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1 Introduction
The Advanced Encryption Standard (AES) was specified in 2001 by the National Institute of Standards

and Technology [1]. The purpose is to provide a standard algorithm for encryption, strong enough to keep
U.S. government documents secure for at least the next 20 years. Now AES will largely replace triple-DES
for government use, and will likely become widely adopted for a variety of encryption needs, such as secure
transactions via the Internet.

A wide variety of approaches to implementing AES have appeared, to satisfy the varying criteria of
different applications. Some approaches seek to maximize throughput, e.g., [2,3,4]; others minimize power
consumption, e.g., [5]; and yet others minimize circuitry, e.g., [6,7,8,9]. For the latter goal, Rijmen[10]
suggested using subfield arithmetic in the crucial step of computing an inverse in the Galois Field of 256
elements—reducing an 8-bit calculation to several 4-bit ones. D. Canright[11] suggested using a normal basis
for each subfield to improve the compact implementation, and their work gave a merrged S-box circuit that
was 20% smaller than before.

One method to improve the robustness and safety of the algorithm is to increase the computational com-
plexity. So, AES is a variant of Rijndael which has a fixed block size of 128 bits, and a key size of 128, 192,
or 256 bits. The more size the key own, the more robustness the algorithm is. However, another mothod
to increase the computational complexity is to expand the fixed block size from 128 bits to a large number
bits. For example, it can be expanded to 256 bits.

The four steps in each round of encryption, in order, are called SubBytes (byte substitution), ShiftRows,
MixColumns, and AddRoundKey. Of these four steps, three of them (ShiftRows, MixColumns, and AddRound-
Key) are linear, in the sense that the output 128-bit block for such steps is just the linear combination
(bitwise, modulo 2) of the outputs for each separate input bit. These three steps are all easy to implement
by direct calculation in software or hardware.

The single nonlinear step is the SubBytes step, where each byte of the input is replaced by the result of
applying the“S-box”function to that byte. This nonlinear function involves finding the inverse of the 8-bit
number, considered as an element of the Galois field GF (28). The Galois inverse is not a simple calculation,
and so many current implementations use a table of the S-box function output.

At first, this table look-up method is regarded as fast and easy to implement. But for hardware imple-
mentations of AES, there is one drawback of the table look-up approach to the S-box function: each copy
of the table requires 256 bytes of storage, along with the circuitry to address the table and fetch the results.
Each of the 16 bytes in a block can go through the S-box function independently, and so could be processed
in parallel for the byte substitution step. This effectively requires 16 copies of the S-box table for one round.
To fully pipeline the encryption would entail “unrolling”the loop of 10 rounds into 10 sequential copies
of the round calculation. This would require 160 copies of the S-box table (200 if round keys are computed
“on the fly”), a significant allocation of hardware resources.
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This is also the reason why it hard to expand the fixed block size from 128 bits to 256 bits. This will
require 65536 bytes to storage. It will also equire 160 copies of the allocation of hardware resources. However,
D. Canright[11] describes a direct calculation of the S-box function using sub-field arithmetic. This paper
expand this method and make it possible to realize a new AES-like algorithm that has 256 bits fixed block
size, which is named AAES algorithm.

2 AAES Algorithm
The AAES Algorithm is a symmetric block cipher with 256-bit blocks and 256-bit key size. As the

algorithm is similar to AES Algorithm, there are also four steps in this algorithm. The four steps in each
round of encryption, in order, are called SubBytes (byte substitution), ShiftRows, MixColumns, and Ad-
dRoundKey. Before the first round, the input block is processed by AddRoundKey. Also, the last round
skips the MixColumns step. Otherwise, all rounds are the same, except each uses a different round key, and
the output of one round becomes the input for the next. For decryption, the mathematical inverse of each
step is used, in reverse order; certain manipulations allow this to appear like the same steps as encryption
with certain constants changed. Each round key calculation also requires the SubBytes operation.

AAES operates on a 4×4 column-major order matrix of words(A word is equal to 2 bytes), termed the
state, although some versions of Rijndael have a larger block size and have additional columns in the state.
Most AAES calculations are done in a special finite field which is equal to AES Algorithm.

In the AddRoundKey step, the subkey is combined with the state. For each round, a subkey is derived
from the main key using Rijndael’s key schedule; each subkey is the same size as the state. The subkey is
added by combining each byte of the state with the corresponding byte of the subkey using bitwise XOR.
This, of course , is as same as the AES Algorithm.

The ShiftRows step operates on the rows of the state; it cyclically shifts the words in each row by a
certain offset. For AES, the first row is left unchanged. Each word of the second row is shifted one to the
left. Similarly, the third and fourth rows are shifted by offsets of two and three respectively. Row n is shifted
left circular by n-1 bytes. In this way, each column of the output state of the ShiftRows step is composed of
bytes from each column of the input state. This is also as same as the AES Algorithm.

In the MixColumns step, the four bytes of each column of the state are combined using an invertible
linear transformation. The MixColumns function takes four bytes as input and outputs four bytes, where
each input byte affects all four output bytes. Together with ShiftRows, MixColumns provides diffusion in
the cipher.
During this operation, each column is multiplied by the known matrix that for the 256-bit key is:

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 (1)

In the SubBytes step, each byte in the state matrix is replaced with a SubByte using an 16-bit substi-
tution box. This operation provides the non-linearity in the cipher. The S-box used is derived from the
multiplicative inverse over GF (216), known to have good non-linearity properties. To avoid attacks based
on simple algebraic properties, the S-box is constructed by combining the inverse function with an invertible
affine transformation. The S-box is also chosen to avoid any fixed points (and so is a derangement), and also
any opposite fixed points.

Now, we give the core part—S-Box Algorithm in details. In software, the S-box is often implemented as
a table lookup. The S-box function of an input byte (16-bit vector) a is defined by two substeps:
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First, Inverse: inversion treats the byte as an element of GF (216), where the bits are coefficients of a
polynomial, and polynomial arithmetic is modulo the irreducible polynomial f(x) = x16 + x5 + x3 + x2 + 1;
each nonzero byte is replaced by its multiplicative inverse in this field, while a zero byte remains unchanged.

Then Affine Transformation: an affine transformation is applied: treating the byte as a vector of bits,
the byte is multiplied by a constant bit matrix M and then a con- stant byte b is added (with bit arithmetic
in GF (2), where multiplication is AND and addition is XOR), so x = Mx+ b.

s15
s14
s13
s12
s11
s10
s9
s8
s7
s6
s5
s4
s3
s2
s1
s0



=



1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1
1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1
1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1
1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1





c15
c14
c13
c12
c11
c10
c9
c8
c7
c6
c5
c4
c3
c2
c1
c0



+



0
0
1
1
1
1
0
0
0
0
0
0
1
1
1
1



(2)

3 Method
For the reason that other three step(ShiftRows, MixColumns, and AddRound- Key) are linear, we only

need to consider the SubBytes step which is nonlinear. So we put the emphasis on the realization of the S-Box.

Direct calculation of the inverse (modulo an sixteenth-degree polynomial) of a fifteenth-degree polynomial
is not easy. But calculation of the inverse (modulo a second-degree polynomial) of a first-degree polynomial
is relatively easy, as pointed out by D. Canright[11]. This suggests the following changes of representation.

For any element G on GF (216), we consider its subfield GF (28). For given element τ and γ on GF (28).
Suppose the roots of the polynomial r4(x) = x2 + τx + γ = 0 are γ4, γ

256
4 . Here [γ4, γ

256
4 ] constitute the

normal basis on GF (216). Thus , the element G on GF (216) can be expressed as G = αγ256
4 + βγ4, where

α, β∈GF (28)
We’ll make it:
τ = γ4 + γ256

4 , γ = γ4·γ256
4 ∈GF (28)

Take notice of the fact that:
(αγ256

4 + βγ4)(βγ
256
4 + αγ4)

= α2γ257
4 + β2γ257

4 + αβ(γ4 + γ256
4 )2

= (α+ β)2γ + αβτ2∈F28

For the inverse element of element G,
G−1 = (αγ256

4 + βγ4)
−1

= ((α+ β)2γ + αβτ2)−1·(βγ256
4 + αγ4)

= ((α+ β)2γ + αβτ2)−1βγ256
4 + ((α+ β)2γ + αβτ2)−1αγ4,

Here (α+ β)2γ+αβτ2, α, β∈F28 , so it only required to calculate the inverse element on GF28 whicn can be
expressed as (α+ β)2γ + αβτ2.

Similarly , we can use normal basis [γ3, γ
16
3 ] to calculate all the inverse element G−1

3 on GF (28). And
also , we can use normal basis [γ2, γ

4
2 ] to calculate all the inverse element G−1

2 on GF (24).
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When consider GF (22), we can use normal basis [γ1, γ
2
1 ] to calculate all the inverse of element G1 which is

on GF (22) , G1 = αγ2
1 + βγ1,α, β∈GF (2) = F (2) = {0, 1}.

γ1, γ
2
1 are the root of polynomial r1(x) = x2 + x+ 1 = 0

Take notice of the fact that:
(αγ2

1 + βγ1)(βγ
2
1 + αγ1)

= α2γ3
1 + β2γ3

1 + αβ(γ1 + γ2
1)

2

= α+ β + αβ = 1
So, the inverse of element G1,
G−1

1 = (αγ2
1 + βγ1)

−1 = βγ2
1 + αγ1

We can find that it is important to choose r4(x), r3(x), r2(x), r1(x) = x2 + x + 1. Here we select the
group base:
r1(x) = x2 + x+ 1
r2(x) = x2 + γ1x+ γ1
r3(x) = x2 + γ2x+ γ1
r4(x) = x2 + x+ γ3

So, for G1 = x1γ
2
1 + x0γ1, the inverse of G−1

1 = o1γ
2
1 + o0γ1, then we get:

o1 = x0 o0 = x1(Figure 1)

For G2 = x1γ
4
2 + x0γ2, the inverse of G−1

2 = o1γ
4
2 + o0γ2, then we get:

o1 = (x1x0γ
2
1 + (x1 + x0)

2γ1)
−1x0 o0 = (x1x0γ

2
1 + (x1 + x0)

2γ1)
−1x1(Figure 2)

Here N0 = γ2
1 = γ0, N1 = γ1 is a constant.

For G3 = x1γ
16
3 + x0γ3, the inverse of G−1

3 = o1γ
16
3 + o0γ3, then we get:

o1 = (x1x0γ
2
2 + (x1 + x0)

2γ1)
−1x0 o0 = (x1x0γ

2
2 + (x1 + x0)

2γ1)
−1x1(Figure 3)

Here N1 = γ1, N2 = γ2
2 is a constant.

For G4 = x1γ
256
4 + x0γ4, the inverse of G−1

4 = o1γ
256
4 + o0γ4, then we get:
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Here N3 = γ3 is a constant.

4 Conclusion
For the judgement of the final hardware circuit complexity，Canright decide it through the logic gate

number of statistical analysis. In fact，now it is no longer to use gate number to decide the complex degree
of the logic circuit. Instead, using the new unit LUT. Look-Up-Table , which is called LUT for short, LUT.
In digital logic, an n-bit lookup table can be implemented with a multiplexer whose select lines are the
inputs of the LUT and whose inputs are constants. An n-bit LUT can encode any n-input Boolean function
by modeling such functions as truth tables. This is an efficient way of encoding Boolean logic functions,
and LUTs with 4-6 bits of input are in fact the key component of modern field-programmable gate arrays
(FPGAs). Therefore, this paper holds that, for a logic algorithm, the corresponding hardware circuit to
realize quality whether the decision criteria should be used when the hardware circuit language (VHDL or
verilo ) simulation, using hardware electronic manufacturers (such as Lattice Diamond) provides hardware
simulation program to simulate the LUT to get the number of at least, that is the realization of the optimal.

We use Verilog to simulate the AES arithmetic as well as this arithmetic, and use Lattice Diamond to
simulate the hardware property and action. Lattice Diamond design software offers leading-edge design and
implementation tools optimized for cost sensitive, low-power Lattice FPGA architectures. Diamond is the
next generation replacement for ispLEVER featuring design exploration, ease of use, improved design flow,
and numerous other enhancements. We give the result as follows:

Canright’s Work on AES My Work on AES AAES
LUT4 173 121 281

Lut4 is industrial standards to logic circuit scale measured. Thus we find the Luts we use on AAES is in
the same order of magnitude on AES. Then this algorithm can be easily used on indestury and it is more
robustness and safety than AES. And they are on the same order of magnitude in hardware implementation.
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