
good initialisation process should ensure that each key-IV pair generates a distinct keystream.
Furthermore, two keystreams which are distinct at the beginning of keystream generation should
not converge to the same keystream sequence at a future point in time.

State convergence in a keystream generator occurs when two distinct internal states generate
the same next state. That is, the state update function is not one-to-one. State convergence can
occur either during initialisation, during keystream generation, or both. Hence, the state-update
functions for both phases should be carefully considered.

This paper explores state convergence for several stream ciphers. We show how state
convergence occurs in each case. Based on the analysis of the state-update function in these
ciphers, we identify two mechanisms which can cause state convergence in stream ciphers.
∗Portions of this paper are based on the authors’ work on Sfinks [1] and A5/1 [21].
†E-mail: teosuiguan@gmail.com, {h.bartlett, lr.simpson, kk.wong, e.dawson}@qut.edu.au,
a.alhamdan@student.qut.edu.au

1

2 BACKGROUND AND NOTATION 2

2 Background and Notation

Keystream generators for stream ciphers operate by maintaining an internal state and applying
update and output functions to the state. In many cases, the state space is provided by a
combination of linear and/or nonlinear feedback shift registers (LFSR/NLFSR respectively).
We use the notation Ri(t) to denote the contents of stage i of register R at time t where
i = 0, 1, . . . , r − 1, for an r-stage register. The state S of a stream cipher is of size s bits.

Modern keystream generators take two inputs: a secret key and an IV, of sizes l and j bits
respectively and thus have a keyspace of 2l bits and an IV-space of 2j bits. Before keystream
generation commences, a key-IV pair is used to form an internal state value. This process is
referred to as initialisation and can be considered as a mapping from binary vectors of length
l + j to those of length s.

To prevent time-memory-data tradeoff attacks, modern stream ciphers have internal states
which are at least the size of the key-IV pair, that is, 2s ≥ 2l+j . Since the state space is at least
the size of the space spanned by all key-IV pairs, it is reasonable to expect that the initialisation
process will be one-to-one, that is, each distinct key-IV pair should map to a distinct state at
the end of the initialisation process.

The purpose of the initialisation process is to diffuse the key-IV pair across the entire
state and make mathematical relationships between the key-IV pair and the keystream hard to
establish. The initialisation process is often performed in three phases: key-loading, IV-loading
and the diffusion phase. In some keystream generators, the key-loading and IV-loading phase are
conducted simultaneously, that is, the secret key and IV are transferred to the stream cipher’s
state at the same time.

When both the secret key and IV have been transferred, the stream cipher is in a “loaded
state”. Following this, the diffusion phase begins. This consists of a number of iterations,
denoted α in this paper, of the initialisation state-update function. The value of α requires
careful consideration. A small number can be performed quickly, which is desirable in real-time
applications where rekeying is frequent. However, an initialisation process with few iterations
may not provide sufficient diffusion and could leave the cipher vulnerable to attacks. After the
initialisation process is complete, the keystream generator is said to be in its initial state and the
keystream generation phase begins.

During keystream generation, the internal state is updated with a state-update function and
an output function is applied to this internal state to generate the keystream. The state-update
function may be the same function used in the initialisation phase or a different function. This
state-update function can be in the form of regular clocking or irregular clocking. For a regularly
clocked shift register, the internal state of the shift register is always updated once at each clock.
Clock-controlled keystream generators generally use the contents of one or more registers to
control the clocking of itself and/or other registers. For irregularly clocked shift registers, the
register state can be updated more than once or not at all at each clock.

When the state-update function is applied, for any state St, there is a single next state St+1.
However, it is possible that there may be multiple states which have the same next state St+1.
Once distinct states converge to the same next state, they can not subsequently diverge from
that point on. Depending on the relevant state update functions, this convergence can occur
during initialisation, keystream generation or both. Thus, the number of distinct keystreams the
generator can produce is reduced. We note that although state convergence commonly occurs in
irregularly clocked ciphers, it may also occur in regularly clocked ciphers as well.

3 STATE CONVERGENCE IN IRREGULARLY-CLOCKED STREAM CIPHERS 3

Register A
17

Clocking tap

Register B
Clocking tap

0

Register C
Clocking tap

0

0

81318 16

7

10

10202122

2021

Figure 1: Diagram of A5/1

3 State convergence in irregularly-clocked stream ciphers

A number of stream ciphers which use irregular clocking mechanisms are known to experience
state convergence. These ciphers include A5/1 [8] and Mickey [3].

3.1 A5/1

A5/1 is a well-known bit based stream cipher based on three binary LFSRs; denoted A, B and
C; of lengths 19, 22, and 23 bits respectively. Hence A5/1 has a total state size of 64 bits. A
single 64-bit secret key is used for each communication, and a 22-bit frame number is used as the
IV for each frame in the communication. A diagram showing the structure of A5/1 can be found
in Figure 1. The three registers are regularly clocked during loading of the key and IV (frame
number). Following this, a majority clocking mechanism is used for the diffusion phase and also
for keystream generation. This majority clocking is the only nonlinear operation performed.

To implement the majority clocking scheme, each register has a clocking tap: stages A8(t),
B10(t) and C10(t). The contents of these stages determine which registers will be clocked at the
next iteration: those registers for which the clock control bits agree with the majority value are
clocked. For example, if A8(t) = 0, B10(t) = 1 and C10(t) = 0, then the majority value is 0 and
registers A and C are clocked. Thus, either two or three registers are clocked at each step.

3.1.1 Initialisation and keystream generation processes.

Prior to loading, all stages of the three registers are set to zero. Each register is autonomous
during key and IV loading. During the key loading process, each register is regularly clocked 64
times and each key bit is XORed with the register feedback to form the new value of stage 0
of all three registers. A similar process is used for the IV loading process. The diffusion phase
involves performing 100 iterations of the initialisation state update function using the majority
clocking scheme. At the end of this phase an initial state is obtained.

Keystream is generated as a linear combination of the contents of one stage from each of
the three registers: at time t, zt = A18(t)⊕B21(t)⊕ C22(t), where ⊕ denotes binary addition or
xor. The majority clocking process continues until sufficient keystream, 228 bits, is generated to
encrypt the frame. Then the keystream generator is re-initialised using the same secret key and
the next frame number, to produce keystream for the next frame.

3 STATE CONVERGENCE IN IRREGULARLY-CLOCKED STREAM CIPHERS 4

A9 A8 A9 A8 A9 A8 A9 A8 A9 A8 A9 A8

B11 B10

C11 C10

B11 B10

C11 C10C11 C10

B11 B10B11 B10

C11 C10C11 C10

B11 B10B11 B10

C11 C10

X

X

X

#

(i)

#

(ii)

X

X X X

X

X X

X

(iii)

X

X X

X X

(iv)

X X

X

X#

(v) (vi)

X#

X

X#

Clock

Ri

Rj

Rk

Ri

Rj

Rk

Ri

Rj

Rk

Ri

Rj

Rk

Ri

Rj

Rk

Ri

Rj

Rk

Figure 2: A5/1 preimage cases identified by Golić’s cases [12]

Case (i) (ii) (iii) (iv) (v) (vi)

Proportion of states 3
8

3
8

1
32

3
32

3
32

1
32

Number of pre-images 0 1 1 2 3 4

Table 1: Proportions of states in A5/1 for Golić’s cases [12]

3.1.2 State convergence in A5/1

During the loading phase in A5/1, the 64 bit key and 22 bit IV are linearly loaded into the
register. As the size of A5/1’s register is 64 bits, it is not possible for each key-IV pair to
generate a unique loaded state. In fact, it can be shown that 222 key-IV pairs correspond to
each loaded state. This further compounds the state convergence which is experienced by A5/1
during initialisation and keystream generation.

Using majority clocking as the state-update function introduces nonlinearity during the
diffusion phase and during keystream generation. In fact, it is the only nonlinear operation
in A5/1. However considering the possible prior states for given states of a certain format or
pattern reveals an interesting phenomenon. For some patterns there are no prior states while
others have one or more prior states. Clearly the state update function is not one-to-one.

Golić [12] considered the inverse mapping for the majority clocking function and identified
some states with no pre-image and which therefore cannot be reached from any loaded state
in a single iteration. He demonstrated that these states comprise 3

8 of the loaded states of the
system. Thus, the usable state space shrinks by a factor of 5

8 (from 264 to 5× 261 ≈ 263.32) at
the first iteration of the diffusion phase. Golić also identified some states with unique pre-images
and others with up to four pre-image states. Figure 2 presents a graphical summary of the six
cases identified by Golić. In this figure, (Ri, Rj , Rk) is any permutation of the set {A,B,C} of a
particular set of registers stages in A5/1, where the shaded stage in each register is its clocking
tap. The symbol x represents either 0 or 1, while # represents the complement of x; a blank
square represents a bit which can take either value. The proportion of loaded states for each case
in Figure 2 is presented in Table 1, along with the corresponding number of pre-images. Note
that the case identified as (i) cannot be clocked back to any valid state. That is, states of this
form cannot be reached after the first iteration of A5/1 initialisation state update function.

Biryukov et al. [6] also provided convergence estimates when exploring the efficiency of their
proposed attacks on A5/1. They reported that, of 108 randomly chosen states, only about 15%
can be clocked back 100 iterations. That is, 85% of chosen states could not be obtained after 100
iterations of the majority clocking process. A recent paper by Kiselev and Tokareva [17] analysed
A5/1’s state-update function and claimed that after eight iterations of the state-update function,
the number of loaded states is reduced from 264 to 260.2355. However, this estimated appears to
be flawed as it does not agree with our experimental work and Biryukov et al.’s [6] work.

3 STATE CONVERGENCE IN IRREGULARLY-CLOCKED STREAM CIPHERS 5

α (number of iterations) 1 2 3 4 5 6

new proportion 3
8

3
64

9
512

57
4096

423
32768

6453
524288inaccessible

cumulative proportion
0.375 0.422 0.439 0.453 0.466 0.479

inaccessible

proportion accessible 0.625 0.578 0.561 0.547 0.534 0.521

number of accessible
263.322 263.209 263.165 263.129 263.094 263.061

states

Table 2: Proportion of available states in A5/1 after α iterations

Clock

t + 1

01

1 0

0 1

A7A9 A8

B10B11 B9

t

0

01

1

10

A7A8A9

B9B11 B10

1 0

1 0

0 1

(t + 1)′

A7A9 A8

B9B11 B10

C11 C10 C9 C11 C10 C9 C11 C10 C9

B(t)

A(t)

C(t)

A′(t + 1)

B′(t + 1)

C ′(t + 1)

A(t + 1)

B(t + 1)

C(t + 1)

Figure 3: A5/1 preimage case(i) example

We explored the states which could not be accessed after 2 ≤ α ≤ 6 iterations. We note that
the rate of state convergence is not uniform at each iteration. The proportion of inaccessible
states increases as α increases. Table 2 summarises the proportion of inaccessible states for
1 ≤ α ≤ 6. From these results, we estimate that the number of accessible states at the end
of initialisation (α = 100) to be approximately 5% of the number of loaded states. However,
computer simulations using a scaled-down version of A5/1 yielded an estimated number of
accessible states after initialisation of approximately 19.2% of the number of loaded states. The
latter result is similar to previous experimental results for A5/1 reported by Biryukov et al. [6].

The above analyses of the A5/1 state-update function demonstrate that increasing the number
of iterations of the state-update function during initialisation decreases the number of distinct
initial states. Also if two loaded state converge during initialisation, the same keystream will be
produced in both cases.

Cause of state convergence in A5/1 We now illustrate why a particular A5/1 state, which
falls into case (i) shown in Figure 3, cannot be reached after the first iteration of the A5/1
state-update function. Assume we have an A5/1 state at time t+1 whose register stages have the
following values: A9(t+1) = B11(t+1) = C10(t+1) = 1 and A8(t+1) = B10(t+1) = C11(t+1) = 0.
Recall that for A5/1’s state-update function, register stages whose contents agree are clocked
once. At time t + 1, the contents of A9(t + 1) and B11(t + 1) agree, while the contents of
C11(t + 1) disagree. By applying the rules of A5/1’s majority-clocking scheme, we clock A
and B back once. That is, the contents of A9(t + 1) and B11(t + 1) are shifted to A8(t) and
B10(t) respectively, while the contents of A8(t+ 1) and B10(t+ 1) are shifted to A7(t) and B9(t)

3 STATE CONVERGENCE IN IRREGULARLY-CLOCKED STREAM CIPHERS 6

AC

BC

NLFSR B

LFSR A

z(t)

Controls how A is clocked

Controls how B is clocked

Figure 4: General diagram for the Mickey stream cipher

respectively. We do not clock C back as the contents of C11(t+ 1) does not agree with A9(t+ 1)
and B11(t+ 1). This single application of the majority-clocking scheme gives us the A5/1 state
with the register contents A, B, and C at time t. The contents of the A5/1’s clocking taps
at time t are A8(t) = B10(t) = C10(t) = 1. By applying the rules of A5/1’s majority-clocking
scheme to this A5/1 state, we clock all three registers once, as the contents of the clocking taps
all agree. giving us the state at time (t + 1)′. However, the contents of A5/1’s state at time
(t+ 1)′, consisting of A′(t+ 1), B′(t+ 1), and C ′(t+ 1) is not the same as A(t+ 1), B(t+ 1),
and C(t+ 1). Therefore, the state at time t+ 1 is not a state which can be attained after one
iteration of A5/1 initialisation state update function. The register stages needed for analysing
the number of pre-images which can be obtained when an A5/1 state at time t+ 1 is clocked back
are A8, A9, Bi and Ci for i ∈ {10, 11}. If we were to treat these stages as a 6-tuple and examine
the possible ways we can clock A5/1’s registers backwards for each of the 26 = 64 possible values
the register stages A8, A9, Bi and Ci for i ∈ {10, 11} can attain at t+ 1, we are able to obtain
Golić’s six preimage cases shown in Figure 2.

3.2 Mickey family of stream ciphers

Mickey-v1 is a bit-based stream cipher submitted to the eSTREAM project [11] by Babbage and
Dodd. After state convergence was reported by Hong and Kim [14] in Mickey-v1, an updated
version, referred to as Mickey-v2 [4], was submitted in 2006 and is one of the stream ciphers
in the final eSTREAM portfolio. In this section, we describe the operation of Mickey-v1. The
operation of Mickey-v2 is very similar but with details adjusted to suit the larger registers used.

Mickey-v1 has two 80-bit shift registers: LFSR A and NLFSR B, giving a total state size of
160 bits. These shift registers are configured as Galois style registers, that is, the contents of a
single register stage are used to update multiple stages of the register. (By contrast, a Fibonacci
style register updates a single stage of the register using a value calculated from several other
stages.)

A diagram showing the components and their interactions is shown in Figure 4. An 80-bit
key and an 80-bit IV are used to initialise the internal state.

3.2.1 Mickey initialisation and keystream generation

The basic idea of Mickey is that the registers A and B are mutually clocked, that is, the clocking
of each register depends on values from both registers. Specifically, the clock control bit for
LFSR A is Ac = B27⊕A53, while the control bit for the NLFSR B is Bc = B53⊕A26. If Ac = 0,

3 STATE CONVERGENCE IN IRREGULARLY-CLOCKED STREAM CIPHERS 7

A is clocked once, whereas if Ac = 1, A is updated using an operation proposed by Jansen [15]
which is equivalent to clocking A 240 − 23 times. Similarly, the choice of nonlinear function used
to update register B depends on the value of Bc. This clocking scheme applies during both
initialisation and keystream generation; the only thing that changes between these phases is how
the feedback bits for the registers are calculated.

We denote the feedback bits for registers A and B as Af and Bf respectively. During the
various phases of operation, these feedback bits are calculated as follows:

• during IV loading, Af = A79 ⊕B40 ⊕ vi, Bf = B79 ⊕ vi, (for 0 ≤ i ≤ 79)

• during key loading, Af = A79 ⊕B40 ⊕ kj , Bf = B79 ⊕ kj , (for 0 ≤ j ≤ 79)

• during diffusion, Af = A79 ⊕B40, Bf = B79, for 80 clocks.

• during keystream generation, Af = A79, Bf = B79

During keystream generation, the keystream bit is calculated as z(t) = A0(t)⊕B0(t). This is
done before the internal state is updated. The designers also impose a restriction on the amount
of keystream which can be generated using a single key-IV pair: a maximum of 240 bits should
be generated before rekeying.

Since A is an LFSR, once the control bit for A is known, it is possible to calculate A(t) given
A(t+ 1). Similarly, the feedback function of B is invertible for a given value of the control bit.
That is, once the control bit of B is known, it is possible to calculate the previous internal state
B(t) given B(t+ 1). However, despite the fact that the individual clocking functions for these
two registers are invertible (one-to-one), the use of mutual clocking means that the combined
clocking function is not necessarily one-to-one, as demonstrated below.

3.2.2 Current analysis of state convergence in Mickey-v1

State convergence in Mickey-v1 during keystream generation was reported by Hong and Kim [14].
They claim that this state convergence is due to the fact that the state-update function of
Mickey-v1 uses two control bits, which consequently affect the very bits used to obtain the
control bits, and claim that this self-dependent operation usually produces state convergence in
the keystream generator. In their paper, they describe the algorithm they applied to determine
how many pre-images a random state has. This algorithm is as follows:

1. Choose random states for both A and B.

2. Calculate the reverse clocking of register A, assuming the control bit is set to 0, and call
this state A0. Calculate what the state of A would have been assuming that the control bit
was 1, and call this state A1. Do the same for register B, and call the clocked-back states
B0 and B1, where B0 is the state B clocks back to when the control bit is 0, and B1 is the
state B clocks back to when the control bit is 1.

3. For each of the four possible (A, B) pairs after A and B are clocked back, calculate the
two control bits, check to see if these match with the control bits actually used and count
the number of matches.

For each of 220 randomly chosen initial states, Hong and Kim ran the algorithm described above.
They found that some states had none, one, two, or four pre-images. None of the 220 randomly
chosen initial states had three pre-images. The total number of pre-images Hong and Kim
found for the 220 randomly chosen states can be found in Table 3. Hong and Kim provided no

3 STATE CONVERGENCE IN IRREGULARLY-CLOCKED STREAM CIPHERS 8

No. of pre-images 0 1 2 3 4

No. of states 307988 452017 279418 0 9153

Table 3: 220 randomly chosen states, and the number of pre-images which produce them [14]

explanation as to why there were no states with three pre-images. In the following, we provide a
theoretical argument for why this occurs.

The existence of state convergence in Mickey-v1 during keystream generation can be shown
theoretically as follows. Start with a state (A(t+ 1), B(t+ 1)) and clock A and B back to A0,
A1, B0 and B1, as above. We note that the two clocking alternatives for B produce identical
results in the case where the feedback bit Bf = 0, so we separate our argument into two cases.
(Note that Bf (t) = B79(t) = B0(t+ 1) for both clocking alternatives.)

Case 1: Bf (t) = 0. As noted above, B0 = B1 = B′ (say) in this case and the value of Bc is
irrelevant. However, A0 6= A1. The conditions for A0 and A1 to be valid pre-images of A(t+ 1)
are that Ac = B27 ⊕A53 in each case, that is:

• if A0
53 = B′27, then (A0, B′) is a valid pre-image of (A(t+ 1), B(t+ 1))

• if A1
53 = B′27 ⊕ 1, then (A1, B′) is a valid pre-image of (A(t+ 1), B(t+ 1))

Assuming that the contents of A(t+ 1) are distributed uniformly, each of these conditions holds
independently of the other with probability 0.5, so the probability that (A(t+ 1), B(t+ 1)) has
no valid pre-images (conditional on Bf (t) = 0) is 0.25 and the (conditional) probabilities that
this state has one or two valid pre-images are 0.5 and 0.25 respectively.

Case 2: Bf (t) = 1. In this case, B0 6= B1 and we must consider the four potential pre-images
(A0, B0), (A0, B1), (A1, B0) and (A1, B1). The conditions for these to be valid pre-images are
(respectively);

1. a) A0
53 = B0

27 and b) A0
26 = B0

53

2. a) A0
53 = B1

27 and b) A0
26 = B1

53 ⊕ 1

3. a) A1
53 = B0

27 ⊕ 1 and b) A1
26 = B0

53

4. a) A1
53 = B1

27 ⊕ 1 and b) A1
26 = B1

53 ⊕ 1

By examining these conditions, we see that exactly zero, two or four of conditions 1a, 2a, 3a
and 4a can hold, and similarly for conditions 1b, 2b, 3b and 4b. For example, if 1a and 2a both
hold, it follows that B0

27 = B1
27 and hence that either both or neither of 3a and 4a is true. The

same argument applies if 1a and 2a are both false, while if only one of 1a and 2a is true, then
B0

27 = B1
27⊕1 and exactly one of 3a and 4a must be true. A similar analysis applies to conditions

1b, 2b, 3b and 4b.
If we again assume that the contents of A(t+ 1) are distributed uniformly, conditions 1a and

2a each hold independently of the other with probability 0.5 but the probabilities of conditions
3a and 4a are dependent on how many of 1a and 2a are true. By considering these probabilities
and then combining them appropriately with those for conditions 1b to 4b, we arrive at the
probability distribution for the number N ′ of valid pre-images (conditional on Bf (t) = 1) shown
in Table 4.

Finally, if we assume that the probabilities of Bf (t) = 0 and Bf (t) = 1 are equal, we obtain
the unconditional distribution for the number of valid pre-images N of a randomly chosen state

3 STATE CONVERGENCE IN IRREGULARLY-CLOCKED STREAM CIPHERS 9

N ′ 0 1 2 3 4

Prob(N ′) 21
64

3
8

9
32 0 1

64

Table 4: Pre-images and their probabilities when B(t) = 1

N 0 1 2 3 4

Prob(N) 37
128

7
16

17
64 0 1

128
Expected frequencies
for 220 states

303104 458752 278528 0 8192

Table 5: Combined distribution of number of pre-images during keystream generation

that is presented in Table 5. Table 5 also shows the expected frequencies that are obtained when
this distribution is applied to a sample of 220 states, as in Hong and Kim’s experiments. While
these expected frequencies are numerically close to Hong and Kim’s experimental frequencies,
the variation between them is statistically significant. We note, however, that Hong and Kim’s
observations are statistically consistent with a combined distribution involving a slight bias of
B0(t+ 1) = Bf (t) towards the case Bf (t) = 1. As Hong and Kim note that the rand() function
they used to generate random states “is known to be not so random” [14, p. 175], such a bias is
possible and would provide a plausible explanation for the discrepancy between our analysis and
their observations.

From both our theoretical analysis and the experimental work of Hong and Kim, we can see
that many states in Mickey have either multiple pre-images or no pre-images, and hence it is
clear that state convergence must occur in this cipher during keystream generation.

3.2.3 State convergence during initialisation

The above analysis can be extended to show that state convergence also occurs during the
initialisation phase of Mickey.

During initialisation, the feedback bit Af (t) may sometimes be equal to A79(t) (as during
keystream generation) and sometimes to A79(t)⊕ 1. In the latter case, it is still possible to clock
back uniquely from A(t+1) regardless of the value of Ac. We will denote the resulting pre-images
as A∗0 and A∗1 respectively. Likewise, Bf (t) may sometimes be equal to B79(t) and sometimes
to B79(t)⊕ 1 and it is again possible to clock back uniquely for both values which Bc can attain,
yielding pre-images B∗0 and B∗1 respectively. We also define A∗(t+ 1) to be the state obtained
from A(t+ 1) by complementing all stages that are directly affected by the feedback bit during
state update. Using the linearity of register A, it is easy to show that A∗(t+ 1) clocks back to
A∗0 and A∗1 when Af = A79(t) and to A0 and A1 when Af = A79(t)⊕ 1. From the structure of
A it can also be shown that A0

53 = A∗053 and A1
53 = A∗153, while A0

26 = A∗026 and A1
26 = A∗126 ⊕ 1.

We first consider the diffusion phase. Throughout this phase Bf (t) = B79(t), so B(t + 1)
always clocks back to B0 and B1, but now Af (t) = A79(t)⊕B40(t). We again consider two cases,
according to the value of Bf .

If Bf (t) = 0, we again have B0 = B1 = B′. Depending on the value of B′40, A(t + 1) will
either clock back to A0 and A1 or to A∗0 and A∗1. In the former case, the previous analysis
applies verbatim, while in the latter case it applies with A∗053 replacing A0

53 and A∗153 replacing
A1

53, and hence the same probabilities are obtained as previously.

3 STATE CONVERGENCE IN IRREGULARLY-CLOCKED STREAM CIPHERS 10

N ′ 0 1 2 3 4

Prob(N ′) 5
16

7
16

3
16

1
16 0

Table 6: Pre-images and their probabilities when Bf = 1 (initialisation)

N 0 1 2 3 4

Prob(N) 73
256

29
64

31
128

1
64

1
256

Table 7: Combined distribution of number of pre-images during initialisation

If Bf (t) = 1, we again have B0 6= B1 and must again consider four potential pre-images. Now
if B0

40 = B1
40 = 0 these are the same pre-images as previously and the same argument applies,

while if B0
40 = B1

40 = 1 the potential pre-images become (A∗0, B0), (A∗0, B1), (A∗1, B0) and
(A∗1, B1) and the argument applies with A∗0 replacing A0 and A∗1 replacing A1 throughout. If
B0

40 = 0 but B1
40 = 1, the potential pre-images are (A0, B0), (A∗0, B1), (A1, B0) and (A∗1, B1);

in this case, the conditions for these pre-images to be valid are

1. a) A0
53 = B0

27 and b) A0
26 = B0

53

2. a) A∗053 = B1
27 and b) A∗026 = B1

53 ⊕ 1

3. a) A1
53 = B0

27 ⊕ 1 and b) A1
26 = B0

53

4. a) A∗153 = B1
27 ⊕ 1 and b) A∗126 = B1

53 ⊕ 1

Since A0
53 = A∗053 and A1

53 = A∗153, the same remarks apply to conditions 1a–4a as previously;
however, the fact that A0

26 = A∗026 and A1
26 = A∗126⊕1 means that exactly one or three of conditions

1b–4b are valid here. A similar argument applies to the final case (B0
40 = 1 and B1

40 = 0), and
the constraints on conditions 1–4 in these two cases lead to the probability distribution for the
number of valid pre-images to the state (A(t+ 1), B(t+ 1)) shown in Table 6. Combining these
results with those for the first two cases and for Bf (t) = 0, we obtain the combined distribution
table for the number of pre-images, as shown in Table 7.

Finally, consider the IV loading and key loading phases. During these phases, Bf (t) may
sometimes be equal to B79(t) and sometimes to B79(t) ⊕ 1. In the former case, B(t + 1) still
clocks back to B0 and B1 but when the latter applies, we simply replace these by B∗0 and B∗1 in
our argument. We again consider the cases when Bf (t) = 0 and Bf (t) = 1, and the arguments go
through identically to those for the diffusion phase, except that all references to B0

40, B1
40 and B′40

are replaced by B∗040 ⊕ 1, B∗140 ⊕ 1 and B∗′40 ⊕ 1 whenever Bf (t) = B79(t)⊕ 1 (that is, when vi = 1
or kj = 1). Thus, state convergence is also seen to occur during initialisation. By comparing the
distributions in Tables 5 and 7, we see that the rates of convergence during initialisation and
keystream generation are very similar.

Hong and Kim estimated that after 240 iterations of the state-update function during keystream
generation, Mickey-v1’s internal state has lost approximately 39 bits of entropy. Mickey-v1’s
initialisation phase requires 240 (27.91) iterations of the state-update function. Extrapolating
from the estimates given by Hong and Kim, one would expect that about seven bits of entropy
will be lost during initialisation. However, the total convergence is virtually unchanged if a large
amount of keystream is generated: as 240 is negligible compared to 240, the amount of entropy
lost after initialisation and generating 240 keystream bits will still be about 39 bits.

4 STATE CONVERGENCE IN REGULARLY-CLOCKED STREAM CIPHERS 11

3.2.4 Mickey-v2

In response to the attacks by Hong and Kim, the designers of Mickey-v1 released a new version
of Mickey, referred to as Mickey-v2 [4] in 2006. The register lengths of A and B were increased
to 100 bits each, and the tap positions of the clocking bits were adjusted accordingly. The actual
mutual clocking mechanism remains unchanged. As the general structure and components are
similar to Mickey-v1, the reader is referred to Figure 4 for a diagram of Mickey-v2.

The designers argue that while state convergence is still possible, the expected entropy will
drop from 200 bits to about 160 bits after 240 keystream bits have been generated, and since this
is “twice the key size, . . . we no longer have a problem” [4].

This argument is clearly not correct. The initial entropy can not be larger than 160 bits
of loaded key and IV data. Although the registers are now longer, as the mechanism which
causes convergence is unchanged the number of distinct states will still decrease with additional
iterations of the register update functions. In fact, the effectiveness of their strategy requires
the assumption that the initialisation phase distributes the 2160 possible loaded states randomly
within the state space of size 2200. This assumption is equivalent (under the arguments of Hong
and Kim) to having started with a full state entropy of 200 bits and then having undertaken
approximately 241 state update iterations. This then implies that the further 240 iterations (for
keystream generation) will result in an additional entropy loss of only approximately 0.6 bits
(log2(241+240

241)). While this is not a large enough reduction to give rise to a serious attack, it does
show that state convergence needs to be considered carefully and allowed for appropriately when
designing ciphers. It is also clear that further entropy loss (state convergence) would result if a
user of this cipher contravened the design restrictions and generated keystream in excess of the
240 bits permitted.

4 State convergence in regularly-clocked stream ciphers

In the previous section, state convergence for the ciphers examined was associated with irregular
clocking. However, the use of regular clocking is not sufficient to avoid state convergence. In this
section we analyse some regularly clocked, bit-based stream ciphers for which state convergence
occurs. These include the Sfinks stream cipher [7] and the Summation generator [19].

4.1 Sfinks stream cipher

The Sfinks stream cipher was submitted to eSTREAM project in April 2005, by Braeken et al [7].
It is a bit-based stream cipher that takes an 80-bit secret key and 80-bit IV as inputs to a 256-bit
internal state. Sfinks consists of two main components: a 256 bit-based shift register, R, and a
nonlinear one-to-one inversion function INV as shown in Figure 5.

The nonlinear function INV can be considered as a 16× 16 bit S-box. The inversion function
is used during both initialisation and keystream generation in different ways. Let x and y
denote the 16-bit input and output of the S-box respectively, where x = (x15, . . . , x0) and
y = (y15, . . . , y0). The 16 input bits are taken from 16 register stages and the 16 output bits are
fed back to specified stages of the shift register during the initialisation as shown below; during
keystream generation only one bit of the output of the S-box contributes to the formation of
the keystream bit. The nonlinear function S-box is combined with a pipeline (memory) of seven
16-bit to store the output of the S-box. This memory is used to apply seven steps of delay to the

4 STATE CONVERGENCE IN REGULARLY-CLOCKED STREAM CIPHERS 12

0

y4(t − 7)y0(t − 7)
y11(t − 7)

y1(t − 7)y9(t − 7)y2(t − 7)y15(t − 7)y6(t − 7)
y14(t − 7)

y10(t − 7)
y13(t − 7)

y3(t − 7)y12(t − 7)y5(t − 7)y6(t − 7)y7(t − 7)

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4x3 x2 x0x1

S-Box (inversion)

16-bits

y15 y0

Delay-7
16-bits output to shift register

255
248
247

244

233
232

227

214
213
212

205
204

194
193
192
187

180
179
174
173

163
161

155
154
151
143
142
134
125
119
118

115

112
111

107
105
98 85 81 80 74 67 66 64 58 53 52 48 44 42 41 21 19 18 17 14 12 11 9 6 1 0

16-bit × 16-bit

Figure 5: Initialisation process of Sfinks

feedback to the shift register.

(x15, . . . , x0) =(R255, R244, R227, R193, R161, R134, R105,

R98, R74, R58, R44, R21, R19, R9, R6, R1) (1)
Ri(t) =Ri+1(t− 1)⊕ yi mod 16(t− 7) (2)

for i = {11, 17, 41, 52, 66, 80, 111, 118, 142, 154, 173, 179, 204, 213, 232, 247}.

4.1.1 Initialisation and keystream generation process

Sfinks loads 80-bit key and 80-bit IV to specific stages and added specific format of padding to
the state to produce a 256-bit loaded state. The pipeline (memory) of the S-box is set to zeros
at the beginning. The state update function is iterated 128 times to generate the initial state.
Each iteration updates 17 stages from the shift register: 1 from the linear feedback and 16 from
the output of the S-box. Figure 5 gives a general overview of state update function during the
initialisation process. The state update function can be described as follows:

Ri(t) =

Ri+1(t− 1) for i = {0, 1, . . . , 254} except {11, 17, 41, 52, 66, 80,
111, 118, 142, 154, 173, 179, 204, 213, 232, 247}

Ri+1(t− 1)⊕ y(i mod 16)(t− 7) for i = {11, 17, 41, 52, 66, 80, 111, 118, 142, 154,
173, 179, 204, 213, 232, 247}

⊕
j Rj(t− 1) for i = 255

for j = {212, 194, 192, 187, 163, 151, 125, 115, 107,
85, 66, 64, 52, 48, 14, 0}

Once the initialisation process is completed, keystream generation can begin. During the
keystream generation, the register feedback is linear and the least significant bit of the 16-bit
output value of the S-box is XORed with the value of stage R0 to produce a keystream bit, with
a delay of 7 steps applied to both values. That is, zt = R0(t− 7)⊕ y0(t− 7).

4.1.2 State convergence in Sfinks

In our analysis, the stages of R which provide inputs to the S-box or receive outputs from the
S-box are denoted as input and output stages respectively. We note that the distance between

4 STATE CONVERGENCE IN REGULARLY-CLOCKED STREAM CIPHERS 13

certain input and output stages is equal to the delay length of seven steps, and observe that this
correspondence can lead to state convergence, as follows.

Suppose that Ri+7 is an input stage and Ri is an output stage; then

Ri(t) = Ri+1(t− 1)⊕ y(i mod 16)(t− 7))
= Ri+7(t− 7)⊕ y(i mod 16)(t− 7)) = R̄i+7(t− 7)⊕ ȳ(i mod 16)(t− 7)) (3)

where R̄ and ȳ represent the complements of R and y respectively. If complementing the
contents of the input stage Ri+7(t − 7) (with other inputs unchanged) causes the output bit
y(i mod 16)(t− 7)) to change also then state convergence occurs, since two separate states at time
t− 7 both lead to the same state at time t.

An examination of the register R shows that there is only one input stage with a distance
to the next output stage equal to seven steps; this is R161 = x11, with corresponding output
stage R154 receiving the output y10. According to Equation 3, R154(t) will be unchanged if
complementing x11 results in y10 also being complemented. We therefore look for pairs of S-box
inputs (x15, . . . , x0) which differ only in bit x11 and for which the corresponding pair of outputs
(y15, . . . , y0) differ in bit y10.

In general, the other output bits may vary, except for y0, y1, y4, y9, y11 and y15. Therefore,
we consider pairs of the S-box inputs which differ only in x11 and for which the output bits differ
in y10 and are the same in y0, y1, y4, y9, y11 and y15.

By using an exhaustive search process, 273 pairs of the S-box inputs (and corresponding
outputs) with such patterns were found. Table 8 gives an example of one S-box input and output
pair. Note that the condition of difference is the underlined bold bit x11 and y10 and the output
bits y0, y1, y4, y9, y11 and y15 (shown in italics) should be the same in each pair. Table 9
provides an example of two states based on that pattern that converge to the same state after 7
iterations.

Input Output
S-box sequence x16 . x1 y15 . y0

Stage No. 25
5

24
4

22
7

19
3

16
1

13
4

10
5

98 74 58 44 21 19 9 6 1 11
1

14
2

17
3

20
4

11 15
4

41 23
2

24
7

11
8

21
3

52 17
9

66 17 80

1st value 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1
2nd value 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1 1 1

Table 8: A pair of S-box inputs and outputs that can causes state convergence

RA(t) 319B7E15AF4FF13189DF0800ADAC56A40913E4B90CBEEBD3A0074AFD3351E580

RB(t) 719B7E15AF4FF1318DCF0802AD8C56A42913E4B90CBEEBD3A0074AFD3351E581

R(t+ 7) 3EE336FC2B7E9FE2631BBE10015B18AD485227C972187DD3A7500C95FA64A3CB

Table 9: Two states (hex) which converge after 7 clocks

From above, there are 273 pairs of the S-box inputs satisfying the convergence conditions
out of the 215 possible input pairs. If we assume the possible values for the S-box input bits are
distributed randomly and independently, this state convergence has a probability of 273

215 = 2−6.9

at each step. There are 120 iterations of the initialisation process at which state convergence
can occur, so the approximate number of reachable distinct states at the end of initialisation is
(1− 2−6.9)120 × 2160 = 2158.55.

4 STATE CONVERGENCE IN REGULARLY-CLOCKED STREAM CIPHERS 14

z(t)

C(t)

C(t− 1)

LFSR B

A0(t− 1)

B0(t− 1)

LFSR A

Figure 6: Summation generator diagram

The individual components (linear feedback and the S-box) of the state update function are
one-to-one. However, the combination of these components which is used during the initialisation
process is not one-to-one. Therefore, state convergence can occur in Sfinks.

4.2 Addition-with-carry keystream generators

In this section, we discuss two keystream generators which use an Addition-with-carry mechanism
to generate keystream. These are the summation generator and the F-FCSR stream cipher.

4.2.1 Summation generator

The summation generator [19] is a bit-based stream cipher proposed by Ruppel in 1985. The
original summation generator proposed by Ruppel consisted of two binary symmetric source
output A and B of sizes a bits and b bits respectively, and a single memory bit C. This gives
the summation generator a state space S of s = a+ b+ 1 bits. The keystream output from a
summation generator is formed by combining the output of A and B and the previous contents of
C. Therefore, a summation generator can be viewed as a nonlinear combiner with a single memory
bit. In this section, the two binary symmetric source outputs are assumed to be two LFSRs
A and B, whose state-update functions are implemented using primitive feedback polynomials.
The output of two LFSRs A and B of lengths a and b, at time t is combined with a memory bit
C(t− 1) to form a keystream bit z(t), and the memory bit C(t) is calculated using the following
functions respectively:

z(t) = A0(t− 1)⊕B0(t− 1)⊕ C(t− 1) (4)
C(t) = A0(t− 1)B0(t− 1)⊕ (A0(t− 1)⊕B0(t− 1))C(t− 1) (5)

A diagram of the summation generator can be found in Figure 6. In the next section, we show
why state convergence occurs in the summation generator and estimate the loss of state entropy
in the summation generator arising from this state convergence.

State convergence in the summation generator If the state-update functions of A and
B are implemented using primitive feedback polynomials, there is a one-to-one mapping from a
particular state of either shift register at time t to another state at time t+ 1. Furthermore, the
memory bit C is not used to update A or B. Thus, no state convergence occurs in either register
A and B.

However, when we consider the entire state of the keystream generator, we see that it is
possible for combinations of A0(t− 1), B0(t− 1) and C0(t− 1) to generate the same C(t) value.
Table 10 shows how the keystream bit z(t), and the memory bit C(t) are calculated based on
the values of A0(t − 1), B0(t − 1), and C(t − 1). From Table 10, we can observe that when

4 STATE CONVERGENCE IN REGULARLY-CLOCKED STREAM CIPHERS 15

A0(t− 1) B0(t− 1) C(t− 1) C(t) z(t)

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Table 10: State transition table for C(t) and keystream generation output

A0(t− 1) = B0(t− 1), the calculation of the value C(t) is not affected by C(t− 1). Consider two
distinct summation generators with states at time t− 1 comprising A(t− 1) = A′(t), B(t) = B′(t)
and C(t) 6= C ′(t). For example, let A0(t − 1) = A′0(t − 1) = B′0(t − 1) = B′0(t − 1) = 0, and
C(t − 1) = 1, and C ′(t − 1) = 0. At time t, A(t) = A′(t) and B(t) = B′(t) have the same
values, as the state-update functions for A and B are autonomous and are not affected by
the value of C(t − 1). However, note the value of C(t) is now 0. Hence, two distinct states
A(t− 1), B(t− 1), C(t− 1), and A′(t− 1), B′(t− 1), C ′(t− 1) have now converged to the same
state, and will generate the same keystream from this point on. Likewise, the states

• A′0(t− 1) = B′0(t− 1) = 1, C(t− 1) = 0 and

• A′0(t− 1) = B′0(t− 1) = 1, C(t− 1) = 1

will also converge to the same state at the next clock step, and will produce identical keystream
from that point on. If the initial state of a summation generator was initialised randomly, 1

2
of the states can be paired up, and each pair will generate the same state at time t + 1. At
time t+ 2, 1

4 of the initial states can be paired up, and each pair will generate the same state at
time t+ 3. Therefore, after two iterations of the summation generator’s state-update function,
1
2 + (1

2 ×
1
2) = 3

4 of the states would have experienced state convergence. After α iterations, the
summation generator would have lost (

∑α
i=0

1
2α) bits of entropy, approximately 1 bit for suitably

large α. As mentioned above, if A and B are autonomous LFSRs, state convergence will not
occur in either register. In this section, it is shown that state convergence can occur in the
carry register C. Thus, the summation generator will at most lose one bit of entropy, resulting
from the state convergence caused by C. As a result, the effective state space of the summation
generator is a+ b bits.

4.2.2 State convergence in the F-FCSR stream cipher.

The F-FCSR stream cipher [2], designed by Arnault and Berger in 2005 also uses a carry-register
based design. It uses a 128-bit key and a 64-bit IV to initialise a 196 bit internal state. Studies
by Jaulmes and Muller [16] and Röck [18] show that state convergence also occurs in F-FCSR. In
particular, Röck showed that that the effective state size of F-FCSR will always be approximately
128 bits.

5 MECHANISMS WHICH CAN CAUSE STATE CONVERGENCE 16

Type of mechanism Stream ciphers

Mutual clock-control • A5/1

• Mickey-v1/v2

Self-update • Sfinks

• Summation Generator

Table 11: Causes of state convergence summary table

5 Mechanisms which can cause state convergence

So far in this paper, we have studied stream ciphers which have state convergence problems.
Based on this study, we have identified two mechanisms which can cause state convergence.
These are:

• Mutual clock-control,

• Self-update mechanisms

The classification of the studied stream ciphers into the two categories is shown in Table 11. All
the mechanisms shown in Table 11 are nonlinear operations. However, the types of registers used
in the stream ciphers can either be linear and/or nonlinear. The stream ciphers which update
the internal state in a linear way do so via the XOR operation. For A5/1, this is accomplished
through the feedback polynomial of the LFSR. For Sfinks, the update of the internal state is also
accomplished through the LFSR’s feedback polynomial, along with the direct XOR of S-Box
output bits with specified bits of the LFSR. The remaining ciphers, the Summation generator
and Mickey, consist of ciphers which use a combination of linear and nonlinear functions to
update the internal state of the keystream generator. In Section 5.1 and Section 5.2, we discuss
why these mechanisms can cause state convergence in keystream generators.

5.1 Mutual clock-control

Mutual clock-control mechanisms are the combination of two different mechanisms: mutual
update, and clock-control mechanisms. In this section, we discuss both mechanisms and discuss
the situations where state convergence may or may not occur in keystream generators which use
clock-control mechanisms in their keystream generators.

5.1.1 Mutual-update mechanisms

Mutual-update mechanisms are mechanisms where each register is updated using input from the
stages of another register. That is, none of the registers are autonomous. The use of mutual-
update does not cause state convergence by itself. For example, a mutual update mechanism
is used for the state-update function of Trivium [9]. It should be noted that the state-update
function of Trivium is reversible, that is, each internal state has only one prior state and one
next state. Therefore, state convergence will not occur either during initialisation, or keystream
generation.

5 MECHANISMS WHICH CAN CAUSE STATE CONVERGENCE 17

LFSR B z(t)LFSR A

Figure 7: Step-1/2 generator

5.1.2 Clock-control mechanisms

Clock control mechanisms are used in keystream generators which have two or more registers.
They typically use an integer function which takes inputs from selected stages of a particular
register. Clock-control mechanisms can be found in ciphers like the Step-1/2 generator proposed
by Gollmann and Chambers [13], and the LILI family of stream ciphers [10, 20]. In the Step-1/2
generator, clocking register A controls how many times the clock-controlled generator B is clocked
for. If the output of A is 0, B is clocked once, and if the output of A is 1, B is clocked twice.
A diagram showing the components in the Step-1/2 generator can be seen in Figure 7. State
convergence will not occur in the Step-1/2 generator, as the state-update function is bijective.
Given a state S(t+ 1) at time t+ 1, we perform the following operations to obtain the unique
pre-image of S(t+ 1).

1. Calculate the previous output bit of A by clocking A backwards once.

2. Once the previous output bit of A is obtained, we know how many times B was clocked,
and can clock it the appropriate number of times to obtain the state at time t.

The LILI family of stream ciphers make use of an integer function during the diffusion and
keystream generation process. At time t, this integer function IB takes as input stages from the
clock-control register A and outputs the integer value IB(t). The clock-controlled register B is
then clocked IB(t) times. Similar to the Step-1/2 register, this state-update function is bijective.
Given a state at time t+ 1, we perform similar operations to obtain t+ 1’s unique pre-image.

1. Calculate the state of A at time t by clocking A backwards once.

2. Once the previous state of A is obtained, calculate the integer value IB(t) obtained at time
t using the integer function, and clock B backwards that number of times.

Biham and Dunkelman [5] observed that the LILI-II stream cipher may also experience state
convergence during the loading phase1. During LILI-II’s loading phase, the 128 bit register A is
loaded using the XOR of the 128 bit key and 128 bit IV. To load the 127 bit register B, we first
drop the first bit of the key, and drop the last bit of the IV, then XOR the two 127 bit values
together. During the diffusion phase, 255 bits of output is generated. This 255 bit value is loaded
into the two registers (128 bits in A, and 127 bits in B). The cipher is run again to produce 255
bits of output. As before, this 255 bit value is loaded into the two registers (128 bits in A, and
127 bits in B). At this point, LILI-II is in an initial state and ready to produce keystream.

However, the linear operation of XORing the key and IV together causes state convergence
during the loading phase. Biham and Dunkelman [5] noted that if two distinct keys-IV pairs
(K1, V 1), and (K2, V 2) satisfy the differential K1 ⊕K2 = V 1 ⊕ V 2 = 1128, the 255 bit output
produced during the diffusion phase will be the same for the two key-IV pairs. Since the same
255 bit output is directly loaded into the two registers to form the state which is used during the
diffusion phase, the two key-IV pairs will produce the same initial state and consequently, the
same keystream. To prevent this from occurring, XORing the key-IV pair during the keystream

1State convergence does not occur in LILI-128, as the 128-bit secret key was used to form the initial state
directly.

5 MECHANISMS WHICH CAN CAUSE STATE CONVERGENCE 18

B12(t) B20(t) IA(t) A12(t) A20(t) IB(t)

0 0 1 0 0 1
0 1 2 0 1 2
1 0 3 1 0 3
1 1 4 1 1 4

Table 12: Output of IA and IB based on their inputs.

generator’s loading process should be avoided, and a direct loading of the key and IV into a
keystream generator’s internal state should be used instead.

Before we explain why state convergence occurs in mutually clock-controlled ciphers, we
discuss why state convergence does not occur in both the Step-1/2 generator, and the LILI
family of stream ciphers during keystream generation. In both of these keystream generators,
the bijectiveness of the state-update function is due to the fact the register A is autonomous and
regularly clocked, while register B relies on some output derived from selected stages of register
A to determine how many times to clock. Analysing the state update function for A and B, we
know that since B relies on the output of A to determine how many times B is clocked, it would
be possible for two distinct B states , B, and B′, at time t to converge to the same state at time
t + 1 for two different clocking values obtained from register A. However for that to happen,
register A at time t + 1 must have had two distinct preimages, A and A′, at time t, since a
different number of clocks would be required for the two B distinct states at time t to be equal at
t+ 1. But register A can only have one pre-image at time t, since register A is clocked regularly,
so state convergence is not possible for the state-update function in the Step-1/2 generator and
the LILI family of stream ciphers. In contrast, using outputs from a clock-controlled register to
control how the clock-control register is clocked has the potential to cause state convergence. To
illustrate why this can occur, we use a modified version of LILI, LILI-M1 as a case study.

5.1.3 A case study in state convergence in mutual clock-control stream ciphers

The LILI-family of stream ciphers consists of the stream ciphers: LILI-128 [10] and LILI-II [20].
Although both ciphers differ in the various functions used, the structure of both ciphers can
be generalised. This structure consists of two LFSRs: LFSR A, LFSR B, a nonlinear output
function g and an integer function IB. IB takes as input selected stages from A and outputs an
integer IB(t). IB(t) determines how many times register B is clocked.

In LILI-M1, we retain these components and add an additional integer function IA, which
takes as input selected stages from register B and outputs an integer IA(t). IA(t) determines
how many times register A is clocked. The functions for IA and IB output the integer value
IA(t) and IB(t) using the following equations.

IA(t) = 2×B12(t) +B20(t) + 1
IB(t) = 2×A12(t) +A20(t) + 1

The outputs of IA and IB can be seen in Table 12. During each iteration of LILI-M1’s state-
update function, the integer values IB(t) and IA(t) are calculated from the internal state A(t) and
B(t) respectively. Registers A(t) and B(t) are then clocked IA(t) and IB(t) times respectively.
Diagrams showing the difference in structures of the original LILI family of stream ciphers and
LILI-M1 is shown in Figure 8 and Figure 9 respectively.

5 MECHANISMS WHICH CAN CAUSE STATE CONVERGENCE 19

IB

LFSR BLFSR A

g z(t)

Figure 8: General structure and components of the LILI keystream generators

LFSR BLFSR A

z(t)g

IB IA

Figure 9: Structure and components of LILI-M1

Determining if state convergence occurs in LILI-M1. Computer simulations were per-
formed to determine if state convergence occurs in LILI-M1. The stages used as inputs to the
integer functions IA and IB are B12 and B20, and A12 and A20, respectively. Since both registers
A and B are LFSRs, the contents of B12(t+1) and B20(t+1), and A12(t+1) and A20(t+1) when
the state-update functions of registers A and B are reversed will be replaced by the contents of
stages immediately downstream at time t. The clocking rules for IA and IB means that each
register can be clocked back either one, two, three or four times at each iteration. This means,
for each of the four stages used in the functions IA and IB, we have to consider the contents of
four stages immediately downstream. The contents of these stages can also be treated as a 16-bit
pattern. As contents of stages B12, B20, A12 and A20 at time t+ 1 do not affect the results of
clocking results of IA and IB, we can set the contents of these registers to arbitrary bits. For the
purposes of our experiments, these four stages are set to zero. For each possible 16-bit pattern,
we clock both registers backwards assuming the values of IA and IB were either of the values
shown in Table 12. After both registers have been clocked backwards, the contents of the register
stages B12, B20, A12 and A20 at time t is then used to calculate the values of IA and IB. If the
values of IA and IB match the integer values used to clock registers A and B back, we record it
was a valid pre-image. Otherwise, the state at time t+ 1 is considered as a state which could not
been obtained by a state at time t and we regard the state at time t + 1 was a state with no
pre-image.

The results of our experiments are shown in Table 13. This table shows how many pre-images
each of the 65536 internal states have. It is clear from Table 13 that state convergence occurs in
LILI-M1, as there are states which can have 0,2,3,4 pre-images.

Why state convergence occurs in LILI-M1. Assume that the current internal state of
LILI-M1 is (A(t+ 1), B(t+ 1)). To calculate how many times A(t+ 1) needs to be clocked back in
LILI-M1, we need to know the value of IA(t). The determination of IA(t) requires knowledge of
what the state B(t) was, which in turn requires knowledge of IB(t). Determining IB(t) requires

5 MECHANISMS WHICH CAN CAUSE STATE CONVERGENCE 20

No. of pre-images No. of states

0 16920
1 33184
2 13968
3 1440
4 24

Table 13: No. of pre-images which can be obtained for 65536 states

0 0 0 0 0 0

Forward clock

t + 1

A B

IB IA

Forward clock

1 00 0 0 0 0 0 0 0 00 0 1

Figure 10: LILI-M1 state at time t+ 1 which has 0 pre-images

knowledge of A(t) which is not possible without knowing what IA(t). If we knew what were the
values of IA(t) and IB(t) from the states A(t+ 1) and B(t+ 1), we would be able to determine
(A(t+ 1), B(t+ 1))’s unique pre-image. However we are not able to determine the original values
of IA(t) and IB(t) from A(t+ 1) and B(t+ 1) as the relevant stages used in the calculation of
IB and IA have already been clocked forward. Consequently, we have to assume each possible
combination of {IA(t), IB(t)} integer function outputs was equally likely. Using each possible
combination {IA, IB} outputs, we clock back registers A and B and check if the integer value
output of IA(t) and IB(t) at time t match the number of times we clocked back registers A and
B. If there are no matches, the state (A(t+ 1), B(t+ 1)) has no valid pre-images. If there is one
matching pair, the state (A(t+ 1), B(t+ 1)) has one unique pre-image. If there is more than one
match, there is more than one pre-image for that particular (A(t+ 1), B(t+ 1)) state. Figures 10
shows an example of a LILI-M1 states which has 0 pre-images. In the figures, the shaded stages
represent inputs to the integer function IA and IB. The left shaded stage in each register are the
stages A12 and B12 while the shaded stage on the right in each register represent the stages A20
and B20.

5.2 Self-update mechanisms

Self-update operations for stream ciphers are mechanisms which use the output from a particular
register to update the same register. Self-update mechanisms can be found in the initialisation
functions of Sfinks [7] and the Summation generator.

5.2.1 Cause of state convergence in self-update mechanisms

In Sfinks, the self-update operation comes from the design decision of using the outputs of the
Sfinks’s S-box, after a delay of seven clocks, to update selected stages of Sfinks’s LFSR. In
Section 4.1, the cause of state convergence in Sfinks occurs was discussed. The cause was due to
the fact that one of the stages used as input to the S-box to calculate the S-box’s 16-bit output
was later updated using one of the S-box’s output bits via the XOR operation. For Sfinks, the
delay of seven iterations means that during initialisation, A154(t+ 7) is updated by xoring it with
the a bit from the S-box output calculated at time t (specifically, y10(t)), of which A161(t) is one

5 MECHANISMS WHICH CAN CAUSE STATE CONVERGENCE 21

A12(t) B20(t) IB(t)

0 0 1
0 1 2
1 0 3
1 1 4

Table 14: Output of LILI-M2’s IA function based on its inputs.

of the S-Box inputs. Since Sfinks’ register A is a regularly clocked LFSR, A161(t) = A154(t+ 7)
after seven clocks. By flipping the bit at A161(t), there is a chance that, with all other stages
in A being the same, the flipped bit in A161(t) will result in a different value in y10(t). When
y10(t) is used to update A154(t+ 7), there is a chance two distinct states will converge to the
same state. The equations which have to be met for this to happen are detailed in Section 4.1.
One possible way of avoiding state convergence is to change the time delay by which the stages
in Sfinks’ LFSR are updated by the S-Box output word. However, care must be taken when
selecting the amount of delay to ensure that state convergence does not re-occur.

Unlike Sfinks, where the delay used to update a particular stage in the internal state is
seven clocks, the delay used in the summation generator to update the memory bit is one
clock. For the summation generator, state convergence will occur if the memory bit C of the
summation generator was randomly initialised. That is, if two summation generator states had
the same contents for registers A and B, and the contents of memory bit C for the two states are
complements of each other, state convergence will occur. To prevent state convergence, register
C of a summation generator has to be initialised to a fixed value (either 0 or 1). If the memory
bit C was fixed during initialisation, the state convergence problem described above will not
occur. However, it should be noted that by fixing the value of that memory bit, the state entropy
will still be reduced by one bit.

5.2.2 A case study in state convergence in stream ciphers using self-update mech-
anisms

In this section, we present a modified version of LILI, LILI-M2 as an additional case study into
how state convergence can occur in stream ciphers using self-update mechanisms.

LILI-M2 retains all the components of the LILI stream ciphers. The only modification comes
from the selection of stages which are used in the clocking function IB. In LILI-M2, one of the
input stages comes from register A, while the other comes from register B. The function IB is
defined as

IB(t) = 2×A12(t) +B20(t) + 1

The output of IB based on its respective inputs can be seen in Table 14. Thus, in LILI-M2,
register A is regularly clocked, as was the case in the original LILI stream ciphers, while the
clocking of register B is determined by IB. A diagram of LILI-M2 can be seen in Figure 11.

Determining if state convergence occurs in LILI-M2. Similar to the simulations done
for LILI-M1, simulations were also performed to determine if state convergence occurs in LILI-M2.

The results of our experiments are shown in Table 15. This table shows how many pre-images
were obtained for the 32 possible internal states have. It is clear from Table 15 that state
convergence occurs in LILI-M2, as there are states which can have zero or two pre-images.

6 CONCLUSION 22

IB

LFSR BLFSR A

g(x) z(t)

Figure 11: Structure and components of the LILI-M2

No. of pre-images No. of states

0 8
1 16
2 8

Table 15: No. of pre-images which can be obtained for 32 states

Why state convergence occurs in LILI-M2. In LILI-M2, register A is regularly clocked
and autonomous, while the clocking of register B is determined by the output of the control
function IB(t). Since register A is autonomous, given the state A(t+1), it is possible to determine
the unique pre-image A(t) and determine its bit contribution in the calculation of the IB(t). The
state convergence problem arises when we try to determine B(t+ 1)’s pre-image. Since we do not
know what the actual value of Bc(t) was, we are not able to determine which update function to
use to clock B(t+1) back to B(t). Therefore, we have to assume that either control bit value (0 or
1) is possible. Clocking B(t+ 1) back assuming the control bit was 0 or 1 may yield two possible
pre-images, B(t) and B′(t). Consequently, two unique states, (A(t),B(t)) and (A(t),B′(t)) which
are obtained when clocking back register B assuming that Bc(t) was 0 and assuming Bc(t) was
1, may yield two pre-images which when clocked forwards, give (A(t+ 1), B(t+ 1)). Figure 12
shows an example of a LILI-M2 states which has 0 pre-images. In the figures, the shaded stages
represent inputs to the integer function IB. The shaded stage in register A is A12, while the
shaded stage in register B is B20.

6 Conclusion

In this paper, we examined several stream ciphers known to experience state convergence and
examined why this occurs. The ciphers analysed were: A5/1, Mickey, Sfinks and the summation
generator.

t + 1 0 0 0 1 0 0 0

IB
A B

Forward clock

Figure 12: LILI-M2 state at time t+ 1 which has 0 pre-images

REFERENCES 23

We provide estimates on the amount of distinct initial states which remain after 2–6 iterations
of A5/1’s state-update function and discuss why state convergence occurs in A5/1. For the
Mickey stream cipher, we show that state convergence can occur during its initialisation phase.
We also show that the effective state size of Mickey-v2 drops below 160 bits, contrary to the
claims of the designers. The analysis of Sfinks’ state-update function used during initialisation
indicates that state convergence occurs and we show that after 120 iterations of the state-update
function, the number of distinct initial states remaining is 2158.55. We demonstrated why state
convergence occurs in the summation generator, resulting in the lost of one bit of entropy.

From the analyses of the above-mentioned ciphers, we identified two mechanisms which can
cause state convergence. These mechanisms are: mutual clock-control and self-update operations.
A5/1 and Mickey can be grouped into the mutual clock-control category, while Sfinks and the
summation generator can be grouped into the self-update category.

When state convergence occurs during initialisation of stream ciphers, the number of distinct
initial states will decrease as the number of iterations of the initialisation state update function
performed increases. This decreases the effective key-IV space of the keystream generator while
simultaneously decreasing the efficiency of the rekeying process with no corresponding increase in
security. If the state-update function used during initialisation is also used to generate keystream,
state convergence problems will continue and can result in a further reduction of the effective
key-IV space.

Avoiding state convergence requires careful analysis of the state-update functions used during
both initialisation and keystream generation to ensure that they are one-to-one. These one-to-one
state-update functions should also be carefully used. The state convergence experienced by
Sfinks is an example that demonstrates that the use of one-to-one components in composing a
state update function is not enough to ensure that state convergence does not occur, and that
designers should ensure that the overall state update function is also one-to-one. Through the
use of two case studies, we also demonstrated how simple modifications to the state-update
function used in the LILI family of stream ciphers can cause state convergence when the original
versions do not suffer from this problem.

Current stream cipher proposals commonly include an analysis section detailing their claimed
resistance to various attacks. We recommend that future stream cipher designers pay careful
attention to the choice of state-update functions used during initialisation and keystream
generation, as functions which are not one-to-one may make many attacks more effective than
anticipated.

References

[1] Alhamdan, A., Bartlett, H., Simpson, L., Dawson, E., Wong, K.K.H.: State convergence
in the initialisation of the Sfinks stream cipher. In: Pieprzyk, J., Thomborson, C. (eds.)
Australasian Information Security Conference (AISC 2012). vol. 125, pp. 27–31. Australian
Computer Society (2012)

[2] Arnault, F., Berger, T.P.: F-FCSR: design of a new class of stream ciphers. In: Gilbert, H.,
Handschuh, H. (eds.) Fast Software Encryption (FSE 2005). Lecture Notes in Computer
Science, vol. 3557, pp. 83–97. Springer (2005)

[3] Babbage, S., Dodd, M.: The stream cipher MICKEY (version 1). eSTREAM, ECRYPT
Stream Cipher Project, Report 2005/015 (2005), available from http://www.ecrypt.eu.
org/stream/ciphers/mickey/mickey.pdf

REFERENCES 24

[4] Babbage, S., Dodd, M.: The stream cipher MICKEY 2.0 (2006), available from http:
//www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf

[5] Biham, E., Dunkelman, O.: Differential Cryptanalysis in Stream Ciphers. Cryptology ePrint
Archive, Report 2007/218 (June 2007), available from http://eprint.iacr.org/2007/
218.pdf

[6] Biryukov, A., Shamir, A., Wagner, D.: Real Time Cryptanalysis of A5/1 on a PC. In:
Schneier, B. (ed.) Fast Software Encryption (FSE 2000). Lecture Notes in Computer Science,
vol. 1978, pp. 1–18. Springer (2001)

[7] Braeken, A., Lano, J., Mentens, N., Preneel, B., Verbauwhede, I.: SFINKS : A Synchronous
Stream Cipher for Restricted Hardware Environments. eSTREAM, ECRYPT Stream Cipher
Project, Report 2005/026 (2005), available from http://www.ecrypt.eu.org/stream/
ciphers/sfinks/sfinks.ps

[8] Briceno, M., Goldberg, I., Wagner, D.: A pedagogical implementation of A5/1 (1999),
available from http://cryptome.org/jya/a51-pi.htm

[9] Canniére, C.D., Preneel, B.: Trivium. In: Robshaw, M.J.B., Billet, O. (eds.) New Stream
Cipher Designs: The eSTREAM Finalists. Lecture Notes in Computer Science, vol. 4986,
pp. 244–266. Springer (2008)

[10] Clark, A., Dawson, E., Fuller, J., Golić, J.D., Lee, H.J., Millan, W., Moon, S.J., Simpson,
L.: The LILI-II Keystream Generator. In: Batten, L.M., Seberry, J. (eds.) Information
Security and Privacy (ACISP 2002). Lecture Notes in Computer Science, vol. 2384, pp.
25–39. Springer (2002)

[11] European Network of Excellence for Cryptology: The eSTREAM Project, Available from
http://www.ecrypt.eu.org/stream/index.html

[12] Golić, J.: Cryptanalysis of Three Mutually Clock-Controlled Stop/Go Shift Registers. IEEE
Transactions on Information Theory 46(3), 1081–1090 (2002)

[13] Gollmann, D., Chambers, W.G.: Clock-Controlled Shift Registers: A Review. IEEE Journal
on Selected Areas in Communications 7(4), 525–533 (1989)

[14] Hong, J., Kim, W.H.: TMD-Tradeoff and State Entropy Loss Considerations of Streamcipher
MICKEY. In: Maitra, S., Madhavan, C.E.V., Venkatesan, R. (eds.) INDOCRYPT 2005.
Lecture Notes in Computer Science, vol. 3797, pp. 169–182. Springer (2005)

[15] Jansen, C.J.: Stream Cipher Design: Make your LFSRs jump! Presented at SASC 2004
(2004), available from http://www.ecrypt.eu.org/stvl/sasc/

[16] Jaulmes, É., Muller, F.: Cryptanalysis of the F-FCSR Stream Cipher Family. In: Bart
Preneel and Stafford E. Tavares (ed.) Selected Areas in Cryptography (SAC 2005). Lecture
Notes in Computer Science, vol. 3897, pp. 20–35. Springer (2006)

[17] Kiselev, S.A., Tokareva, N.N.: Reduction of the Key Space of the Cipher A5/1 and
Invertibility of the Next-State Function for a Stream Generator. Journal of Applied and
Industrial Mathematics 6(2), 194–202 (2012)

[18] Röck, A.: Entropy of the Internal State of an FCSR in Galois Representation. In: Nyberg,
K. (ed.) Fast Software Encryption (FSE 2005). Lecture Notes in Computer Science, vol.
5086, pp. 343–362. Springer (2008)

REFERENCES 25

[19] Rueppel, R.A.: Correlation Immunity and the Summation Generator. In: Williams, H.C.
(ed.) Advances in Cryptology — CRYPTO ’85. Lecture Notes in Computer Science, vol. 218,
pp. 260–272. Springer (1985)

[20] Simpson, L., Dawson, E., Golić, J.D., Millan, W.: LILI Keystream Generator. In: Stinson,
D.R., Tavares, S. (eds.) SAC - Selected Areas in Cryptograpy (SAC 2000). Lecture Notes in
Computer Science, vol. 2012, pp. 248–261. Springer (2000)

[21] Teo, S.G., Al-Hamdan, A., Bartlett, H., Simpson, L., Wong, K.K.H., Dawson, E.: State
Convergence in the Initialisation of Stream Ciphers. In: Parampalli, U., Hawkes, P. (eds.)
Information Security and Privacy (ACISP 2011). Lecture Notes in Computer Science, vol.
6812, pp. 75–88. Springer (2011)

