
Attacks and Comments on Several Recently
Proposed Key Management Schemes

Niu Liu1, Shaohua Tang1⋆, and Lingling Xu1

School of Computer Science & Engineering,
South China University of Technology, Guangzhou, China

niuliu83@gmail.com,shtang@IEEE.org,xulingling810710@163.com

Abstract. In this paper, we review three problematic key management
(KM) schemes recently proposed, including Kayam’s scheme for groups
with hierarchy [10], Piao’s group KM scheme [14], Purushothama’s group
KM schemes [17]. We point out the problems in each scheme. Kayam’s
scheme is not secure to collusion attack. Piao’s group KM scheme is not
secure. The hard problem it bases is not really hard. Purushothama’s
scheme has a redundant design that costs lots of resources and doesn’t
give an advantage to the security level and dynamic efficiency of it. We
also briefly analyze the underlying reasons why these problem emerge.

Keywords: key management schemes; GKM; hierarchical access control; HAC;
cryptanalysis; collusion attack; hard problem; secure group communication.

1 Introduction

Key management schemes are schemes designed to help a group of users or
subgroups share secret keys when they want to communicate or share data with
each other securely.

From the aspect of the structure of a group, we have two kinds of key man-
agement schemes. Some schemes deal with the secure communication equally
shared by all members, the goal is to maintain and update a secret session key,
we call them session key distribution schemes or group key management schemes
(GKMS), such as Chiou’s [3] Wong’s [19] and Aparna’s [2] schemes. Some oth-
er schemes focus on secure contents access and communication of groups with
hierarchy, we may call them hierarchical access control schemes (HACS), such
schemes include Crampton’s [4], Zou’s schemes [20] and etc.

Based on how keys are formed and managed, there’re two kinds of schemes.
One is centralized. Schemes of this kind need a trusted third party, a group
controller GC, to distribute keys and manage the dynamic changes in a group.
The other is distributed or contributory schemes whose keys are generated and
managed by uniform contribution of all group members. In this paper, we focus
on the centralized KM schemes.

⋆ Corresponding Author (email: shtang@IEEE.org)

2 N. Liu et al.

To design a cryptographic key management scheme is deceptively easy. One
may propose a scheme that is intuitively secure, and then security flaws emerge
later on [8]. Hereby, we reviewed some KM schemes recently proposed and found
that there are several different problems in design that researchers may encounter
frequently.

The first problem happens in HACS, the collusion attack. In HACS, users
in higher level have access to the lower levels. The relation of the hierarchical
structure of a group is usually shown by a directed acyclic graph (DAG) as shown
in Fig.1. In this figure, G1 has access to contents or communication of all other
members, G2 has access to G4 and G5. We also use partial ordering Gi ≼ Gj to
describe that Gj has access to Gi. The collusion attack happens when there is a
security flaw in design leads to that the collaboration of two or more members
gain access to a member they are not supposed to have. We show our attack on
Kayem’s HACS [10], the sub-poset key management scheme(SPKM).

!

"

!

"

#

Fig. 1. A DAG example of illustrating hierarchical relation of a group.

The second problem lies in the hard problem of a KM scheme. When a
designer thinks the security of his scheme is guaranteed by a hard problem, he
should check at least the following two points: whether the problem is really a
hard one; whether it is hard in respect of a constant security parameter, and

Comments on Several KM Schemes 3

not in a variable that can’t be defined before implementation. We take Piao’s
GKMS [14] as our example.

The third problem is not in security, but in efficiency. When a design that
cost a lot of resources, such as storage, computing and etc., but achieves no
better security level or dynamic efficiency of its original scheme, we call it a re-
dundant design. The problem may hide itself in the complicated procedure from
customers or even designers themselves. It’s necessary to make a KM scheme
efficient as well as secure. Normally, security and efficiency are in the two oppo-
site sides of the balance when design. It’s the best choice to firstly find out and
cut down the redundant design considering efficiency issue, since there’s no need
to compromise for the unnecessary part. We take Purushothama’s schemes [17],
both GKMS and HACS, to show the problem.

We notice that designing a KM scheme is a sophisticated work that needs
both inspired insights and careful rethinking. Our paper presents several prob-
lems in different aspects, though not complete, of it. Our aim is to provide cases
for reference of further research on designing.

The following parts of this paper are organized as follows. Section 2 presents a
table of notations that will be used later on. Section 3 shows the collusion attack
problem of Kayem’s SPKM [10]. Section 3.1 briefly introduces how the SPKM
works; Section 3.2 shows how the collusion attack works, and the problem in
design of the SPKM. Section 4 shows the flaws of Piao’s scheme [14]. Section 4.1
gives an overview of his scheme; Section 4.2 shows that Piao’s scheme has some
security flaws assuming that the hard problem of it is OK; Section 4.3 shows that
the problem their scheme builds upon is not really hard and the way their scheme
uses a hard problem is problematic. Section 5 shows the problem of redundant
design of Purushothama’s schemes [17]. In Section 5.1 and section 5.2, we briefly
review the two similar schemes, wong’s LKH scheme [19] and Purushothama’s
GKMS; In Section 5.3, we compare these two schemes and comment on the
design of Purushothama’s. We draw conclusion in Section 6.

2 Notations

We give Table.1 for the convenient referring of notations.

3 Collusion Attack

In 2010, Kayem et al. proposed a sub-poset key management scheme(SPKM)
[10, 11]. It is derived from Akl and Taylor scheme [1]. The aim of the SPKM
is to improve the efficiency of Akl’s scheme by linearly bounding the exponents
assigned to classes. Unfortunately, we find that the SPKM is collusion-liable.
Kayem uses a principle to avoid collusion attack in the SPKM, but we figure out
that the principle in itself is not a sufficient condition of collusion-proof.

4 N. Liu et al.

Table 1. Notations.

Notations Meaning
GKMS Group key management schemes.
HACS Hierarchical access control schemes, also KM schemes for groups with hierarchy.
GC The group controller, a trusted third party.
Gi Subgroup with ID i in a hierarchical group.
Ki Key to access contents or communication of subgroup Gi in HACS.

ti or tx,y The exponent of a subgroup Gi or Gx,y in the SPKM [10].
a|b It stands for that a divides b.

Gi ≼ Gj Gj has access to Gi.
{x}k Symmetric encryption of x by key k.
Ui User with ID i in a GKMS.
GK The group key, or the session key to secure group communication.
KEK Key encryption key.
ki A KEK for a user ui or a virtual node of key-tree.

a mod b The residue class of a modulo b.
gcd(a, b) The greatest common divisor of a and b.

3.1 An overview of the SPKM

In the SPKM, the group controller(GC) randomly and secretly chooses two big
primes p and q, and a secret base key K0. It computes key Ki according to the
following formula, and distributes it to each subgroup Gi secretly :

Ki ≡ Kti
0 modM, (1)

where M is the product of p and q. M is public. ti is the public exponent of a
subgroup Gi.

To a tree-like hierarchy as shown in figure 2, the secret key of the root node
is K0. When Gj has the access to Gi, we let tj divides ti. Then, Gj is able to
derive Gi’s secret key Ki from his own key Kj as follows:

Ki ≡ Kti
0 ≡ K

tj×
ti
tj

0 ≡ K
ti
tj

j modM. (2)

In the Akl and Taylor scheme, to prevent collusion attack, each subgroup Gi

is given a unique prime number pj , and the exponent ti is assigned as follows:

ti =
∏

Gj�Gi
pj . (3)

In the SPKM, the GC chooses ti in a different way to avoid collusion attack.
Subgroups are considered as in different levels as shown in Fig. 2. The scheme
only considers the lower-level subgroups’ collusion attack on the upper-level sub-
groups, but not other types such as sibling collusion or etc. To be specific, the
SPKM gives two properties of collusion (Property 4.1 and 4.2 in his paper [11]).
Subgroups of level l may collude to attack on a higher level subgroup, if one of
the following properties satisfies:

Comments on Several KM Schemes 5

!"#

#"#

$"%

#"&

&"#

&"'&

("#

)"#

*"#

)"')

&"'*

&"'(

 !"!#

 !"!#

 !"!#

 !"!#

 !"!#

Fig. 2. An example of key management hierarchy.

1. Property 4.1 : for some x < l, gcd(tl,1, · · · , tl,nl
)=gcd(tx,1, · · · , tx,nx);

2. Property 4.2 : for some exponent tx,y, gcd(tl,y1 , tl,y2)|tx,y, where x < l and
1 6 y1 < y2 6 nl,

where gcd is the greatest common divisor, ni is the number of subgroups in level
i.

Kayem also gives another principle equivalent to the above, the Definition
3.3.1 in the Chapter 3 of his monograph [10], that the gcd of all ti of a lower
level i shall not be a divisor of any tj of a upper level subgroup. That is, for a
tx,y where x < l, if

gcd(tl,1, · · · , tl,nl
)|tx,y (4)

satisfies, then subgroup Gx,y is vulnerable to collusion attack of subgroups in
level l. We denote the gcd of the l-th subgroups’ exponents gcd(tl,1, · · · , tl,nl

) as
GCD(l) for short in the following parts.

3.2 The collusion attack on the SPKM

We give an implemented example of the SPKM as shown in Fig. 3.
We have: GCD(0) = 1, GCD(1) = 2, GCD(2) = 6, GCD(3) = 30. We can

verify that the above mentioned Property 4.1, 4.2 and Definition 3.3.1 are not

6 N. Liu et al.

satisfied. It holds that GCD(l) - tx,y for all x < l. It is therefore considered as
collusion-free by the SPKM. But we find that it’s still collusion-liable.

 !

 " #

 $!" %$

 %& $& !"& !'& %$& ()*)(+%

()*)(+&

()*)(+!

()*)(+"

Fig. 3. A case of the SPKM that vulnerable to collusion attack.

The secret base key is K0, M is a public modulus which is a product of two
randomly chosen big prime numbers. The secret keys of G1,1, G1,2, G2,1 and
G3,1 are K1,1 = K2

0 , K1,2 = K4
0 , K2,1 = K6

0 and K3,1 = K30
0 (modM).

Readers may check that in the hierarchical relations of the example in Fig. 3,
subgroups G1,2 and G3,1 have no access to G1,1 and G2,1. But when the former
two subgroups collaborate and share their exponents and keys, they can figure
out the secret keys of the latter two subgroups.

Because gcd(t1,2, t3,1) = gcd(4, 30) = 2, we have

(K1,2)
8

K3,1
=

(K4
0)

8

K30
0

= K4×8−30
0 = K2

0 = K1,1. (5)

Thus G1,2 and G3,1 can infer the secret key K1,1 of G1,1. So is K2,1.
The reason why the SPKM fails lies on it’s principle of collusion-proof. As

we’ve said before, the principles of it focus on one level subgroups’ collusion but
not inter-level collusion. To remedy the collusion-proof principle, we may change
(4) to

gcd(tx1,y1 , tx2,y2)|tx3,y3 (6)

for any 3 subgroupsGx1,y1 , Gx2,y2 , Gx3,y3 , whereGx1,y1 andGx2,y2 have no access
to Gx3,y3 .

Besides there are some design problems in the SPKM. The assigned expo-
nents don’t fit the hierarchical relations well. In a same level of an HAC scheme,

Comments on Several KM Schemes 7

one sibling is not supposed to have access of another. But the SPKM violates
the rule. For example, G2,2 and G2,3’s sibling G2,1, who is supposed not to have
access to the them, has it. Thus an implemented SPKM case actually repre-
sents another hierarchical relations other than the original one. For example,
the actual hierarchical relations of the implemented SPKM case in Fig. 3 can be
redrawed as Fig.4.

 ! "

 #

 $

 !" %$

 %& $&

 !"&

 !'&

 %$&

Fig. 4. The actual hierarchical relations of Fig.3.

We can infer from Fig.4 that there are lots of possible ways of collusion
attack, such as G1,2 and G2,1’s attack on G1,1, G2,2 and G3,1’s attack on G2,1,
G2,3 and G3,2’s attack on G2,2 and etc.

4 The Use of a Hard Problem

Piao et al. proposed a polynomial-based key management scheme [14] in 2012.
This is a centralized scheme. It has two parts, one is the intra-group KM scheme,
and the other is the inter-group KM scheme. The former one is based on the
problem of univariate polynomial factorization in a finite field, and the latter
uses the pseudo-random number generator(PRNG) and the existing intra-group
keys. Piao argues that by the result of Gao [6] and Kipnis [12], the problem of
univariate polynomial factorization is NP-hard, so his scheme is secure. But, we
find out that it is not the case. The main flaws of Piao et al.’s scheme lie in the
intra-group part. It’s sufficient for our purpose to only discuss this part. In this
paper, we’ll show its problems in details.

4.1 An overview of Piao et al.’s intra-group key management
scheme.

Piao et al.’s intra-group KM scheme aims at distributing session keys in a group
secretly. There is a trusted third party, a group controller(GC), to compute,
broadcast public information and manage group members’ leaving and joining.

For a group of n users, each user has a public ID i. Every user Ui shares a
secret Key Encryption Key ki with the GC. Then, to set up a session key GK
among all these users in the group, the GC computes the following polynomial
P over a finite field Fq, and broadcasts it through a public channel,

P =
∏n

j=1(x− kj) +GK. (7)

8 N. Liu et al.

When a user Ui in the group receives the polynomial P , he can figure out the
session key GK by computing P (ki) = GK.

When a new user joins or an old user leaves the group or etc., the GC
randomly picks up a new session key GK ′, recomputes a new polynomial (8)
using KEKs of all n′ legitimate users and broadcasts it.

P ′ =
∏n′

i=1(x− ki) +GK ′. (8)

Then, a legitimate user Uj is able to get the new session key GK ′ by com-
puting P ′(kj).

4.2 Attacks on Piao et al.’s intra-group key management scheme.

Actually, Piao et al.’s intra-group KM scheme is a special case of the double-
invariant schemes, an idea formed in Liu’s discussion [13] on some HAC schemes.
Schemes with the property of double-invariance are vulnerable to attack. Ka-
mal [9] showed how to attack on this vulnerability of Piao et al.’s scheme, though
he didn’t use this idea.

We briefly introduce the idea. Assuming that a scheme PT at time t can be
expressed in Chinese Remainder Theorem as follows [13],

CRT [t] ≡ a[t]1 mod M [t]1,
· · · ,

CRT [t] ≡ a[t]i mod M [t]i,
· · · ,

(9)

where i = 1, · · · , n[t]. M [t] is the modulus, a[t] is the residue class.
If at time t′, which is after t, there hold a[t′]i = a[t]i and M [t′]i = M [t]i si-

multaneously for some i (at least one) while computing CRT [t′], then we call PT
a double-invariant scheme. For more details, see Definition 2.1 of the paper [13].
All double-invariant schemes are vulnerable to attacks.

For an insider attacker A who we assume to be U1 without loss of generality,
the polynomial P and the session key GK are known to him. We rewrite (7) in
a way similar to Chinese Remainder Theorem:P −GK ≡ 0 mod(x− k1),

· · ·
P −GK ≡ 0 mod(x− kn).

(10)

After a new user, for example Un+1, joins the group, (10) turns to:
P ′ −GK ′ ≡ 0 mod(x− k1),

· · ·
P ′ −GK ′ ≡ 0 mod(x− kn),
P ′ −GK ′ ≡ 0 mod(x− kn+1).

(11)

Here, we may see that a[t′]i = a[t]i = 0 and M [t′]i = M [t]i = x − ki for
i = 1, · · · , n. Thus Piao et al.’s scheme is double-invariant. A may simply get

Comments on Several KM Schemes 9

x− kn+1 by P ′−GK′

P−GK . Then, no matter whether A(U1) is in the group or not any
more, he’ll know every session key as long as Un+1 is still in the group.

Kamal’s attacks [9] are more detailed than above. But he doesn’t show how to
prevent these attacks. We gave a general method to remedy this kind of schemes
in discussion [13]. We change M [t]i in every session by adding a unique session
related number u to it. For example, we can change x− ki into x− h(ki, u) and
broadcast u in every session to remove the property of double-invariance, where
h is a cryptographic hash function, and u is public and different in each session.
Then (7) turns to

P =
∏n

i=1(x− h(ki, u)) +GK. (12)

But like other double-invariance removed schemes, the security of this improved
version lies on the hardness of finding a preimage of the cryptographic hash
function and the avoidance of using a used hash value, instead of the problem
of finding a root of a univariate polynomial. Actually, this problem is even not
hard, we can’t build a cryptographic protocol based on it. We discuss it in the
following part.

4.3 Comments on the hard problem of Piao et al.’s scheme.

Piao et al.’s intra-group KM scheme is based on the univariate polynomial fac-
torization problem. Kipnis points out that over a finite field, a system of mul-
tivariate quadratic equations can be transformed to a certain form of super-
sparse univariate polynomial in polynomial time (Lemma 3.3 in his article [12]).
Since solving the system of multivariate quadratic equations is known to be NP-
complete [5], it seems that the univariate polynomial factorization problem is
also hard. Thus, one may argue that at least the polynomial factorization prob-
lem can be used as a core to design a secure KM scheme. However, this is not
the case.

We refer readers to Geddes’s book [7]. The following theorem in Chapter 8
gives us the estimated complexity of factoring a univariate polynomial.

Theorem 8.12. The big prime Berlekamp algorithm for factoring a poly-
nomial a(x) of degree n in the domain GF (q) has complexity O(k×n2×
log(q)× log(k)+2n3) field operations. k represents the number of factors
of a(x), which on average is approximately log(n).

In Piao et al.’s scheme all factors of P are simple polynomials and square-free,
thus k = n. The complexity is thus O(n3 × log(q)× log(n)). This is polynomial
in n and logarithmic in q, where n is the degree of the polynomial P , and q
is the size of the finite field GF (q). From the above theorem we can infer that
factoring a normal polynomial is not a hard problem. In this scheme, since an
insider attack A, who we assume to be U1, knows both the polynomial P , the
session key GK and his own KEK k1, it’s pretty easy for him to factor the
polynomial

P−GK
x−k1

=
∏n

j=2(x− kj) (13)

10 N. Liu et al.

by the big prime Berlekamp algorithm. Then, A gets KEKs of other users who
share this session with him.

The designers of this scheme have made a mistake in confusing problems
of the super-sparse univariate polynomials with problems of normal univariate
polynomials. They are different. Combinatorial properties are introduced into
certain forms of super-sparse univariate polynomials while constructing them.
That’s why some problems of them become hard to solve. Plaisted has good
discussions [15,16] on NP-hard problems of super-sparse univariate polynomials,
in which we may easily be aware of this fact. For example, it is NP-hard to decide
whether two sparse univariate polynomials are relatively prime or not, but it’s
easy to do that to two normal univariate polynomials.

The last flaw of this scheme is that how it make use of a hard problem
goes against a fundamental principle of design. In the security analysis part,
when Piao et al. discuss the hard problem on which their scheme is based, they
consider n as the input of the problem. This violates the principle of designing
a KM scheme. n is the degree of polynomial P in (7), and also the number of
users that share a certain session. The number of participants in a session may
be up to tens of thousands or just two. It has a large range to vary, and keeps
changing over sessions. Therefore, we can’t treat n as a security parameter which
is determined beforehand, like the size q of the finite field. Even if the problem
is indeed NP-hard in n, it’s not secure when n is considerably small. To our
knowledge, no KM scheme has ever constrained the lower bound of the number
of users in the same way for the sake of security. In principle, the number n of
users should not be considered as the input of a hard problem.

5 Redundant Design

Purushothama [17] proposed two group key management schemes, group and
multi-layer group communication schemes, based on polynomial interpolation in
2012. To our opinion, his secure group communication scheme is very similar to
the Logical Key Hierarchy (LKH) tree-based scheme [19]. The difference between
Purushothama’s scheme and the LKH scheme is that the former has one more
step that uses polynomial interpolation to distribute users’ keys. But we argue
that this step is unnecessary.

5.1 An overview of the LKH scheme [19].

The LKH scheme and Purushothama’s group scheme share a lot of attributes in
common. In this section, we firstly have a brief look at the LKH scheme [19].

In the LKH scheme, there are n users and a group controller GC. The GC
uses a virtual key-tree as shown in Fig. 5 to manage the dynamic changes in the
group. There are two kinds of keys. One is Group Key (GK) on the root node,
shared by all legitimate users of the group. When users communicate with each
other secretly, they encrypt messages with the Group Key. The other one is Key
Encryption Key (KEK) that is used for rekeying.

Comments on Several KM Schemes 11

Fig. 5. The key tree of the LKH scheme.

A user Ui gets ki from the GC secretly and directly after he is authenticated.
When a user is in the group, he is assigned to a leaf node in the key tree and
possesses all those keys from his leaf node to the root node. For example in
Fig. 5, after the GC has done all his procedures to set up a Group Key k1−8, U8

shall have these keys: k8, k7−8, k5−8 and k1−8.

When there happens a dynamic change, the GK and some of KEKs should
be renewed. Every changed key is sent to a user or a group of users encrypted
with its descendants’ keys corresponding to them. For example, when U8 leaves
the group, the GC should renew keys k7−8, k5−8 and k1−8 and delete k8. The
GC sends three encrypted messages to rekey them as follows,

GC → {U1, · · · , U4} : {k′1−8}k1−4 ,
GC → {U5, U6} : {k′1−8, k

′
5−8}k5−6 ,

GC → U7 : {k′1−8, k
′
5−8, k

′
7−8}k7 ,

(14)

where k′i is the changed keys.

Then all users except U8 can decrypt these messages to possess renewed
keys. The operations for other dynamic events are very similar to the above. We
refer readers to wong’s paper [19] and Zou’s book [21] (LKH: Member-Oriented
Rekeying) for more details.

12 N. Liu et al.

5.2 An overview of Purushothama’s group scheme [17].

Purushothama’s group scheme is similar to the LKH scheme, but there is a slight
difference in the distributing step.

In the LKH scheme, the GC sends the encrypted KEKs and GK. In Pu-
rushothama’s scheme, the GC sends the encrypted key shares that are used to
compute the KEKs and GK by polynomial interpolations. A share Si is a two
dimensional pair (xi, yi), where xi, yi ∈ GF (p), xi ̸= 0 for all i, xi ̸= xj if i ̸= j,
p is a large prime of length L. when a user has all m shares corresponding to a
key k, he firstly computes a polynomial P (x) through Lagrange interpolation:

P (x) =
m∑
j=1

(yj
∏
i ̸=j

x−xi

xj−xi
), (15)

then he gets k = P (0).
As shown in Fig. 6, the GC also maintain a same key tree as in the LKH

scheme. Since the KEKs in the leaf nodes are predistributed to all the users
as in the LKH scheme, they don’t have to be computed through interpola-
tions. There are two kinds of shares. One is key share, different in each key.
The other is base share, different in each level. For example, k1−2 has a key
share S1−2 and a set F1 of base shares as its corresponding shares, where
F1 = {(x1, y1), · · · , (x7, y7)} is the set of base shares related to level 2. Similarly,
k5−8 has a key share S5−8 and a set F2 of base shares as its corresponding shares,
where F2 = {(x8, y8), · · · , (x15, y15)} is the set of base shares related to level 1.
k1−8 is the group key (GK), its corresponding shares include S1−8 and all base
shares, ie, shares in set F1, F2 and F3, where F3 = {(x16, y16), · · · , (x21, y21)}.

When the distribution phase ends, user Ui should hold the GK, all the KEKs
from his leaf node to the root and their corresponding key shares and all the
base shares. For example, U8 should hold k8, k7−8, S7−8, k5−8, S5−8, k1−8, S1−8,
F1, F2 and F3.

When a dynamic change happens in the scheme, the GK, some KEKs and
their key shares should be changed. The GC randomly picks new key shares for
those keys that shall be renewed, computes corresponding polynomials through
(15) and then the keys. In the LKH scheme, the GC sends those changed keys en-
crypted with their descendants’ keys; In Purushothama’s scheme, the GC sends
those changed key shares encrypted with their descendants’ keys.

For example, when the user U8 leaves the group, the GC should delete k8,
then renew key shares S7−8, S5−8 S1−8 and also keys k7−8, k5−8 k1−8. It leaves
all base shares unchanged. The GC sends to users the following messages to
renew the shares:

GC → {U1, · · · , U4} : {S′
1−8}k1−4 ,

GC → {U5, U6} : {S′
1−8, S

′
5−8}k5−6 ,

GC → U7 : {S′
1−8, S

′
5−8, S

′
7−8}k7

,
(16)

where k′i and S′
i are the changed key and changed key share respectively. Other

dynamic changes work in a similar way.

Comments on Several KM Schemes 13

 !

 !

 !

Fig. 6. The key tree of Purushothama’s group scheme.

5.3 Comparisons and comments.

The difference between the LKH scheme and Purushothama’s scheme is that
there are one more step to compute the keys. In the former scheme, users decrypt
messages and get renewed keys; but at the latter one, users should firstly decrypt
messages, then compute a polynomial P (x) using (15) and finally get the key
k = P (0). We believe that this step does not improve the security of the LKH
scheme, nor the dynamic efficiency of it.

Security. The security of the LKH scheme lies on the encryption of messages.
On the other hand, the security of Purushothama’s scheme seems to lie on the
encryption and the polynomial interpolation. But we notice a fact that when-
ever a dynamic change happens, all base shares shared by all users are not
changed. When any user is removed from the group, he still knows all the base
shares the system is using. Considering that the leaving of a user is almost in-
evitable, the base shares are not secret to adversaries. Thus the key share Si is
information theoretically equivalent to the corresponding key ki. The security
of Purushothama’s scheme actually only lies on the encryption of messages sent

14 N. Liu et al.

by the GC. Anyone who has an advantage on guessing the keys of LKH scheme,
has a same advantage on that of Purushothama’s scheme.

Dynamic Efficiency. We compare (14) and (16), and conclude that the two
schemes send out same number of messages when revoke a user. It holds true
for all other dynamic changes. So the added step won’t improve the dynamic
efficiency.

We therefore conclude that the interpolation step of Purushothama’s group
scheme is a redundant design. It demands more resources of computing, storage
and communication, but achieves exactly the same security level with the LKH
scheme [19]. Polynomial interpolation in cryptography is mostly seen as a tool
to share secret information in members by broadcasting public messages. It’s
a special form of Chinese Remainder Theorem [13]. The reason why the inter-
polation step of this scheme is redundant probably lies on that this function is
misused.

The Purushothama’s multi-layer group scheme holds a same problem. It’s
a redundant design compared to independent linear hierarchical key scheme, in
which every subgroup holds all keys of the subgroups he has access to. We’d
like to refer readers to Hassen’s research paper [18]. His research focuses on the
key management for linear hierarchies. He proposed a hybrid scheme that blend
the dependent and independent schemes together. This scheme achieves a good
dynamic efficiency. In our opinion, when we study level-based hierarchical access
control problem in cryptographic way, it’s better to adopt the linear model other
than the tree-like model. It helps to simplify the problem. The design problem
of Kayam’s scheme [10] may also have something to do with it.

6 Conclusion

In this paper, we showed problems of three schemes proposed in recent years.
Each one of them has different flaws, including vulnerability to collusion attack,
faults on the hard problem, redundancy in design and etc. Designers of key
management schemes are prune to those problems even they are careful. The KM
schemes are usually very flexible and complex, thus intuition has an important
influence on designing. It’s also hard for designers to provide provable security
for schemes with new hard problems or complex structures. These two reasons
make the designing of the KM schemes a very fallible task to which we should
pay more attention.

References

1. Selim G. Akl and Peter D. Taylor. Cryptographic solution to a problem of access
control in a hierarchy. ACM Trans. Comput. Syst., 1(3):239–248, 1983. 357372.

Comments on Several KM Schemes 15

2. R. Aparna and B. B. Amberker. A key management scheme for secure group
communication using binomial key trees. International Journal of Network Man-
agement, 20(6):383–418, 2010.

3. G. Chiou and W. T. Chen. Secure broadcasting using the secure lock. IEEE
Transactions on Software Engineering, 15(8):929–934, 1989.

4. Jason Crampton. Cryptographically-enforced hierarchical access control with mul-
tiple keys. Journal of Logic and Algebraic Programming, 78(8):690–700, 2009. doi:
10.1016/j.jlap.2009.04.001.

5. Aviezri S. Fraenkel and Yaacov Yesha. Complexity of problems in games, graphs
and algebraic equations. Discrete Applied Mathematics, 1(1):15–30, 1979.

6. S. Gao, M. van Hoeij, E. Kaltofen, and V. Shoup. The computational complexity
of polynomial factorization. American Institute of Mathematics, page 364, 2006.

7. K. O. Geddes, S. R. Czapor, and G. Labahn. Algorithms for computer algebra.
Springer, 1992.

8. S. Goldwasser and M. Bellare. Lecture Notes on Cryptography. 2008. URL:
http://is.gd/xSuaE8. p210.

9. A. A. Kamal. Cryptanalysis of a polynomial-based key management scheme for
secure group communication. International Journal of Network Security, 15(1):59–
61, 2013.

10. Anne V. D. M. Kayem, Selim G. Akl, and Patrick Martin. Adaptive Cryptographic
Access Control, volume 48 of Advances in Information Security. Springer US, 2010.

11. Anne V. D. M. Kayem, Patrick Martin, and Selim G. Akl. Enhancing identity trust
in cryptographic key management systems for dynamic environments. Security and
Communication Networks, 4(1):79–94, 2010.

12. A. Kipnis and A. Shamir. Cryptanalysis of the HFE public key cryptosystem by
relinearization. In Advances in cryptology CRYPTO99, pages 788–788. Springer,
1999.

13. Niu Liu, Shaohua Tang, and Lingling Xu. Yet another attack on the Chinese
Remainder Theorem based hierarchical access control scheme. Cryptology ePrint
Archive, Report 2013/132, 2013. http://eprint.iacr.org/2013/132.

14. Y. Piao, J. U. Kim, U. Tariq, and M. Hong. Polynomial-based key management
for secure intra-group and inter-group communication. Computers & Mathematics
with Applications (2012), 2012.

15. D. A. Plaisted. New NP-hard and NP-complete polynomial and integer divisibility
problems. Theoretical Computer Science, 31(1):125–138, 1984.

16. David Plaisted. Some polynomial and integer divisibility problems are np-hard.
SIAM Journal on Computing, 7(4):458–464, 1978.

17. B. R Purushothama and B. B. Amberker. Secure group and multi-layer group
communication schemes based on polynomial interpolation. Security and Commu-
nication Networks, 2012.

18. H. Ragab Hassen, H. Bettahar, A. Bouadbdallah, and Y. Challal. An efficient key
management scheme for content access control for linear hierarchies. Computer
Networks, 2012.

19. C. K. Wong, M. Gouda, and S. S. Lam. Secure group communications using key
graphs. In ACM SIGCOMM Computer Communication Review, volume 28, pages
68–79. ACM, 1998. 4.

20. X. Zou, Y. Dai, and E. Bertino. A practical and flexible key management mechanis-
m for trusted collaborative computing. In The 27th IEEE Conference on Computer
Communications (INFOCOM 2008), pages 538–546, 2008.

21. X. Zou, B. Ramamurthy, and S. S. Magliveras. Secure group communications over
data networks. Springer Science+Business Media Inc., 2005.

