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Abstract

Motivated by the goal of controlling the amount of work required to access a shared
resource or to solve a cryptographic puzzle, we introduce and study the related notions of
lossy chains and fractional secret sharing.

Fractional secret sharing generalizes traditional secret sharing by allowing a fine-
grained control over the amount of uncertainty about the secret. More concretely, a
fractional secret sharing scheme realizes a fractional access structure f : 2[n] → [m] by
guaranteeing that from the point of view of each set T ⊆ [n] of parties, the secret is uni-
formly distributed over a set of f(T ) potential secrets. We show that every (monotone)
fractional access structure can be realized. For symmetric structures, in which f(T ) de-
pends only on the size of T , we give an efficient construction with share size poly(n, logm).

Our construction of fractional secret sharing schemes is based on the new notion of lossy
chains which may be of independent interest. A lossy chain is a Markov chain (X0, . . . , Xn)
which starts with a random secret X0 and gradually loses information about it at a rate
which is specified by a loss function g. Concretely, in every step t, the distribution of X0

conditioned on the value of Xt should always be uniformly distributed over a set of size
g(t). We show how to construct such lossy chains efficiently for any possible loss function
g, and prove that our construction achieves an optimal asymptotic information rate.

1 Introduction

In this work, we introduce and study two related notions: lossy chains and fractional secret
sharing. We start by describing the latter.

Fractional secret sharing. Suppose that we wish to share a secret password between
several parties, such that the largest subset of cooperating parties will be the first to guess
the correct password. (Think of the password as a key which locks a physical or digital vault,
∗This is the full version of [6].
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where the number of guessing attempts measures the amount of work required for unlocking
the vault.)

A simple solution that comes to mind is the following. If the password is a binary string of
length k and we have n ≤ k parties, we can give each party one or more bits of the password.
In this solution, a larger cooperating subset of parties will need a smaller expected number
of attempts to guess the password than a smaller one. This solution achieves our goal, but is
limited to specific parameters. For example, we cannot easily extend this method to n > k
parties, nor can we have finer control over the relative amount of expected work required by
different subsets of parties.

Our goal is to find a solution which gives maximal control over the amount of information
about the password revealed to each subset of parties. This motivates the notion of fractional
secret sharing. In traditional secret sharing [10, 3, 7], each subset of n parties either has full
information about the secret or has no information about the secret. Fractional secret sharing
generalizes this notion by allowing a fine-grained control over the amount of uncertainty of
each subset about a uniformly random secret. The uncertainty is specified by a fractional
access structure f : 2[n] → [m]. A fractional secret sharing scheme realizing f should have
the property that from the point of view of each set T ⊆ [n] of parties, the secret is always
uniformly distributed over a set of f(T ) potential secrets. Since adding a party to a subset
cannot reduce the amount of available information, we assume f to be monotone in the sense
that if T ⊆ T ′ then f(T ′) ≤ f(T ). This raises the following questions:

Can every (monotone) fractional access structure be realized? If so, how efficiently?

How to gradually forget. Motivated in part by the problem of fractional secret sharing,
we introduce the related notion of lossy chains. A lossy chain is a Markov chain (X0, . . . , Xn)
which starts with a random secret X0 and gradually loses information about it at a rate which
is specified by a predefined loss function g : [n] → [m]. More concretely, we require that for
any 1 ≤ i ≤ n and any possible value xi in the support of Xi, the distribution of the secret
X0, conditioned on the event that Xi = xi, is uniform1 over a set of size g(i). (The identity
of this set may depend on xi.) In a similar manner to fractional access structures, we require
that the loss function g be monotone, in the sense that for i < j we have g(i) < g(j). This
raises the following questions:

Can every (monotone) loss function be realized? If so, how efficiently?

The Markov property of the chain (namely, the requirement that Xi+1 be independent
of X0, . . . , Xi−1 given Xi) is important for our motivating applications, as it rules out the
possibility of combining several values Xi in order to learn more information than that implied
by the “best” value Xi. Jumping ahead, this property will turn out to be crucial for the
construction of fractional secret sharing from lossy chains.

Why uniform? An important aspect of our notions of fractional secret sharing and lossy
chains is that they require each conditional distribution to always be uniform over a subset
of potential secrets having a specified size. One could instead consider alternative definitions

1The uniformity requirement rules out simple solutions that are based on gradually adding independent
random noise to the initial secret (cf. [4]), see further discussion below.
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which only specify some measure of entropy, such as conditional Shannon entropy [11] or min-
entropy [9], without further restricting the distribution. Insisting on a uniform distribution
has several important advantages. First, a crude measure of uncertainty such as entropy is
not informative enough to capture all relevant properties of a distribution. For instance, min-
entropy determines the best probability of guessing the secret in the first attempt, but says
little about the expected number of attempts until the secret is correctly guessed. Second, using
the uniform distribution does not only give control over the expected number of attempts in an
optimal guessing strategy, but it also minimizes the variance of the number of such attempts
under the expectation constraint. (See Appendix A for a proof that the uniform distribution
beats any other distribution in this respect.) Finally, in some scenarios it may be desirable to
spread the point in time in which the secret is correctly guessed as evenly as possible (think
of a password controlling a shared resource). This too is achieved optimally by the uniform
distribution. We note that one could relax the requirement of uniformity to being statistically
close to uniform. This is addressed in Appendix B.

1.1 Our Results

We obtain several positive and negative results about lossy chains and fractional secret sharing.

• We show that any monotone loss function g : [n] → [m] can be efficiently realized
by a lossy chain (X0, . . . , Xn) in which the bit-length of each Xi is at most n · dlogme.
Moreover, we show this bound to be asymptotically tight by demonstrating the existence
of a family of loss functions gn,m : [n] → [m] for which some Xi must be Ω (n logm)
bits long. This asymptotic lower bound still holds even if we allow the conditional
distributions to have negligible statistical distance from uniform. Settling for a constant
statistical distance, the bit-length of each Xi can be O(log2m), independently of n.

• We show a general reduction of fractional secret sharing to lossy chains, which implies
that every monotone fractional access structure f : 2[n] → [m] can be realized. For
the important case of symmetric structures, in which f(T ) depends only on the size
of T , we get an efficient construction in which the share size of each party is at most
n · dlog max {n,m}e.

1.2 Overview of Techniques

Recall that a lossy chain is a Markov chain (X0, . . . , Xn), where X0 is a random secret, and
each step loses additional information about the secret. This loss is specified by a loss function
g : [n] → [m], such that for each 1 ≤ i ≤ n and xi in the support of Xi, the distribution of
X0 conditioned on Xi = xi is uniform over a set of size g(i). (See Section 3.1 for a formal
definition.)

As a simple warmup example, let X0 be uniform over {0, 1}n, and let Xi include the first
n− i bits of X0. In this case, X0 conditioned on Xi = xi is distributed uniformly over a set of
size 2i. Thus, this lossy chain realizes the loss function g (i) = 2i. This simple approach only
works for a loss function g which is increasing exponentially, and can be generalized only to
loss functions g such that g (i) divides g (i+ 1).

The following alternative approach works for any monotone loss function g : [n] → [m],
where without loss of generality g (n) = m:
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1. Pick x0 uniformly from [m].

2. For i = 1, . . . , n, pick (a set) xi uniformly at random from all subsets of [m] of size g (i)
containing xi−1.

3. Output (x0, x1, . . . , xn).

Intuitively, this method starts from a set {x0} containing only the correct secret, and in
each step adds g (i)− g (i− 1) new random “distractors” from [m]. This allows us to realize a
lossy chain for any loss function. However, storing or sending the values of such a chain may
be infeasible when m is large (e.g., think of m as the number of possible passwords). It is
therefore desirable to get a solution in which the bit-length of each Xi grows logarithmically
with m instead of linearly with m.

A natural approach is to limit the subsets represented by Xi to only be discrete intervals
of the form [j, k] = {j, j + 1, . . . , k}, where 1 ≤ j ≤ k ≤ m. Unfortunately, this simple
modification of the previous construction fails to satisfy the uniform conditional distribution
property. More concretely, given an interval [j, k] for Xi, the probability of the secret X0

being in the middle of the interval will be higher than in the edges of the interval. To avoid
this problem, we employ cyclic intervals. Intuitively, given an arbitrary ordered set, a cyclic
interval can “cycle” through the end back to the start of the set. Using recursive nesting of
such cyclic intervals, we construct a lossy chain for any loss function while keeping the support
of each Xi small. We describe our results for lossy-chains in Section 3. We present the above
construction in Section 3.2, and we establish the optimality of this construction in Section 3.3
by using some basic linear algebraic properties of the probability vectors associated with a
lossy chain. Positive and negative results for the statistical relaxation of lossy chains are given
in Appendix B.

Finally, in Section 4 we describe the reduction of fractional secret sharing to lossy chains.
Recall that a fractional secret sharing scheme realizes a fractional access structure f : 2[n] →
[m] by ensuring that from the point of view of each set T ⊆ [n] of parties, the secret is uniformly
distributed over a set of f(T ) potential secrets. (See Section 4.1 for a formal definition.) In
the case of a symmetric structure f , where f(T ) depends only on the size of T , we can
use the following natural construction: let g(i) = f([n − i]) and let (X0, . . . , Xn) be a lossy
chain realizing g. A fractional secret sharing scheme realizing f can be obtained by using a
threshold secret sharing scheme (such as Shamir’s scheme [10]) to distribute the value of each
Xi between the n parties with reconstruction threshold n − i. Any set T of t parties will
be able to reconstruct the values Xn−t, . . . , Xn, which by the Markov property contain the
same information about the secret X0 as Xn−t. By the definition of g, the distribution of X0

conditioned on the value of Xn−t is uniform over a set of size f(T )+1, as required. The above
construction can be generalized to arbitrary fractional access structures. However, similarly
to traditional secret sharing, the complexity of the general construction may be exponential
in the number of parties.

Related work. The notion of fractional secret sharing can be viewed as a restricted instance
of non-perfect secret sharing (also referred to as ramp secret sharing). While in standard
(perfect) secret sharing schemes each set of players should either be able to fully reconstruct
the secret or alternatively should learn nothing about it, in non-perfect secret sharing there
is also a third kind of sets that may learn partial information about the secret. Non-perfect

4



schemes were proposed mainly for the reason of improving the efficiency of secret sharing by
reducing the size of the shares. Unlike fractional secret sharing, in non-perfect secret sharing
there is no requirement on the type of partial information available to the third kind of subsets.
For works on non-perfect secret sharing, see [2, 12, 8, 5] and references therein.

2 Preliminaries

Notation. We let [n] denote the set of integers {1, 2, . . . , n}. We use log n to denote log2 n.
For a random variable X, we let supp(X) denote the support set of X, that is, the set of values
which X may take with nonzero probability. The support set of a real-valued vector is the set
of coordinates in which it takes nonzero values.

Markov chains. AMarkov chain is a sequence of random variables such that the distribution
of each variable in the sequence depends only on the value of the previous variable. Formally:

Definition 1. (Markov chain) Let X̄ = (X0, X1, . . . , Xn) be a sequence of jointly distributed
random variables. We say that X̄ is a Markov chain if for every i ∈ [n] and for any sequence
of values x0 ∈ supp(X0), . . . , xi ∈ supp(Xi),

Pr [Xi = xi|Xi−1 = xi−1] = Pr [Xi = xi|Xi−1 = xi−1, . . . , X0 = x0] .

In general, Markov chains can be defined as infinite sequences of random variables with
infinite support size. However, in this work we will only consider finite Markov chains.

The above definition is equivalent to requiring that for any i and xi in the support set
of Xi, the random variables (X1, . . . , Xi−1) and (Xi+1, . . . , Xn) are independent conditioned
on Xi = xi. The symmetry of the above conditional independence requirement implies the
following “reversibility” property of Markov chains (see [1, p. 215] for a formal proof).

Fact 1. If X̄ = (X0, X1, . . . , Xn) is a Markov chain, then so is X̄R = (Xn, Xn−1, . . . , X0).

3 Lossy Chains

In this section we define our new notion of a lossy chain (Section 3.1), present an efficient
construction of lossy chains (Section 3.2), and prove a lower bound on their efficiency (Sec-
tion 3.3).

3.1 Definitions and Basic Properties

A lossy chain is a Markov chain in which the information loss about the initial value is fully
specified by a loss function. We start by defining the latter.

Definition 2. (Loss function) A loss function is a monotone increasing function g : [n] →
[m]. That is, for every 1 ≤ i < j ≤ n we have g(i) < g(j).

We now turn to define lossy chains.

Definition 3. (Lossy chain) Let g : [n]→ [m] be a loss function, and let X̄ = (X0, X1, . . . , Xn)
be a sequence of random variables. We say that X̄ is a lossy chain realizing g if the following
conditions hold:
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• X̄ is a Markov chain, and

• for every i ∈ [n] and every xi in the support of Xi, the distribution of X0 conditioned
on Xi = xi is uniform over a set of size g (i).

Our goal is to construct lossy chains in which each value can be succinctly described. To
this end we use the following measure of efficiency.

Definition 4. (Information rate) Let X̄ = (X0, X1, . . . , Xn) be a lossy chain. The infor-
mation rate of X̄ is defined as

ρ(X̄) = min
0≤i≤n

log g(n)

log |supp (Xi) |
.

It will be convenient to assume that in a lossy chain realizing g : [n] → [m], the initial
value X0 is uniformly distributed over a set of size g(n), and Xn has support set of size 1.
The following claim shows that this assumption is without loss of generality: any lossy chain
realizing g can be converted into a canonical form that has this property and has the same or
better information rate.

Claim 1. (Canonical lossy chain) Let g : [n] → [m] be a loss function and let X̄ =
(X0, X1, . . . , Xn) be a lossy chain realizing g. Let xn be an arbitrary element in the support of
Xn. Let X̄ ′ = (X ′0, X

′
1, . . . , X

′
n) be the joint distribution defined by

Pr[X̄ ′ =
(
x′0, x

′
1, . . . , x

′
n

)
] = Pr[X̄ =

(
x′0, x

′
1, . . . , x

′
n

)
|Xn = xn].

Then X̄ ′ is a lossy chain realizing g. Moreover, X ′0 is uniform over a set of size g(n) and
supp(X ′i) ⊆ supp(Xi) for 0 ≤ i ≤ n.

Proof. To see that X̄ ′ is a Markov chain, note that if (X1, . . . , Xi−1) and (Xi+1, . . . , Xn) are
independent when conditioned on Xi = xi, then (X1, . . . , Xi−1) and (Xi+1, . . . , Xn−1) are
independent when conditioned on Xi = xi and Xn = xn.

We now show that X̄ ′ realizes g. For this, it suffices to show that for any i ∈ [n] and any
x′i ∈ supp(X ′i), the distribution of X ′0 conditioned on X ′i = x′i is identical to the distribution
of X0 conditioned on Xi = x′i. Indeed, for any x

′
0 we have

Pr
[
X ′0 = x′0|X ′i = x′i

]
= Pr

[
X0 = x′0|Xi = x′i, Xn = xn

]
= Pr

[
X0 = x′0|Xi = x′i

]
,

where the first equality follows from the definition of X̄ ′ and the second from the conditional
independence property of Markov chains. Finally, the fact that X ′0 is uniform over a set of
size g(n) follows immediately from Definition 3 and the fact that supp(X ′i) ⊆ supp(Xi) follows
from X ′i being a restriction of Xi to a conditional space.

3.2 An Efficient Construction

In the Introduction, we have seen a simple general construction of a lossy chain realizing
g : [n]→ [m] whose information rate is Θ̃ (1/m). This construction may be infeasible for large
values of m. In this section, we show how the rate can be improved to 1/n.

We first recall the scheme described in the Introduction. Given g : [n] → [m] where
(without loss of generality) g (n) = m, the lossy chain is computed as follows.
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Figure 1: The cyclic interval from a4 to b4 is taken from a set S4 with a cyclic order to create
S3. Then S2 is created as a subset of S3 by taking another cyclic interval. This goes on until
S0, the starting value, is chosen from S1.

1. Pick x0 uniformly from [m].

2. For i = 1, . . . , n, pick a set xi uniformly at random from all subsets of [m] of size g (i)
containing xi−1.

3. Output (x0, x1, . . . , xn).

This chain is inefficient in that it requires to store arbitrary subsets of [m]. In order to obtain
a more efficient variant of this construction, we restrict these subsets to be nested cyclic
intervals.

Definition 5. (Cyclic interval) Let S = {e0, . . . , em−1} be a linearly ordered set, where
e0 < e1 < . . . < em−1. For any two integers a, b ∈ {0, . . . ,m− 1}, the cyclic interval from a
to b over S, denoted [a, b]S , is defined by:

[a, b]S =

{
{ea, . . . , eb} a ≤ b
{ea, . . . , em−1} ∪ {e0, . . . eb} a > b

.

Note that for a given size k, there are exactly |S| distinct nested intervals of size k in S, one
for each starting point a. The algorithm for generating the lossy chain iteratively generates
subsets Si of size g (i) for every i ∈ [n] in decreasing order, where each subset Si is a random
cyclic interval in Si+1. See Figure 1 for a visual illustration. A precise description of the
algorithm is given in Figure 2.

We now prove that the output of the “Cyclic Intervals” algorithm from Figure 2 forms a
lossy chain realizing g. In the following, we denote by X̄ = (X0, . . . , Xn) the joint distribution
of the output. We start by showing that the output indeed forms a Markov chain.

Lemma 1. The output distribution (X0, . . . , Xn) forms a Markov chain.

Proof. For 1 ≤ i ≤ n, the output Xi−1 is sampled based on Xi alone. This implies that
(Xn, . . . , X0) is a Markov chain and, by Fact 1, we have that (X0, . . . , Xn) is also a Markov
chain.
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“Cyclic Intervals” lossy chain

Input: A loss function g : [n]→ [m].

Algorithm:

1. Sn ← [g(n)]

2. For i = n− 1, ..., 1

(a) Pick ai ∈ {0, ..., g (i)− 1} uniformly at random

(b) bi ← (ai + g (i)− 1)mod g (i+ 1)

(c) set Si = [ai, bi]Si+1

3. Pick x0 uniformly at random from S1

Output: x̄ = (x0, S1, S2, . . . , Sn)

Figure 2: Lossy chain obtained via nested cyclic intervals

Lemma 2. The chain X̄ realizes the loss function g.

Proof. We prove that for any 1 ≤ i ≤ n and any Si ∈ supp(Xi), the distribution of X0

conditioned on the event Xi = Si is distributed uniformly over Si. Since |Si| = g(i) the lemma
will follow.

The above claim intuitively follows by symmetry. We formally prove it by induction on i.
The case i = 1 follows directly from the algorithm’s description. Suppose the claim holds for i,
and let Si+1 be in the support of Xi+1. We need to prove that X0 conditioned on Xi+1 = Si+1

is uniformly distributed over Si+1. Indeed, when Xi+1 = Si+1 the choice of the output x0 can
be viewed as resulting from the following two step process:

1. Pick Si as a random cyclic interval in Si+1 of size g(i).

2. Pick x0 from the distribution of X0 conditioned on Xi = Si.

The choice of Si in the first step guarantees that each x ∈ Si+1 has an equal probability to be
in Si. By the induction’s hypothesis, the second step picks x0 uniformly at random from Si.
Combining the two steps, x0 is uniformly distributed over Si+1, as required.

Using the above two lemmas, we obtain the main theorem of this section.

Theorem 1. For any loss function g : [n] → [m], there is a lossy chain realizing g whose
information rate is at least 1

n−1 .

Proof. Lemma 1 and Lemma 2 imply that the algorithm from Figure 2 is a lossy chain realizing
g. The bound on the information rate follows from the fact that each Si can be fully specified
using the sequence (an−1, . . . , a1), where 0 ≤ ai < g(i) ≤ g(n) for all i, and from the fact that
|supp(X0)| = g(n).
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Figure 3: On the left, a states graph for a simple lossy chain realizing g (i) = 2i with 4 possible
starting values. On the right, a lossy chain realizing g (i) = i+ 1, also with 4 possible starting
values.

Remark 1. (On computational efficiency) The description in Figure 2 does not address
the question of how the sets Si are represented and how one can efficiently enumerate the
elements of Si or sample from Si. To this end, we note that if we modify the algorithm such
that Xi contains the representation of Si by the sequence (an−1, . . . , ai), the resulting chain
still realizes g (namely, the additional information provided by this sequence does not change
the distribution of X0 conditioned on Si). Moreover, the information rate of this (slightly
redundant) representation of the sets Si is still lower bounded by 1/(n− 1). See Appendix C
for efficient algorithms supporting this representation.

3.3 A Negative Result

In this section, we establish a limitation on the information rate of lossy chains, showing
that the cyclic intervals construction cannot be asymptotically improved in the worst case.
Specifically, we show a family of loss functions g : [n]→ [m] for which the support size of each
Xi is at least

(
m

m−n+i
)
. For proving this result, it is convenient to use the following notion of

a states graph of a Markov chain.

Definition 6. (States graph) Let X̄ = (X0, . . . , Xn) be a Markov chain, and let Vi denote
the support set of Xi. Assume, without loss of generality, that the sets Vi are pairwise disjoint.
The states graph of X̄ is a weighted directed graph (G, f) where

• G = (V,E) is a layered graph in which Vi is the set of i-th level nodes and E contains
the edges (u, v) such that, for some i, we have u ∈ Vi, v ∈ Vi+1 and v is in the support
of Xi+1 conditioned on Xi = u.

• For any u ∈ Vi and v ∈ Vi+1, we have f(u, v) = Pr [Xi+1 = v|Xi = u].

An example for a states graph of a simple lossy chain appears in Figure 3.
We define, for each node v ∈ V \V0, a probabilities vector which contains the probability

of each starting value given that Xj was chosen to be v.
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Definition 7. (Probabilities vector) Let g : [n]→ [m] be a loss function such that g(n) =
m. Let X̄ = (X0, . . . , Xn) be a lossy chain realizing g with |supp(X0)| = m, and let G be its
states graph. Let v ∈ Vj be a node in layer j of G. The probabilities vector of v is a vector
v̄ ∈ Rm such that v̄ [i] = Pr [X0 = ei|Xj = v], where ei is the element with index i in V0, and
v̄ [i] is the ith coordinate of v̄. We say that a vector ū ∈ Rm fits layer j of G if ū has g (j)
entries of value 1

g(j) and the other entries are 0.

Note that if v̄ is the probabilities vector of a node v ∈ Vj , then v̄ necessarily fits layer j.
However, the converse is not necessarily true.

Our negative result relies on the fact that the probabilities vector of any node in the states
graph is a convex linear combination of the probabilities vectors of its parents (that is, a linear
combination with positive coefficients that add up to 1).

Lemma 3. Let X̄ = (X0 . . . , Xn) be a lossy chain with states graph G = (V,E). For any
1 ≤ j ≤ n, let v ∈ Vj be a node of G and u1, . . . , uk ∈ Vj−1 be all the nodes such that
(ui, v) ∈ E. Then v̄, the probabilities vector of v, is a convex linear combination of ū1, . . . , ūk,
the probabilities vectors of u1, . . . , uk.

Proof. We will show that the following holds:

v̄ =

k∑
i=1

ūi ·
f (ui, v)

Pr [Xj = v]
.

For e ∈ [m], let v̄ [e] be the coordinate of v̄ with index e, and let xe ∈ V0 be the starting value
it corresponds to. By the definitions of the states graph and probabilities vectors we get:

v̄ [e] = Pr [X0 = xe|Xj = v]

=

k∑
i=1

Pr [X0 = xe|Xj = v,Xj−1 = ui] · Pr [Xj−1 = ui|Xj = v]

=
k∑
i=1

Pr [X0 = xe|Xj = v,Xj−1 = ui] ·
Pr [Xj = v|Xj−1 = ui] · Pr [Xj−1 = ui]

Pr [Xj = v]

=
k∑
i=1

Pr [X0 = xe|Xj−1 = ui] ·
Pr [Xj = v|Xj−1 = ui] · Pr [Xj−1 = ui]

Pr [Xj = v]

=
k∑
i=1

Pr [X0 = xe|Xj−1 = ui] ·
f (ui, v) · Pr [Xj−1 = ui]

Pr [Xj = v]

=

k∑
i=1

ūi [e] · f (ui, v) · Pr [Xj−1 = ui]

Pr [Xj = v]
.

This implies that v̄ can be expressed as a convex linear combination of ū1, . . . , ūk.

The main theorem of this section shows a tight negative result on the efficiency of a lossy
chain realizing a concrete family of loss functions.
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Theorem 2. Let m,n be positive integers such that m ≥ n and let gm,n : [n] → [m] be the
loss function defined by gm,n (i) = m−n+ i. Let (X0, . . . , Xn) be a lossy chain realizing gm,n.
Then, for any 0 < i ≤ n, it holds that |supp (Xi) | ≥

(
m

m−n+i
)
.

The theorem relies on the following technical lemma, which will imply a lower bound on
the number of probabilities vectors from level i required to span a probabilities vector from
level i+ 1.

Lemma 4. Let v̄ ∈ Rn be a 0-1 vector of Hamming weight k. Let ū1, . . . , ūm be 0-1 vectors
of Hamming weight k− 1. If v̄ is a linear combination of ū1, . . . , ūm with positive coefficients,
then m ≥ k.

Proof. Let v̄ and ū1, . . . , ūm be as above. We write v̄ =
∑m

j=1 aj ūj where aj > 0 for all j.
Assume towards a contradiction that m < k. Since the support set of each ūj is contained in
that of v̄, this implies that there exists a coordinate h such that v̄h = 1 and ūj [h] = 1 for all
1 ≤ j ≤ m. Thus we have 1 =

∑m
j=1 aj . Moreover, there is an index h′ 6= h for which v̄h′ = 1

and ūj [h′] = 0 for some 1 ≤ j ≤ m. This implies that 1 =
∑m

j=1 aj − ah′ . Combining the two
equalities, we get that ah′ = 0, contradicting the assumption that aj > 0 for all j.

We are now ready to prove Theorem 2.

Proof. Let X̄ = (X0, . . . , Xn) be a lossy chain realizing gm,n. By Claim 1, we may assume
without loss of generality that X0 is uniform over a set of size gm,n(n) = m and Xn has support
of size 1.

Let V0, . . . , Vn be the layers in the states graph of X̄. We prove by induction that, for any
i ∈ [n] and for any of the

(
m

m−n+i
)
probabilities vectors v̄ which fit layer i, there is a node

v ∈ Vi such that v̄ is the probabilities vector of v. The base case is i = n. In this case,
the probabilities vector of the (single) node in Vn is (1/m, . . . , 1/m), which is the only vector
which fits level n.

We now assume that the claim holds for layer i + 1 and prove it for layer i. Let ū be a
vector which fits layer i. By the induction hypothesis, we know that for any vector v̄ which
fits layer i+ 1 there is a corresponding node v ∈ Vi+1. Let v ∈ Vi+1 be such a node for which
the support set of v̄ contains that of ū. By Lemma 3, v̄ is a convex linear combination of the
probability vectors of its parents ui. Note that each probabilities vector of a parent node ui
is a scalar multiple of a 0-1 vector of weight gm,n(i) whereas v̄ is a scalar multiple of a 0-1
vector of weight gm,n(i + 1). By Lemma 4 and the fact that gm,n(i + 1) = gm,n(i) + 1, the
probability vectors ūi of the parent nodes ui have support sets that cover all m − n + i + 1
subsets of size m − n + i of the support set of v̄. In particular, one of the ūi must coincide
with ū. Since the above holds for any ū which fits layer i, this concludes the proof of the claim
and the theorem.

Corollary 1. For every ε > 0 there is an infinite family of loss functions gn : [n] → [m(n)],
where m(n) = dn1+εe, such that the information rate of any lossy chain realizing gn is O

(
1
n

)
.

Proof. We define gn : [n] → [m (n)] such that, for any i ∈ [n], gn (i) = m(n) − n + i. Using
Theorem 2, for any 0 < i < n the support size of Xi is at least

(
m

m−n+i
)
. Therefore, letting

m = m(n), we have

ρn = min
0≤i≤n

log gn(n)

log |supp (Xi) |
≤ logm

log |supp (X1) |
≤ logm

log
(

m
m−n+1

) =
logm

log
(
m
n−1
) .
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Using the bound
(
a
b

)b ≤ (ab) and the fact that m ≥ n1+ε we get:

logm

log
(
m
n−1
) ≤ logm

(n− 1) · log
(

m
n−1

) ≤ 1

n− 1
· logm

log (nε)
=

1

n− 1
· 1 + ε

ε
= O(1/n)

as required.

4 Fractional Secret Sharing

In this section, we define the notion of fractional secret sharing and show how to realize it via
the use of lossy chains.

4.1 Definitions

An instance of the fractional secret sharing problem is specified by a fractional access structure.
Recall that a traditional access structure specifies which subsets of parties can reconstruct the
secret, where the remaining sets of parties should learn nothing about the secret. A fractional
access structure generalizes this by allowing full control on the amount of information learned
by each set of parties.

Definition 8. (Fractional access structure) Let P = {p1, . . . , pn} be a finite set of parties
and let m be an integer. A function f : 2P → [m] is monotone if B ⊆ C implies that
f(B) ≥ f(C). A fractional access structure is a monotone function f : 2P → [m], with
f (∅) = m. We say that f is symmetric if f(B) depends only on |B|.

Note that if we limit the range of f to {1,m} then f corresponds to a traditional access
structure. We now formally define our notion of fractional secret sharing.

Definition 9. (Fractional secret sharing scheme) Let f : 2P → [m] be a fractional access
structure and let S be a finite secret-domain. Let D be a randomized algorithm which outputs
a uniformly random s ∈ S together with an n-tuple of shares (s1, . . . , sn). We say that D is
a fractional secret-sharing scheme realizing f with secret-domain S if there exists a positive
integer k such that the following holds: For every Q ⊆ P , and any possible share vector sQ of
parties in Q, the distribution of s conditioned on the event that parties in Q receive the shares
sQ is uniform over a subset of S of size (f (Q)− 1) · k + 1. If the above holds with k = 1, we
say that D strictly realizes f .

Note that our default notion of realizing a fractional access structure views the structure
as only specifying a kind of ratio between the amount of uncertainty of different sets, without
specifying the absolute amount of uncertainty or the size of the secret-domain. This relaxation
is needed in order to capture standard access structures as a special case. Also note that the
above definition generates a random secret along with the shares, unlike most traditional
definitions of secret sharing which do not refer to any particular distribution over the secret
domain. As in the case of traditional secret sharing, we measure the complexity by comparing
the size of the biggest share-domain to the size of the secret-domain.
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4.2 Fractional Secret Sharing from Lossy Chains

We now apply the positive results from Section 3.2 towards realizing any fractional access
structure.

Theorem 3. For any fractional access structure f : 2P → [m], there exists a fractional secret
sharing scheme which strictly realizes f .

Proof. Without loss of generality, assume that f(P ) = 1 and f(∅) = m. We shall use S = [m]
as the secret-domain. Let α0, ..., αl be all the different values in the range of f in increasing
order; that is, α0 < ... < αl. By our assumptions, we have α0 = 1 and αl = m. Define a loss
function g : [l] → [m] such that g (i) = αi and let X̄ be a lossy chain realizing g. The share
generation algorithm D can now proceed as follows:

1. Sample values (x0, . . . , xl) from X̄ and let s = x0;

2. For every subset of parties Q ⊆ P , let f (Q) = αj . Use a traditional |Q|-out-of-|Q| secret
sharing scheme to share xj into sQ,1, . . . , sQ,|Q| (e.g., using additive secret sharing) and
give the j-th party in Q the share sQ,j .

We now show thatD is a fractional secret sharing scheme strictly realizing f . Let Q ⊆ P be
a subset of parties. By the properties of the underlying |Q|-out-of-|Q| scheme, the information
available to parties in Q is equivalent to learning all values xj such that f(Q′) = αj for some
Q′ ⊆ Q. By the monotonicity of f this means the parties in Q learn xi, where i is the index
such that f(Q) = αi, and possibly additional values xj for j > i. By the Markov property
of a lossy chain, the distribution of the secret s conditioned on the above values xi and xj is
uniform over a set of size g(i) = αi = f(Q), as required.

We remark that if f(P ) 6= 0, we can add another party p′ to the set of parties and set
f(Q) to 0 for every subset Q containing p′. We can then execute the proposed algorithm and
“throw away” all the shares of p′.

Similarly to traditional secret sharing, the size of the shares produced by the above al-
gorithm can be exponential in the number of parties. This can be avoided in the case of
symmetric fractional access structures.

Theorem 4. Let f : 2P → [m] be a symmetric fractional access structure with f(∅) = m. Then
there exists a fractional secret sharing scheme D which (strictly) realizes f with secret-domain
[m], where the bit-length of each share is at most n · dlog max {n,m}e.

Proof. As before, let α1, . . . , αl be all the different values in the range of f in increasing order
and define g : [l]→ [m] such that g(i) = αi. We now define D as follows:

1. Generate values x̄ = (x0, . . . , xl) for the cyclic intervals lossy chain realizing g, and
let s = x0. Furthermore, let a1, . . . , al−1 be the starting values of the cyclic intervals
defining x̄ (see Remark 1).

2. For every i ∈ [n], let αj be the value such that for any subset of parties Q ⊆ P of size
i we have f(Q) = αj . Use Shamir’s i-out-of-n threshold secret sharing scheme to create
shares of aj and give one share to each of the parties in P .
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We now show that D is a fractional secret sharing scheme. For every subset of parties
Q ⊆ P , the parties can reconstruct all the values out of x0, . . . , xn that were shared in a
threshold scheme requiring |Q| or less parties. This means that if f (Q) = αj , the parties of Q
can reconstruct aj , . . . , al. By the definition of the cyclic intervals lossy chain, the parties can
reconstruct xj , . . . , xl from aj , . . . , al and since xj , . . . , xl were generated as values from a lossy
chain realizing g we see that the secret s conditioned on Xj = xj , . . . , Xl = xl is distributed
uniformly over a set of size αj , where αj = f (Q) as required.

We are left with showing that the size of share for each party is no more than n ·
dlog (max {n,m})e. Each party receives n different shares, one from each invocation of the
threshold secret sharing algorithm done by D. The secrets shared are a1, . . . , al where we
recall that all of them are values picked from at most m values. Using Shamir’s threshold
secret sharing scheme, each of the values is shared with shares of size dlog (max {n,m})e. This
amounts to a share size of at most n · dlog (max {n,m})e for each party, as required.

5 Conclusions and Open Questions

We introduced the notion of lossy chains – Markov chains which gradually lose information
about an initial secret in a controlled fashion. We presented an efficient construction of lossy
chains and a matching negative result on the efficiency of lossy chains. Finally, we have shown
how lossy chains can be used to realize fractional secret sharing, a natural generalization of
traditional secret sharing which supports a fine-grained control over the amount of uncertainty
about the secret.

While we essentially settle the main complexity question about lossy chains, it remains
open to obtain a characterization of the best achievable information rate for a given loss
function g.

The most interesting open question regarding the complexity of fractional secret sharing is
to settle the case of symmetric fractional access structures, which naturally generalize threshold
access structures. While the latter can be realized by an ideal scheme in which the size of each
share is equal to the size of the secret (for a sufficiently large secret), we do not know whether
an analogous result holds in the fractional domain.

Acknowledgement. We thank Jonathan Yaniv for his contribution to the proof in Ap-
pendix A.
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A Optimality of Uniform Distributions

The definition of lossy chains requires that the conditional distribution of the initial value X0

be uniformly over a set of a specified size. In this section we justify this restriction by showing
that a uniform distribution on secrets minimizes the variance of the number of guesses required
for guessing a secret, where minimization is over all distributions (with arbitrary support size)
in which the expected number of guesses is the same.

In more detail, we consider an abstract game for “guessing” a secret. We show that this
game has an optimal strategy that can be used by any rational solver, and then prove that if
the required expected number of trials by the player in the game is µ and we wish to minimize
the variance of the number of trials, we should pick a uniform distribution with a mean value
of µ.

First, we define our abstract game:

Definition 10. (The guessing game) Let V = {v1, . . . , vn} be a set and let X be a distribu-
tion over V . Let p1, . . . , pn be probabilities such that, for any i ∈ [n], we have Pr [X = vi] = pi.
In the abstract guessing game of X, a secret value x ∈ V is chosen according to X, and in
round i the player chooses a guess gi ∈ V . If gi = x, the game ends. Otherwise, it continues
to round i+ 1. The goal of the player is to minimize the number of rounds.

A strategy for a player playing the guessing game assigns for every sequence of guesses,
g1, ..., gi−1, a probability distribution on the choice of gi. We want to find the optimal strategy
for playing the guessing game. We emphasize that X is known to the player. First, note that
a strategy for the guessing game over X can be defined as guessing a permutation over V
(any strategy which may repeat a guess twice, can be transformed into a strategy that never
guesses a value twice and is not inferior to the original strategy, by skipping any guess that has
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already been made). Also note that for any randomized strategy, there exists a deterministic
strategy with a lower or equal expected number of guesses (where here the expectation is only
over the choice of the secret x ∈ V ). To see that, take a randomized strategy and consider
the different possible permutations on V given the random coins of the player. There exists
a permutation π such that π achieves the minimal expected number of guesses. By always
choosing π, we get a deterministic strategy which is at least as good as the randomized one.

We now show that the optimal strategy for the game is guessing the values in non-increasing
order of probabilities:

Lemma 5. Let V = {v1, . . . , vn} be a set of values and let X be a distribution over V such
that for any i, we denote Pr [X = vi] = pi. A permutation π over V is the optimal strategy for
the guessing game over X, if and only if π is in a non-increasing order of probabilities of all
values in V (i.e., for i < j it holds that pπ(i) ≥ pπ(j)).

Proof. Let πOPT = (vi1 , . . . , vin) be a permutation that minimizes the expected number of
rounds in the guessing game over X. Assume towards a contradiction that there exist two
neighboring values in πOPT , vij and vij+1 such that pij < pij+1 . Let π be the permutation
which is the result of swapping vij and vij+1 in πOPT .

Let YOPT and Y be the random variables of the number of rounds needed to guess a value
chosen according to X using permutations πOPT and π (respectively) as strategies. We now
compare the expected number of rounds for each strategy. By dividing into cases, we get:

E [Y ] =
(
1− pij − pij+1

)
E
[
Y |X 6= vij ∧X 6= vij+1

]
+pij · E

[
Y |X = vij

]
+ pij+1 · E

[
Y |X = vij+1

]
=

(
1− pij − pij+1

)
E
[
YOPT |X 6= vij ∧X 6= vij+1

]
+ pij · (j + 1) + pij+1 · j

=
(
1− pij − pij+1

)
E
[
YOPT |X 6= vij ∧X 6= vij+1

]
+
(
pij + pij+1

)
· j + pij .

We know that E
[
Y |X 6= vij ∧X 6= vij+1

]
= E

[
YOPT |X 6= vij ∧X 6= vij+1

]
since πOPT and π

are identical in such cases. In addition, we can see that for the expected number of rounds for
πOPT we have:

E [YOPT ] =
(
1− pij − pij+1

)
E
[
YOPT |X 6= vij ∧X 6= vij+1

]
+ pij · j + pij+1 · (j + 1)

=
(
1− pij − pij+1

)
E
[
YOPT |X 6= vij ∧X 6= vij+1

]
+
(
pij + pij+1

)
· j + pij+1 .

Since pij < pij+1 , we get that E [Y ] < E [YOPT ], in contradiction to πOPT being an optimal
strategy.

Therefore, we know that a strategy is optimal, only if the values appear in the permutation
in a non-increasing order.

Since there exists an optimal strategy for the game, we can assume that any rational solver
will use it. We wish to select the secret value from a distribution that allows us to control the
expected number of guesses the player will need. In addition, we also want to minimize the
variance under this condition. We now show that the optimal distribution for this purpose is a
uniform distribution over a minimal set of elements with which the required expected number
of guesses can be achieved.

First, since we know the optimal strategy, we can simplify our notation: Let n be a big
enough integer, and X a distribution over [n] such that for any i ∈ [n] we have Pr [X = i] ≥
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Pr [X = i+ 1]. In this case, X is the random variable whose value is also the number of guesses
needed by an optimal player for each secret. We now wish to find such a distribution X such
that E[X] = µ, for a given integer µ, where V [X], the variance of X, is minimal subject to
the restriction on E[X].

Theorem 5. Let µ, n ∈ N be such that 2µ < n and let p1, . . . , pn be the following values:

pi =

{
1

2µ−1 i ≤ 2µ− 1

0 otherwise.

Then, the distribution X defined by Pr [X = i] = pi, has a mean value of µ and, for every
other monotone non-increasing distribution Y over [n], it holds that V [X] ≤ V [Y ].

We prove this theorem in two steps. The first step will be to show that for any distribution
Y over [n] with an expected value of µ and minimal variance, the support of Y is a subset of
[2µ− 1]. The second step will be to show that if a distribution Y over [n] has a mean value
of µ and supp (Y ) ⊆ [2µ− 1], then for any i ∈ [n] we have Pr [Y = i] = pi, and hence Y = X.

Lemma 6. Let m,n ∈ N be two integers, and let X be a monotone non-increasing distribution
over [n] with a mean value of µ. Let k be the maximal index such that Pr [X = k] > 0. If
supp (X) * [2µ− 1], then there exists i ∈ [k − 2] such that Pr [X = i] > Pr [X = i+ 1] > 0.

Proof. Let k be the maximal index such that Pr [X = k] > 0. Assume towards contradic-
tion that for any i ∈ [k − 2], we have Pr [X = i] = Pr [X = i+ 1] (we know that X is
non-increasing). Denote Pr [X = i] = p, and Pr [X = k] = p′. We can see that E [X] =
p ·
∑k−1

i=1 i+ p′ · k. Therefore, we can tell that E [X] = p · k · k−12 + p′ · k. In addition, we know
that 1 =

∑k−1
i=1 p+ p′ = (k − 1) p+ p′. By joining these we get:

E [X] = p · k · k − 1

2
+ p′ · k

= k ·
(
p · (k − 1) + p′

2
+
p′

2

)
= k · 1 + p′

2
.

Finally, we note that E [X] = µ, and k > 2µ− 1, which means k ≥ 2µ. Therefore:

µ = k · 1 + p′

2
≥ µ

(
1 + p′

)
.

This contradicts the fact that p′ > 0.

Lemma 7. Let X be monotone non-increasing distribution over [n] with a mean value of µ
and minimal variance, then supp (X) ⊆ {1, . . . , 2µ− 1}.

Proof. Assume towards a contradiction that supp (X) * {1, . . . , 2µ− 1}, and let k be the
maximal index such that pk > 0. By Lemma 6, there exists an index i < k − 1 such that
pi > pi+1. Let ε1 > 0 and ε2 = (k − i− 1) ε1 be values such that:

pk ≥ ε1

pi − pi+1 ≥ 2ε2 + ε1.
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We modify X to construct a new distribution Y with probabilities p′1, . . . , p′n:

p′l =


pi − ε2 l = i

pi+1 + ε1 + ε2 l = i+ 1

pk − ε1 l = k

pl otherwise.

Note that for any l ∈ [n− 1] we have p′l ≥ p′l+1. Also note that Y is indeed a valid distribution:

n∑
l=1

p′l =

n∑
l=1

pl − ε2 + (ε1 + ε2)− ε1 = 1

We calculate the mean value of Y :

E [Y ] =
n∑
l=1

l · p′l

=
n∑
l=1

l · pl − i · ε2 + (i+ 1) · (ε1 + ε2)− k · ε1

= µ+ ε2 + (i+ 1− k) ε1

= µ+ (k − i− 1) · ε1 + (i+ 1− k) ε1

= µ.

Therefore Y is a valid distribution with a mean value of µ. Lastly, we find its variance:

V [Y ] = E
[
Y 2
]
− (E [Y ])2

=

n∑
l=1

l2 · p′l − µ2

=
n∑
l=1

l2 · pl − i2ε2 + (i+ 1)2 (ε1 + ε2)− k2ε1 − µ2

= V [X]− i2ε2 + (i+ 1)2 (ε1 + ε2)− k2ε1.

We are left with evaluating V [Y ]− V [X]:

V [Y ]− V [X] = −i2ε2 + (i+ 1)2 (ε1 + ε2)− k2ε1
= ε1

(
(i+ 1)2 − k2

)
+ ε2

(
(i+ 1)2 − i2

)
= ε1 (i+ 1− k) (i+ 1 + k) + ε1 (k − i− 1) (2i+ 1)

= ε1 (i+ 1− k) (i+ 1 + k − 2i− 1)

= ε1 (i+ 1− k) (k − i) .

Since i < k − 1, we get V [Y ] − V [X] < 0. In contradiction to X having minimal variance
under the required conditions.
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We are now left with the final step: showing that if the support of X is [2µ− 1] then there
is only one possible distribution.

Lemma 8. Let X be a non-increasing distribution over [n] with a mean value of µ and
supp (X) ⊆ [2µ− 1]. Then:

Pr [X = i] =

{
1

2µ−1 i ≤ 2µ− 1

0 otherwise.

Proof. Let X be the non-increasing distribution over [n] such that for any i ≤ 2µ− 1 we have
Pr [X = i] = 1

2µ−1 and 0 otherwise. First, we note that E[X] = µ since:

E[X] =
n∑
i=1

i · Pr [X = i]

=

2µ−1∑
i=1

i · Pr [X = i]

=
1

2µ− 1
·
2µ−1∑
i=1

i

=
1

2µ− 1
· (2µ− 1) · 1 + (2µ− 1)

2
= µ.

Next, we show that for any non-increasing distribution Z over [n] such that supp (Z) ⊆
[2µ− 1], we have E [Z] ≤ µ.

Let Y be a non-increasing distribution over [n] such supp (Y ) ⊆ [2µ− 1] and E [Y ] is
maximal under these conditions. Assume towards a contradiction, that Y 6= X, then there
exists an index i ∈ [2µ− 2] and ε > 0 such that Pr [Y = i] − Pr [Y = i+ 1] = 2ε. We define
Y ′ as follows:

Pr
[
Y ′ = j

]
=


Pr [Y = i]− ε j = i

Pr [Y = i+ 1] + ε j = i+ 1

Pr [Y = j] otherwise.

We can see that Y ′ is still a monotone non-increasing distribution where supp (Y ′) ⊆
[2µ− 1] and that E [Y ′] = µ+ε. In contradiction to Y having the maximal expectation under
these conditions. Therefore, Y = X. Since E [X] = µ, we can see for every non-increasing
distribution Z over [n] such that supp (Z) ⊆ [2µ− 1], we have E [Z] ≤ µ.

This means that E[X] is the maximal mean value and since E[X] = µ we get that X is
the only distribution satisfying all of the conditions.

By combining Lemma 7 and Lemma 8, we get a proof for Theorem 5 and can indeed see
that the minimal variance for the guessing game with a mean value of µ guesses is received
when choosing the secret value from a uniform distribution.
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B Relaxation of Uniform Distributions

In this section we consider a relaxation of lossy chains referred to as ε-close lossy chains. In
an ε-close lossy chain, we substitute the requirement that conditional distributions be uniform
with being statistically close to uniform. We show two results for this case. The first result
shows how to construct an ε-close lossy chain for any loss function such that the information

rate of the chain is
log 1

1−ε

logm . The second result shows that for a sufficiently small ε the upper
bound from Section 3.3 still holds. That is, the information rate of an ε-lossy chain is still
O
(
1
n

)
.

We start with the formal definitions for the distance between two distributions, and ε-close
lossy chains.

Definition 11. (Statistical Distance) Let X and Y be two random variables distributed
over a set S. We denote the statistical distance between X and Y as d (X,Y ) which is defined
as:

d (X,Y ) =
1

2

∑
s∈S
|Pr [X = s]− Pr [Y = s] |.

In addition, we say that a random variable X distributed over S is ε-close to a uniform
distribution of size n for ε > 0 if there exists a random variable Y which is distributed
uniformly over a subset of S of size n such that d (X,Y ) ≤ ε.

We also denote by d the distance between two vectors v̄,ū, which we define as:

d (v̄, ū) =
1

2

∑
i

|v̄ [i]− ū [i] |.

This means that if v̄ and ū are probabilities vectors for distributions X and Y , then d (v̄, ū) =
d (X,Y ).

Definition 12. (ε-Close Lossy chain) Let g : [n]→ [m] be a loss function, let ε > 0 be a
positive constant, and let X̄ = (X0, X1, . . . , Xn) be a sequence of random variables. We say
that X̄ is a ε-close lossy chain realizing g if the following conditions hold:

1. X̄ is a Markov chain, and

2. for every i ∈ [n] and every xi in the support of Xi, the distribution of X0 conditioned
on Xi = xi is ε-close to a uniform distribution over a set of size g (i).

B.1 Constructing an ε-Lossy Chain

First, as a warm up, consider the case in which m = {0, 1}n, and we wish to construct a
1
2 -lossy chain realizing a loss function g : [n]→ [m]. Let Ȳ be the naive lossy chain in which Yi
contains the first n− i bits of the starting value Y0. We can get our 1

2 -lossy chain X̄ by setting
Xi to be Yj where j is the minimal index such that 2n−j ≥ f (i). Intuitively, this means that
the set of possible values for Xi is at most twice than the required size by g (i), which means
Xi is a distribution with a statistical distance of at most 1

2 from a uniform distribution over
g (i) values.

This simple construction, in which we “round-up” the values of g to match our existing
lossy chain and get an ε-lossy chain will serve as the basis for how we build an ε-lossy chain for
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every loss function and every ε > 0. We now show formally how to construct such an ε-lossy
chain, and find its information rate.

We start by proving a lemma on the distance between two uniform distributions:

Lemma 9. Let n and m be two integers, and Un and Um be the uniform distribution over [n]
and [m] respectively. For 0 < ε < 1, if n ≤ m ≤ 1

1−ε · n, then d (Un, Um) ≤ ε.

Proof. Since n ≤ m, the statistical distance between Un and Um can be computed as follows:

d (Un, Um) =
1

2
·
(
n ·
(

1

n
− 1

m

)
+ (m− n) · 1

m

)
= 1− n

m
.

Since m ≤ 1
1−ε · n, we can see that 1− n

m ≤ ε, as required.

We now proceed to the construction of a general ε-lossy chain:

Theorem 6. Let 0 < ε < 1, and let g : [n] → [m] be a loss function. Then there exists an

ε-lossy chain realizing g with an information rate of at least
log 1

1−ε

logm .

Proof. Let g : [n]→ [m] be a loss function and 0 < ε < 1. Let k be the minimal integer such

that d
(

1
1−ε

)k
e ≥ m. We define the loss function h : [k]→ [m] as:

h (i) =

m i = k

d
(

1
1−ε

)i
e i < k.

Let Ȳ = (Y1, . . . , Yk) be a lossy chain realizing h using the cyclic-intervals consturction
shown in Section 3.2. We define our ε-lossy chain X̄ = (X1, . . . , Xn) as follows: For each
i ∈ [n] set Xi to be Yj , where j is the minimal integer such that h (j) ≥ g (i). X̄ is a Markov
chain, since for each two variables in it Xk and Xk+1, there exists two integers k1, k2 such
that Xk = Yk1 and Xk+1 = Yk2 , where k2 ≥ k1, and Ȳ is a chain in which Yk2 can be
determinstically computed from Yk1 . We now turn to showing that X̄ is indeed an ε-lossy
chain realizing g.

Let i and j be two indexes such that Xi = Yj in our consturction. By the fact that j is
the minimal index such that g (i) ≤ h (j), we get:

h (j − 1) < g (i) ≤ h (j) .

Since g (i) is an integer, we also know that:

h (j − 1) + 1 ≤ g (i) ≤ h (j) .

In addition, by the definition of h we can bound the the ratio between h (j) and h (j − 1):

h (j)

h (j − 1) + 1
≤

d
(

1
1−ε

)j
e

d
(

1
1−ε

)j−1
e+ 1

≤

(
1

1−ε

)j
+ 1(

1
1−ε

)j−1
+ 1
≤

(
1

1−ε

)j
(

1
1−ε

)j−1 =
1

1− ε
.

We can now apply Lemma 9, and deduce that the statistical distance of Xi from a uniform
distribution over g (i) is less than ε as required.
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We are left with showing that the information rate of X̄ is indeed
log 1

1−ε

logm . By Theorem
1, we know that the information rate of Ȳ is at least 1

k−1 . In addition, we know that k is

the minimal integer such that d
(

1
1−ε

)k
e ≥ m and therefore d

(
1

1−ε

)k−1
e < m, which means(

1
1−ε

)k−1
< m. From this we get:

k − 1 ≤ log 1
1−ε

m.

We conclude that the information rate of X̄ is at least
log 1

1−ε

logm by applying a change of the
logarithm base.

B.2 An Upper Bound for ε-Lossy Chains

We now show that for a sufficiently small ε the information rate of an ε-lossy chain is still
O
(
1
n

)
, where n is the length of the chain.

We use the same definition of a states graph of a lossy chain used in Section 3.2. In
particular, for a states graph G of an ε-lossy chain realizing a loss function g, we still say that
a vector ū ∈ Rm fits layer j of G if ū has g (j) entries of value 1

g(j) and the other entries are
0. For our case we also add the following definition:

Definition 13. (ε-Fitting Vector) Let X̄ be an ε-lossy chain realizing a loss function g :
[n]→ [m], and let G be its states graph. Let ū, w̄ ∈ Rm be two vectors. We say that ū ε-fits
layer j of G through w̄, if w̄ fits layer j of G and d (ū, w̄) < ε.

We now define a generalization of Theorem 2 for ε-close lossy chains.

Theorem 7. Let m,n be positive integers such that m ≥ n and let gm,n : [n]→ [m] be the loss
function defined by gm,n (i) = m− n+ i. Let (X0, . . . , Xn) be an ε-close lossy chain realizing
gm,n. If ε < 1

32m3 then, for any 0 < i ≤ n, it holds that |supp (Xi) | ≥
(

m
m−n+i

)
.

As in the proof of Theorem 2, we start with a similar lemma to Lemma 4, which we prove
in two steps.

Lemma 10. Let v̄, ū1, . . . , ūm ∈ Rn be 0-1 vectors, such that the Hamming weight of v̄ is
k ≥ 2, and the Hamming weight of ū1, . . . , ūm is k − 1. If there exists 0 ≤ ε < 1

8k+4 such that
there exists a linear combination of ū1, . . . , ūm with non-negative coefficients, denoted v̄∗ and
d (v̄, v̄∗) < ε, then m ≥ k.

Proof. Let v̄, ū1, . . . , ūm ∈ Rn be such vectors, that is, there exists 0 ≤ ε < 1
8k+4 , and a

linear combination with non-negative coefficients of ū1, . . . ūmwhich we denote by v̄∗ such that
d (v̄, v̄∗) < ε.

Let a1, . . . , am be the non-negative coefficients such that v̄∗ =
∑m

i=1 ai · ūi.
Since d (v̄, v̄∗) < ε, we know that for every index i ∈ [n], the distance between the entries

v̄ [i] and v̄∗ [i] is at most 2ε, which means:

1− 2ε = v̄ [i]− 2ε < v̄∗ [i] < v̄ [i] + 2ε = 1 + 2ε (1)
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We denote by U ′ the subset of ū1, . . . , ūm such that for each ū ∈ U ′, supp (ū) ⊆ supp (v̄).
Because d (v̄, v̄∗) < ε we get an upper bound on the coefficients of the vectors not in U ′:∑

ui /∈U ′
ai < 2ε. (2)

Assume towards contradiction that m < k. By the pigeonhole principle, there’s an index
b ∈ [n] such that v̄ [b] = 1, and for every ūi ∈ U ′, ūi [b] = 1. This allows us to bound

∑
ui∈U ′ ai.

Splitting the vectors to U ′, and vectors not in U ′, we get:

v̄∗ [b] =
∑
ui∈U ′

ai · ūi [b] +
∑
ui /∈U ′

ai · ūi [b] =
∑
ui∈U ′

ai +
∑
ui /∈U ′

ai · ūi [b] .

By combining (1), (2), and the last equation we get:

1− 4ε <
∑
ui∈U ′

ai < 1 + 4ε. (3)

Using this bound, we can see that there exists j ∈ [m] such that aj > 1−4ε
|U ′| ≥

1−4ε
m .

We now move on to find a bound for
∑

ui∈U ′ ai − aj : Since the Hamming weight of ūj is
strictly less than that of v̄, there exists an index b′ such that v̄ [b′] = 1 and ūj [b′] = 0. This
gives us an upper bound over v̄∗ [b′]:

v̄∗
[
b′
]

=
∑
ui∈U ′

ai · ūi
[
b′
]

+
∑
ui /∈U ′

ai · ūi
[
b′
]
<
∑
ui∈U ′

ai − aj +
∑
ui /∈U ′

ai · ūi
[
b′
]
.

Again, we combine the last equation with (1) and (2), and get:

1− 4ε <
∑
ui∈U ′

ai − aj . (4)

From (3), (4) and the fact aj > 0, we can see that aj < 8ε. In addition, we have shown
that aj > 1−4ε

m , which shows us that 1−4ε
m < 8ε. Since ε < 1, we can rewrite the last inequality

as 1
8m+4 < ε. Finally, we remind that ε < 1

8k+4 and m < k, which means ε < 1
8m+4 , in

contradiction to our assumption that m < k. Therefore m ≥ k.

We now apply Lemma 10 to prove the generalization of Lemma 4 from Section 3.3.

Lemma 11. Let ε > 0, let v̄ be a distribution vector of an ε-close to uniform distribution of
size k ≥ 2, and let ū1, . . . , ūm be distribution vectors of ε-close to uniform distributions of size
k−1 each. If v̄ is a convex combination of ū1, . . . , ūm, ε < 1

16k3
, and we denote by w̄1, . . . , w̄m

the distribution vectors of all the uniform distributions such that d (ūi, w̄i) < ε, then there are
at least k distinct vectors in w̄1, . . . , w̄m.

Proof. Let ε > 0, and let v̄, ū, . . . , ūm ∈ Rn be vectors as mentioned above. Let w̄1, . . . , w̄m
be the respective uniform distribution vectors. Since v̄ is ε-close to a uniform distribution of
size k, there exists a 0-1 vector v̄∗ ∈ Rn, with Hamming weight k, such that d (v̄, v̄∗) ≤ k · ε.
Similarly, for each i ∈ [m], (k − 1) w̄i is a 0-1 vector of Hamming weight k − 1, and it holds
that:

d ((k − 1) w̄i, (k − 1) ūi) < (k − 1) ε
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Let a1, . . . , am be the coefficients such that v̄ =
∑m

i=1 aiūi where ai ≥ 0. We will show
that the distance between v̄∗ and

∑m
i=1

k
k−1ai · (k − 1) w̄i is less than 1

8k+4 , thus contradicting
Lemma 10.

First, let us bound this distance as the sum of three distances:

d

(
v̄∗,

m∑
i=1

k

k − 1
ai (k − 1) w̄i

)
≤ d (v̄∗, k · v̄) + d

(
k · v̄,

m∑
i=1

k

k − 1
ai (k − 1) ūi

)
(5)

+d

(
m∑
i=1

k

k − 1
ai (k − 1) ūi,

m∑
i=1

k

k − 1
ai (k − 1) w̄i

)
.

Assume toward contradiction that m < k.
The first part d (v̄∗, k · v̄) is less than kε. The second term can be simplified, and it is in

fact zero:

d

(
k · v̄,

m∑
i=1

k

k − 1
ai (k − 1) · ūi

)
= d

(
k · v̄,

m∑
i=1

k · ai · ūi

)
= k · d

(
v̄,

m∑
i=1

ai · ūi

)
= 0.

Lastly, let us simplify the final term:

d

(
m∑
i=1

k

k − 1
ai (k − 1) · ūi,

m∑
i=1

k

k − 1
ai (k − 1) w̄i

)
≤ k ·

m∑
i=1

ai · d (ūi, w̄i) ≤ k · ε ·
m∑
i=1

ai.

We are left with bounding
∑m

i=1 ai. For every i ∈ [m], we know that there exists an index
j such that ūi [j] > 1

k−1 − 2ε. In addition, v̄ [j] < 1
k + 2ε. Since ai ≥ 0 we get:

ai ·
(

1

k
− 2ε

)
< ai ·

(
1

k − 1
− 2ε

)
< aiūi [j] ≤ v̄ [j] <

1

k
+ 2ε.

Therefore ai < 1+2εk
1−2εk . Since ε <

1
16k3

, and k ≥ 2, we can get a loose bound for ai: ai < 2.
This, combined with m < k gives:

∑m
i=1 ai < 2m < 2k.

By assigning all the bounds in (5), we get:

d

(
v̄∗,

m∑
i=1

ai (k − 1) w̄i

)
≤ εk + εk · 2k.

Since ε < 1
32k3

we get that εk < 1
32k2

. Combined with the fact that k ≥ 2, we finally arrive at:

d

(
v̄∗,

m∑
i=1

ai (k − 1) w̄i

)
≤ 1 + 2k

32k2
<

1

8k + 4
.

The last inequality is true since k ≥ 2.
By Lemma 10, we see that

∑m
i=1 ai (k − 1) w̄i must be a linear combination with more than

k distinct vectors as required.

We can now state and prove the lower bound on the support of the random variables in
an ε-close lossy chain.
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Theorem 8. Let m,n be positive integers such that m ≥ n and let gm,n : [n]→ [m] be the loss
function defined by gm,n (i) = m− n+ i. Let (X0, . . . , Xn) be an ε-close lossy chain realizing
gm,n. If ε < 1

32m3 then, for any 0 < i ≤ n, it holds that |supp (Xi) | ≥
(

m
m−n+1

)
.

Proof. Let X̄ = (X0, . . . , Xn) be an ε-close lossy chain realizing gm,n.
Let V0, . . . , Vn be the layers in the states graph of X̄. We prove by induction that, for any

i ∈ [n] and for any of the
(

m
m−n+i

)
probabilities vectors w̄ which fit layer i, there is a node

v ∈ Vi such that v̄ ε-fits layer i through w̄.
The base case is i = n. In this case, the probabilities vector of the (single) node v in Vn is

ε-close to (1/m, . . . , 1/m), which is the only vector which fits level n. Therefore v̄ ε-fits layer
n through (1/m, . . . , 1/m).

We now assume that the claim holds for layer i + 1 and prove it for layer i. Let w̄ be a
vector which fits layer i. By the induction hypothesis, we know that for any vector w̄′ which
fits layer i+ 1 there is a corresponding node v ∈ Vi+1 such that v̄ ε-fits layer i+ 1 through w̄′.

Let v ∈ Vi+1 be a node such that v̄ ε-fits layer i + 1 through w̄′ and the support of w̄′

contains the support of w̄. We note that the conditions of Lemma 11 hold: v̄ is a convex
combination of the probability vectors of its parents ū1, . . . , ūl. In addition, v̄ is ε-close to a
uniform distribution with a support of size gm,n (i+ 1), and ū1, . . . , ūl are all ε-close to uniform
distribution of size gm,n(i), where gm,n(i) = gm,n(i+ 1)− 1. Finally, ε < 1

32m3 . Therefore by
Lemma 11, there exists a parent vector ūj which is ε-close to w̄, which means that ūj ε-fits
layer i through w̄.

Since there are
(

m
m−n+i

)
different vector which fit layer i, we get that layer i has at least(

m
m−n+i

)
different nodes, as required.

C Efficient Generation and Enumeration of Cyclic Intervals

In this section we give a pseudo-code implementation of the lossy chain construction from
Section 3.2. We also give an efficient algorithm for enumerating the possible values of the
secret X0 given a value of Xi.

The first function, generate_lossy_chains gets two integers x and n, and a loss function
f : [n]→ [m], where f (n) = m, and returns the cyclic interval’s starting points a0, . . . , an as
a list. This means that the first i elements of the result are the value of Xn−i in the chain.
We note that this version of the algorithm gets the original secret x, and generates the lossy
chain with x as its secret. The variable x is maintained through the execution to hold the
index of the secret in the last cyclic interval chosen so far.

function generate_lossy_chain(int x, int n, function f) {
list <int > chain;
for (int i = n - 1; i > 0; i--) {

int a = random(f(i - 1));
int b = (x - a) mod f(i);
chain.add(b);
x = a;

}
return chain;

}
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The function random returns a random number between 0 and its argument (exclusive).
The next algorithm shown, enumaerate_cyclic_intervals, gets n, an index i, a prefix of the

list generated by the previous function, and the loss function f and returns the ith element of
the set Sj , that is one of the elements which are the possible value of the original secret given
Xj .

int enumerate_lossy_chain(int n, function f,
list <int > chain , int index) {

for (int i = chain.size (); i > 0; i--) {
index = (chain[i - 1] + index) mod f(n - i);

}
return index;

}

We can see that both functions are efficient, and we conclude that generating the lossy
chain for a chosen secret, and recovering the possible values given one of its elements can be
done efficiently.
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