
Compact Hardware Implementations of ChaCha,
BLAKE, Threefish, and Skein on FPGA

Nuray At∗, Jean-Luc Beuchat†, Eiji Okamoto‡, İsmail San∗, and Teppei Yamazaki‡
∗Department of Electrical and Electronics Engineering, Anadolu University, Eskişehir, Turkey

Email: {nat, isan}@anadolu.edu.tr
†ELCA Informatique SA, Av. de la Harpe 22–24, Case postale 519, 1001 Lausanne, Switzerland

Email: jeanluc.beuchat@gmail.com
‡Graduate School of Systems and Information Engineering,

University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
Email: okamoto@risk.tsukuba.ac.jp, yamazaki@cipher.risk.tsukuba.ac.jp

Abstract—The cryptographic hash functions BLAKE and
Skein are built from the ChaCha stream cipher and the tweakable
Threefish block cipher, respectively. Interestingly enough, they
are based on the same arithmetic operations, and the same
design philosophy allows one to design lightweight coprocessors
for hashing and encryption. The key element of our approach
is to take advantage of the parallelism of the algorithms to
deeply pipeline our Arithmetic an Logic Units, and to avoid data
dependencies by interleaving independent tasks. We show for
instance that a fully autonomous implementation of BLAKE and
ChaCha on a Xilinx Virtex-6 device occupies 144 slices and three
memory blocks, and achieves competitive throughputs. In order
to offer the same features, a coprocessor implementing Skein and
Threefish requires a substantial higher slice count.

I. INTRODUCTION

The cryptographic hash functions BLAKE [1] and Skein [2]
are built from the ChaCha stream cipher [3] and the tweakable
Threefish block cipher [2], respectively. It is therefore tempting
to design compact unified hardware architectures able to hash
and encrypt a message. Such processors are for instance
valuable for constrained environments, where some security
protocols mainly rely on cryptographic hash functions [4].
Furthermore, as emphasized by Kerckhof et al., “fully unrolled
and pipelined architectures may sometimes hide a part of the
algorithms’ complexity that is better revealed in compact im-
plementations” [5]. In order to have a deeper understanding of
the computational efficiency of ChaCha, BLAKE, Threefish,
and Skein, we extend here our work presented in [6], [7]
and propose novel lightweight coprocessors. The key element
of our approach is to take advantage of the parallelism of
the algorithms to deeply pipeline our Arithmetic an Logic
Units (ALUs), and to avoid data dependencies by interleaving
independent tasks.

Throughout this article, all operands are w-bit unsigned
integers and the following notation is adopted:
• �: addition modulo 2w;
• �: subtraction modulo 2w;
• ∧: bitwise AND;
• ∨: bitwise OR;
• ⊕: bitwise exclusive OR;
• ≫ k: rotation by k bits to the right;

• ≪ k: rotation by k bits to the left.
The rest of the article is organized as follows: after a brief
overview of Threefish (Section II), Skein (Section III), ChaCha
(Section IV), and BLAKE (Section V), we describe our
design philosophy and compact hardware implementations
(Section VI). We discuss our implementation results on several
Xilinx Field-Programmable Gate Arrays (FPGAs) in Sec-
tion VII and conclude in Section VIII.

II. THE THREEFISH BLOCK CIPHER

The design philosophy of Threefish is that “a larger num-
ber of simple rounds is more secure than fewer complex
rounds” [2]. The key schedule can be computed in a few clock
cycles, which is an important consideration in order to build
a compression function from a block cipher.

Threefish operates entirely on unsigned 64-bit integers and
involves only three operations: rotation of k bits to the left,
bitwise exclusive OR, and addition modulo 264. Therefore, the
plaintext P and the cipher key K are converted to Nw 64-bit
words. Note that the number of words Nw and the number
of rounds Nr depend on the key size (Table I). The size of a
plaintext block is given by Nb = 8 ·Nw bytes.

Table I
NUMBER OF ROUNDS OF THREEFISH FOR DIFFERENT KEY SIZES.

Key size # 64-bit words # rounds Block size
[bits] Nw Nr Nb [bytes]
256 4 72 32
512 8 72 64

1024 16 80 128

The key schedule generates the subkeys from a block
cipher key K = (k0, k1, . . . , kNw−1) and a 128-bit tweak
T = (t0, t1). K and T are extended with one parity word
(Algorithm 1, lines 1 and 2). Each subkey is a combination
of Nw words of the extended key, two words of the extended
tweak, and a counter s (Algorithm 1, lines 5 to 9). Note that
the extended key and the extended tweak are rotated by one
word position between two consecutive subkeys.



Table II
PERMUTATIONS USED BY THE SKEIN FUNCTIONS (REPRINTED FROM [2]).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Nw = 4 0 3 2 1
π(i) Nw = 8 2 1 4 7 6 5 0 3

Nw = 16 0 9 2 13 6 11 4 15 10 7 12 3 14 5 8 1

Algorithm 1 Key schedule of Threefish.
Input: A block cipher key K = (k0, k1, . . . , kNw−1);

a tweak T = (t0, t1); the constant C240 =
1BD11BDAA9FC1A22.

Output: Nr/4 + 1 subkeys ks,0, ks,1, . . . , ks,Nw−1, where
0 ≤ s ≤ Nr/4.

1. kNw
← C240 ⊕

Nw−1⊕
i=0

ki;

2. t2 ← t⊕ t1;
3. for s← 0 to Nr/4 do
4. for i← 0 to Nw − 4 do
5. ks,i ← k(s+i) mod (Nw+1);
6. end for
7. ks,Nw−3 ← k(s+Nw−3) mod (Nw+1) � ts mod 3;
8. ks,Nw−2 ← k(s+Nw−2) mod (Nw+1) � t(s+1) mod 3;
9. ks,Nw−1 ← k(s+Nw−1) mod (Nw+1) � s;

10. end for
11. return ks,0, ks,1, . . . , ks,Nw−1, where 0 ≤ s ≤ Nr/4;

A series of Nr rounds (Figure 1 and Algorithm 2, lines 4
to 19) and a final subkey addition (Algorithm 2, line 21) are
applied to produce the ciphertext. The core of a round is
the simple non-linear mixing function Mixd,j (Algorithm 2,
lines 13 and 14). It consists of an addition, a rotation by a
constant Rd mod 8,j (repeated every eight rounds and defined
in [2, Table 4]), and a bitwise exclusive OR. A word permu-
tation π(i) (defined in Table II) is then applied to obtain the
output of the round (Algorithm 2, line 17). Furthermore, a
subkey is injected every four rounds (Algorithm 2, line 7).

Figure 2 describes a decryption round of Threefish-256.
It consists of the inverse word permutation followed by the
inverse MIX functions. Note that subkeys are injected in
reverse order.

III. THE SKEIN FAMILY OF HASH FUNCTIONS

The Unique Block Iteration (UBI) chaining mode allows one
to build a compression function out of a tweakable encryption
function. Let M be a message of arbitrary length up to 299−8
bits. If the number of bits in M is not a multiple of 8, we
append a bit 1 followed by a (possibly empty) string of 0’s.
This step guarantees that M contains NM bytes. Then, we pad
M with p zero bytes so that NM+p is a multiple of the block
size Nb. We can now split M into Nb-byte blocks M0, . . . ,
Mk−1, where k = (NM +p)/Nb. Each block Mi is processed
with a unique tweak value Ti encoding how many bytes have
been processed so far, a type field (see [2] for details), and

k1,0

v4,1v4,0 v4,3v4,2

e4,0 e4,1 e4,2 e4,3

v5,1v5,0 v5,3v5,2

k1,2 k1,3k1,1

R4,1 ≪≪

f4,0 f4,1 f4,2 f4,3

R4,0

M
ix

4,
0

M
ix

4,
1

Pe
rm

ut
e

Figure 1. One of the 72 encryption rounds of Threefish-256.

Pe
rm

ut
e

e4,0 e4,1 e4,2 e4,3

≫R4,1R4,0 ≫

k1,2 k1,3k1,1k1,0

v4,1v4,0 v4,3v4,2

f4,0 f4,1 f4,2 f4,3

v5,1v5,0 v5,3v5,2

In
vM

ix
4,
0

In
vM

ix
4,
1

Figure 2. One of the 72 decryption rounds of Threefish-256.

two bits specifying whether it is the first and/or last block.
The UBI chaining mode is computed as:

H0 ← G,
Hi+1 ←Mi ⊕ E(Hi, Ti,Mi),

where G is a starting value of Nb bytes.
In this work, we consider the normal hashing mode and

refer the reader to [2] for a description of Skein-MAC and
tree hashing with Skein. Skein is built on three invocations of
UBI (Figure 3):
• Define a 32-byte configuration string C that contains the

length of the digest size (in bits), a schema identifier,



Algorithm 2 Encryption with the Threefish block cipher.
Input: A plaintext block P = (p0, p1, . . . , pNw−1); Nr/4+1

subkeys ks,0, ks,1, . . . , ks,Nw−1, where 0 ≤ s ≤ Nr/4;
4Nw rotation constants Ri,j , where 0 ≤ i ≤ 7 and 0 ≤
j ≤ Nw/2.

Output: A ciphertext block C = (c0, c1, . . . , cNw−1).
1. for i← 0 to Nw − 1 do
2. v0,i ← pi;
3. end for
4. for d← 0 to Nr − 1 do
5. for i← 0 to Nw − 1 do
6. if d mod 4 = 0 then
7. ed,i ← vd,i � kd/4,i; (Key injection)
8. else
9. ed,i ← vd,i; (Rename)

10. end if
11. end for
12. for j ← 0 to Nw/2− 1 do
13. fd,2j ← ed,2j � ed,2j+1; (Mixd,j)
14. fd,2j+1 ← fd,2j ⊕ (ed,2j+1≪ Rd mod 8,j);
15. end for
16. for i← 0 to Nw − 1 do
17. vd+1,i ← fd,π(i); (Permute)
18. end for
19. end for
20. for i← 0 to Nw − 1 do
21. ci ← vNr,i � kNr/4,i; (Key injection)
22. end for
23. return C = (c0, c1, . . . , cNw−1);

and a version number [2, Table 7]. Compute the Nb-byte
block G0:

G0 ← UBI(0, C, Tcfg2
120).

Note that G0 only depends on the digest size and can
easily be precomputed.

• The message is then processed as follows:

G1 ← UBI(G0,M, Tmsg2
120).

• A third call to UBI is required to achieve hashing-
appropriate randomness:

H ← UBI(G1, 0, Tout2
120).

This transform allows one to produce arbitrary digest
sizes (up to 264 bits). If a single output block H is
not enough, one can use Threefish in counter mode to
produce the digest.

IV. THE CHACHA STREAM CIPHER

The ChaCha family of stream ciphers was designed by
Bernstein [3] to improve the diffusion per round of Salsa20 [8],
while preserving the encryption rate. ChaCha operates on 32-
bit words, and expands a 256-bit key (k0, . . . , k7) and a 64-bit
nonce (IV0, IV1) into a 270-byte stream. A b-byte message is

M0 M1C M2 0

G1← UBI(G0,M, Tmsg2
120)

G0 G1

H ← UBI(G1, 0, Tout2
120)

H

G0← UBI(0, C, Tcfg2
120)

0

Type: Cfg

Tweak: Tweak: Tweak: Tweak:
Type: Msg Type: Msg Type: Out

Len: 128

First: 0

Last: 0

Len: 170

First: 0

Last: 1

Configuration block Output transformMessage

Tweak:
Type: Msg

Len: 64

First: 1

Last: 0

Figure 3. Skein in normal hashing mode.

then encrypted (or decrypted) by XORing it with the first b
bytes of the stream.

ChaCha generates the stream by blocks of 64 bytes. In order
to process the ith block, ChaCha acts on a 4× 4 matrix M of
32-bit integers defined as follows:

m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

 =


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 t1 IV0 IV1

 ,

where
• c0 = 61707865, c1 = 3320646E, c2 = 79622D32,

and c3 = 6B206574 are predefined constants;
• t = (t0,t1) is a 64-bit counter encoding the index i (i.e.
i = 232t1 + t0).

ChaCha transforms the matrix M through a series of Nr
rounds (Algorithm 3). The algorithm is based on a nonlinear
operation called quarter-round function and described by Al-
gorithm 4. Matrix M is copied into matrix V . Then, the even-
and odd-numbered rounds of ChaCha apply the quarter-round
function to each row and northwest-to-southeast diagonal of V ,
respectively. Eventually, a new block of the stream is generated
by adding V to the original matrix M (Algorithm 3, line 15),
and the block counter is incremented (Algorithm 3, lines 17
to 20).

Bernstein proposed 8-, 12-, and 20-round variants of
ChaCha. Aumasson et al. introduced a novel method for
differential cryptanalysis of ChaCha and broke the 7-round
variant [9]. Ishiguro et al. [10], [11] improved the attack and
concluded that Salsa20 and Chacha “are not presently under
threat”.

V. THE BLAKE FAMILY OF HASH FUNCTIONS

The BLAKE family combines three previously studied
components, chosen by Aumasson et al. for their complemen-
tarity [1]: the iteration mode HAIFA, the internal structure of
the hash function LAKE, and a modified version of Bernstein’s
stream cipher ChaCha as compression function. BLAKE is a
family of four hash functions, namely BLAKE-224, BLAKE-
256, BLAKE-384, and BLAKE-512 (Table III). The main
differences lie in the length of words w, the number of rounds
Nr, and in some constants involved in the algorithm. In the



Table III
PROPERTIES OF THE BLAKE HASH FUNCTIONS.

Algorithm
Word size w Message Block Digest Salt # rounds Rotation distances

[bits] [bits] [bits] [bits] [bits] Nr δ0 δ1 δ2 δ3

BLAKE-224 32 < 264 512 224 128 14 16 12 8 7
BLAKE-256 32 < 264 512 256 128 14 16 12 8 7
BLAKE-384 64 < 2128 1024 384 256 16 32 25 16 11
BLAKE-512 64 < 2128 1024 512 256 16 32 25 16 11

Algorithm 3 Computation of a 64-byte block of the stream
of ChaCha.
Input: A key, a nonce, and a block counter stored in a matrix

M .
Output: A 64-byte block of the stream.

1. for i← 0 to 15 do
2. v[i]← m[i];
3. end for
4. for i← 0 to Nr/2− 1 do
5. QUARTERROUND(v0, v4, v8, v12);
6. QUARTERROUND(v1, v5, v9, v13);
7. QUARTERROUND(v2, v6, v10, v14);
8. QUARTERROUND(v3, v7, v11, v15);
9. QUARTERROUND(v0, v5, v10, v15);

10. QUARTERROUND(v1, v6, v11, v12);
11. QUARTERROUND(v2, v7, v8, v13);
12. QUARTERROUND(v3, v4, v9, v14);
13. end for
14. for i← 0 to 15 do
15. v[i]← v[i]�m[i];
16. end for
17. m12 ← m12 � 1;
18. if m12 = 0 then
19. m13 ← m13 � 1;
20. end if
21. Return M and V ;

Algorithm 4 The ChaCha quarter-round function.
Input: Four 32-bit integers a, b, c, and d.
Output: QUARTERROUND(a, b, c, d).

1. a← a� b;
2. d← (d⊕ a)≪ 16;
3. c← c� d;
4. b← (b⊕ c)≪ 12;
5. a← a� b;
6. d← (d⊕ a)≪ 8;
7. c← c� d;
8. b← (b⊕ c)≪ 7;
9. Return a, b, c, and d;

following, we denote by BLAKE-n the algorithm with an n-bit
digest.

BLAKE-n involves only two arithmetic operations: the
addition modulo 2w of two w-bit unsigned integers and

the bitwise exclusive OR of two w-bit words. The latter is
sometimes followed by a rotation of δj bits to the right. The
four possible rotation distances depend on the digest size and
are defined in Table III. The compression function of BLAKE-
n produces a new chain value h′ = h′0, . . . , h

′
7 from a message

block m = m0, . . . ,m15, a chain value h = h0, . . . , h7, a
salt s = s0, . . . , s3, a counter t = t0, t1, and 16 constants ci
defined in [1, p. 8]. This process consists of three steps. First, a
16-word internal state v = v0, . . . , v15 is initialized as follows:

v0 v1 v2 v3
v4 v5 v6 v7
v8 v9 v10 v11
v12 v13 v14 v15



←


h0 h1 h2 h3
h4 h5 h6 h7

s0 ⊕ c0 s1 ⊕ c1 s2 ⊕ c2 s3 ⊕ c3
t0 ⊕ c4 t0 ⊕ c5 t1 ⊕ c6 t1 ⊕ c7

 .

Then, a series of Nr rounds is performed. Each of them
consists of a transformation of the internal state v based on
the Gi function described by Algorithm 5, where σr denotes a
permutation of {0, . . . , 15} parametrized by the round index r
(see Table IV). A column step updates the four columns of
matrix v as follows: G0(v0, v4, v8, v12), G1(v1, v5, v9, v13),
G2(v2, v6, v10, v14), and G3(v3, v7, v11, v15). Note that each
call to Gi updates a distinct column of matrix v. Since
we focus on compact implementations of BLAKE in this
work, we interleave the computation of G0, G1, G2, and
G3. This approach allows us to design an ALU with
four pipeline stages and to achieve high clock frequencies.
Then, a diagonal step updates the four diagonals of v:
G4(v0, v5, v10, v15), G5(v1, v6, v11, v12), G6(v2, v7, v8, v13),
and G7(v3, v4, v9, v14). Here again, each call to Gi modifies
a distinct diagonal of the matrix, allowing us to interleave the
computation of G4, G5, G6, and G7.

At the end of the last round, a new chain value h′ =
h′0, . . . , h

′
7 is computed from the internal state v and the

previous chain value h (finalization step):

h′0 ← h0 ⊕ s0 ⊕ v0 ⊕ v8, h′4 ← h4 ⊕ s0 ⊕ v4 ⊕ v12,
h′1 ← h1 ⊕ s1 ⊕ v1 ⊕ v9, h′5 ← h5 ⊕ s1 ⊕ v5 ⊕ v13,
h′2 ← h2 ⊕ s2 ⊕ v2 ⊕ v10, h′6 ← h6 ⊕ s2 ⊕ v6 ⊕ v14,
h′3 ← h3 ⊕ s3 ⊕ v3 ⊕ v11, h′7 ← h7 ⊕ s3 ⊕ v7 ⊕ v15.

In order to guarantee that the length ` of a message is
a multiple of the block size b, Aumasson et al. define the
following padding scheme [1]:



Table IV
PERMUTATIONS OF {0, . . . , 15} USED BY THE BLAKE FUNCTIONS (REPRINTED FROM [1]).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ0(i) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1(i) 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
σ2(i) 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
σ3(i) 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
σ4(i) 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
σ5(i) 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
σ6(i) 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
σ7(i) 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
σ8(i) 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
σ9(i) 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

Algorithm 5 The Gi function.
Input: A function index i and four w-bit integers a, b, c, and

d.
Output: Gi(a, b, c, d).

1. a← a� b;
2. a← a� (mσr(2i) ⊕ cσr(2i+1));
3. d← (d⊕ a)≫ δ0;
4. c← c� d;
5. b← (b⊕ c)≫ δ1;
6. a← a� b;
7. a← a� (mσr(2i+1) ⊕ cσr(2i));
8. d← (d⊕ a)≫ δ2;
9. c← c� d;

10. b← (b⊕ c)≫ δ3;

• append a bit 1 followed by a sufficient number of 0 bits
such that the length is congruent to b − 2w − 1 modulo
b;

• a padding bit followed by the 2w-bit unsigned big-endian
representation of ` is then added; in the case of BLAKE-
256 and BLAKE-512, the padding bit is equal to 1;
otherwise, it is set to 0.

The hash can now be computed iteratively (Algorithm 6):
the padded message is divided into N 16-word blocks
m(0), . . . ,m(N−1) and the chain value h(0) is set to the same
initial value as SHA-n. The counter t(i) denotes the number of
message bits in m(0), . . . ,m(i) (i.e. excluding padding bits).
Note that, if the last block contains only padding bits, then
t(N−1) is set to zero. The message digest consists of the n
least significant bits of the output h(N).

Algorithm 6 Iterated hash.
Input: A padded message split into N 16-word blocks and a

salt s.
Output: A n-bit digest.

1.
(
h
(0)
0 , . . . , h

(0)
7

)
← (IV0, . . . , IV7);

2. for i← 0 to N − 1 do
3. h(i+1) ← compress

(
h(i),m(i), s, t(i)

)
;

4. end for
5. return h(N);

VI. HARDWARE IMPLEMENTATION

All of our architectures consist of a register file organized
into w-bit words and implemented by means of dual-ported
memory, an ALU, and a control unit (Figure 4). The user
loads messages, plaintext blocks or ciphertext blocks into
port A. A few control bits allows her to select the algorithm
and the desired level of security. When the coprocessors are
hashing or encrypting a message, the intermediates results are
always written to port B. In the following, we assume that our
coprocessors are provided with padded messages. A hardware
wrapper interface for BLAKE, Skein, and several other hash
functions comprising communication and padding is described
in [12].

Register file (dual-ported memory)

AddrA

AddrB

Pipelined

WeA

Arithmetic and

ctrlk−1:0

Logic Unit

Control Unit

User Interface
Po

rt
B

Po
rt

A

Data

WeB

Figure 4. General architecture of our coprocessors.

We follow here the design strategy outlined in [6], [7], [13]–
[15]. The first step consists in defining the minimal instruction
set to implement a block cipher and a hash function. Then, an
in-depth study of the scheduling allows us to build the ALU
and organize the data in the register file. During this step, we
• try to minimize the number of control bits to keep the

instruction memory as compact as possible;
• take advantage of FPGA specifics to optimize the slice

count;



• identify the available parallelism and pipeline the ALU
accordingly.

Eventually, we design the control unit. The instruction memory
is automatically generated by a C program. In order to keep the
instruction ROM as compact as possible, our C program is able
to compress the code, and to generate the VHDL description
of the decompression unit.

A. Arithmetic and Logic Units for Threefish and Skein

Our first ALU implements Threefish encryption and Skein.
In the following, Ri denotes a 64-bit register. Figure 5 illus-
trates our scheduling of the two mixing functions Mix4,0 and
Mix4,1 of the fifth round of Threefish-256:

• The operand e4,1 is loaded in register R1; at the same
time, we start the computation of e4,1 ≪ R4,0; this
operation requires three clock cycles and intermediate
results are stored in R4, R5, and R6.

• Then, e4,0 is loaded in register R2; the content of R1 is
not modified (i.e. R1 must be controlled by an enable
signal).

• We execute the instruction R3 ← R1 � R2 and obtain
f4,0.

• R3 and R6 contain f4,0 and e4,1 ≪ R4,0, respectively.
The instruction R3← R3⊕R6 allows us to compute f4,1.

e4,3e4,1 e4,3

e4,2

e≪1
4,3

e≪1
4,3

e≪33
4,3

f4,3f4,1 f4,2

R3
←

R3
⊕

R6

R3
←

R1
�

R2

R3
←

R3
⊕

R6

R3
←

R1
�

R2

Time [clock cycles]

Port A

R1

R2

e4,1

e4,0

e4,1

R6

R3 f4,0

R4

R5

e≪1
4,1

e≪9
4,1

e4,2e4,0 e4,3

e≪25
4,1

Figure 5. Computation of Mix4,0 and Mix4,1 (Threefish-256).

We schedule Mix4,1 as soon as e4,0 has been read, and
manage to keep the pipeline continuously busy. In summary,
our ALU must be able to carry out any rotation of a 64-bit
word and to perform the following operation (Figure 6):

R3←

{
R1� R2 when ctrl10 = 0,
R3⊕ R6 otherwise,

(1)

where ctrl10 denotes a control bit. Let us define two 64-bit
operands a and b such that:

(a, b) =

{
(R1,R2) when ctrl10 = 0,
(R3,R6) otherwise.

It is well-known that a � b = (a ∨ b) � (a ∧ b) and a ⊕ b =
(a ∨ b)� (a ∧ b) [16]. Thus, Equation (1) can be rewritten as
follows:

R3← (a ∨ b)� ((a ∧ b)⊕ ctrl10)� ctrl10. (2)

Figure 7 describes the implementation of Equation (2) on a
Virtex-6 device. Since there is a single control signal to choose
the arithmetic operation and to select a and b, Equation (2) in-
volves only five variables, and is advantageously implemented
by 64 LUT6 2 primitives and dedicated carry logic.

0

or

1

0

1

1

0

1

0

Fr
om

po
rt

B
Fr

om
po

rt
A

To
po

rt
B

0

1

R1

ctrl9ctrl6 ctrl8 ctrl10

≪
0,
16

,3
2

or
48

≪
0,
1,
2

or
3

ctrl1:0

≪
0,
4,
8

or
12

R3

R4 R5 R6

R2

ctrl3:2

ctrl7

ctrl5:4

Figure 6. Arithmetic and logic unit for Threefish encryption.

1
1

0

1

0

0

1

0

0

1

10

1
Fr

om
R
6

To
R
3

(carry0 = ctrl10)

ct
rl
10

(aj ∧ bj)⊕ ctrl10

bj aj ∨ bj

bj aj ∨ bj

5-input LUT

5-input LUT

O6

O5

LUT6 2

carryj

carryj+1

aj

aj

Fr
om

R
3

Fr
om

R
1

Fr
om

R
2

Figure 7. Computation of R3← R1�R2 or R3← R3⊕R6 on a Virtex-6
device.

In order to reduce the number of operands stored in the
register file, we interleave the key schedule (Algorithm 1) and
the encryption process (Algorithm 2). This approach allows us
to generate the subkeys on-the-fly. It is however necessary to
compute t2 and kNw before the first key injection. The easiest



way to compute t2 would be to load t0 and t1 in registers
R1 and R2, respectively, and to execute the instruction R3←
R1⊕R2. Unfortunately, this solution requires one more control
bit to select the inputs of the arithmetic operator, and it is not
possible to implement the multiplexers and the adder on the
same LUT6 2 primitive anymore. Since the critical path of
our coprocessor is located in the 64-bit adder, an extra level
of LUTs would decrease the clock frequency. However, we
are able to compute t2 using only the functionalities defined
by Equation (1). Since t2 = (t0 � 0) ⊕ (t1 ≪ 0), it suffices
to execute the following instructions:

R4← t1≪ 0,
R1← t0, R2← 0, R5← R4≪ 0,
R3← R1� R2, R6← R5≪ 0,
R3← R3⊕ R6.

This approach assumes that we can read simultaneously two
values from the register file. Thanks to the multiplexer con-
trolled by ctrl7, we can load data from port A or port B into
register R2 (Figure 6). A similar strategy allows us to compute
kNw .

The implementation of the key injection is more straight-
forward. Note that the multiplexers controlled by ctrl6 and
ctrl8 allow us to bypass the register file and to use the content
of R3 as an input to the ALU. Let us consider for instance
the first key injection of Threefish-256: e0,2 is defined as
p2 � k0,2 = p2 � k2 � t1 and is computed as follows:

R1← k2, R2← t1,
R3← R1� R2
R1← R3, R2← p2,
R3← R1� R2.

Figures 8 and 9 describe how we schedule the instructions of
Threefish-256.

The UBI chaining mode can be combined with the final key
injection of Threefish encryption. It suffices to modify line 21
of Algorithm 2 as follows:

eNr,i ← vNr,i � kNr/4,i;
ci ← eNr,i ⊕ pi.

The only difference between this operation and the mixing
function MIXd,j is that no permutation is applied to the second
operand of the bitwise exclusive OR.

The inverse of the MIX function being purely sequential,
Threefish decryption has less parallelism than encryption. We
suggest to modify our ALU as follows to fully support both
encryption and decryption (Figure 10):
• The inverse of the Mix function and the inverse of the key

injection require a subtraction modulo 264. Our modified
ALU is therefore able to perform a new operation: R3←
R1�R2. Because of the additional control bit required to
select the operation, it is not possible to implement our
arithmetic operator by means of 64 LUT6 2 anymore.

Thus, the slice count and the critical path are expected
to increase.

• The output of the inverse Mix function is provided either
by the arithmetic operator (e.g. e4,0 on Figure 2) or the
rotation unit (e.g. e4,1 on Figure 2). The multiplexer
controlled by ctrl17 allows us to select the word we store
in the register file.

• Since the inverse of the Mix function is sequential, we
have to perform the rotation in a single clock cycle.
We suggest to take advantage of the SRL16E primitive
available on Xilinx devices to implement a FIFO whose
depth is dynamically adjusted according to the algorithm
selected by the user: one and three stages for decryption
and encryption, respectively.

0
1

0

0

1

0

1
0

1

1

0

1

1

0

Fr
om

po
rt

A
Fr

om
po

rt
B

3- or 1-stage FIFO (encryption or decryption)

or
or

To
po

rt
B

R1

ctrl7 ctrl10

R4 R5 R6

R3

R2

ctrl12

ctrl6

ctrl13

ctrl14

≪
i

ctrl16:15

ctrl9

ctrl17

ctrl8 ctrl5:0 ctrl11

Figure 10. Arithmetic and logic unit for Threefish encryption and decryption.

B. Arithmetic and Logic Units for BLAKE and ChaCha

Let us consider the Gi function of BLAKE-n to define the
instruction set of our coprocessors. Since we focus on compact
coprocessors for the BLAKE family in this article, we perform
a single step of Algorithm 5 at each clock cycle. We will
show later that the input operand b is already stored in an
internal register of our ALU when we start the computation
of Gi(a, b, c, d). Therefore, each operation involves the result
of the previous one, and our ALU will include a feedback
mechanism to bypass the register file of the coprocessor.

Assume that the w-bit word computed by the ALU is stored
in register R5, and denote by RFA and RFB the operands
provided by the register file. From the data flow diagram of
Algorithm 5, we easily identify three operations (Figure 11):

1) Save the content of R5 in the register file and compute
R5← R5� RFA.

2) Compute R5← R5� (RFA ⊕ RFB).
3) Save the content of R5 in the register file and compute

R5← (R5⊕ RFA)≫ δj .
Recall now that the four calls to Gi in a column step or a

diagonal step can be computed in parallel. In order to keep the
critical path as short as possible, we suggest to design an ALU



v4,1

@v4,2

@e0,2

R3← R3⊕ R6R3← R1� R2

Permute

Port A

Port B

Output B

Output A

Address A

Address B

Input B

R
eg

is
te

rF
ile

A
L

U

R1

R2

R6

R3

Rename

v4,2

@v4,2

e3,2

t2

k1

1

k4

e4,2

@k3

e1,0

Second round

Permute

Port A

Port B

Output B

Output A

Address A

Address B

Input B

R
eg

is
te

rF
ile

A
L

U

R1

R2

R6

R3

Rename

Fourth round

@e3,0

e≪5
3,1

e3,0

e≪23
2,1

f2,1

v3,3

e3,3

f2,0

v3,0

e3,0

e2,0

e2,1

e≪57
1,3

f1,3

v2,1

e2,1

f1,2

v2,2

@e2,2

e2,2

e2,2

e3,3

v3,2

@k1

k1

e3,1

@e3,0

e2,1

@e1,0

f0,2

v1,2

e1,1

e1,2

e1,3 e1,3

v1,1

f0,3

e1,2

e≪16
0,3

Third round Fifth round

@0

@C240

@k2 @k3

0

C240

k2 k3

0

C240

k1 k2 k3k0

C240

C240

@k4

k4

k4

k1 k2 k3k0 0

k1 k3k0 0

@k0

k2

k1k0

@k1

t1

0

0

t0

@t2@0

@t0@t1

0

t0t1

t0

t1

t0

t2

@p3

@k0

k0

p0 p3

k0 k3

p0 p3

k0 k3

p0 p3

@k3

@e0,3

e0,3

@e0,0

e0,0 e0,2

@p1

p1

p1

t0

k1

t0

k1

e0,3 k0,2e0,0 e0,2 k0,1

t0

k1k0,2

p2t1

k2

t1

k2 p2

t1

k2 p2

@p2

@t0

@k1

@t1

@k2

@p0

k3

e≪14
0,1

f0,1

v1,3

e1,3

e0,3

e0,2

@e0,0

e1,0

f0,0

v1,0

e1,0

e0,1 e0,1k0,1

@e0,3 @e0,2

e0,3

e0,3 e0,2

e0,2

e0,3

e0,1

e0,1

p1

@e1,0

e0,0

e0,0

e0,0

Computation of t2 and k4, and first key injection

First round
Second key injection

t1

k3

t1

t1

k2

k2

k3

k4 k3

e4,3 − 1e4,0

t2 1

k1,2

@e4,2

e4,3 e4,2

@e4,3

e4,3 e4,2

@e4,2

e4,2e4,3

e4,2

@e4,0

@e5,0

e5,0

e≪25
4,1

v5,3

e5,3

f4,0

v5,0

e5,0

e4,0

e4,0

e4,1k1,1

v4,2

v4,2 k2

e4,0

@t1

@k2

@e4,0

@v4,1

e4,0

f4,1

t2 1

e4,3 − 1 v4,2

k1,2

v4,1

k1,1v4,3

v4,1

v4,1

@e4,3

e4,3

e4,1 e4,3 e4,3e4,1

f1,0

v2,0

e1,0

e1,0

e2,0

f1,1

v2,3

e2,3

e≪52
1,1

e1,1 e1,1

f2,2

@e2,2

e2,2

e3,2

f2,3

v3,1

e3,1

e≪40
2,3

e2,3e2,3

e2,2

e2,2

f3,1

v4,3

f3,0

e3,0

e3,0

e3,1

e3,0

v4,0

@k4

@1@t2

v4,0

k1

k4

e≪37
3,3

f3,3

v4,1

f3,2

v4,2

e3,3

@v4,1

t2

Figure 8. Scheduling of Threefish-256 encryption. @d denotes the address of the 64-bit word d in the register file. “Rename” and “Permute” refer to lines 9
and 17 of Algorithm 2, respectively.

with four pipeline stages and to interleave the computation
of four Gi functions (Figure 12). The heart of the ALU is
the arithmetic operator performing the addition or the bitwise
XOR of two w-bit words described in Section VI-A. Our
operator computes:

R3←

{
R1� R2 when ctrl2 = 0,
R1⊕ R2 otherwise

= (R1 ∨ R2)� ((R1 ∧ R2)⊕ ctrl2)� ctrl2,

where
• R1 stores the data provided by the register file. Since

a flip-flop is always associated with a LUT, we can
perform some simple pre-processing without increasing
the number of slices of the ALU: a control bit ctrl0
selects either RFA or RFA ⊕ RFB . This allows us to
compute mσr(2i)⊕ cσr(2i+1) and mσr(2i+1)⊕ cσr(2i) for
free (Algorithm 5, lines 2 and 7).

• R2 almost always stores the result of a previous operation.
However, we have to disable the feedback mechanism
during the initialization step: the computation of v8 ←

s0 ⊕ c0 involves for instance only two words stored in
the register file. An array of AND gates controlled by
ctrl1 allows us to force the second operand to zero in
such cases.

If needed, the content of register R3 is then rotated to the left
in two steps. Our implementation is based on the following
observation:

R3≫ δi = (R3≫ (δi − δ3))≫ δ3,

where 0 ≤ i ≤ 3. At first glance, this design choice may look
awkward. However, it will allow us to easily build a unified
processor for the BLAKE family. The key point is that the
content of R3 is copied into R5 when the three control bits
ctrl5:3 are equal to 0 (Figure 12).

Note that the pipeline has three possible configurations,
denoted by À, Á, and Â in Figure 12:

À In order to minimize the area of our ALU, we can insert
a w-bit register after the first stage of the rotation. Since
the latter involves w LUTs, there is no hardware overhead
on a Virtex-6 device.



@t2

k0,1

e68,0 e68,2

e68,0 e68,2 e67,2

e69,3 e69,0 e69,2

e67,0 e67,2

k1 k2 k3

@t0

@k2 @k4 @k0 @k3

e68,0e68,0

t2

t1

t0 k0

C240

k1 k2 k3

t1

k0

C240

k1 k2 k3

t0

t0

t1

t2

k0

C240

k4

k0

t1

k1

18

k0

t1

k1

18

k0

t1

k1

18

k0,2

c2

c2Port A

Port B

Output B

Output A

Address A

Address B

Input B

R
eg

is
te

rF
ile

A
L

U

R1

R2

R6

R3

Rename

Port A

Port B

Output B

Output A

Address A

Address B

Input B

R
eg

is
te

rF
ile

A
L

U

R1

R2

R6

R3

Rename

k0,3

c3

t0

k4 c0

k3

c3 k4 c0

t0 k3

c2 c3 k4 c0

t0 k3k0,3k0,2

f∗71,1f72,3

e71,2

e71,2

k0,1

e71,1

e71,0

e71,1 e71,3

e71,2

f72,2

v71,2

e71,2

e71,1

v71,1

e71,1

f72,0 f72,1

v71,0 v71,3

e71,3e71,0

e71,0

e71,1

e71,2

f71,1

f∗71,3

v70,3

e70,3

e70,3

e68,0 e68,2

v68,0 v68,2

f69,0

f69,3

f69,2

e68,2

f68,1e68,1

f∗68,1

e68,3

f68,3

f∗68,3 f68,0

e68,3

f68,2

temp2

temp2

Inverse
Permute

Permute
Inverse

v68,3 v68,1

v68,3 v68,1

v68,3 v68,1

k17,3 k17,1

k17,3 k17,1

e67,0

e67,0 e67,2

e67,1 e67,3

e67,0 e67,2

e67,0 e67,2

e67,0 e67,2

e67,0

e67,1 e67,3

e67,1 e67,3

e67,1 e67,3

e69,0

f69,1

f∗69,3

v68,3

e68,3

e68,3

v70,0

f71,0 f71,2

e70,0 e70,2

v70,2

e70,0 e70,2

e70,3

e70,3

e70,0 e70,2

e70,0

e70,0

e70,3

e70,0

e70,2

e70,2

v69,3

e69,3

v69,2

e69,2

e69,0 e69,2

e69,3

f∗69,1

f67,1

f∗67,3

f∗70,1

f70,1

f∗70,3 f70,2

e69,1

e65,3

f65,0

e64,3

e66,0

e66,3 e66,2e66,0

v66,0 v66,0 v66,2

e66,2e66,0e66,0

f∗67,1

f67,3

f67,0 f67,2

e66,1

f∗66,1

e65,3

e66,3

e66,2

e66,3 e66,0 e66,2

e66,0

v65,3

e65,0 e65,2

v65,2v65,0

f66,0 f66,2f∗66,3

f66,1 f66,3 e65,1

e66,3 e66,0 e66,2

e65,3 e65,0 e65,2

e65,3 e65,0 e65,2

c1

c1

c1

e71,2

e71,2

e69,3 e69,0 e69,2

e69,3 e69,0 e69,2

e71,0

v69,0

e69,0

f70,3

f70,0

e70,2

e69,2

e68,3 e68,0 e68,2

e67,2 e66,2

e71,0

e71,0 e71,2

e70,1f71,3

v68,1 v68,3

v68,1 v68,3

v68,2 v68,0

v68,2

v68,0

v64,3

e64,3 e64,0

v64,0

f∗65,1 f∗65,3

f65,1 f65,3

e65,0 e65,2 e65,0 e65,2

e65,2e65,0e65,3

e64,0

t0

k2 k4 k0 k3

17 t2

k2 k4 k0 k3

t217

k2 k4t0 17

k0 k3

t2

v67,0 v67,2 v67,3 v67,1

e67,0 e67,2 e67,1 e67,3

First round Second round Third round

Seventh roundSixth roundFifth roundFourth round

Second key injection

Computation of t2 and k4, and first key injection

R3← R1⊕ R3R3← R1⊕ R2

@k2 @k0 @k1@k1@k0@t0

@t1 @C240

@k3

@t2 @18@t1

@c2 @c3

@k4

@k4

@t0

@c0

@k3

@c1

@e71,1@e71,2

@e71,2

@e70,3 @e68,3@e70,0 @e70,2 @e69,2@e71,0 @e71,2 @e69,0@e69,3

@e68,0 @e68,2 @e67,0@17

@v68,3 @v68,1

@e67,2

@e67,0 @e67,2

@e67,2@e67,3@e67,1 @e67,0 @e66,3 @e66,0 @e66,2 @e65,0@e65,3 @e65,2@v68,3@v68,1 @e64,3 @e64,0

Figure 9. Scheduling of Threefish-256 decryption.

Á The addition modulo 2w can be computed in two clock
cycles. Let a = alow+2

w
2 ahigh and b = blow+2

w
2 bhigh. We

store ahigh and bhigh in two w
2 -bit registers, and compute

a sum word slow and a carry bit such that 2
w
2 c+ slow =

alow + blow. A flip-flop and a w
2 -bit register store c and

slow, respectively. The most significant bits of the sum
are then given by shigh = ahigh + bhigh + c. This approach
allows us to reduce the worst-case carry path at the price
of three w

2 -bit registers and a flip-flop.
Â Routing a signal from a memory block to a slice is

sometimes expensive in terms of wire delay. If the critical
path is located between the register file and register R1,
this pipeline configuration will help boosting the clock
frequency. The output data path of a Virtex-6 memory
block has an optional internal pipeline register. Therefore,
the only hardware overhead is the w-bit register between
R5 and the array of AND gates controlled by ctrl1.

In order to avoid pipeline bubbles between column and
diagonal steps, it suffices to process the four calls to Gi of
the diagonal step in the following order: G7, G4, G5, and G6.
We check for instance that the ALU outputs the new value of

v4 (last instruction of G0) at time τ+3. If we load v3 from the
register file, we can start the computation of G7 at time τ +4
(Figure 13). We easily check that this scheduling also avoids
pipeline bubbles between a diagonal step and a column step
(Figure 14). Since each call to Gi involves ten instructions,
we need 80 clock cycles to perform a round of BLAKE-n.

Our first architecture can be modified to support the four
algorithms of the BLAKE family (Figure 15). The 64-bit
datapath is built out of two 32-bit datapaths, thus allowing
us to perform a single 64-bit operation or two 32-bit opera-
tions at each clock cycle. The mode of operation is selected
according to an additional control bit ctrl6, the latter being
provided by the user. The ALU includes two 32-bit adders.
Let alow, ahigh, blow, bhigh, slow, and shigh denote unsigned 32-bit
integers. When the user chooses BLAKE-224 or BLAKE-256
(ctrl6 = 0), two messages are processed in parallel and the
ALU performs two 32-bit additions:

slow ← alow + blow + ctrl2,
shigh ← ahigh + bhigh + ctrl2.

When the coprocessor executes BLAKE-384 or BLAKE-512



3

≫ δ0 ≫ δ2

≫ δ1

3

2

1

3

1

2

b

d

mσr(2i+1)

≫ δ3 b

cσr(2i)

a

d

mσr(2i)

a

c

d

c c c

cσr(2i+1)

aa

bb b b

1

2From R5

From port B

From port A To R5

3

1

≫ δi To R5From port A

To port BFrom R5

3

d

From port A

From R5 To port B

To R5 1

Figure 11. Implementation of the Gi function of BLAKE-n by means of three instructions. R5 denotes an internal register of the ALU.

ctrl1

LUT6 2

Á
≫

δ 3

≫
(δ

2
−
δ 3
)

≫
(δ

1
−
δ 3
)

≫
(δ

0
−
δ 3
)

1

0
R5

À

LUT6

1

0

1

0

1

0

ctrl3

R4

To
po

rt
B

Á

R3
0

1
R1

ctrl0

Â

Â

Fr
om

po
rt

A
Fr

om
po

rt
B

R2

Â

ctrl4 ctrl5ctrl2

Figure 12. Arithmetic and Logic Unit for BLAKE-n.

(ctrl6 = 1), the ALU carries out a 64-bit addition. The first
adder generates the least significant bits of the sum and a carry
bit c such that:

232 · c+ slow = alow + blow + ctrl2.

The second adder computes the most significant bits of the
sum:

shigh ← ahigh + bhigh + c.

We use the rotation unit of our first processor to deal with
BLAKE-224 and BLAKE-256. Note that the content of R3 is
always copied into R6 when ctrl5:3 = (000)2. Thus, we share
this datapath between all algorithms of the BLAKE family,
and need only 64 LUTs to implement the rotation unit of

BLAKE-384 and BLAKE-512. When ctrl5 is equal to one,
ctrl4:3 encodes the index i of the rotation distance δi (Table V).
Consequently, we can use the same instruction flow for all
algorithms and select the width of the datapath according to
ctrl6. Note that the three pipeline configurations defined for
our first coprocessor are also available here.

The QUARTERROUND function of ChaCha requires only
two of the instructions we defined for the Gi function. Thus,
the design of a ChaCha coprocessor is rather straightforward
(Figure 16). Since it is not necessary to compute RFA⊕RFB
anymore, the ALU has a single 32-bit input. The only difficulty
is to increment the 64-bit counter 232m13+m12 (Algorithm 3,
lines 17 to 20). Assume that the constant 1 is stored in the



Â

Ã

À

Á

Pi
pe

lin
e

st
ag

es

τ + 5

1st step of G5:

τ τ + 6τ + 4τ + 3τ + 2τ + 1

Time [clock cycles]

R4← R3≫ 0

R3← R1⊕ R2

v9← v9� v13

9th step of G1:

v10← v10� v14

9th step of G2:

v3← v3� v4

1st step of G7:

R5← v4 = R4≫ 7

v0← v0� v5

1st step of G4:

v4← (v4 ⊕ v8)≫ 7

10th step of G0:

v6← (v6 ⊕ v10)≫ 7

10th step of G2:

R2← R5 = v8

R1← v4

v5← (v5 ⊕ v9)≫ 7

10th step of G1:

v11← v11� v15

9th step of G3:

v7← (v7 ⊕ v11)≫ 7

10th step of G3:

v1← v1� v6

R2← R5 = v9

R3← R1⊕ R2

R5← v5 = R4≫ 7

R1← v5

R4← R3≫ 0

R1← v6

R2← R5 = v10

R3← R1⊕ R2

R4← R3≫ 0

R5← v6 = R4≫ 7

R3← R1⊕ R2

R5← v7 = R4≫ 7

R1← v7

R2← R5 = v11

R4← R3≫ 0 R4← R3≫ 0

R3← R1� R2

R1← v3

R2← R5 = v4

R1← v0

R2← R5 = v5

R3← R1� R2

R1← v1

R2← R5 = v6

R4← R3≫ 0

R5← v11 = R4

R3← R1� R2

R5← v10 = R4

R4← R3≫ 0

R5← v9 = R4

Figure 13. Avoiding pipeline bubbles between a column step and a diagonal step.

Á

Â

ÃPi
pe

lin
e

st
ag

es

Time [clock cycles]
τ + 1 τ + 2 τ + 3 τ + 4 τ + 5 τ + 6τ

À

R4← R3≫ 0

R3← R1⊕ R2

R5← v4 = R4≫ 7

R2← R5 = v9

R1← v4

v4← (v4 ⊕ v9)≫ 7

10th step of G7:

10th step of G4:

R2← R5 = v10

R5← v5 = R4≫ 7

R1← v5

R3← R1⊕ R2

R4← R3≫ 0

v5← (v5 ⊕ v10)≫ 7

10th step of G5:

R5← v6 = R4≫ 7

R1← v6

R2← R5 = v11

R3← R1⊕ R2

R4← R3≫ 0

v6← (v6 ⊕ v11)≫ 7

10th step of G6:

R1← v7

R2← R5 = v8

R4← R3≫ 0

R3← R1⊕ R2

v7← (v7 ⊕ v8)≫ 7

R5← v7 = R4≫ 7

R3← R1� R2

1st step of G0:

v0← v0� v4

R1← v0

R2← R5 = v4

R4← R3≫ 0

R1← v1

R3← R1� R2

R2← R5 = v5

1st step of G1:

v1← v1� v5 v2← v2� v6

R1← v2

R2← R5 = v6

1st step of G2:

9th step of G6:

R5← v8 = R4

v8← v8� v13

R3← R1� R2

R4← R3≫ 0

v11← v11� v12

R5← v11 = R4

R4← R3≫ 0

9th step of G5:9th step of G4:

v10← v10� v15

R5← v10 = R4

Figure 14. Avoiding pipeline bubbles between a diagonal step and a column step.

Table V
ROTATION DISTANCES OF THE UNIFIED BLAKE COPROCESSOR.

ctrl5:3 Rot. dist. BLAKE-224/256 BLAKE-384/512
(000)2 0 R6 ← R3 (common datapath)
(100)2 δ0 R6 ← R3 ≫ 7 R6 ← R3 ≫ 11
(101)2 δ1 R6 ← R3 ≫ 8 R6 ← R3 ≫ 16
(110)2 δ2 R6 ← R3 ≫ 12 R6 ← R3 ≫ 25
(111)2 δ3 R6 ← R3 ≫ 16 R6 ← R3 ≫ 32

register file. The control bit ctrl0 allows us to disable the
feedback mechanism and to load the constant 0 in register
R2. Execute the following instructions:

R1← 1 R2← 0,
R3← R1⊕ R2,
R4← R3,
R5← R4,
R1← m12 R2← R5.

Registers R1 and R2 store m12 and the constant 1, respectively.
Note that the output carry of the 32-bit adder can now be stored
in a flip-flop F. Furthermore, when ctrl2 is set to one, our ALU
performs an “add with carry” instruction. We can now compute
m12 + 1, save the output carry in F , and increment m13 if

necessary:

(F,R3)← R1� R2 R1← m13 R2← 0,
R3← R1� R2� F R4← R3,

Register file← R4 (m12) R4← R3,
Register file← R4 (m13).

Three pipeline configurations are again available. The second
one needs specific attention: since the adder is pipelined,
the computation of m12 � 1 requires two clock cycles. It is
therefore mandatory to introduce a NOP before loading m13

into register R1.
It is of course possible to build a unified coprocessor for

ChaCha and the BLAKE family (Figure 17). A new control
bit ctrl7 allows the user to select the mode of operation of
the ALU: encryption or hashing. Since the coprocessor has a
64-bit datapath to support BLAKE-384 and BLAKE-512, it is
possible to encrypt two messages in parallel with ChaCha.

C. Register Files and Control Units

We will consider our unified coprocessor for the BLAKE
and ChaCha algorithms to describe how we design our control
units. The same approach can easily be applied to the other
coprocessors considered in this work. Virtex-6 FPGAs embed
several configurable memory blocks that can for instance



0
1

≫
25

≫
32

≫
16

0
1

1
0

1

0
1

0

1
0

≫
11

1 0 1
0

0
1

1
0

32 bits

R4

À

Á

Á

Á

ctrl6

Á

≫
1

≫
9

0

1
R1

ctrl0

Â

Â

ctrl1
Fr

om
po

rt
A

LUT6 2

ctrl2Fr
om

po
rt

B

R2

ctrl3

Â

1 bit 64 bits

ctrl5ctrl4

ctrl6

LUT6

≫
5

R6

To
po

rt
B

≫
7

R3

R5

À

b h
ig

h

b l
ow

a
lo

w

c

s h
ig

h

a
hi

gh

s l
ow

Figure 15. Unified Arithmetic and Logic Unit for the BLAKE family.

carry

ctrl3

ctrl4ctrl0

ctrl1 ctrl2

LUT6

F

Á

R3

≪
7

≪
1

≪
9

1

0

À

1

0

1

0

ctrl5

R4

To
po

rt
B

≪
5

R5

1 0

R1

R2

Fr
om

po
rt

A Â

Â LUT6 2

1

0

Output

Figure 16. Arithmetic and Logic Unit for ChaCha.

store 1024 36-bit words or 2048 18-bit words. Our control
unit mainly consists of a program counter that addresses
an instruction memory implemented by means of a memory
block.

A straightforward way to deal with the permutations in-
volved in the BLAKE family is to unroll the round loop.
Table VI summarizes the number of instructions required by
the algorithms supported by our coprocessor if we follow this
approach. Note that it suffices to store the code of BLAKE-
384/512 and 20-round ChaCha (2039 instructions): a simple
finite-state machine allows us to jump to the finalization step

Table VI
NUMBER OF INSTRUCTIONS OF THE ALGORITHMS OF THE BLAKE AND

CHACHA FAMILIES.

Algorithm # instructions
BLAKE-224/256 1184
BLAKE-384/512 1344
8-round ChaCha 311
12-round ChaCha 439
20-round ChaCha 695

when the desired number of rounds has been performed1. The
1It is possible to reduce the size of the code by storing the table defining the

permutation of {0 . . . , 15} parametrized by the round index r (Table IV) and
by generating the addresses of mσr(2i) and cσr(2i+1) on-the-fly. However,
this approach would require a more complex control unit. As long as the
micro-code fits into a single block of memory, there is no need to try to
reduce the number of instructions.



1

1

0 0

1

0

0
1

1

1
0

1

1

0

0

0
1

1

0

0

0

1

1
1

0

≫
11

0
1

1
0

≫
16

≫
32

≫
25

1
0

0

1 0

Fr
om

po
rt

B

ctrl4

LUT6

ctrl5

1 bit 32 bits 64 bits

or
or

ctrl6ctrl8

Á

LUT6 2

ctrl0 ctrl2

R5

ctrl6

≪
8

≪
16

R6

≪
7

≪
12

≫
1

≫
9

ctrl3

≫
5 ≫

7

R4

À

À

R7

To
po

rt
B

ctrl7

R3

Á

À

Á Á
Á

ctrl1

Â
R2

R1
0

1

Â

Â

Fr
om

po
rt

A

Figure 17. Unified Arithmetic and Logic Unit for the BLAKE and ChaCha families.

main challenge is therefore to define control words of at most
18 bits in order to implement our instruction memory by means
of a single memory block. A clever organization of the register
file (Figure 18) and a simple compression algorithm allows
us to achieve this goal. Two blocks of dual-ported memory
configured as 256 entries of 32 bits store the message, the
chaining value, the constants, and all the intermediate variables
of BLAKE and ChaCha. Thus, our coprocessor requires 26
control bits (Figure 19a):

• 8 address bits and a write enable signal for port A of the
register file;

• 8 address bits and a write enable signal for port B of the
register file;

• 8 control bits for the ALU.

Two control bits are provided by the user: ctrl7 allows her
to select between BLAKE and ChaCha, and ctrl6 specifies
the configuration of the datapath (2× 32 bits or 64 bits). Our
organization of the data in the register file enables us to define
a 20-bit instruction:

• The most significant address bit depends on the algorithm
being executed, and is therefore provided by the user.

• We use ports A and B to load new data (message, salt, and
counter) and save the intermediate variables computed
by the ALU, respectively. Consequently, the write enable
signal of port A is also given by the user.

• Let us denote by a7:0 the eight address bits of ports

A. Note that a6 is equal to one only when we read an
initial vector and assume that the digest size is selected
according to an additional control bit ctrl8. The address
bit a5 is computed as follows:

a5 ←

{
a5 when a6 = 0,
ctrl8 otherwise.

Thanks to this simple mechanism, the instruction flow
does not depend on the digest size. Initial vectors are
always read from port A.

• Since the initial vectors are neither modified nor read
from port B, the second most significant address bit is
always equal to zero.

Consequently, we can store 20-bit words in the instruction
memory (Figure 19b). We designed a simple compression
algorithm to encode the write enable signal of port B and the
six control bits ctrl5:0 by means of five bits. A C program
generates the content of the instruction memory and the
VHDL description of the decompression circuit. The latter
involves only seven 5-input LUTs, and stores the control
bits of the ALU and the write enable signal of port B in
a register. Because of this pipeline stage, it is necessary to
generate the write enable signal one clock cycle in advance
when we have to store a word in the register file. Our C
program takes this parameter into account and organizes the
control bits in the instruction memory according to the pipeline



v0, . . . , v15

c0, . . . , c15

s0, . . . , s3

151

144

167

152

183

168

187

184

189

188

199

192

h0, . . . , h7

v0, . . . , v15

c0, . . . , c15

s0, . . . , s3

t0 and t1

IV0, . . . , IV7 (BLAKE-384)

143

128

m0, . . . , m15

64 bits

103

96
IV0, . . . , IV7 (BLAKE-256) IV0, . . . , IV7 (BLAKE-256)

231

224
IV0, . . . , IV7 (BLAKE-256)

127

104

Unused

23

16
h0, . . . , h7

v0, . . . , v15
39

24

c0, . . . , c15
55

40

59

56
s0, . . . , s3

32 bits 32 bits

191

190
Unused

256

232

Unused

95

72
Unused

223

200
Unused

15

0

71

64
IV0, . . . , IV7 (BLAKE-224)

63

62
61

60

0 and 1 (32-bit constants)

m0, . . . , m15

t0 and t1

IV0, . . . , IV7 (BLAKE-224)

0 and 1 (32-bit constants)

m0, . . . , m15

t0 and t1

h0, . . . , h7

Figure 18. Register file of the unified coprocessor for the BLAKE and ChaCha families.

WeB ctrl7 ctrl6 ctrl5 ctrl4 ctrl3 ctrl2 ctrl1 ctrl0

Port A Arithmetic and logic unit

ctrl6ctrl6 0

Port B

AddrA (7 bits) WeB ctrl4ctrl5 ctrl1 ctrl0ctrl2ctrl3

Port A Arithmetic and logic unit

AddrB (6 bits)

Port B

(a) Address and control bits of our unified coprocessor for BLAKE and ChaCha

(b) Address and control bits provided by the control unit

AddrA (8 bits) WeA AddrB (8 bits)

Figure 19. From 26- to 18-bit instructions. Shaded cells denote control bits provided by the user.

configuration. Then, it generates the compressed instruction
memory. Figure 20 describes the instruction flow for the first
pipeline configuration of our coprocessor:

• As explained above, the write enable signal is generated
one clock cycle in advance to take the internal pipeline
stage of the decompression unit into account.

• All inputs of the register file are registered, and the two
control bits ctrl0 and ctrl1 must therefore be generated
one clock cycle after the addresses. We take advantage
of the latency of our decompression unit to synchronize
the control signals.

We followed the same approach to build our control units
for Threefish and Skein. The register file is organized into 64-
bit words, and stores a plaintext block, an internal state (ed,i,
where 0 ≤ i ≤ Nw − 1), an extended block cipher key, an
extended tweak, the constant C240, and all possible values of
s involved in the key schedule (Figure 21). Thanks to this
approach, the word permutation π(i) and the word rotation of
the key schedule are conveniently implemented by addressing
the register file accordingly. Since the round constants repeat
every eight rounds (Algorithm 2, line 14), we decided to unroll
eight iterations of the main loop of Threefish (Algorithm 2,
lines 4 to 19). The rotation constants Rd,i are included in
the microcode executed by the control unit. Note that our
register file is designed for Threefish-1024 (i.e. Nw = 16
and Nr = 80). It is therefore straightforward to implement

the two other variants of the algorithm on our architecture.
The number of clock cycles required for Threefish encryption
and decryption according to the key size is summarized in
Table VII. Because of the output transform, k+1 invocations
of the tweakable encryption function are necessary to hash a
k-block message with Skein. There is a latency of 5 clock
cycles between two consecutive Threefish encryption. Thus,
the throughput of Skein is given by:

throughput =
8 ·Nb · k · f

(k + 1) · latency of Threefish with UBI + 5 · k
,

where f denotes the clock frequency.

72

56

95

76

Unused

48

63 127

117

Unused

32

116

96

e′i,0, . . . , e′i,7

Unused
49

0, 1, . . . , 19, 20

55

p0, . . . , p15

ei,0, . . . , ei,15

k0, . . . , k16

15

0

71

64

31

e′i,8, . . . , e′i,15

t0, t1, t2, C240
7516

Figure 21. Register file of our Threefish and Skein architectures.



WeB

ctrl5

ctrl4 ctrl3

ctrl2

ctrl0ctrl1WeB
AddrB (6 bits)AddrA (7 bits)

ctrl4
ctrl5

ctrl3

ctrl2

ctrl1 ctrl0

Port A Port B Arithmetic and logic unit

Compressed opcode

Compression algorithm

AddrB (6 bits)AddrA (7 bits)

Figure 20. Generation of the compressed instruction memory.

Table VII
NUMBER OF INSTRUCTIONS OF THE ALGORITHMS OF THE THREEFISH

FAMILY.

Algorithm # instructions
Threefish-256 encryption 490

Threefish-256 encryption with UBI 501
Threefish-256 decryption 469
Threefish-512 encryption 860

Threefish-512 encryption with UBI 882
Threefish-512 decryption 1092

Threefish-1024 encryption 1874
Threefish-1024 encryption with UBI 1912

Threefish-1024 decryption 2351

VII. RESULTS AND COMPARISONS

We captured our architecture in the VHDL language and
prototyped our coprocessors on a Xilinx Virtex-6 FPGA with
average speedgrade. Tables VIII and IX summarize our place-
and-route results measured with ISE 14.2. Note that we
considered the least favorable case, where the message consists
of a single block, to compute the throughput of Skein.

Most of the architectures described in the open literature
focus on a single level of security (Table X). We took
advantage of the intrinsic parallelism of BLAKE to interleave
the computation of four instances of the Gi function. Thanks to
this approach, we designed an ALU with four pipeline stages
and achieved higher clock speeds than the coprocessors listed
in Table X. A careful scheduling allowed us to totally avoid
pipeline bubbles and memory collisions. We also addressed
FPGA-specific issues and described how to share slices be-
tween addition and bitwise exclusive OR of two operands.
We followed the same strategy to design our coprocessors
for Threefish and Skein. As a consequence, our coprocessors
provide the end-user with hashing and encryption at all levels
of security, while offering a better area–time trade-off.

We report in Figure 22 the latest lightweight implementation
results of several cryptographic hash functions. Besides our
coprocessors for BLAKE-512 and Skein-512-512, we selected
Grøstl [14], JH [5], SHA-2-512 [21], and SHA-3-512 (Keccak
[r = 1024, c = 576]) [13]. In this context, BLAKE is
obviously the best choice for lightweight implementations on
FPGA. Since our unified architecture for the BLAKE family
(Figure 15) requires less than 100 Virtex-6 slices, BLAKE

0

100

200

300

400

500

0 50 100 150 200 250 300

Area [Virtex-6 slices]

BLAKE-512

Grøstl-512

JH-512

SHA-3-512

Skein 512-512

SHA-2-512

Throughput [Mbit/s]

Figure 22. Compact implementations of several cryptographic hash functions
on Virtex-6 FPGAs (512-bit digests).

is also an excellent candidate for cryptographic coprocessors
supporting several levels of security.

We already proposed lightweight implementations of ECHO
& AES [15] and Grøstl & AES2 [14] (Table XI). According to
our results, the unified coprocessor for BLAKE and ChaCha
offers the best area–time trade-off. However, given that all
symmetric cryptographic functions (including authenticated
encryption) can be efficiently implemented with Keccak, we
would get the following figures with a unified architecture
based on [13]:

• hashing with arbitrary length at a security level of 256
bits: 501 Mbits/s;

• authenticated encryption at a security level of 256 bits:
more than 501 Mbits/s (the generic security of keyed
sponges allows one to use less capacity than for hashing,
hence a larger rate and a proportionally larger through-
put) [24].

2Note that Järvinen [22] proposed the first unified coprocessor for AES-
128 (encryption and key expansion) and Grøstl-256. Recently, Rogawski
& Gaj [23] designed a parallel coprocessor for Grøstl-based HMAC and
AES in the counter mode. Both architectures are optimized for high-speed
implementations, and it is therefore difficult to make a comparison with our
lightweight coprocessors.



Table VIII
PLACE-AND-ROUTE RESULTS FOR OUR THREEFISH AND SKEIN COPROCESSORS ON A VIRTEX-6 FPGA (XC6VLX75T-2). ALL DESIGNS REQUIRE THREE

MEMORY BLOCKS.

Supported Area Freq.
Throughput [Mbits/s]

Algorithms [Slices] [MHz] Skein-256-256 Skein-512-512
Threefish-256 Threefish-512 Threefish-1024
Enc. Dec. Enc. Dec. Enc. Dec.

Threefish encryption 145 294 – – 153 – 175 – 160 –
Threefish 277 267 – – 139 145 158 125 145 116

Skein and
150 295 75 85 154 – 175 – 161 –Threefish encryption

Skein and Threefish 292 279 70 80 145 152 166 130 152 121

Table IX
PLACE-AND-ROUTE RESULTS FOR OUR CHACHA AND BLAKE COPROCESSORS ON A VIRTEX-6 FPGA (XC6VLX75T-2).

Throughput [Mbits/s]
Supported Pipeline Area # block Freq. BLAKE-224 BLAKE-384

8-round 12-round 20-roundalgorithms config. [slices] RAMs [MHz] and and
ChaCha ChaCha ChaChaBLAKE-256 BLAKE-512

¬ 49 2 362 – – 595 422 266
ChaCha ­ 77 2 316 – – 520 368 232

® 77 2 345 – – 569 403 254

BLAKE-224 and
¬ 47 2 338 146 – – – –

BLAKE-256
­ 49 2 341 147 – – – –
® 50 2 349 150 – – – –

BLAKE-384 and
¬ 79 3 331 – 252 – – –

BLAKE-512
­ 91 3 331 – 252 – – –
® 91 3 329 – 250 – – –

BLAKE
¬ 94 3 312 2× 134 237 – – –

(all levels of security)
­ 126 3 332 2× 143 252 – – –
® 129 3 343 2× 148 261 – – –

BLAKE and ChaCha
¬ 144 3 335 2× 144 255 2× 551 2× 390 2× 246

(all levels of security)
­ 156 3 289 2× 124 220 2× 475 2× 337 2× 212
® 168 3 304 2× 131 231 2× 500 2× 354 2× 223

VIII. CONCLUSION

The stream cipher ChaCha, the block cipher Threefish,
and the hash functions BLAKE and Skein are based on the
same arithmetic operations. In this work, we showed that
the same design philosophy allows one to design lightweight
coprocessors for hashing and encryption. The key element of
our approach is to take advantage of the parallelism of the
algorithms to:
• deeply pipeline the ALU to achieve a high clock fre-

quency;
• avoid data dependencies by interleaving independent

tasks.
Furthermore, we described how to design compact control
units thanks to a careful organization of the register file, loop
unrolling, and a simple compression algorithm. Our archi-
tectures are mainly designed for embedded systems. Thus,
it would be interesting to conduct side-channel and fault
injection attacks in future work.

Our results show that BLAKE and ChaCha are excellent
candidates for lightweight coprocessors. However, since all
symmetric cryptographic functions can be implemented by
means of keyed sponges, we are planning to design hardware
architectures based on the new SHA-3 algorithm. According

to the preliminary results reported in [13], SHA-3 could
outperform BLAKE and ChaCha.

ACKNOWLEDGEMENTS

The authors would like to thank Daniel J. Bernstein and Ray
Cheung for their valuable comments. This work was partially
supported by the Japanese Society of Promotion of Science
(JSPS) through the A3 Foresight Program (Research on Next
Generation Internet and Network Security). Additionally the
authors would like to acknowledge Xilinx and the Xilinx
University Program for its generous donation of materials in
terms of design tools.

REFERENCES

[1] J.-P. Aumasson, L. Henzen, W. Meier, and R. Phan, “SHA-3 proposal
BLAKE (version 1.4),” Jan. 2011, available at http://www.131002.net/
blake.

[2] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno,
J. Callas, and J. Walker, “The skein hash function family (version 1.3),”
Oct. 2010, available at http://www.skein-hash.info.

[3] D. Bernstein, “ChaCha, a variant of Salsa20,” Jan. 2008, available at
http://cr.yp.to/papers.html#chacha.

http://www.131002.net/blake
http://www.131002.net/blake
http://www.skein-hash.info
http://cr.yp.to/papers.html#chacha


Table X
COMPACT IMPLEMENTATIONS OF BLAKE AND SKEIN ON VIRTEX-5 AND VIRTEX-6 FPGAS. THE THROUGHPUT IS COMPUTED FOR A ONE-BLOCK

MESSAGE.

Supported algorithm(s) FPGA
Area 36k memory Frequency Throughput

[slices] blocks [MHz] [Mbits/s]
Latif et al. [17]‡ Skein-256-256 xc5vlx110-3 821 Not specified 119 1610

Jungk [18]‡ Skein-512-256 xc5v 555 – 271 237

Jungk [19]‡ Skein-512-256 xc6v 406 – 318 277
Kaps et al. [20] Skein-512-256 xc6vlx75t-1 207 1 166 17
Kaps et al. [20] Skein-512-256 xc6vlx75t-1 193 – 193 21

Kerckhof et al. [5]‡ Skein-512-512 xc6vlx75t-1 240 – 160 179

Aumasson et al. [1] BLAKE-256 xc5vlx110 390 – 91 412
Jungk [19] BLAKE-256 xc6v 235 – 231 518
Jungk [19] BLAKE-256 xc6v 404 – 185 823
Kaps et al. [20] BLAKE-256 xc6vlx75t-1 163 1 197 327
Kaps et al. [20] BLAKE-256 xc6vlx75t-1 166 – 268 445
Aumasson et al. [1] BLAKE-512 xc5vlx110 939 – 59 468
Kerckhof et al. [5] BLAKE-512 xc6vlx75t-1 192 – 240 183

†Without output transformation ‡Single call to Threefish-512

Table XI
PLACE-AND-ROUTE RESULTS FOR HASHING AND AES ENCRYPTION ON A VIRTEX-6 FPGA (XC6VLX75T-2).

FPGA
Area Frequency Throughput [Mbits/s]

[slices] [MHz] AES-128 AES-192 AES-256 256-bit digest 512-bit digest
AES & ECHO [15] 155 397 219 186 161 92 48
AES & Grøstl [14] 169 393 217 184 159 92 69

[4] J. Zhai, C. Park, and G.-N. Wang, “Hash-based RFID security protocol
using randomly key-changed identification procedure,” in Computational
Science and Its Applications–ICCSA 2006, ser. Lecture Notes in Com-
puter Science, M. Gavrilova, O. Gervasi, V. Kumar, C. K. Tan, D. Taniar,
A. Laganà, Y. Mun, and H. Choo, Eds., no. 3983. Springer, 2006, pp.
296–305.

[5] S. Kerckhof, F. Durvaux, N. Veyrat-Charvillon, F. Regazzoni,
G. Meurice de Dormale, and F.-X. Standaert, “Compact FPGA imple-
mentations of the five SHA-3 finalists,” in Proceedings of the ECRYPT
II Hash Workshop, 2011.

[6] N. At, J.-L. Beuchat, and İ. San, “Compact implementation of Threefish
and Skein on FPGA,” in Proceedings of the Fifth IFIP International
Conference on New Technologies, Mobility and Security–NTMS 2012,
A. Levi, M. Badra, M. Cesana, M. Ghassemian, O. Gürbüz, N. Jabeur,
M. Klonowski, A. Maña, S. Sargento, and S.Zeadally, Eds. IEEE
eXpress Conference Publishing, 2012.

[7] J.-L. Beuchat, E. Okamoto, and T. Yamazaki, “Compact implementations
of BLAKE-32 and BLAKE-64 on FPGA,” in Proceedings of the
2010 International Conference on Field-Programmable Technology–
FPT 2010, J. Bian, Q. Zhou, and K. Zhao, Eds. IEEE Press, 2010, pp.
170–177.

[8] D. Bernstein, “The Salsa20 family of stream ciphers,” Dec. 2007,
available at http://cr.yp.to/snuffle/salsafamily-20071225.pdf.

[9] J.-P. Aumasson, S. Fischer, S. Khazaei, W. Meier, and C. Rechberger,
“New features of Latin dances: Analysis of Salsa, ChaCha, and Rumba,”
in Fast Software Encryption–FSE 2008, ser. Lecture Notes in Computer
Science, K. Nyberg, Ed., vol. 5086. Springer, 2008, pp. 470–488.

[10] T. Ishiguro, S. Kiyomoto, and Y. Miyake, “Latin dances revisited:
New analytic results of Salsa20 and ChaCha,” in Information and
Communications Security–ICICS 2011, ser. Lecture Notes in Computer
Science, S. Qing, W. Susilo, G. Wang, and D. Liu, Eds., vol. 7043.
Springer, 2011, pp. 255–266.

[11] T. Ishiguro, “Modified version of ”Latin dances revisited: New analytic
results of Salsa20 and ChaCha”,” 2012, cryptology ePrint Archive,
Report 2012/065.

[12] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and
W. Marnane, “A hardware wrapper for the SHA-3 hash algorithms,”
2010, cryptology ePrint Archive, Report 2010/124.

[13] İ. San and N. At, “Compact Keccak hardware architecture for data
integrity and authentication on FPGAs,” Information Security Journal:
A Global Perspective, vol. 21, no. 5, pp. 231–242, 2012.

[14] N. At, J.-L. Beuchat, E. Okamoto, İ. San, and T. Yamazaki, “A low-area
unified hardware architecture for the AES and the cryptographic hash
function Grøstl,” 2012, cryptology ePrint Archive, Report 2012/535.

[15] J.-L. Beuchat, E. Okamoto, and T. Yamazaki, “A low-area unified
hardware architecture for the AES and the cryptographic hash function
ECHO,” Journal of Cryptographic Engineering, vol. 1, no. 2, pp. 101–
121, 2011.

[16] H. Warren, Hacker’s Delight. Addison-Wesley, 2002.
[17] K. Latif, M. Tariq, A. Aziz, and A. Mahboob, “Efficient hardware

implementation of secure hash algorithm (SHA-3) finalist - Skein,” in
Proceedings of the International Conference on Computer, Communica-
tion, Control and Automation–3CA2011, 2011.

[18] B. Jungk, “Compact implementations of Grøstl, JH and Skein for
FPGAs,” in Proceedings of the ECRYPT II Hash Workshop, 2011.

[19] ——, “Evaluation of compact FPGA implementations for all SHA-3
finalists,” in The Third SHA-3 Candidate Conference, Mar. 2012.

[20] J.-P. Kaps, P. Yalla, K. Surapathi, B. Habib, S. Vadlamudi, and S. Gu-
rung, “Lightweight implementations of SHA-3 finalists on FPGAs,” in
The Third SHA-3 Candidate Conference, Mar. 2012.

[21] H. Technology, “FULL DATASHEET–Tiny hash core family for Xilinx
FPGA,” revision 2.0 (11/06/2010).

[22] K. Järvinen, “Sharing resources between AES and the SHA-3 second
round candidates Fugue and Grøstl,” in The Second SHA-3 Candidate
Conference, Aug. 2010.

[23] M. Rogawski and K. Gaj, “A high-speed unified hardware architecture
for AES and the SHA-3 candidate Grøstl,” in Proceedings of the 15th
Euromicro Conference on Digital System Design, Sep. 2012.

[24] The Keccak Team, Personal communication, Sep. 2012.

http://cr.yp.to/snuffle/salsafamily-20071225.pdf

	Introduction
	The Threefish Block Cipher
	The Skein Family of Hash Functions
	The ChaCha Stream Cipher
	The BLAKE Family of Hash Functions
	Hardware Implementation
	Arithmetic and Logic Units for Threefish and Skein
	Arithmetic and Logic Units for BLAKE and ChaCha
	Register Files and Control Units

	Results and Comparisons
	Conclusion
	References

