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Abstract

We construct a protocol for constant round Two-Party Secure Function Evaluation in the
standard model which improves previous protocols in several ways. We are able to reduce the
number of calls to Oblivious Transfer by a factor proportional to the security parameter. In
addition to being more efficient than previous instantiations, our protocol only requires black
box calls to OT and Commitment. This is achieved by the use of a faulty variant of the Cut-
and-Choose OT. The concepts of Garbling Schemes, faulty Cut-and-Choose Oblivious Transfer
and Privacy Amplification are combined using the Cut-and-Choose paradigm to obtain the final
protocol.

Introduction

In the field of secure multiparty computation it is studied how to simulate a trusted third party
when several players need to compute a function on their private data. Auctions, electronic voting
and privacy preserving data analysis are important applications of secure multi-party computation.

The tools that we use in this paper are Oblivious Transfer [Rab81, EGL85], Commitment
Schemes [Blu83, Eve83] and some variation of Yao’s Garbled Circuit. In this work, we consider
malicious adversaries and the strongest notion of security, called Universal Composability [Can01].
The goal of this work is to present a very efficient protocol for constant round Two-Party Secure
Function Evaluation in this model based on the above primitives.

Important work has gone into optimizing the primitives of secure computation. Oblivious
Transfer requires expensive public key operations to instantiate from scratch, thus the idea of
generating a large number of them from a much smaller number of OT by using private key
operations is extremely valuable. This concept is called OT extension [Bea96, IKNP03] and the
fact that the protocol we present in this article is based on black box OT insures that these types
of optimization apply.

Garbling schemes [Yao82] are convenient and efficient constructions and have been the basis of
several interesting two-party computation protocol [FJN+13, KSS12, LP11, SS11, LP07] but other
approaches have been used [IPS08, LOP11, NO09, NNOB12].

Our results in perspective

In recent times, Secure Function Evaluation with malicious adversaries using Garbled Circuits
have become more and more practical. Previous protocols based on garbling schemes following the
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Cut-and-Choose paradigm required Ω(ns) calls to OT. Lindell and Pinkas started the trend with
their work in [LP07] that required Ω(ns) OT but Ω(ns2) Commitments. The work of [LP11] and
[SS11] only require Ω(ns) commitments but require stronger notions of OT such as committing OT
and Batch Single Choice Cut and Choose OT. These protocols do not admit OT extension. The
results of [FJN+13], [Fre12], [MR13] and [KSS12] allow OT extensions but the first three are in
the Random Oracle model and the third one relies on Claw-Free Collections. In contrast, our work
only uses O(n+ s) OT, allows OT extension and does not rely on additional assumptions.

paper OT Commit OT extension Assumptions

[LP07] ns ns2 yes None

[LP11] ns ns no DDH

[SS11] ns ns no Claw-Free Collection, DDH

[Fre12, FN12] ns ns yes Random oracle

[KSS12] ns ns yes Claw-Free Collection

[FJN+13] n+ s ns/log(s) yes Random oracle

[MR13] ns ns yes Random oracle

[Lin13] ns ns no DDH

[HKE13] ns ns no DDH, Random oracle

this work n+ s ns yes None

Notation and convention

We will often denote the adversary’s view of a player’s input as a random variable. We will refer
to 1-out-of-2 Oblivious String Transfer for string of length l as OT. The security parameter will be
denoted by s. A circuit’s depth will be denoted by d and its input size by n. Uniformly random
and independent choices for x in a set X is denoted x ∈R X. The notation x ∈R A describes the
random selection of an element x according to random Variable A. The range of an integer starting
from i and ending with j is denoted [i, j]. As usual, we define secure function evaluation FSFE as
a two-party computation where Bob learns the output.

Structure of the paper

We first present our notation for the Garbling schemes. This leads to a very good generic protocol
for two-party computation using perfect Cut-and-Chose OT. We then present a Faulty Cut-
and-Choose OT. The drawback of using this faulty primitive is formalized in the Selective
failure attack section. This is followed by our Main protocol where we propose a very efficient
and secure protocol based on the Faulty Cut-and-Choose OT. The security proof in the universal
composability paradigm follows (sender simulation and receiver simulation).

Garbling schemes

In 1982, Yao generated a construction that came to be known as Yao’s garbled circuit. The idea
was to encode a circuit in such a way that by giving a party the right keys he could evaluate the
circuit on a specific input and yet learn nothing about the input except what could be deduced
from the circuit. This construction came to be used in many different applications each with their
own divergent variant. Lindell and Pinkas were the first to prove the security of Yao’s garbled
circuit in the field of two-party computation [LP09]. Garbling schemes proposed in [BHR12] define
the notions that unify these different variants.
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We will need to distinguish between a function f : {0, 1}n → {0, 1}m and its representation
f̄ (in our case we can restrain ourselves to circuits). A garbling algorithm GB is a randomized
algorithm that transforms f̄ into a triple of functions GB(f̄) = (F, e, d). We require that f = d.F.e
. The encoding function e turns an initial input x ∈ {0, 1}n into a garbled input X = e(x).
Evaluating the garbled function F on the garbled input X gives a garbled output Y = F (X). The
decoding function d turns Y into the final output y = d(Y ), which must coincide with f(x). One
has probabilistically factored f into d.F.e . Thus a garbling scheme G = (GB,En,De,Ev, ev) is
regarded as a five-tuple of algorithms, with strings d̄, ē, f̄ , and F̄ interpreted as functions under
the auspices of functions De, En, ev, and Ev.

A circuit garbling scheme is a five-tuple of algorithms G = (GB,En,De,Ev, ev). The first two
algorithms are probabilistic, the remaining are deterministic. The string f̄ represents the function f
that we wish to garble. On input f̄ , the algorithm GB outputs an encoding function En(ē, .) which
maps an initial input x ∈ {0, 1}n to a garbled input X = En(ē, x), as well as F̄ that describes
a garbled function which maps each garbled input X into a garbled output Y , and a string d̄
describing a decoding function DE(d̄, .) which maps each garbled output y into a a final output
y = De(d̄, Y ).

The side-information function is an important feature of garbling schemes. In a protocol that
follows, Alice will have to garble a circuit. Bob will have to verify that part of the output is
independent from part of his input. The only way this can be achieved is by looking at the
underlying side-information.

Definition 1. A garbling scheme is correct if for any function f the application of GB results in
strings (F̄ , ē, d̄) such that De(d̄, Ev(F̄ , En(ē, x))) = ev(f̄ , x).

Definition 2. A garbling scheme with an encoding function En(ē, .) with input x = x1 . . . xn where
xi ∈ {0, 1} is projective if for every ē there exists a list of tokens (T 0

1 , T
1
1 , . . . , T

0
n , T

1
n) such that

En(ē, x) = (T x1
1 , . . . , T xn

n ).

Definition 3. A projective scheme is transparent, if given f̄ , F̄ ,and the token (T 0
1 , T

1
1 , . . . , T

0
n , T

1
n)

in a random order for each variable, one can efficiently verify that F̄ is consistent with GB(f̄) and
furthermore the order of the tokens can be deduced.

Definition 4. The side-information function ψ denotes the information revealed about f̄ from
(F̄ , ē, d̄).

The side-information function is an important feature of garbling schemes. In the protocol
that follows, Alice will have to garble a circuit. Bob will have to verify that part of the output
is independent from part of his input. The only way this can be achieved is by looking at the
side-information.

Definition 5. A garbling scheme is private relative to a topological side information function ψ
if for any inputs x0,x1 and description of functions f̄0, f̄1 such that ev(f̄0, x0) = ev(f̄1, x1) and
ψ(f̄0) = ψ(f̄1), the adversary cannot distinguish between (F̄0, ē0, d̄0, X0) generated from (f̄0, x0)
and (F̄1, ē1, d̄1, X̄1) from (f̄1, x1).

Definition 6. A garbling scheme is malleable if for any function f̄ such that GB(f̄) = (F̄ , ē, d̄)
and every y ∈ {0, 1}m there exists a ḡ such that ∀x, g(x) = y and ψ(f̄) = ψ(ḡ).
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Two-party computation

The first application of a Garbling scheme was presented by Yao in order to implement secure
two-party computation. In a context where the players are semi-honest, by using OT it becomes
easy for Alice and Bob to evaluate a circuit of their choice securely on their private inputs. Alice
can construct the garbled circuit and send it to Bob with the keys associated to her input. Alice
then transmits to Bob his keys using OT. For each of Bob’s input bits, Alice will send the key
associated with the value 0 and the key associated with the value 1. For each of his input bits,
Bob will choose to learn the key corresponding to his input at that position. Since Bob has all the
input keys as well as the circuit, he can now perform the evaluation and extract the result.

In order to make this scheme secure against an active adversary, several issues have to be
addressed. In terms of correctness, Bob must know that the circuit he evaluates computes the right
function. This is not sufficient since Alice could transfer keys that are correct only for certain input
bit and thus learn information about Bob’s input following the success or failure of the protocol.
Bob must know that the protocol would have worked correctly even if he had chosen another input.
These two requirement can be ensured by using what is called Batch-Single Choice Cut-and-Chose
OT introduced in [LP11].

Informally, Alice will create s circuits with all of their associated input keys. Half of the circuits
will be completely revealed so that Bob can verify that they are correct. It is thus unlikely that
this phase succeeds and that more than a few of the remaining unopened circuit are incorrect. By
evaluating the remaining circuits and taking the most common result as the output, correctness is
guaranteed. To keep Alice’s input private, it is important that Bob always evaluates the circuit
with the same input. Combining all these requirements, we see that the generic Oblivious Transfer
has to be replaced with something with more structure. The set of pairs of keys for all the circuits
will be organized in a table. Each of the s columns is associated with a circuit. Each row is
associated with an input variable (of Bob) and each element of the table is a pair of keys, which are
respectively associated with the values 0 and 1. Learning half of the circuit (check circuit) means
Bob must learn for exactly half of the columns the value of both keys. The fact that Bob always
uses the same inputs bits means that for every individual row he must choose between learning the
first element of each pair or learning the second element of each pair. In the following section, we
will present a variant of that primitive that we call Cut-and-Chose OT.

Bob can now reveal the identity of the check circuit so that Alice sends him all the associated
input keys. With all the keys he can verify the correctness of those circuits. The rest of the circuits
are going to be evaluation circuits and for all of those, Alice will send the keys associated to her
input. By choosing different inputs for some evaluation circuit, Alice can learn information about
the sensitivity of the circuit conditioned on Bob’s input. To solve this problem [Fre12, FN12]
introduced a verification functions v. Instead of just generating garbled circuits for f , garbled
circuits for f ′[(x, a), (y, b)] = (f [x, y], v[x, a, b]) will be generated. The following choice of functions
has been introduced.

Definition 7. We will denote zi(x, a, b) = (pi(x) · b) ⊕ ai and v(x, a, b) = (z0, . . . , zn) as the
verification function. Where pi is the cyclic shift toward the right of i position and · the inner
product mod 2.

It was proven in [Fre12] that v does not reveal information about Alice’s inputs and at the
same time guarantees that inconsistent inputs will be detected except with exponentially small
probability.
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Faulty Cut-and-Choose OT

In this section, we will introduce the Cut-and-Choose OT which is a faulty variant of the Batch-
Single Choice Cut-and-Chose OT introduced by [LP11]. This is a variant of OT where more than
2 messages are sent simultaneously and where the choice of messages received by Bob has a special
structure. The input from the sender is a table M of ns pairs of binary messages (mij0,mij1) of
length l. Using our faulty protocol, an honest sender would learn nothing and an honest receiver
would learn exactly the following. For each row, the receiver selects a yi and gets {mijk | k = yi }.
For each odd index of column j, the sender selects an aj ∈ {0, 1} and learns all messages in
{mi(j+aj)k}.

We implement a faulty variant of this primitive from O(n + s) OT. The transfer of rows and
the transfer of columns will be done independently and thus an honest Alice has to use the same
information twice. Each of the n rows will incur one OT where the first string will be the first
element of each pair in that row and the second string will be the second element of each pair. For
each pair of columns, each column will be contained in a single string. The sender and the receiver
will execute s OT with the strings associated to the columns. If the sender is honest, the receiver
will get exactly what he requested. One of the problems of the protocol is that the choice of Bob can
be adaptive. To prevent this, Alice will send keys (One time pads) instead of messages. Once every
key is transmitted, she will send the messages encrypted with different keys. Another problem with
this protocol is that the sender can choose the elements of the row inconsistent with the columns.
The receiver, if he finds an inconsistency, will have to abort but this can be done at a later time.
Instead, for the time being, he will select the column value as the output. This is essential to the
main protocol. In any case, the success or failure of the verification step leaks information about
Bob’s choice and if used in the protocol described previously, it would leak information about Bob’s
input. This issue will be dealt with in the final protocol. The following collection denotes the sets
of messages that the receiver can pick and where he learns exactly all the messages in the chosen
set.

Definition 8. Each messages is denoted as mijk where i ∈ [1, n], j ∈ [1, s], k ∈ {0, 1}.

• I = I0 ∪ I1

• I0 = { {mijk | k = yi } | yi ∈ {0, 1} },

• I1 = { {mi(j+aj)k | aj ∈ {0, 1} } | j ∈ [1, 3, . . . , s− 3, s− 1]}

• pic = pi1c, ..., pisc

• wj = p1j0, p1j1, ...pnj0, pnj1

The following protocol implements the Cut-and-Choose OT.

Protocol: πCCOT

1. For each i ∈ [1, n], j ∈ [1, s], k ∈ {0, 1}, the sender selects pijc ∈R {0, 1}l.

2. For each i ∈ [1, n], the sender and the receiver execute FOT with messages (pi0, pi1) with
choice bit yi.

3. For each odd j ∈ [1, s], the sender and the receiver execute FOT with messages (wj , wj+1)
and choice bit aj .
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4. The receiver checks that the values he received (the pic and wj′) are consistent. If not, he
notes the inconsistency and uses the column value as the output (the wj′).

5. The sender sends zijk = mijk ⊕ pijk

The protocol is faulty and therefore its security will not be proven independently in this section.
That being said, the problem only arises in the case of a cheating sender and therefore we can still
discuss the possibility of simulating the receiver.

Theorem 1. A simulator having access to the ideal functionality for Cut-And-Chose OT, when
the environment controls the receiver, can simulate the view of the environment in the real world.

Proof. The simulator selects pijc ∈R {0, 1}l. The simulator awaits the environment’s choice (yi
and aj) for each OT. (The simulator is able to extract the choice bits in the OTs for each row
and column pair.) The simulator forwards the appropriate combination of keys as specified in the
protocol. The simulator calls the ideal functionality with these choices. For each message mijk

that the simulator has obtained from the ideal functionality, he uses the key pijk to encrypt those
messages and sends the cyphertext zijk = mijk ⊕ pijk to the environment. For the messages mijk

that the simulator has not extracted, he forwards a random message zijk.
The distribution of mijk, zijk, pijk in the simulation is identical to the distribution of the real

world.

Selective failure attack

In order to achieve a very high level of efficiency in our final protocol, we will have to combine
several ideas. One of them is to use a faulty Cut-And-Chose OT. In our protocol, Alice can gain
information about Bob’s input by misbehaving and waiting to see if this causes the protocol to
abort. In this section, we formalize this type of attack and the impact it has on Alice’s information
regarding Bob’s input.

In general, selective failure is a type of attack where the adversary makes the successful com-
pletion of the protocol depend on the other player’s input. We consider that an attack is a selective
failure attack, if for any pairs of inputs that causes the protocol to succeed (resp. fail), from Alice’s
point point of view the resulting distributions over Bob’s input are indistinguishable.

Theorem 2. Any selective failure which goes undetected by Bob with probability at least 2−k will
reduce the min entropy for Alice about Bob’s input by at most k.

Proof. Let X be the variable representing Alice’s knowledge about Bob’s input and let H∞(X) = m.
A selective failure attack splits the domain of X in the set in U and its complement depending
whether or not the protocol aborted. Let us denote p ≥ 2−k, the probability that a randomly
selected element x according to distribution X falls into U . We can see that:

Pr[X = x | x ∈ U, x ∈R D] ≤ 2−m/p (1)

Pr[X = x | x ∈ U, x ∈R D] ≤ 2−m+k (2)

This implies that the reduction of min entropy about X is smaller or equal to k.
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Main protocol

Although the complete protocol requires many steps, the right combination of ingredients results
in a very efficient protocol based on general assumptions. In the previous section, we explained
a known approach to combine Cut-and-Choose OT and Garbling Schemes to obtain Two-Party
Secure Computation. Our general protocol will follow this approach. Without further modification
of the protocol, the privacy of the receiver’s input would be jeopardized by the faultiness of the
Cut-and-Chose OT. We will thus modify the general protocol to address this problem. The function
to be evaluated will be modified in such a way that the leakage contains no information on Bob’s
input.

The function of two players, which is to be evaluated, will be replaced by f ′(x, y′, h, q) =
f(x, h(y′) ⊕ q) = f(x, y). To extract the output, y′ will be chosen uniformly at random, h will
be taken randomly from a family of universal hash functions with the appropriate parameters and
q = h(y′) ⊕ y. Since h and q do not contain information about the input, they can (and will) be
declared publicly after the faulty Cut-and-Chose OT has been used to transfer y′ among all the
different circuits. Thus, Alice’s input will remain the same, but Bob’s input is now decomposed
into (y′, h, q), where only y′ is transferred using the Cut-and-Choose OT. Intuitively, since only
a limited amount of information about y′ is leaked, privacy amplification ensures that y remains
private.

Another important technicality has to be taken care of. We require that the topological leakage
function of the garbling scheme show that for each garbled circuit that the output of the verification
function is independent of (h, q, y′). If this was not verified, then a corrupted sender could simply
make the consistency of the output for the verification function depend on y. This would allow the
sender to learn information based on a selective failure attack.

Definition 9. We denote H a family of Universal Hash Function from {0, 1}n+2s+1 to {0, 1}n.

Any universal Hash Function Family can be used in our protocol but the one presented in
[Tho09] is compact and efficient.

Definition 10. Denote f ′((x, a), (y′, h, q, b)) = (f(x, h(y′)⊕ q), v(x, a, b)) where h is in H and v is
the verification function that was defined in the previous section.

In our main protocol, any circuit garbling scheme that is correct, private, malleable, transparent,
and projective relative to a topological side information function ψ can be used. Garbling schemes
similar to Yao’s garbled circuit normally meet those requirements. For explicit constructions, see
[LP07, BHR12]. We will also use the following length parameters, the length of the input to the
function to be evaluated is denoted as usual by n. We will denote nq = n, nh = 2(n + 2s + 1),
nx = n, na = n, ny = 2n + 2s + 1 and nt = nq + nx + ny + nh. To clarify the role of each player,
we will refer to Alice as the sender and Bob as the receiver.

Protocol: πSFE

1. The sender extracts s triplets GB(f ′)→ (Fj , ej , dj).

2. For each circuit j, using the encoding functions ej , the sender extracts all of the tokens as-
sociated to both values for all inputs. Tokens associated to the sender will be denoted by
(x01j , x

1
1j , . . . , x

0
nxj
, x1nxj

), (a01j , a
1
1j , . . . , a

0
naj
, a1naj

), those to y′ by (y01j , y
1
1j , . . . , y

0
nyj
, y1nyj

), those

to the hash function by (h01j , h
1
1j , . . . , h

0
nhj

, h1nhj
), those associated to q by (q01j , q

1
1j , . . . , q

0
nqj
, q1nqj

)

and those to b by (b01j , b
1
1j , . . . , b

0
nbj
, b1nbj

).
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3. The receiver selects y′ ∈R {0, 1}n+2s+1, q ∈R {0, 1}n, h ∈R H and J ∈R {0, 1}s/2. The
receiver sets q = h(y′)⊕ y and commits to h and q. (J represent the check circuit selection)

4. The sender and the receiver execute πCCOT where the sender’s input is (y01j , y
1
1j , . . . , y

0
nyj
, y1nyj

)

and the receiver’s input is the set consistent with y′ and J . (as mentioned earlier, in case of
inconsistency, the receiver chooses the column value)

5. For each circuit j ∈ [1, s] the sender performs the following steps

• send Fj , dj to the receiver

• for each i ∈ [1, nh], commit to h0ij and h1ij ,

• for each i ∈ [1, nb], commit to b0ij and b1ij ,

• for each i ∈ [1, n], select rij ∈R {0, 1} and commit to (X0
ij , X

1
ij) = (x

rij
ij , x

1⊕rij
ij ),

• for each i ∈ [1, na], select r′ij ∈R {0, 1} and commit to (A0
ij , A

1
ij) = (a

r′ij
ij , a

1⊕r′ij
ij )

6. For each j ∈ [1, s], the receiver checks from Fj , dj and ψ that the output of the verification
function is independent of (h, q, y′). (ψ is the topological side information function)

7. The receiver reveals J to the sender. For each j ∈ J and each input i ∈ [1, n], he sends y0ij , y
1
ij

to the sender.

8. The sender aborts if the values he received in the previous step differ from what he had sent.

9. For all j ∈ J , and i having the appropriate range, the sender opens the Commitment
(X0

ij , X
1
ij), (A

0
ij , A

1
ij), (h

0
ij , h

1
ij), (q

0
ij , q

1
ij), (b

0
ij , b

1
ij)

10. For all j ∈ J , the receiver checks that the garbled circuit j is valid. The receiver aborts
at this point if a garbled circuit is faulty or if he had noticed any inconsistency during the
cut-and-choose protocol.

11. For all j 6∈ J , and all i ∈ [1, n], the sender opens X
xj⊕rij
ij = x

xj

ij . For all j 6∈ J , and all

i ∈ [1, s], the sender opens X
xj⊕rij
ij = x

xj

ij and A
aj⊕r′ij
ij = a

aj
ij .

12. The receiver opens his Commitments to h and q and declares a value b.

13. The sender opens the Commitments to the token associated to the values h, q, b.

14. The receiver uses the tokens he received as well as the pairs (Fj , dj) to do the evaluations
using the garbling scheme. He checks if the validation outputs are consistent and aborts if
they are not. The receiver takes the most common value as his output.

Sender simulation

The sender does not receive any output and the receiver mostly reveals randomly chosen values in
the protocol. Therefore the simulator job consists mostly of extracting the sender’s input, aborting
with the same distribution as in the real world and revealing random values.

• The simulator sends the messages (committed) which are associated to the receiver com-
mitting to h and q. (3)
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• The simulator selects uniformly at random the set J (of size s/2) and the string y′ and derives
an associated set I.

• The simulator simulates an execution of πCCOT and extracts the environment’s input to
πCCOT . (4)

• The simulator awaits the Commitment command with the keys associated to the circuits as
well as each (Fj , dj) (5)

• The simulator forwards J as well as all the keys whose indices are matched to J (7)

• The simulator awaits that the environment sends the open command associated to all the
keys in the check circuit. The simulator aborts using the same criteria as an honest receiver.
He aborts if any of the check circuits is incorrect or if the outputs of the OTs in the πCCOT

are inconsistent.

• The simulator awaits that the environment sends the open command to the keys associated
to his choice of input. (11)

• The simulator chooses uniformly at random h, q and b and forwards them to the environment
(h,q as a reveal command from FCOM ). (12)

• The simulator awaits that the environment sends the open commands for Commitments to
keys associated to the given h, q and b (13)

• The simulator evaluates the evaluation circuits and checks that all validation outputs (v(.))
are consistent; if not he aborts.

• The simulator has all the tokens, because of the transparency of the garbling scheme, he
can determine for each circuit and each input the value of input associated to each key. For
each of the sender’s input bit, he takes as input bit the value that appears in the majority of
evaluation circuits. He can thus extract the input and send it to the ideal functionality. (14)

It is evident to see that if the environment does not corrupt circuits, send inconsistent shares in
Faulty cut-and-choose OT or open tokens which results in different inputs for different evaluation
circuits, the environment will be unable to distinguish between the real or ideal setting. The
distribution of all variables is identical and neither the simulator nor the real world execution will
abort.

We first address the case where the environment only corrupted some circuits. This would make
the simulation fail if the probability of having the simulation abort is different from the probability
in the real world execution or if the simulation does not abort but is unable to extract the relevant
information. In the simulation (as in the honest protocol), each circuit is a check circuit with
probability one-half. Since the receiver does not reveal any inconsistency in the cut-and-choose
OT until after he has declared the choice of check circuit, the sender must corrupt circuits in such
a way that more than half of evaluation circuits are corrupted and none of the check circuits are
corrupted. Otherwise the simulator aborts as in the real world setting. This can only happen with
exponentially small probability.

We now address the case where the sender provides inconsistent inputs to the OT in the Cut-
and-Choose OT protocol.

The keys that are returned by the receiver for the check circuits only depend on the environ-
ment’s choice of values in the columns (see πCCOT ). Since an honest receiver always knows those

9



values by virtue of being associated to check circuits. The simulator can perfectly simulate that
step by simply revealing what an honest receiver would know in the real world.

We will show that the leakage does not allow the environment to distinguish between the ideal
world and the real world. If the simulator notices any inconsistency during the Cut-and-Choose
protocol or that a garbled circuit was faulty, he aborts. Since the check circuits are public at this
point, the environment knows that either a corrupted circuit was a check circuit (case we already
dealt with) or that the receiver (simulator or honest party) has selected an input such that the
row and column are inconsistent. The key factor is that the probability that the protocol aborts
depends only on the choice of inconsistency and is the same for the simulation as for the real world.

It is important to note that the environment cannot distinguish between two choices of input
(in πCCOT ) such that the protocol would not abort. As such, we can view the sender’s behavior as
performing a selective failure attack, which reduces the min entropy on y′ by at most s. Since there
is a sufficient amount of min entropy left, the application of a random element from a universal
family of hash functions essentially generates a random mask. This mask hides the input and allows
the simulator to generate a statistically indistinguishable distribution.

Finally, if the environment tries to send inconsistent inputs for two circuits and the circuits
are valid, the validation step will result in an abort except with exponentially small probability.
It is important to note that the topological side information function demonstrates independence
between (h, q, y′) and the output of the verification function. Otherwise the environment can use
a selective failure attack to extract information on y. Thus we can see that sending inconsistent
inputs will not allow the environment to distinguish between the real and ideal setting.

Receiver Simulation

• The simulator awaits the commit command associated to h and q. (3)

• The simulator awaits the receiver’s input for πCCOT from the environment, the simulator
notes the receiver’s choice of check circuit as J as well as the input y′ and sets y = h(y′)⊕ q.

• For each j ∈ J , the simulator sets (Fj , dj , ej) = GB(f ′).

• The simulator selects r uniformly at random. Let g′[(x, y), (h, y′, r)] = (z, r). Because of the
malleability of the scheme, the simulator can produce g consistent with GB(g′) such that
ψ(f ′) = ψ(g). For each j 6∈ J , the sender sets (Fj , dj , ej) = GB(g).

• The simulator sends the appropriate tokens that are associated with the environment’s input
in the πCCOT . He also forwards the Commitment messages to the remaining tokens as well
as all the (Fj , dj , ej) he has constructed. (5)

• The simulator awaits the environment’s choice of check circuits as well as the inputs he
received in the πCCOT . The simulator checks if these values are consistent with what he has
sent, if it is not the case, the simulator aborts. (7)

• The simulator sends the reveal messages for all of tokens associated to check circuits. (11)

• The simulator randomly selects for each input and each circuit to send a reveal message for
one of the tokens. (12)

• The simulator awaits the open commands to h and q. The simulator simulates the opening
of all the tokens required by the protocol. (14)
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First we note that in the case of a corrupted receiver, the simulator can simulate the faulty
variant of cut-and-choose OT using a cut-and-choose OT functionality. The simulator can trivially
extract the environment’s input from the choice of input to the faulty variant of cut-and-choose
OT, as well as his commitments to h and q. The main difference between the ideal setting and the
real setting is the construction of a fake garbled circuit. Fortunately, due to the privacy of garbling
schemes, these do not allow the environment to distinguish which model he is part of. The only
remaining recourse for the environment is to try to lie about which circuits which are check circuits.
But since the probably of guessing the keys is negligible, we can see that the real and ideal setting
are indistinguishable.

Circuit Optimization

We believe that the strong point of the two-party computation protocol presented in this article is its
efficiency. In this section, we will explain why some recent work on optimization of protocols based
on garbled circuits can be applied to our protocol. In [Lin13], a very nice optimization technique is
presented for achieving secure computation while reducing the total number of circuits that have to
be transmitted to s and still achieving security of 2−s. Another approach was presented in [HKE13]
but Lindell’s technique applies more naturally to our protocol. The detailed presentation of the
technique requires a full length publication and therefore we will assume in this section that the
reader is familiar with Lindell’s article.

The basic idea of this optimization is as follows: the protocol will be divided in two com-
putations, an output extraction and a cheating sender input extraction. In the output
extraction phase, the receiver will be able to extract the output of the functionality or a proof
that the sender has cheated. In the cheating sender input extraction phase, the sender inputs
the same value as in the output extraction, if the receiver has acquired a proof of cheating, he
is able to extract the sender’s input and otherwise he gets nothing. Note that having the receiver
obtain the sender’s input enables the protocol to be correct in a trivial way. It is necessary to
weave these two computations together so that certain properties are verified. First, the protocol
must ensure that the sender uses the same input in both computations. Second, it is also needed
that evaluation of the garbled circuits of both computations is done before checking either of them.
This is to insure that a receiver can’t extract a proof of cheating from an honest sender.

A necessary building block of the construction is the modified cut-and-choose OT similar to the
one in [LP11]. There are two important differences. First, the set of indices in J is no longer size
restricted (instead of size exactly s/2). In addition, for each j 6∈ J , the receiver receives a special
string which allows him to prove that j 6∈ J .

We will now describe how the main protocol can be modified to enable this optimization. Since
we do not have the space to formally describe the construction, we will instead provide a high level
overview of the changes required.

Instead of implementing a modified cut-and-choose directly, our protocol implements a faulty
modified cut-and-choose OT. We thus have to adapt the ideas from the main protocol to deal
with the faultiness and leakage. We have to tangle the computations, delay the input verification
of the output extraction and merge it with the input consistency of cheating sender input
extraction.

Faulty Modified Cut-and-Choose OT

The faulty version of modified cut-and-choose OT can easily be implemented by a minor modifi-
cation of the faulty cut-and-choose OT protocol. Instead of doing one OT per pair of column, one
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simply does an OT for each column where the first element transferred in the OT is the value in
the column and the second element is the secret that allows the sender to proves that j 6∈ J .

Sender input consistency

It is not to hard to realize that in the main protocol, the receiver can extract an output (even if
it is an error) and then use the consistency check to verify that outputs were all consistent. It is
thus possible to merge the consistency check of output extraction and the consistency check of
cheating sender input extraction together, in order to verify that the sender uses the same
input in both computations.

Verification of circuits

It is important to note that in our main protocol, once the faulty cut-and-choose has taken place
and the sender has committed to his inputs, the circuits are fully determined. As such, we can
delay the checking phase after evaluation has taken place.

Conclusion

Although our protocol is very efficient, we explain why some recent optimization work also apply
to our protocol. We believe some further optimizations are possible. The inclusion of the hash
function into the function to be computed could increase the size of the circuit, especially small
ones. Although it is not straightforward, we believe that using the appropriate garbling scheme
coupled with a family of hash function with a nice circuit structure, one could hardcode the hash
function into the circuit. Another possible optimization could be to select a class of universal hash
functions which mends well with the free XOR technique [KS08]. The construction of universal
hash function from random binary matrices seems to be an ideal choice for these two optimizations.
We believe that the idea of using faulty primitives with adapted protocols can improve secure
computation also beyond two-party secure function evaluation.
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