
Throughput Optimized Implementations of QUAD

Jason R. Hamlet · Robert W. Brocato

Abstract We present several software and hardware im-
plementations of QUAD, a recently introduced stream ci-

pher designed to be provably secure and practical to im-

plement. The software implementations target both a per-
sonal computer and an ARM microprocessor. The hard-

ware implementations target field programmable gate ar-

rays. The purpose of our work was to first find the baseline

performance of QUAD implementations, then to optimize
our implementations for throughput. Our software imple-

mentations perform comparably to prior work. Our hard-

ware implementations are the first known implementa-
tions to use random coefficients, in agreement with QUAD’s

security argument, and achieve much higher throughput

than prior implementations.

Keywords QUAD · stream cipher · throughput

optimization · hardware acceleration

1 Introduction

The QUAD algorithm is a stream cipher proposed by

Berbain, Gilbert, and Patarin and is intended to be prov-

ably secure and practical to implement [1]. QUADs se-
curity is derived from the difficulty of solving the multi-

variate quadratic (MQ) problem. That is, the security of

the QUAD cipher is provably reducible to the NP-hard
problem of finding a solution to a multivariate quadratic

system of m quadratic equations in n variables over a fi-

nite field, GF (q). Each equation in the system of kn mul-

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. De-
partment of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

J. R. Hamlet
Sandia National Laboratories, Albuquerque, NM 87123 USA
Tel.: +505-845-0903
E-mail: jrhamle@sandia.gov

R. W. Brocato
Sandia National Laboratories, Albuquerque, NM 87123 USA
E-mail: rwbroca@sandia.gov

tivariate quadratic equations used in QUAD is written
as

Q(x) =
∑

1≤i≤j≤n

αi,jxixj +
∑

1≤i≤n

βixi + γ (1)

In QUAD, a system of m = kn equations, S(x) =

(Q1(x), . . . , Qkn(x)) are iterated. On each iteration, n bits

are used to update the internal state, and the remain-

ing m − n are output as keystream values. To do this,
we let Sout(x) = (Qn+1(x), . . . , Qkn(x)) and Sit(x) =

(Q1(x), . . . , Qn(x)). The n polynomials in Sit are used to

update the internal state, while Sout produces the keystream.
As such, one round of QUAD entails calculating S(x) =

(Sit(x), Sout(x)) with current state x, outputting the n

bits generated with Sout(x), and then updating x with
the n bits generated by Sit(x).

Inspection of Equation 1 reveals that there are no
conditional branches required in implementing QUAD.

Consequently, QUAD permits constant time implementa-

tions, and so side-channel timing attacks [17] on QUAD
are unlikely. Unfortunately, the key initialization proce-

dure described in [1] does include conditional branching

and so may be susceptible to such attacks. However, this
initialization procedure is non-standard and was removed

from QUAD in [4]. Depending on the implementation,

there is a possibility of hardware leaking the key or ini-

tialization vector (IV) bits during key and IV setup, and
there are likely simple power analysis (SPA) or differential

power analysis (DPA) attacks [18]. QUAD’s resistance to

timing attacks is beneficial, and its potential suscepti-
bility to hardware leakage or power analysis attacks is

consistent with other ciphers [14].

To satisfy the security proof in [1] the coefficients

defining the polynomials Sx must be randomly generated,

but they are not secret values. Prior implementations re-
place these random coefficients with values output from

a pseudo random number generator (PRNG) [5,6]. While

this leads to more compact implementations, QUAD’s se-
curity proof has not been extended to the pseudo random

case. For the first time, we present hardware results for



2 Jason R. Hamlet, Robert W. Brocato

QUAD implementations using random coefficients, in ac-

cordance with QUAD’s security argument.

In this paper, we report on our efforts to measure com-

putational performance of the QUAD algorithm on a per-
sonal computer (PC), an ARM Cortex A8 embedded mi-

croprocessor, and in Altera Cyclone V and Xilinx Virtex-

4 field programmable gate arrays (FPGAs). We imple-
mented the QUAD algorithm with a number of different

variations on each platform in an effort to optimize per-

formance on each. The standard measure of performance
that we seek to optimize throughout these tests is the rate

of keystream production, measured in bits/second.

In this work we consider only n = 128, k = 2, and

coefficients in GF (2). The solution to Equation (1) is

the m = 256 bit value S(x) = Q1(x), . . . , Q256(x). Val-

ues Sout(x) = Q129(x), . . . , Q256(x) are output as the
keystream, and values Sit(x) = Q1(x), . . . , Q128(x) are

used to update the internal state. The α, β, and γ coeffi-

cients are random but public values. There are 256
(

128
2

)

=
2, 080, 768 bits of α, which we term nonlinear coefficients,

256 × 128 = 32, 768 bits of linear coefficients β, and 256

bits of γ, for a total of 2, 113, 792 bits. QUAD’s secu-
rity argument requires these coefficients to be chosen ran-

domly, and its designers state that bad choices of coeffi-

cients are unlikely, though this has not been proven [1].

The coefficients used in our implementations were gener-
ated using the random number generator in OpenSSL [3].

2 Software Implementations

Using the C programming language, we implemented four

different software versions of QUAD. Each version used
the same random coefficients. For each version we tar-

geted both a PC and an ARM microprocessor and mea-

sured the resulting throughput, which varies significantly
between implementations. In this section we describe each

of the implementations and our results.

2.1 Software Implementation: Overview

The initialization used in all of our software and hardware

implementations of the QUAD algorithm differs from that
presented in [1], which describes an initialization proce-

dure that uses two different multivariate quadratic sys-

tems, S0 and S1, of n equations in n unknowns. The
internal state x, which has been set to an initial value K,

is used to select either the output of S0(x) or of S1(x),

depending on the sequentially selected value of the inter-

nal state. However, this approach is non-standard and has
been removed from cryptographic standards that include

QUAD [4]. For our software implementations we simply

make a call to the Unix function /dev/random to pro-
vide an entropy source to seed the internal state of the

algorithm. In practice, one might concatenate the output

of an entropy source with a personalization string and

then apply a cryptographic hash function to the result to
seed the internal state of the algorithm. For the purpose

of this work initialization approaches are inconsequential,

since we have removed the effects of that delay from our
throughput time measurements. Consequently, the initial-

ization can be viewed as an initial delay that is identical

between implementations and whose impact decreases as

the length of the generated keystream increases.

Each of our software implementations uses a 128-bit

internal state with a 128-bit keystream output for each

update cycle. We tested these programs on both a PC
and an ARM microprocessor. The PC used for testing

has a 3.0GHz Intel Core 2 Duo processor with 6 Mbytes

of cache memory and 8 Gbytes of random access memory

(RAM) running Red Hat Enterprise Linux version 5. We
compiled our code with the GNU compiler version 4.1.2.

We also ran each program on a Cortex A8 ARM core

that is part of a DaVinci DM3730 microprocessor. The
DM3730 microprocessor has an additional C64x digital

signal processor (DSP) core. We attempted to compile our

programs to run on the DSP core, but we had insufficient
development time to replace the key C language functions

used to measure algorithm execution times. Consequently,

our reported speeds are limited to the PC and the ARM

microprocessor.

2.2 Software Implementation: Results

2.2.1 QUAD1

Our first software implementation, QUAD1, computes the

internal state value and keystream output by means of the

most computationally simplistic approach. It was used to
derive test vectors for the other software implementations.

In this version, separate computations are performed to

update the 128-bit internal state register and the 128-
bit keystream output register. That is, the internal state

and keystream are treated as two separate registers in

QUAD1. Computations for the nonlinear, linear, and con-
stant terms are performed separately. No effort was made

to streamline computations in QUAD1, and the bit-wise

computations required for the QUAD algorithm are not

well suited to the register-based computations of a PC
running a C program. Due to these factors, this first soft-

ware version of QUAD achieves an average speed of only

4.7 kbits/sec on the PC and 970 bits/sec on the ARM
microprocessor.

2.2.2 QUAD2

Our second version, QUAD2, was created in an effort to

speed up the implementation of the algorithm by per-
forming block matrix-vector multiplication. Most of the

computations required in the algorithm take place in the



Throughput Optimized Implementations of QUAD 3

quadratic (αijxixj) terms. To speed up these computa-

tions, the arithmetic in QUAD2 is performed on words
sized to fit the register size in the microprocessor, which

is 32 bits for the ARM and 64 bits for the Intel Duo.

This version was also designed to be easily implemented
on a smaller microprocessor with 8-bit or 16-bit registers.

A set of appropriately sized Hadamard transform func-

tions were created that implement a parity popcount to

count the number of ones in the input register. The arith-
metic is then performed using these and a bitwise logical

AND function. QUAD2 achieved an average speed of 34.6

kbits/sec on the PC and 5.1 kbits/sec on the ARM pro-
cessor.

2.2.3 QUAD3

A third software version, QUAD3, was created as a spe-

cialization of QUAD2. This version targets the 32-bit ar-
chitecture found on the ARM processor. In this version,

all of the computations are routed through a parity func-

tion that can be implemented in a DSP hardware instruc-

tion for a 32-bit parity popcount. This version ran at
an average speed of 111 kbits/sec on the PC and 16.2

kbits/sec on the ARM processor.

2.2.4 QUAD4

Our fourth software version of QUAD, named QUAD4,
was created by moving as much computation as possible

outside of the loops that are used to compute each co-

efficient. It makes use of a custom logical XOR inline
function to XOR all bits in a register. The basic ver-

sion of QUAD4 generated an average of 1.25 Mbits/sec

of keystream output on the PC and 163 kbits/sec on the
ARM. Versions of the QUAD4 implementation, named

QUAD4 pc 32bit and QUAD4 pc 64bit, were created with

relatively minor changes to C function implementations.

These provided little speed improvement over the basic
QUAD4 program.

Versions of QUAD4 named QUAD4 dsp, QUAD4 dsp2,
and QUAD4 dsp3 were created to progressively remove

more high level C-language functions and replace them

with low-level implementations. This was done to enable

the QUAD algorithm to run on the C64x digital signal
processor core that is present in the DM3730 microproces-

sor, along with the ARM microprocessor. It was possible

to get the program to execute on the C64x core; how-
ever, the C-language function time, used to benchmark

program performance, does not function in the C64x. No

suitable replacement for this function was able to be cre-
ated in the available development time. As a result, the

DSP optimized versions of QUAD were only tested on the

PC and on the ARM processor.

In QUAD4 dsp the coefficient table was moved di-

rectly into program memory from the external file that

Table 1 Throughput results for our software implementations
of QUAD

PC PC ARM µP ARM µP
(Mb/s) (cycles/byte) (Mb/s) (cycles/byte)

Quad1 0.0047 5,106,383 0.00097 8,247,423
Quad2 0.0364 693,642 0.0051 1,568,627
Quad3 0.111 216,216 0.0162 493,827
Quad4 1.21 19,835 0.163 49,080

Quad4 pc 32bit 0.845 28,402 0.132 60,606
Quad4 pc 64bit 1.25 19,200 N/A N/A

Quad4 dsp 3.302 7,268 0.547 14,625
Quad4 dsp2 3.298 7,277 0.582 13,746

Pentium IV [1] 4.6 4,347
Opteron 64-bit [1] 7.7 2,176

was used in previous versions. Also, the entropy source

used for initialization was hard-coded into program mem-

ory. These two actions approximately tripled the through-

put to 3.30 Mbits/sec on the PC and 547 kbits/sec on the
ARM. QUAD4 dsp2 incorporates minor changes to out-

put data handling. It achieves only minor performance

improvements over QUAD4 dsp. In QUAD4 dsp3, the bit
test used to decide the condition of the state bit was per-

formed using a look-up table. This decreased throughput

to 2.19 Mbits/sec in the PC and 451 kbits/sec in the ARM
processor.

2.2.5 Results

Throughput results for our software implementations are

summarized in Table 1. Our fastest performing version
uses a custom, inline, register-based XOR function with

coefficients stored in program memory and some high

level C language functions replaced by low level opera-
tions. Implementation differences between the best ver-

sion for the PC and the best version for the ARM micro-

processor are minimal.

Our fastest speeds on the PC are slower than those

reported in [1] and [19]. The optimizations used in the
previous work include generating only the nonzero xixj

terms. Since the xi are random there is a 3
4 probabil-

ity that any such term will be 0, allowing it to be ex-

cluded from computation. Precomputing the indices of
non-zero variables and pairs of non-zero xixj terms re-

sults in a reduction in the number of non-linear terms

from
(

n
2

)

= n(n−1)
2 to n(n+1)

8 , which reduces the num-
ber of computations and the accumulation overhead sub-

stantially [19]. The other optimization used in previous

work takes advantage of a function that is equivalent to
S(x) but that is more computationally efficient to eval-

uate when the Hamming distance of x is greater than
n
2 [19]. Our optimizations are based on using DSP hard-

ware instructions, custom XOR inline functions, and in
replacing high level C-language functions with low-level

implementations. These optimizations produce a 700x in-

crease in throughput when compared to our baseline de-
signs, suggesting that the results of [1] could be enhanced

by incorporating our optimizations.



4 Jason R. Hamlet, Robert W. Brocato

3 Hardware Implementations

3.1 Hardware Implementations: Overview

There has been some previous work on area efficient hard-

ware implementations of QUAD [5,6], but that work aban-

dons the formal security proof of [1] by generating the

function S pseudo-randomly. Additionally, while area ef-
ficient, the designs in [5, 6] provide maximum through-

put of 4.1Mbps, which is not significantly faster than our

software implementations. In this work, we present hard-
ware FPGA implementations of QUAD that retain ran-

dom functions S and that achieve much higher through-

put.

We describe two FPGA implementations of QUAD.

To achieve high-throughput, area-efficient implementa-

tions, both of these hardware designs are tailored specifi-
cally for the Cyclone V FPGA architecture [5]. The target

device primarily impacts memory layout and the specifics

of look-up table (LUT) based combinatorial logic. With

appropriate modifications, similar results can be achieved
with other FPGA architectures. To demonstrate this, we

provide specific suggestions and implementation results

for the Xilinx Virtex-4 architecture. Though this approach
results in less portable hardware development language

(HDL) code, attention to FPGA architecture allows faster,

smaller designs.

As with the software implementations, the hardware

implementations of QUAD that we describe do not in-

clude the key initialization procedure described in [5]. In-
stead, the state is initialized to a constant. Our hardware

designs are over GF (2) with key length n = 128 and

k = 2, resulting in a set of m = kn = 256 equations.

Other key lengths in GF (2) would have similar designs.
Implementations over larger finite fields are possible, but

are much less secure and so are of less practical inter-

est [2]. We do not consider them here.

The Q(x) in equation 1 have a regular structure that

allows many different hardware implementations. For in-

stance, the Q(x) could be solved serially. If a serial design
requires ζ cycles to compute one of the Q(x) then such

an approach would need ζ × n× k cycles to generate the

nk-bit result. If η of the Q(x) are computed in parallel
then ζ

η ×n× k cycles would be needed, but the hardware

cost would also increase roughly by a factor of η.

In our designs we divide the Q(x) terms into a non-
linear portion

∑

1≤i≤j≤n αi,jxixj and a linear portion
∑

1≤i≤n βixi that are computed separately and then com-

bined with γ. Our first design splits computation of the

Q(x) equations into two stages. In each stage, 128 of the
Q(x) terms are computed in parallel. The same combi-

natorial logic and memory resources are used in the two

stages. As such, the linear and nonlinear processing units
described in the following sections each appear 128 times

in the first design. The second design computes all 256

Fig. 1 At the top level, our design has separate linear and
nonlinear processing units that operate on the function as the
current state. The design is readily parallelized by replicating
these processing units.

of the Q(x) in parallel and requires 256 instantiations of

the processing units. Since logic reuse is not possible in
this design, it is larger, but it has a greater throughput.

The basic structure of these designs is shown in Figure

1, which depicts the data path for computing one of the
Q(x) terms. Duplication of the linear and nonlinear pro-

cessing units is required to compute the Q(x) terms in

parallel.

3.2 Nonlinear Computation: Combinations of State

Computation of the nonlinear portion requires genera-

tion of the
(

n
2

)

=
(

128
2

)

combinations of the current state,
x, multiplying each of these combinations by the appro-

priate αi,j , and finally performing a summation of these
(

128
2

)

values to a single bit. First, we consider generating
the combinations of the current state, that is, generating

xixj , 1 ≤ i ≤ j ≤ n. For state size n, a straightforward ap-

proach is to generate n bits per cycle. This can be accom-

plished with two registers. Initially, one register holds the
current state, x, and the second register holds x rotated

by one bit. The contents of the two registers are pair-wise

ANDed to produce the combinations xixj . Then the sec-
ond register is rotated by a single bit and the operation

is repeated. For n = 128, it will take 64 cycles to gener-

ate the
(

128
2

)

combinations. On the last cycle, the upper
64 bits of the result will hold the same combinations as

the lower 64 bits. This can be corrected by masking the

duplicate combinations with zeros in the αi,j coefficients.

By making the registers smaller than n bits wide, fewer
combinations can be generated each cycle, although this

requires the two registers to be periodically updated with

new portions of the current state. More than n bits can
be generated in each cycle by using more registers. For in-

stance, we could use three registers, two of them initially



Throughput Optimized Implementations of QUAD 5

containing x and the third containing x rotated by n/2

bits. We could then generate 2n combinations in each cy-
cle. In this approach the second and third registers would

each be rotated by one bit each cycle. Straightforward

extensions to this scheme would allow more combinations
to be generated each cycle. Our FPGA designs both have

128-bit data paths. They use two 128-bit registers, and

so require 64 cycles to generate all of the combinations.

3.3 Nonlinear Coefficients

Each of the Q(x) equations requires
(

128
2

)

= 8128αi,j val-
ues. It is convenient to store these either in a ROM with

output word width equal to the number of combinations

of xixj , generated each cycle, or in a collection of ROMs
whose combined output word width equals this number

of combinations. A more detailed discussion of ROM ge-

ometries appears in Section 3.6. Just as generation of the
xixj combinations will generally produce some redundant

combinations, the chosen ROM geometries are likely to

store more than 8128 bits. The unused bits should be set

to zeros so that they will mask the redundant xixj . Addi-
tionally, the αi,j should be permuted prior to storage to

compensate for the ordering of the generated sequence of

xixj combinations.

3.4 Combining the Nonlinear Coefficients and
Combinations of State

The
(

128
2

)

= 8128 combinations of state and nonlinear co-

efficients have to be bitwise multiplied and then summed

to produce a single bit. In the straightforward approach,
during each clock cycle the combinations of state gener-

ated by the registers are ANDed with the nonlinear coef-

ficients. The results are then input to an XOR tree. This
XOR tree will generally be several layers deep, so it can

be pipelined to improve throughput. While simple, this

approach does not consider the FPGA architecture or re-
sources. More efficient designs are possible by tailoring

the bitwise AND multiplication and wide XOR summa-

tion to the available FPGA resources.

Modern FPGAs consist of an array of reconfigurable

units, each containing look-up tables (LUTs), memory el-
ements, routing, and other resources such as multiplexors

or adders. The particulars of these units vary by manufac-

turer and device family. The LUTs are used to implement

user-defined logic functions. Area efficient designs should
attempt to make full use of the LUTs. For example, if

a device provides 4-1 LUTs then 1, 2, 3, and 4-input, 1-

output functions all require one LUT. Partitioning the
design into functions of fewer than 4 inputs makes ineffi-

cient use of the LUTs and wastes resources.

The Cyclone V devices targeted in this work contain

8 input fracturable LUTs [6]. Each of these LUTs can be

Fig. 2 Detailed depiction of our pipelined, LUT-based nonlin-
ear (top) and linear (bottom) processing units.

configured to implement one 6-input function, any two 4-
input functions, any combination of one 3-input function

and one 5-output function, or various more complicated

configurations with functions having shared inputs. To
make efficient use of the FPGA resources, we organize

our design to make full use of these LUTs. An overview

of our nonlinear processing unit is shown in Figure 2a,
which we will refer to for the remainder of this discussion.

The AND-XOR LUT blocks each consist of a 6-1 LUT

and each implement three of the multiplications and two

of the summations required for the nonlinear processing.
That is, each AND-XOR block in the nonlinear portion

computes f(xi, αi) =
∑

0≤i≤2 xiαi where each of the xi

is the previously computed pairwise AND of two bits of
state and the αi are the corresponding nonlinear coeffi-

cients. Since our designs have a 128-bit data path there

are 42 of these 6-input AND-XOR functions and one 4-
input AND-XOR in each non-linear processing unit. The

result is a 43-bit value that must be XORed down to 1

bit. For this, we have a pipelined architecture that again

makes full use of the available LUT resources. The first
stage of the XOR tree consists of seven 6-input LUTs,

each of which computes a 6-bit wide XOR. Finally, the

seven output bits from the first stage of the XOR tree,
the 43rd input to the XOR tree, and the previous out-

put from the XOR tree are combined by a 9-input XOR.

The feedback path is required because each of the Q(x)
terms requires operations on

(

128
2

)

combinations of state

and nonlinear coefficients, and we have a 128-bit data

path. Consequently, it takes 64 rounds of this processing

flow for the nonlinear processing unit to generate a single
output bit.

Now, we briefly consider implementation of the non-

linear processing in Virtex-4 devices. Each Virtex-4 slice
contains two 4-input LUTs [6]. To accommodate this struc-

ture, the AND-XOR LUTs in Figure 2a were redesigned

to implement f(xi, αi) =
∑

i=0,1 xiαi where each of the
xi is a previously computed pairwise AND of two bits of

state and the αi are the corresponding nonlinear coeffi-



6 Jason R. Hamlet, Robert W. Brocato

Table 2 Memory resources available in Cyclone V devices

M10K MLAB

Configuration
256x32, 256x40, 512x16

32x16, 32x18, 32x20(depth × width) 512x20, 1kx8, 1kx10
2kx4, 2kx5, 4kx2, 8kx1

fmax (MHz) 315 450

Memory modes
single port, single port,

true dual port, ROM simple dual port, ROM

cients. For our 128-bit data path, 64 AND-XOR LUTs
would be required. The first stage of the XOR tree would

consist of 16 4-input XOR LUTs. The second stage of

the XOR tree contains four 4-inputs XOR LUTs, and a

final third stage combines the resulting four bits with the
feedback value.

3.5 Linear Computation

The linear portion of QUAD is more easily computed than
the nonlinear portion. Since we require 64 cycles to calcu-

late the non-linear portion and there are 128 terms in the

summation of the linear portion, we operate on two bits of
state and two linear coefficients each clock cycle. In Figure

2a the AND-XOR LUT computes g(xi, βi) =
∑

i=0,1 xiβi

where the xi are taps off the shifted version of the current
state. Our design uses the leftmost (127th) and 63rd bits

of this register, but any two bits separated by 64 posi-

tions would be acceptable. As with the linear coefficients,

the βi coefficients should be permuted prior to storage to
compensate for the utilized sequence of βi. In our designs

the ROMS that store the β coefficients are designed to

make efficient use of the available memory resources. The
details are provided in Section 3.6.

In Virtex-4 devices the AND-XOR LUT in Figure 2b

can be implemented in a single 4-input LUT. This makes
more efficient use of the device resources than the Cyclone

V design, which uses only four of the six available LUT

inputs.

3.6 Memory layout

For QUAD implementations with state size n = 128 and

k = 2 there are 256
((

128
2

)

+ 128 + 1
)

coefficients that
must be stored. Given this large number of coefficients,

it is important to choose ROM geometries that efficiently

store the coefficients while allowing the full set of coef-

ficients to be accessed in the number of cycles required
by the pipelined architecture and throughput constraints.

For designs targeting large throughput many memories

are required so that many coefficients can be accessed
concurrently. Dual and quad-port memories are also use-

ful in this regard.

Cyclone V devices contain two types of memory blocks
[8]. The relevant features of these blocks are summarized

in Table 2. Each of the nk = 256 equations Q(x) requires

storing
(

128
2

)

= 8128 nonlinear coefficients, αi,j1 ≤ i ≤

j ≤ n, so a single M10K block is large enough to store
the αi,j for one of the Q(x). However, with a maximum

configuration width of 40 bits, a dual port design would

require at least 102 cycles to access all of the αi,j . To
increase throughput several M10K blocks can be used.

Unfortunately, this increase in throughput causes ineffi-

cient memory usage and increased resource consumption.

Due to their small size, the MLAB memory resources in
Cyclone V devices are not an attractive option for storing

these coefficients.

Each of the Q(x) equations also requires storing 128

linear coefficients, βi, 1 ≤ i ≤ n. Four M10K blocks could
be used to store all of the βi. Using a dual port configura-

tion, such an approach would require at least 103 cycles to

access all of the βi coefficients. Greater throughput could

be achieved by using more M10K blocks, but this would
also result in inefficient use of the memories. MLAB re-

sources are another option for storing the βi. In the 32x16

configuration each MLAB can store the βi coefficient for
four of the Q(x) equations. This makes efficient use of

the memory resources, and requires 32 cycles to read all

of the βi.

Since the αi,j are used in calculating the nonlinear

portion of the Q(x) terms, the βi coefficients are used in
finding the linear portion, and the results of these distinct

portions are combined with the γ to produce Q(x), it

is desirable for the linear and nonlinear portions to be
calculated in parallel and for these calculations to take

the same amount of time. To achieve this goal, the αi,j

and βi coefficients should be stored so that it takes the
same number of cycles to access them, and they should be

stored in a manner that makes efficient use of the memory

resources.

Our first design splits the calculation of theQ(x) equa-

tions into two rounds. The first 128 of the Q(x) are solved
in the first round, and the remaining 128 are solved in

the second. This permits the same memory resources to

be used in each round. This design uses 128 memories to

store the αi,j coefficients. Each of these memories is com-
posed of four M10K blocks, each 32 bits wide and 256

words deep. This was necessary to achieve the 128 bit

wide memories necessary to support our pipeline, which
requires 128 bits of new αi,j values in each clock cycle.

Unfortunately, this leaves half of each M10K block empty.

Switching to a true dual port configuration does not im-
prove the memory usage, as a 128 bit wide, 256 word

deep dual-port ROM requires 8 M10K blocks. The mem-

ory layout for the 128 α coefficient memories is shown in

Table 3. This design uses 16 memories to store the βi coef-
ficients. Each memory is 16 bits wide by 128 words deep,

completely fills four MLAB resources, and stores the βi

coefficients for 16 of the Q(x) equations. The memory lay-
out is also shown in Table 3. We chose this configuration

so that the β memories could be addressed identically to



Throughput Optimized Implementations of QUAD 7

the α memories. This design requires 512 MLABs and 512

M10K blocks.

Our second design solves all 256 of the Q(x) terms in

parallel. In this design, we can no longer reuse memories,

so the layouts are changed so that each memory holds
half as many values as in the first design. As before, we

store the βi coefficients in MLABs. Here, each memory

consists of two MLABs configured to be 16 bits wide x
64 words deep and holds the βi coefficient for eight of the

Q(x) equations.

The α coefficients are stored in M10K memories. Each
memory stores the α for a single Q(x) equation and con-

sists of four M10K blocks configured as 64 bits wide x 256

words deep. These memories are true dual-port ROMs
with addresses n and n+ 64 read simultaneously to per-

mit the 128-bit reads necessary to support our pipeline.

Half of the words are unused. As with the first design, the

α and β memories share address signals, and all of the co-
efficients can be read in 64 cycles. This design requires 512

MLABs and 1024 M10K blocks.

In Virtex 4 devices, two block RAMs can be configured
in a single-port configuration 128 bits wide and 256 words

deep. In our first design, half of these words are used to

store the nonlinear coefficients for two of the Q(x). For
our second design, a true dual-port configuration 64 bits

wide by 512 words deep is also accommodated by two

block RAMs. These configurations allow nonlinear coeffi-
cient storage in the same manner as we have implemented

in the Cyclone V devices. In both devices, half of the

memory words are unused. In Virtex 4 devices, the linear

coefficients can be stored in block RAM or distributed
memory. For our first design, 16 block RAMs are used to

store all of the linear coefficients. They are arranged as

16 bit wide by 128 word deep memories. For the second
design 32 block RAMs are configured as a 16 bit wide by

64 word deep memory. In both cases, the majority of the

memory capacity is unused. Alternatively, each slice can
be configured as a 64-bit memory. Then 32 slices could

store the linear coefficients for 16 of the Q(x) equations

in the configuration from Table 3 and 16 slices could store

the coefficients for 8 of the Q(x) equations in the config-

uration from Table 4.

3.7 Timing Optimization

The QUAD algorithm has a regular structure that is read-
ily parallelizable. The processing consists of simple com-

binatorial logic that is easily pipelined to maintain fast

clock frequencies. To ensure fast clocks in parallel QUAD

implementations, it is important to floorplan the design
to keep the logic and memories associated with each Q(x)

equation close together. Due to the structure of the FP-

GAs, the dedicated memory resources storing the nonlin-
ear coefficients will generally be spread across the device

and will dictate placement of the processing logic. Due to

this and the large fanouts of some signals, such as memory
addresses and the combinations of state, it is also helpful

to duplicate some of these signals.

3.8 Results

A comparison of our results to previously published de-

signs is shown in Table 5. Note that the previous QUAD

implementations, QUAD low and QUAD medium, re-
place the random coefficients with pseudorandom func-

tions. This violates the security argument in [1] but greatly

reduces the circuit area. Cyclone-V ALUTs and Virtex-4
slices are not equivalent structures, although they are sim-

ilar. Using order of magnitude estimates, our first Cyclone-

based design is about 100x larger in physical area than the

QUAD low, Virtex-based design, but it has over 1000X
greater throughput, measured in bits-per-second of key-

stream generated. It is more than 10x larger than the

QUAD medium, Virtex-based design, but its throughput
is about 40x higher. Our first Virtex-4 design is 85x larger

than QUAD low and 18x larger than QUAD medium,

but its throughput is over 16, 000X larger than QUAD
low and 64x larger than QUAD medium. Our second

Cyclone-based design is about 1000X larger in physical

area than the QUAD low, Virtex-based design, but it has

Table 3 The memory layout used in our first design. The subscripts on α and β indicate which of the Q(x) terms the coefficients
are associated with.

4 MLABs 4 M10K (128 bits wide
(16 bits wide x 128 words deep) x 256 words deep)

addr 0 βn(1..0) βn+1(1..0) . . . βn+7(1..0) αn(127..0)
...

...
...

...
...

addr 63 βn(127..126) βn+1(127..126) . . . βn+7(127..126) αn(8191..8064)
addr 64 βn+128(1..0) βn+129(1..0) . . . βn+135(1..0) αn+128(127..0)

...
...

...
...

...
addr 128 βn+128(127..126) βn+129(127..126) . . . βn+135(127..126) αn+128(8191..8064)
addr 129 0

...
...

addr 255 0



8 Jason R. Hamlet, Robert W. Brocato

a throughput over 15, 000x greater. It is also about 40x

larger and 60x faster than the QUADmedium design. Our
Second Virtex-4 design is 184x larger than QUAD low

and 38x larger than QUAD medium, but it’s throughput

is 23, 000x and 91x larger than QUAD low and QUAD
medium.

Studying Table 5, it is clear that hardware implemen-
tations of QUAD can be small and slow, or large and

fast. As a result, it lags other stream ciphers and sym-

metric ciphers, such as AES, in throughput/area. QUAD,

however, is equipped with a security proof that the other
ciphers lack and is much more efficient than other prov-

ably secure stream ciphers [1, 15, 16]. Moreover, QUAD’s

security is easily increased by using larger n, making it
viable for long term use. These are all attractive proper-

ties of QUAD that might encourage its use over some of

the more efficient alternatives.

Notice that, while our QUAD2 design is essentially the

double of QUAD1, it does not achieve twice the through-

put. Since the processing units in QUAD2 are the same as
those in QUAD1, the decreased throughput is related to

routing and propagation delays. We attribute this primar-

ily to routing congestion and an inability to place all of the
linear and nonlinear processing units close to the mem-

ories storing the coefficients that they utilize. The large

memories required by QUAD, and the physical placement
of those memories in the FPGA fabric, limit the perfor-

mance of QUAD and the extent to which it can be paral-

lelized. For instance, in Section 3.2 we indicate methods

for further parallelizing QUAD, but unfortunately, the in-
creased memory requirements of such approaches quickly

exhaust the resources available in current FPGAs. Cus-

tom ASICs may be appropriate for QUAD, since such
designs allow more efficient layouts and alleviate memory

geometry concerns.

Although the security of QUAD depends on the Ga-

lois field and parameter choices, with some combinations

being insecure [2], over GF (2) we assume that QUAD
has approximately 2n/2 bits of security [6]. Consequently,

QUAD implementations with n = 512 bits of state offer

security roughly equivalent to AES-256, whereas QUAD

implementations with n = 224 bits are comparable to

3DES [14]. Given the nature of QUAD, which can be eas-
ily parallelized or serialized, scaling our implementations

to these larger state lengths can be accomplished with

relatively little impact on area, but approximately linear
decrease in throughput, or with an approximate linear in-

crease in area and relatively small decrease in fmax, due

primarily to routing and resource placement in the FP-

GAs. In particular, in parallel implementations, scaling
up from an n-bit state to an n′-bit state will increase

the logic area by about 2
(

n′

n

)

, which accounts for the

increased width of the nonlinear computation and the in-

creased number of parallel paths. In either case, memory

requirements for storing the coefficients are 2n
((

n
2

)

+ n
)

+
2n, which scales quadratically with n.

3.9 Increasing Throughput

The throughput can be further increased, at the cost of
additional hardware, by further parallelizing the compu-

tation. As described in Section 3.2, generating more than

128 combinations of state per cycle is straightforward. For
instance, our second design could be adapted to have a

256-bit data path. This would eliminate 32 cycles from

the pipeline, but would also require 256 additional linear
and nonlinear processing units and modifications to the

memories. The area and throughput of the design would

both approximately double, although the increased logic

complexity would likely reduce the achievable clock fre-
quency and limit the throughput increase to a factor less

than two. Moreover, increased memory requirements will

quickly deplete the available FPGA resources, limiting
achievable throughput. If eliminating the random coeffi-

cients and instead using a PRNG, as in [5,6], is acceptable

then this problem can be avoided. PRNGs are small, and
so many PRNGs could be included in future designs. This

would allow each of the QUAD processing units to be lo-

cated near a PRNG, increasing throughput.

Table 4 The memory layout used in our second design. The subscripts on α and β indicate which of the Q(x) terms the coefficients
are associated with.

2 MLABs 4 M10K (64 bits wide
(16 bits wide x 64 words deep) x 256 words deep)

addr 0 βn(1..0) βn+1(1..0) . . . βn+7(1..0) αn(63..0)
...

...
...

...
...

addr 63 βn(127..126) βn+1(127..126) . . . βn+7(127..126) αn(8127..8064)
addr 64 αn+128(127..64)

...
...

addr 128 αn+128(8191..8128)
addr 129 0

...
...

addr 255 0



Throughput Optimized Implementations of QUAD 9

Table 5 Comparison of our results to previous FPGA implementations of QUAD and other ciphers. Note that QUAD low and
QUAD medium replace S with a pseudorandom function

Freq. (MHz) Area Thru. (Mb/s) Thru./Area
QUAD1

164
8,723 ALUTs

157.3 18.0kbps/ALUT
(Cyclone V) 2,097,152 mem. bits
QUAD1

274.8
7,193 slices

262.5 36.5kbps/slice
(Virtex-4) 272 RAMB16
QUAD2

143
15,612 ALUTs

265.2 17.0kbps/ALUT
(Cyclone V) 2,129,920 mem. bits
QUAD2

204.9
13,061 slices

374.7 28.7kbps/slice
(Virtex-4) 544 RAMB16
QUAD low

267 85 slices 0.016 0.2kbps/slice
(Virtex-4) [2, 6]
QUAD med.

262 406 slices 4.1 10.1kbps/slice
(Virtex-4) [2, 6]

Trivium
207 41 slices 207 5.05 Mbps/slice

(Virtex-2) [9]
Grain-128

181 48 slices 181 3.77 Mbps/slice
(Virtex-2) [9]

MICKEY-128 2.0
200 190 slices 200 1.05 Mbps/slice

(Virtex-2) [9]
Phelix

62.5 1213 slices 1000 0.82 Mbps/slice
(Virtex-2) [9]

Salsa20
30 3510 LEs 1280 0.36 Mbps/LE

(Cyclone) [12]
3-DES

258 604 slices 917 1.51 Mbps/slice
(Virtex-2) [11]

AES-128
123 146 slices 358 2.45 Mbps/slice

(Virtex-2) [10]

3.10 Conclusion

We have demonstrated a variety of different implemen-

tations of the QUAD stream cipher algorithm, including

software implementations in a PC and an ARM micropro-
cessor, and hardware implementations in the Cyclone V

and Virtex-4 FPGAs. All of our implementations are over

GF (2) and output 128 keystream bits per iteration. Our
fastest implementations are over 3.3Mbits/sec on the PC,

580kbits/sec on the ARM processor, and 374Mbits/sec in

the Virtex-4 FPGA. We investigated design variations to
improve the speed of the implementations, and we dis-

cussed methods for further improving the software and

hardware approaches in future work.

References

1. C. Berbain, H. Gilbert, and J. Patarin, QUAD: A practical
stream cipher with provable security, in Advances in Cryp-
tology - EUROCRYPT 2006 (S. Vaudenay, ed.), vol. 4004
of Lecture Notes in Computer Science, pp. 109128, Springer
Berlin / Heidelberg, 2006.

2. Yang, B.-Y., Chen, O.C.-H., Bernstein, D.J., Chen, J.-M.:
Analysis of QUAD. Pages 290–308 in Fast software encryp-
tion: 14th international workshop, FSE 2007, Luxembourg,
Luxembourg, March 26–28, 2007, revised selected papers,
edited by Alex Biryukov. Lecture Notes in Computer Science
4593, Springer, 2007. ISBN 978-3-540-74617-1.

3. OpenSSL: The Open Source toolkit for SSL/TLS.
http://www.openssl.org/ Accessed Jan. 28,2013.

4. International Organization for Standardization, ISO/IEC
18031 : 2011, Random bit generation. 2011.

5. D. Arditti, C. Berbain, O. Billet, and H. Gilbert, Compact
FPGA implementations of QUAD, in Proceedings of the 2nd
ACM symposium on Information, computer and communi-
cations security, ASIACCS 07, (New York,NY, USA), pp.
347349, ACM, 2007.

6. D. Arditti, C. Berbain, O. Billet, H. Gilbert, and J. Patarin,
QUAD: Overview and recent developments, in Symmetric
Cryptography (E. Biham, H. Handschuh, S. Lucks, and
V. Rijmen, eds.), no. 07021 in Dagstuhl Seminar Proceed-
ings, (Dagstuhl, Germany), Internationales Begegnungsund
Forschungszentrum fr Informatik (IBFI), Schloss Dagstuhl,
Germany, 2007.

7. Altera, Cyclone V Device Handbook, (CV-5V2), Dec. 28,
2012.

8. Xilinx, Virtex-4 FPGA User Guide UG070 (v2.6) Dec. 1,
2008.

9. Bulens, Philippe, et al. ”FPGA implementations of eS-
TREAM phase-2 focus candidates with hardware profile.”
State of the Art of Stream Ciphers Workshop (SASC 2007),
eSTREAM, ECRYPT Stream Cipher Project, Report. Vol.
24. 2007.

10. Rouvroy, Gal, et al. ”Compact and efficient encryp-
tion/decryption module for FPGA implementation of the
AES Rijndael very well suited for small embedded appli-
cations.” Information Technology: Coding and Computing,
2004. Proceedings. ITCC 2004. International Conference on.
Vol. 2. IEEE, 2004.

11. Rouvroy, Gal, et al. ”Design strategies and modified de-
scriptions to optimize cipher FPGA implementations: fast
and compact results for DES and triple-DES.” Proceedings
of the 2003 ACM/SIGDA eleventh international symposium
on Field programmable gate arrays. ACM, 2003.

12. Rogawski, Marcin. ”Hardware evaluation of estream candi-
dates: grain, lex, mickey128, salsa20 and trivium.” State of the
Art of Stream Ciphers Workshop (SASC 2007), eSTREAM,
ECRYPT Stream Cipher Project, Report. Vol. 25. 2007.



10 Jason R. Hamlet, Robert W. Brocato

13. Barker, Elaine B., et al. ”SP 800-57.” Recommendation for
Key Management, Part 1, Rev. 3. 2012.

14. Gierlichs, Benedikt, et al. ”Susceptibility of eSTREAM can-
didates towards side channel analysis.” Proceedings of SASC
(2008): 123-150.

15. Blum, Lenore, Manuel Blum, and Mike Shub. ”A simple un-
predictable pseudo-random number generator.” SIAM Jour-
nal on computing 15.2 (1986): 364-383.

16. Gennaro, Rosario. ”An improved pseudo-random genera-
tor based on discrete log.” Advances in CryptologyCRYPTO
2000. Springer Berlin Heidelberg, 2000.

17. Kocher, Paul C. ”Timing attacks on implementations of
Diffie-Hellman, RSA, DSS, and other systems.” Advances in
CryptologyCRYPTO96. Springer Berlin Heidelberg, 1996.

18. Kocher, Paul, Joshua Jaffe, and Benjamin Jun. ”Differ-
ential power analysis.” Advances in CryptologyCRYPTO99.
Springer Berlin Heidelberg, 1999.

19. Berbain, Cme, Olivier Billet, and Henri Gilbert. ”Efficient
implementations of multivariate quadratic systems.” Selected
Areas in Cryptography. Springer Berlin Heidelberg, 2007.


	Introduction
	Software Implementations
	Hardware Implementations

