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Abstract

Byzantine broadcast is a distributed primitive that allows a specific party (called
“sender”) to consistently distribute a value v among n parties in the presence of po-
tential misbehavior of up to t of the parties. Broadcast requires that correct parties
always agree on the same value and if the sender is correct, then the agreed value is
v. Broadcast without a setup (i.e., from scratch) is achievable from point-to-point
channels if and only if t < n/3. In case t ≥ n/3 a trusted setup is required. The
setup may be assumed to be given initially or generated by the parties in a setup
phase.
It is known that generating setup for protocols with cryptographic security is rel-
atively simple and only consists of setting up a public-key infrastructure. How-
ever, generating setup for information-theoretically secure protocols is much more
involved. In this paper we study the complexity of setup generation for information-
theoretic protocols using point-to-point channels and temporarily available broad-
cast channels. We optimize the number of rounds in which the temporary broadcast
channels are used while minimizing the number of bits broadcast with them. We
give the first information-theoretically secure broadcast protocol tolerating t < n/2
that uses the temporary broadcast channels during only 1 round in the setup phase.
Furthermore, only O(n3) bits need to be broadcast with the temporary broadcast
channels during that round, independently of the security parameter employed. The
broadcast protocol presented in this paper allows to construct the first information-
theoretically secure MPC protocol which uses a broadcast channel during only one
round. Additionally, the presented broadcast protocol supports refreshing, which
allows to broadcast an a priori unknown number of times given a fixed-size setup.

1 Introduction

1.1 Byzantine Broadcast

The Byzantine broadcast problem (aka Byzantine generals) is stated as follows [PSL80]: A
specific party (the sender) wants to distribute a message among n parties in such a way that
all correct parties obtain the same message, even when some of the parties are malicious. The
malicious misbehavior is modeled by a central adversary who corrupts up to t parties and takes
full control of their actions. Corrupted parties are called Byzantine and the remaining parties
are called correct. Broadcast requires that all correct parties agree on the same value v, and if
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the sender is correct, then v is the value proposed by the sender. Broadcast is one of the most
fundamental primitives in distributed computing. It is used to implement various protocols like
voting, bidding, collective contract signing, etc. Basically, this list can be continued with all
protocols for secure multi-party computation (MPC) [GMW87].
There exist various implementations of Byzantine broadcast from synchronous point-to-point
communication channels with different security guarantees. In the model without trusted setup,
perfectly-secure Byzantine broadcast is achievable when t < n/3 [PSL80, BGP92, CW92]. In
the model with trusted setup, cryptographically or information-theoretically secure Byzantine
broadcast is achievable for any t < n [DS83, PW96].
Closely related to the broadcast problem is the consensus problem. In consensus each party
holds a value as an input, and then parties agree on a common value as an output of consensus.
Consensus and broadcast are reducible to each other with the help of point-to-point channels in
case t < n/2.

1.2 Model and Definitions

Parties. We consider a setting consisting of n parties (players) P = {P1, . . . , Pn} with some
designated party called the sender, which we denote with Ps for some s ∈ {1, . . . , n}. We assume
that each pair of parties is connected with a secure synchronous channel, where synchronous
means that the parties share a common clock and that the message delay is bounded by a
constant.

Broadcast definition. A broadcast protocol allows the sender Ps to distribute a value vs
among a set of parties P such that:

Validity: If the sender Ps is correct, then every correct party Pi ∈ P decides on the value
proposed by the sender vi = vs.

Consistency: All correct parties in P decide on the same value.
Termination: Every correct party in P terminates.

Adversary. The faultiness of parties is modeled in terms of a central adversary corrupting
some of the parties. The adversary can corrupt up to t < n/2 parties, making corrupted parties
deviate from the protocol in any desired manner.
We consider information-theoretic security which captures the fact that the protocol may fail
only with some negligible probability even in the settings where the adversary has unbounded
computing power.

1.3 Broadcast with a Trusted Setup

Broadcast is achievable from point-to-point channels if and only if t < n/3. In order to tolerate
t ≥ n/3 a broadcast protocol must additionally use a trusted setup which is provided to the
parties beforehand. Such a trusted setup may be assumed to be a part of the model or to be
distributed by a temporarily available trusted party. In this paper we consider the alternative
case where parties themselves generate the setup using point-to-point communication and tem-
porarily available during a setup phase broadcast channels.
Formally, a broadcast scheme is a pair of protocols (Setup, Broadcast), where Setup generates
the parties’ secret states with which they start the execution of Broadcast. The Setup protocol
makes uses of temporary broadcast and point-to-point communication channels, while Broadcast
employs point-to-point channels only. It is required that the combination of Setup and Broadcast
achieves broadcast defined above and Setup is independent of the sender’s input vs provided in
Broadcast.
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In this paper we study the efficiency of broadcast schemes, in particular the temporary broadcast-
efficiency of the setup protocol. We employ two measures of efficiency for the temporary broad-
cast used in the setup protocol: round complexity and bit complexity. Round complexity denotes
the number of rounds in which temporary broadcast is used and bit complexity denotes the num-
ber of bits broadcast by it.

1.4 Contributions

If computational security suffices, then in the setup phase it is enough to consistently generate a
Public-Key Infrastructure (PKI) and then employ [DS83] to broadcast. Generating PKI requires
only 1 round of temporary broadcast, in which each party broadcasts his public key. In case
of information-theoretic security known solutions require Ω(n2) rounds of temporary broadcast
while broadcasting Ω(n8κ) bits [PW96], where κ is a security parameter. Motivated by the gap
between computational and information-theoretically secure protocols, Garay et al. [GGO12]
initiated the study of information-theoretically secure broadcast schemes for t < n/2.1 They
focused on optimizing the temporary broadcast round complexity in the setup phase and gave
a broadcast scheme which requires only 3 rounds of the temporary broadcast. The number of
bits broadcast by their protocol in the setup phase is Ω(n6κ). Another construction by Hirt
et al. [BHR07] yields a broadcast scheme for t < n/2 which needs Ω(n) rounds of temporary
broadcast with Ω(nκ) bits broadcast in the setup phase.2

This paper gives the first information-theoretically secure broadcast scheme that requires only
1 round of the temporary broadcast in the setup phase for t < n/2, which is trivially optimal.
This result not only improves the broadcast round complexity of all existing broadcast schemes,
but allows to construct an MPC protocol which uses only one round of broadcast (existence
of such schemes was unresolved before [KK07, GGO12]).3 Furthermore, our protocol needs to
broadcast only O(n3) bits in the setup phase regardless of how long the security parameter κ
is. To our knowledge, this is the first protocol with such a property. Additionally, we give an
efficient refresh protocol which allows to broadcast many values given a fixed setup. The table
below summarizes the existing broadcast schemes:

Security Threshold BC rounds BC bits Ref.

comp. t < n 1 Ω(nκ) [DS83]

inf.-theor.

t < n Ω(n2) Ω(n8κ) [PW96]

t < n/2

Ω(n) Ω(nκ) [BHR07]

3 Ω(n6κ) [GGO12]

1 O(n3) This paper

1.5 Organization of the Paper

First, we give a broadcast scheme for three players (n = 3) which tolerates any t ≤ 3 num-
ber of corruptions (Section 2). Then, in Section 3 we show how to use the scheme for three

1Their original motivation was to optimize the number of broadcast rounds needed for information-theoretically
secure MPC. The broadcast scheme they give is used as a core component of an MPC protocol.

2One can view this construction as a broadcast scheme by interpreting the refresh protocol presented in this
paper as the setup protocol.

3Additionally, this shows that the lower bound of at least 2 broadcast rounds for MPC protocols given
in [GGO12] is wrong.
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players to obtain a broadcast scheme for arbitrary number of players n tolerating t < n/2
corruptions.

2 The Broadcast Scheme for n = 3 and t ≤ 3

In this section we consider a setting consisting of only three players and show how one can prepare
a setup that allows a designated player to broadcast one bit. The broadcast scheme is based
on a series of reductions among modifications of well known cryptographic primitives. On the
highest level we show that: (1) temporary broadcast allows to construct information checking,
(2) information checking allows to construct verifiable secret sharing, and (3) verifiable secret
sharing allows to construct a setup protocol.
Additionally, we present an optimization which allows players to efficiently generate many setups
in parallel. This reduces the number of bits broadcast in the setup phase while still requiring
only one round of a temporary broadcast.

2.1 Detectable Information Checking

Information checking (IC) is an information-theoretically secure method for authenticating data
among three players D, I,R. The dealer D holds a secret value s from some finite field F which he
sends to an intermediary I together with an authentication information. The intended recipient
R gets a verification information. Later I sends s′ and some authentication information toR, who
uses the verification information to check whether s = s′. We propose a non-robust modification
of IC which we call Detectable Information Checking (DIC), where the authentication phase
may either succeed or abort. If it aborts then the parties output a dispute ∆, which is a pair of
players (i.e., ∆ ⊆ {D, I,R}), at least one of them being Byzantine.
Formally, a DIC scheme is a pair4 of protocols (ICSetup, ICReveal), where in ICSetup D inputs
s and then parties either abort with a dispute or succeed by saving a local state. If ICSetup
succeeds then parties invoke ICReveal such that R outputs s′ or ⊥. A DIC scheme must satisfy
the following security properties:

Completeness: If D, I and R are correct, then ICSetup succeeds and R will output s′ = s in
ICReveal.

Non-Forgery: If D and R are correct and ICSetup succeeds, then R will output s′ = s or
s′ = ⊥ in ICReveal.

Commitment: If I and R are correct and ICSetup succeeds, then at the end of ICSetup I knows
a value s′ such that R will output s′ in ICReveal.

Privacy: If D and I are correct, then R obtains no information on s during ICSetup.
Detection: In case ICSetup aborts every correct party outputs the same dispute ∆.
Termination: Every correct party terminates ICSetup, respectively ICReveal.

We say that a DIC scheme is information-theoretically secure if the properties above are guar-
anteed with overwhelming probability.

The protocol. In this section we present a protocol for DIC based on [CDD+99]. The secret
and the verification information will lie on a line (a polynomial of degree 1), where the secret
will be the value in 0. Intermediary I gets to know the line, while the recipient R learns a value
on this line in some secret point α unknown to I. In the reveal phase, R accepts a line from
I only if the evaluation of this line in α is correct. In order to ensure commitment property I
verifies whether D distributed consistent information to him and to R. This is done during one

4Sometimes (as in [CDD+99, GGO12]) IC is presented as a triple of protocols Distr, AuthVal, RevealVal where
Distr and AuthVal is a more fine-grained representation of ICSetup.
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broadcast round in ICSetup. As an outcome of the broadcast parties may succeed in ICSetup or
abort with a dispute.
Let s, y, z, α ∈ F. We say that the triple (s, y, z) is 1α-consistent provided that three points (0, s),
(1, y) and (α, z) lie on a line in F (that is, for some L(x) = bx + c over F, we have L(0) = s,
L(1) = y and L(α) = z).

Protocol ICSetup(s):
1. Dealer D chooses a random value α ∈ F\{0, 1} and additional random y, z ∈ F such that

(s, y, z) is 1α-consistent. In addition it chooses a random 1α-consistent vector (s′, y′, z′).
D sends s, s′, y, y′ to I and α, z, z′ to R.

2. Intermediary I chooses a random d ∈ F. I sends d to D and d, s′ + ds, y′ + dy to R. Let
d1 denote the value received by D and d2, s

′′, y′′ the values received by R.
3. Every player broadcasts the following (in parallel):

3.1 Dealer broadcasts triple TD = (d1, s
′ + d1s, y

′ + d1y).
3.2 Intermediary broadcasts triple TI = (d, s′ + ds, y′ + dy).
3.3 Recipient broadcasts triple TR = (d2, s

′′, y′′) and a bit b, where b is 1 if (s′′, y′′, z′ +
d2z) is 1α-consistent and 0 otherwise.

4. Every player checks for abortion:
If TD 6= TI then abort with ∆ = {D, I}.
If TR 6= TI then abort with ∆ = {R, I}.
If TD = TR and b = 0 then abort with ∆ = {D,R}.
Otherwise, the protocol succeeds and D stores nothing, I stores (s, y) and R stores
(α, z).

Protocol ICReveal(s):
1. Intermediary I sends s, y to R. If (s, y, z) is 1α-consistent then R decides on s, otherwise

on ⊥.

Lemma 1. The pair of protocols (ICSetup, ICReveal) achieves DIC (except with probability
O(1/|F|)). Furthermore, ICSetup uses the underlying broadcast channel during one predeter-
mined round (where each player broadcasts O(log |F|) bits) and ICReveal does not use broadcast
at all.

proof First, we show that each DIC property is satisfied:

Completeness: It is clear that if all parties are honest, then ICSetup succeeds and R outputs
s in ICReveal.

Non-Forgery: If D and R are correct and ICSetup succeeds, then prior to ICReveal I has no
information on α except that it is different from 0 and 1. For I making R output in ICReveal
any value different from s is equivalent to guessing α, which he can do with probability at
most 1/(|F| − 2).

Commitment: If I and R are correct and ICSetup succeeds, then (s′+ds, y′+dy, z′+dz) is 1α-
consistent with a randomly chosen d. R accepts s if (s, y, z) is 1α-consistent. The probability
that (s, y, z) is not 1α-consistent, given that (s′ + ds, y′ + dy, z′ + dz) is 1α-consistent, is at
most 1/|F|.

Privacy: Here D and I are correct. In ICSetup R observes only α, z, z′, d, s′ + ds, y′ + dy. R
knows that (s′ + ds, y′ + dy, z′ + dz) is 1α-consistent, hence his knowledge is equivalent to
α, z, z′, d, s′ + ds which is independent of s.

Detection: Since parties compute ∆ based only on the information that was broadcast they
decide on the same ∆. We are left to show that ∆ forms a dispute. If D and I are correct
then it must be that TD = TI , analogously if I and R are correct then TI = TR. If TD = TR
and D is correct then R must hold a 1α-consistent triple (s′′, y′′, z′ + d2z).

Termination: Due to their specifications, protocols ICSetup and ICReveal always terminate.

Finally, the protocol ICSetup uses broadcast during only one round at Step 3 where each party
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broadcasts O(log |F|) bits, while the protocol ICReveal does not broadcast.

2.2 Detectable Verifiable Secret Sharing

Verifiable secret sharing (VSS) is a classical cryptographic primitive for secure sharing of a
secret. It lies in a core of many protocols for multi-party computation and is used in various
applications. In this section we consider a very restricted setting for VSS consisting of only
three players D,P1, P2. The dealer D holds a secret value s from some finite field F and shares
it among two recipients P1, P2, such that individually they have no information about s. Later
in the reconstruction phase all correct recipients reconstruct the same s′ which equals s if the
dealer is correct. We consider a non-robust version of VSS which we call Detectable Verifiable
Secret Sharing (or short DVSS), where the sharing phase can abort in the presence of malicious
behavior.
Formally, a DVSS scheme is a pair of protocols (VSS-Share,VSS-Rec), where in VSS-Share D
inputs s and then parties either abort with a dispute ∆ or succeed by saving a local state. If
VSS-Share succeeds then the parties invoke VSS-Rec such that the recipients reconstruct the
shared secret. A DVSS scheme must satisfy the following security properties:

Correctness: If VSS-Share succeeds, then there exists a fixed value s′ ∈ F which will be
reconstructed as a result of VSS-Rec by every correct recipient. If D is correct then s′ = s.

Privacy: If D is correct, then corrupted parties obtain no information on s in VSS-Share.
Detection: If D,P1 and P2 are correct then VSS-Share always succeeds. In case VSS-Share

aborts every correct party outputs the same dispute ∆.
Termination: Every correct party terminates VSS-Share, respectively VSS-Rec.

We say that a DVSS scheme is information-theoretically secure if the properties above are
guaranteed with overwhelming probability. Furthermore, by t-DVSS we denote a DVSS scheme
tolerating ≤ t corruptions, and by t-DVSS+ we denote a scheme which is t-DVSS but Detection
and Termination hold for arbitrary number of corruptions.

The protocol. In this section we present an implementation of 1-DVSS+ based on DIC. In
order to share a secret s the dealer generates two random values s1, s2 such that s1 + s2 = s.
Then the dealer authenticates s1 by invoking ICSetup(s1) where P1 acts as intermediary and P2

as recipient. In parallel, the dealer authenticates s2 by invoking ICSetup(s2) where P2 acts as
intermediary and P1 as recipient. If one of the ICSetup invocations aborts then VSS-Share aborts
as well. The reconstruction consists of running ICReveal among P1, P2 and the dealer sending
the secret s to both recipients. If a correct recipient obtains non-⊥ value in ICReveal, then it
reconstructs s′ = s1 + s2, otherwise it outputs s′ = s received from the dealer.

Protocol VSS-Share(s):
1. The dealer D chooses random s1, s2 ∈ F such that s = s1 + s2.
2. ThenD,P1, P2 execute in parallel ICSetup(s1) where P1 is intermediary and P2 is recipient

and ICSetup(s2) where P2 is intermediary and P1 is recipient.
3. Every player checks for abortion:

If any of ICSetup aborts, then VSS-Share aborts as well with a dispute ∆ output by
one of ICSetup (in case both aborts, then output the dispute from the first).
Otherwise, the protocol succeeds and each player saves the states obtained from
both ICSetup invocations.
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Protocol VSS-Rec(s):
1. The dealer D sends s to both recipients.
2. Players P1, P2 invoke ICReveal(s1) and ICReveal(s2). If Pi obtains a share sj 6= ⊥ from

the other recipient Pj then it decides on si+sj , otherwise it decides on a value s received
from the dealer.

Lemma 2. The pair of protocols (VSS-Share,VSS-Rec) achieves 1-DVSS+ (except with prob-
ability O(1/|F|)). Furthermore, VSS-Share uses the underlying broadcast channel in only one
predetermined round (where each player broadcasts O(log |F|) bits) and VSS-Rec does not use
broadcast at all.

proof First, we show that each 1-DVSS+ property is satisfied:

Correctness: We prove that Correctness holds when the number of corrupted parties t ≤ 1.
If all parties are correct (t = 0) then, due to the Completeness property of DIC, correct
recipients will output s1 + s2 = s in VSS-Rec. Assume now only one party is corrupted
(t = 1). Consider two cases: (1) the dealer is corrupted and (2) one of the recipients is
corrupted. In case (1), due to the Commitment property of DIC, player P1 knows s1 such
that P2 outputs s1 in ICReveal, and P2 knows s2 such that P1 outputs s1 in ICReveal (except
with probability O(1/|F|)). Hence, since both P1 and P2 are correct they will both output
s′ = s1 + s2 in VSS-Rec. In case (2), wlog assume that a correct recipient is P1. Due to the
Non-Forgery property of DIC, player P1 may obtain in ICReveal only s2 or ⊥ (except with
probability O(1/|F|)). In both cases P1 outputs s′ = s1 + s2 or s′ = s, which is the same for
a correct D.

Privacy: Wlog assume that a corrupted recipient is P2 and P1 is correct. Due to the Privacy
property of DIC, player P2 who acts as a recipient in ICSetup(s1) has no information about s1
in the end of ICSetup. Hence, after VSS-Share P2’s view contains only s2 which is independent
of s.

Detection: If all parties are correct then, due to the Completeness property of DIC, both
ICReveal(s1) and ICReveal(s2) succeed and hence VSS-Share succeeds. Parties abort if and
only if one of ICSetup aborts. Due to the Detection property of ICSetup parties output the
same dispute ∆.

Termination: Due to their specifications, protocols VSS-Share and VSS-Rec always terminate.

Finally, the protocol VSS-Share uses the underlying broadcast channel only at Step 2 where
ICSetup uses it, while the protocol VSS-Rec does not broadcast. Since two instances of ICSetup
are invoked in parallel, according to Lemma 1 there is only one predetermined round where the
underlying broadcast channel is invoked and each player broadcasts O(log |F|) bits.

2.3 Broadcast Scheme

We consider three players {D,P1, P2}, where D is the sender (also called the dealer) and P1, P2

are the recipients. In the setup phase parties execute protocol Setup3 which makes use of a
temporary broadcast channel. The setup generation may abort by outputting a dispute ∆. Later
the dealer D can broadcast a bit value with the protocol Broadcast3 using the setup created.
This is done differently depending on whether the preceding Setup3 aborted or succeeded.

The protocol. The protocol for generating a setup uses 1-DVSS+ together with Message
Authentication Codes (MACs). We employ a MAC scheme which uses a preshared key. In the
setup phase, the dealer shares a random key from some finite field F using VSS-Share. In order
to broadcast a message later, the dealer sends the message together with its authentication
information to recipients. Then the recipients exchange the messages they received from the
dealer. It is guaranteed that if both recipients are correct then they hold the same set of at most
two messages. Then the parties invoke VSS-Rec and learn the key for the MAC scheme used.
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Recipients decide on the message with a valid MAC, respectively on ⊥ if no/both messages
match.
In order to construct an information-theoretically secure MAC scheme, we employ a trivially
unforgeable authentication scheme for bits. To authenticate a message consisting of one bit b
the dealer sends to the recipients P1, P2 either the left part of the preshared key (b = 0) or its
right part (b = 1).
For the simplicity of the presentation, let P1 denote P2 and P2 denote P1. Additionally, let F
be a finite field of 22κ elements interpreted as bit strings of length 2κ.

Protocol Setup3:
1. The dealer generates random k0||k1 ∈ {0, 1}2κ.

Parties execute VSS-Share(k0||k1). If VSS-Share aborts, then abort as well and output
the dispute ∆.

Protocol Broadcast3(b):
1. If Setup3 succeeded

1.1 The dealer sends kb to both P1, P2. Denote the values received by the players P1

and P2 with a1 and a2, respectively.
1.2 The recipients exchange a1 and a2 and form a set of authenticators A = {a1, a2}.
1.3 The players execute VSS-Rec and get k0||k1 as an output.
1.4 The recipients decide on 0 if k0 ∈ A and on 1 otherwise. The dealer decides on b.

2. else Setup3 aborted with ∆ then
2.1 If ∆ = {D,Pi} then the dealer sends b to Pi who forwards it to Pi. All parties

decide on the values received. The dealer decides on b.
2.2 If ∆ = {P1, P2} then the dealer sends b to P1 and P2. All parties decide on the

values received. The dealer decides on b.

Lemma 3. The protocol Broadcast3 achieves broadcast (of b) given that Setup3 has been ex-
ecuted before (except with probability O(2−κ)). Furthermore, Setup3 is independent of b and
uses the temporary available broadcast channel in only one predetermined round (where each
party broadcasts O(κ) bits).

proof First, we prove that broadcast properties are satisfied. If Setup3 outputted ∆, then by
inspection of the cases it is clear that Broadcast3 achieves broadcast. Assume now that Setup3
succeeded. We consider four possible cases of player corruption:

(All players are correct) Due to the Correctness and Detection properties of DVSS+, VSS-Share
succeeds and all players reconstruct dealer’s k0||k1 in VSS-Rec. Hence, all players decide on
dealer’s b in Broadcast3.

(Two players are correct) Consider two possibilities: (1) both recipients are correct, and (2) the
dealer and one of the recipients are correct. In both cases Termination clearly holds.
In case (1) Validity clearly holds. Due to the Correctness property of DVSS+ for t = 1, both
recipients reconstruct the same k0||k1 (except with probability O(1/|F|)). Since they hold
the same set A and use the same key k0||k1, the recipients decide on the same value.
Consider case (2). Wlog assume that P1 is correct and P2 is Byzantine. Due to the Correctness
property of DVSS+ for t = 1, player P1 obtains the key k0||k1 shared by the dealer (except
with probability O(1/|F|)). Due to the Privacy property of DVSS+ for t = 1, player P2

does not learn the authentication information for the bit which was not sent by the dealer.
The probability that P2 forges a MAC for an unknown bit is the same as guessing the
corresponding part of the key which is at most 2−κ. Hence, a correct recipient decides on the
value send by the correct sender (except with probability O(2−κ)). Since the dealer always
decides on the value b, both Validity and Consistency hold.

(One player is correct) If a recipient is correct, then broadcast properties are clearly satisfied.
If the dealer is correct then Termination and Consistency are clearly satisfied, while Validity
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follows from the fact that the dealer decides on the value he proposes.
(No player is correct) No properties are needed to be proven here.

The protocol Setup3 uses temporary broadcast only during the VSS-Share invocation at Step 1.
Due to Lemma 2 VSS-Share uses broadcast only one predetermined round (where each player
broadcasts O(κ) bits) and so does Setup3.

2.4 Efficient Parallel Setup

In the previous section we have shown how to generate a setup for one bit broadcast. An obvious
approach for generating a setup for an ` bit message is to prepare ` such setups. In this section
we show how to efficiently parallelize ` setup invocations such that the temporary broadcast is
used only small number of times. As a key ingredient of such a parallelization, we present the
protocol BCFromTenBits3 which given an opportunity to broadcast 10 bits allows to broadcast
a message of arbitrary fixed length. The protocol is perfectly secure, i.e., its security depends
only on the security of the underlying broadcast.
The protocol BCFromTenBits3 works recursively. At each iteration the parties reduce the broad-
cast of a long message to broadcasting a shorter message. The recursion stops once the dealer
is supposed to broadcast 10 bits only. Each recursive iteration has the same structure: first the
dealer distributes the long message using point-to-point channels, then the recipients exchange
the messages received from the dealer, and afterwards each recipient forwards to the dealer the
message received from the other recipient. Finally, the dealer broadcasts a hint that allows each
correct recipient to decide on one of the messages he has received. The hint consists of a key k
for a special c-identifying predicate (see later). The task of broadcasting a long message is now
reduced to broadcasting the key k which has a smaller bit-length than the message.

Identifying predicates. An identifying predicate allows to identify a specific element v from
some small subset S ⊆ D where D is a potentially large domain. More formally, a c-identifying
predicate is a function Q : D ×K → {0, 1} such that for any S ⊆ D with |S| ≤ c and any value
v ∈ S there exists a key k ∈ K with Q(v, k) = 1 and Q(v′, k) = 0 for all v′ ∈ S \ {v}. The goal
of constructing such a function Q is to have |K| as small as possible given c and |D|.
Assume now D = {0, 1}`, then Q can be constructed as following: for a set S and a value
v, we find c − 1 bit positions p1, . . . , pc−1 such that v differs from any other value v′ ∈ S in
some position pi. Then the key k for a set S and a value v is defined by positions p1, . . . , pc−1
and bits b1, . . . , bc−1 which v has at these positions. Hence, for this Q the key space K =
{0, 1}(c−1)(dlog `e+1).

Protocol BCFromTenBits3(v ∈ {0, 1}`):
1. If ` ≤ 10 then the parties use the underlying broadcast given in order to broadcast v.
2. Otherwise:

2.1 The dealer sends v to P1 and P2. Denote the values received by v1 and v2.
2.2 P1 sends v1 to P2, denoted by v12, and P2 sends v2 to P1, denoted by v21. P1 forms

the set V1 = {v1, v21} and P2 forms the set V2 = {v2, v12}.
2.3 The recipients send v21 and v12 to the dealer. Denote received values by v210 and

v120. Let S = {v, v120, v120}.
2.4 The dealer chooses a key k for the 3-identifying predicate Q with the domain {0, 1}`,

the set of values S and the value v. The parties invoke BCFromTenBits3(k) recur-
sively. Let k′ denote the result of the broadcast.

2.5 Each recipient Pi decides on a unique v′ ∈ Vi such that Q(v′, k′) = 1 (if k′ = ⊥ or
none/both values in Vi have Q equal to 1, then decide on ⊥). The dealer decides
on v.
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Lemma 4. The protocol BCFromTenBits3 perfectly secure achieves broadcast (of v from a pre-
determined domain {0, 1}`) given that the dealer can broadcast 10 bits. Furthermore, the dealer
needs to broadcast 10 bits only in one predetermined round which index depends only on `.

proof (BCFromTenBits3 implements broadcast) We prove that BCFromTenBits3 implements
broadcast under the assumption that the recursive invocation of BCFromTenBits3(k) already
guarantees broadcast properties. In case all players are correct or at least two are Byzantine the
broadcast properties are clearly satisfied. The only two non-trivial cases left are as follows:

(The sender D is corrupted, both recipients are correct) Then we need to prove only Consistency
property. We have that both recipients have the same set of values V1 = V2. Since they both
reconstruct the same key k′ as an outcome of the recursive call to BCFromTenBits3 (its Con-
sistency property) they must decide on the same value as well.

(One of the recipients is corrupted, the sender is correct) Then we need to prove only Validity
property. Wlog assume P2 is corrupted and P1 is correct. Since sender’s v ∈ V1 and V1 ⊆ S,
the dealer chooses k such that Q(v, k) = 1 and for all other values in V1 the predicate Q is 0.
Since the recursive call to BCFromTenBits3 satisfies the Validity property, the player P1 gets
a correct key k′ = k and, after applying Q, decides on v.

(Complexity analysis) The protocol BCFromTenBits3 works recursively. We denote the broad-
cast input length at each recursive invocation r to be Tr. We have that T0 = ` and Ti+1 is defined
recursively to be 2dlog Tie+2. Hence, this implies that Ti+1 < Ti for any Ti > 10. Consequently,
in the end we need to broadcast at most 10 bits. In total, there are O(log∗ `) recursive iterations,
where log∗(·) is the iterated logarithm function.

Parallelizing Setup3. We run many instances of Setup3 in parallel such that each player con-
solidates the values it needs to broadcast in one string which is broadcast with BCFromTenBits3.
The protocol BCFromTenBits3 uses temporary broadcast as its underlying primitive for broad-
casting 10 bits. The following lemma summarizes the properties achieved by this construction:

Lemma 5. The broadcast scheme described above generates ` setups. Furthermore, the tem-
porary broadcast is used in one predetermined round only where each player broadcasts at most
10 bits.

3 Broadcast Scheme for any n and t < n/2

Broadcast is achievable from point-to-point channels without a trusted setup if and only if
t < n/3. Fitzi and Maurer [FM00] proposed a construction of a broadcast protocol for t < n/2
from the broadcast channels among every triple of players. In this paper we use following
theorem from [FM00]:

Theorem 1. In the model where broadcast is available among every triple of players there
is a protocol that implements broadcast among n players tolerating t < n/2 corruptions. This
protocol invokes underlying triple broadcast channels at most n times for each triple (Pi, Pj , Pk),
where Pi is the sender and Pj , Pk are the recipients.

The protocol we present generates n setups for each triple of players where Pi is the sender and
Pj , Pk are the recipients. It is done by invoking in parallel procedure Setup3.

Protocol Setupn:
1. For each possible sender Pi and recipients Pj , Pk (i, j, k are all different): Parties Pi, Pj , Pk

invoke Setup3 n times in parallel.
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Protocol Broadcastn(b):
1. Use protocol by [FM00], whenever Pi needs to broadcast 1 bit among Pj , Pk use the

protocol Broadcast3 with the prepared setup.

Theorem 2. The protocol Broadcastn achieves broadcast (of b) for t < n/2 given that Setupn
has been executed before (except with probability O(n42−κ)). Furthermore, Setupn is inde-
pendent of b and uses temporary broadcast procedure in only one predetermined round (where
players needs to broadcast O(n3) bits).

proof Due to their specifications, protocols Setupn and Broadcastn always terminate. Since
Broadcast3 has failure probability O(2−κ) then due to Theorem 1 the probability that Broadcastn
does not achieve broadcast is bounded by O(n42−κ). The protocol Setupn uses the temporary
broadcast only during the parallel invocation of Setup3 at Step 1. Due to Lemma 3 Setup3 uses
broadcast only in one predetermined round and so does Setupn. Due to Lemma 5, each party in
a triple needs to broadcasts 10 bits in order to generate n setups. There are

(
n
3

)
triples in total,

so players broadcast O(n3) bits in one round of the setup phase.

3.1 Refreshing the Setup

A broadcast scheme, as we defined it, works in the following way: first we run the Setupn proto-
col for the setup generation and then execute Broadcastn to broadcast a value. The invocation
of the Broadcastn protocol actually “consumes” the setup, i.e., one setup may be used for broad-
casting one value only. A concept of a refresh protocol allows to extend a fixed setup for many
setups [PW96].
A refresh protocol for the presented scheme with arbitrary number of players n runs refresh pro-
tocol for each triple of players. A refresh procedure for a triple is sketched below. Let us denote
the three players with P1, P2, P3. We assume that the initial setup allows each player P1, P2, P3

to broadcast 10 bits. We construct a setup allowing each party to broadcast any number of `
bits. For each possible sender (P1,P2 or P3) the players run in parallel ` instances of Setup3
where the values each player Pi is supposed to broadcast in every instance are consolidated in
one string si of O(`κ) bits. In order to broadcast si, each Pi uses the protocol BCFromTenBits3
where 10 initial setups are used.

3.2 Application to MPC

One of the most important applications of broadcast schemes is a secure MPC [GMW87]. In
the settings with t < n/2 MPC is achievable from point-to-point communication only when a
broadcast channel is available additionally. Such a broadcast channel is usually simulated with
a broadcast scheme which tolerates t < n/2. The broadcast scheme presented in this paper
shows that there is an information-theoretically secure MPC protocol which uses a broadcast
channel during only one round. This is achieved by running Setupn sufficiently many times in
parallel (this uses one round of temporary broadcast) to prepare enough setups, and simulating
all invocations to broadcast in the MPC protocol by Broadcastn. Furthermore, if it is not known
beforehand how many times the broadcast channel will be used, the refresh protocol is used. It
allows to generate arbitrary many setups from a given fixed-size setup.

4 Conclusions

In this paper we study the efficiency of information-theoretically secure broadcast schemes in
terms of the temporary broadcast usage during the setup phase. All known schemes [PW96,
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BHR07, GGO12] use temporary broadcast in strictly more than one round in the setup phase.
We give a broadcast scheme for t < n/2 which requires only 1 round of the temporary broad-
cast. Furthermore, the presented scheme requires only O(n3) bits to be broadcast in the setup
phase.
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