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Abstract. Recently, Gennaro, Gentry, Parno and Raykova [GGPR12] proposed an efficient non-
interactive zero knowledge argument for Circuit-SAT, based on non-standard notions like conscientious
and quadratic span programs. We propose a new non-interactive zero knowledge argument, based on
a simple combination of standard span programs (that verify the correctness of every individual gate)
and high-distance linear error-correcting codes (that check the consistency of wire assignments). We
simplify all steps of the argument. As one of the corollaries, we design an (optimal) wire checker, based
on systematic Reed-Solomon codes, of size 8n and degree 4n, while the wire checker from [GGPR12]
has size 24n and degree 76n, where n is the circuit size. Importantly, the new argument has constant
verifier’s computation.
Keywords. Circuit-SAT, linear error-correcting codes,non-interactive zero knowledge, polynomial al-
gebra, span program, verifiable computation.

1 Introduction

Non-interactive zero knowledge (NIZK, [BFM88]) allows the prover to create a proof such that any verifier can
later, without interaction, verify the truth of the intended statement without learning any side information.
While NIZK proofs are important in many cryptographic applications like e-voting or verifiable computation,
there are only a few different generic methodologies to construct efficient NIZK proofs. Most famously, Groth
and Sahai [GS08] proposed NIZK proofs for a class of practically relevant languages. Their proofs have
constant common reference string (CRS) length, and linear computational and communication complexity.
However, since a single proof might get transferred and verified many times, one often requires better
communication and verifier’s computation.

Groth [Gro10] proposed the first NIZK argument (computationally-sound proof) for an NP-complete
language with sublinear communication. Groth’s construction was improved by Lipmaa [Lip12]. Groth and
Lipmaa rewrote the Circuit-SAT argument in a parallel programming language that consists of primitive
arguments (Hadamard sum, Hadamard product and permutation), and then constructed efficient arguments
for the latter. The Circuit-SAT arguments of [Gro10,Lip12] have constant communication, quadratic prover’s
computation, and linear verifier’s computation in n (the circuit size). In [Gro10], the CRS length is Θ(n2).

In [Lip12], the CRS length is Θ(r−1
3 (n)) = o(n22

√
2 log2 n), where r3(N) = Ω(N log1/4N/22

√
2 log2N ) [Elk11]

is the cardinality of the largest progression-free subset of [N ]. The arguments of Groth and Lipmaa are
not applicable (unless n is really small) because of the quadratic prover’s computation. Fauzi, Lipmaa and
Zhang [FLZ12] constructed arguments for the NP-complete languages subset sum and decision knapsack
with the CRS length Θ(r−1

3 (n)) and subquadratic prover’s computation Θ(r−1
3 (n) log n). However, they did

not propose a similar argument for the Circuit-SAT.
Gennaro, Gentry, Parno and Raykova [GGPR12] constructed a new NIZK Circuit-SAT argument, based

on efficient (quadratic) span programs1. Their non-adaptively sound NIZK argument has a linear CRS length,
Θ(n log2 n) prover’s computation, and linear-in-input size verifier’s computation. The argument can be made

1 We refer to Sect. 2 for standard preliminaries on span programs, and will assume during the rest of this introduction
that the reader has basic familiarity with span programs. We note that [GGPR12] has been accepted for publication
as [GGPR13].



adaptively sound by using universal circuits, [Val76], and the adaptively sound argument has CRS length
Θ(n log n), prover’s computation Θ(n log3 n) and verifier’s computation Θ(n).

Briefly, [GGPR12] first constructs span programs (which satisfy a non-standard conscientiousness prop-
erty) that verify the correct evaluation of every individual gate. Conscientiousness means that the span
program accepts only if all inputs to the span program were actually used (in the case of a Circuit-SAT
argument, the prover has set some value to every input and output wire of the gate and that exactly the
same value can be uniquely extracted from the argument). The gate checkers are aggregated to obtain a
single large conscientious span program that verifies every individual gate’s operation in parallel. Second,
[GGPR12] constructs a weak wire checker that verifies consistency, i.e., that all individual gate checkers work
on an unequivocally defined set of wire values. (The weak wire checker guarantees consistency only when all
gate checkers are conscientious.) They define quadratic span programs, construct a quadratic span program
that implements both the aggregate gate checker and the weak wire checker, and then construct an efficient
NIZK argument that verifies (given a vector commitment to all coefficients) the quadratic span program.

Our Contributions. We improve the construction of [GGPR12] in several aspects. Some of our improve-
ments are conceptual (e.g., we provide more clear definitions which result in better constructions) and some
of the improvements are technical (with special emphasis on concrete efficiency). We outline our construction
below, and briefly sketch the differences compared to [GGPR12].

To verify whether the circuit C accepts an input, we first use a constant-size standard (i.e., not necessary
conscientious) span program to verify every gate separately. Then, by using the standard “AND composition”
of span programs [Amb10], we construct a single large span program that verifies the computation of every
gate in parallel.

Unfortunately, simple AND composition of the gate checkers is not secure, because it allows “double-
assignments”. More precisely, there will be vectors from different adjacent gate checkers that correspond to
the variable corresponding to the same wire. While every individual checker might be locally correct, one
checker could work with value 0 assigned to this wire while another checker could work with value 1 assigned
to the same wire. Clearly, such bad cases should be detected.

We solve this issue as follows. Let Code be an arbitrary high-distance linear [N,K,D] error-correcting
code that satisfies D > N/2. For a concrete wire η, consider all vectors from adjacent gate checkers that
correspond to the claimed value xη of this wire. Some of those vectors (say vi) are labelled by the positive
literal xη and some (say wi) by the negative literal x̄η. The individual gate checkers’s acceptance “fixes”
certain coefficients ai (that are used with vi) and bi (that are used with wi) for all adjacent gate checkers.
Roughly stating, for consistency one requires that either all values ai are zero (then unequivocally xη = 0),
or all values bi are zero (then unequivocally xη = 1). We verify that this is the case by applying an efficient
high-distance linear error-correcting code separately to the vectors a and b. The high-distance property of
the linear-error correcting code guarantees that if a and b are not consistent, then there exists a coefficient i
such that Code(a)i ·Code(b)i 6= 0. We use the systematic Reed-Solomon code [RS60], since it is a maximum
distance separable (MDS) code with optimal support (that is, it has the minimal possible number of non-zero
elements in its generating matrix).

Motivated by this construction, we redefine quadratic span programs [GGPR12] as follows. A quadratic
span program — that consists of two target vectors tv and tw and two matrices V and W — accepts an
input only if for some vectors a and b that are consistent with this input, (V · a − tv) ◦ (W · b − tw) = 0.
Here, ◦ denotes the pointwise (Hadamard) product of two vectors. Clearly, the above linear error-correcting
code based construction implements a quadratic span program, with V andW basically being the generating
matrices of the code. (No connection to error-correcting codes was made in [GGPR12].) We also construct
an aggregate wire checker by applying an AND composition rule to the individual wire checkers, and then
construct a single quadratic span program (the circuit checker) that implements both the aggregate gate
checker and the aggregate wire checker.

To summarize, the new circuit checker consists of two elements. First, an aggregate gate checker (a stan-
dard span program) that verifies that every individual gate is executed correctly on their local variables.
Second, an aggregate wire checker (a quadratic span program, based on a high-distance linear error-correcting
code) which verifies that individual gates are executed on the consistent assignments to the variables. Im-
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portantly, the circuit checker is a composition of small (quadratic) span programs, and in total has only a
constant number of non-zero elements per vector. This means that the final NIZK argument will have linear
computational complexity (in the size of the universal circuit).

To construct an efficient NIZK argument, we need several extra steps that are similar to those taken
by Gennaro et alt. As in [GGPR12], we define polynomial span programs and polynomial quadratic span
programs. Differently from [GGPR12] (that only gave the polynomial definition), our main definition of
quadratic span programs is similar to the common definition of span programs, and we then use a trans-
formation to get an arbitrary quadratic span program to a “polynomial” form. We feel the non-polynomial
definition is much more natural, and helps to describe the essence of the construction better.

By using techniques related to those from [GGPR12], we construct a NIZK Circuit-SAT argument.
The main difference in this part of the paper is in the security proof. The soundness of the argument
from [GGPR12] is only proved in the non-adaptive case. It is then claimed in [GGPR12] that one can make
the construction adaptive by using universal circuits, but this is not proven. We start by assuming that
we work with the universal circuit [Val76], and that the corresponding quadratic span program was fixed
while the CRS was generated. This allows us to achieve adaptive soundness. We also use an improved and
more elaborate (non-deterministic) extraction technique which, differently from the one from [GGPR12], also
works with non-conscientious gate checkers. While the technique of [GGPR12] clearly distinguished inputs
of the circuit from intermediate values, in our case all wire values are handled similarly. Importantly, this
allows us to achieve constant verifier’s computation.

More Details. Gennaro et alt [GGPR12] defined a weak wire checker that guarantees consistency only when
the gate checkers were conscientious. This also means that their NIZK argument is sound only if all gate
checkers are conscientious. The new wire checker does not require the gate checkers to be conscientious. This,
in turn, not only enables us to construct much more efficient gate checkers but also (potentially) enables
one to use standard techniques (e.g., the combinatorial characterization of span program size [Gál01], or
semidefinite programming [Rei11]) to construct more efficient checkers for larger unit computations. In
addition, the new wire checker by itself is more efficient than the weak wire checker from [GGPR12]. We
prove that in a certain well-defined sense, the new wire checker is optimal both in its size and its support
(number of non-zero elements).

We construct several (optimally) efficient span programs for gate checkers, needed to construct the Circuit-
SAT argument. In particular, we construct a size 6 and dimension 3 NAND checker (this can be compared
to size 12 and dimension 9 conscientious NAND checker from [GGPR12]).

As a minor contribution, by using a classical result by Hoover, Klawe and Pippenger [HKP84] about
constructing low fan-out circuits, we are able to more precisely quantify the size and other parameters,
especially support, of the aggregate gate and wire checker.

We also rephrase certain proof techniques from [GGPR12] in the language of multilinear universal hash
functions [GMS74,CW79,WC81]. This might be an interesting contribution by itself. Apart from a more
clear proof, this results in a slightly weaker security assumption.

Finally, we note that by using efficient polynomial algebra [GG03], one can reduce the prover’s compu-
tation of the new argument from Θ(d log2 d) (as in [GGPR12]) to Θ(d log d), where d = Θ(n log n) is the
degree of the circuit checker. The same optimization applies to the argument of [GGPR12]. We note that
when using the Erdős-Turán progression-free set from [ET36] the subset sum argument of [FLZ12] requires
prover’s computational complexity Θ(nlog2 3 · log n) which, despite of fast asymptotic growth, is smaller than
Θ(n log3 n) for n ≤ 10 000, at which point arguments from both [FLZ12] and [GGPR12] are computationally
infeasible. On the other hand, n log2 n (prover’s computational complexity after the mentioned optimization)
is smaller than nlog2 3 · log n already for very small values of n.

Efficiency. The new Circuit-SAT argument has the same asymptotic CRS length (Θ(n log n)), prover’s
computational complexity (Θ(n log2 n), after applying the optimization from the previous paragraph) and
communication complexity (constant) as the adaptively sound variant of the argument from [GGPR12].
However, in the first two cases the constant inside Θ has decreased significantly. Importantly, due to the better
extracting technique, we achieve constant (as opposed to Θ(n) in the adaptively sound variant of [GGPR12])
verifier’s computational complexity. We emphasize that all additional optimization techniques applicable to
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the argument from [GGPR12] (e.g., the use of techniques from [BCCT13]) are also applicable to the new
argument.
Other Applications. We do hope that by using our techniques, one can construct efficient NIZK arguments
for other languages. As an example, the techniques of [Lip12] were used in [CLZ12] to construct an efficient
range argument, and in [LZ12] to construct an efficient shuffle. Quadratic span programs have more appli-
cations than just in the NIZK construction (or more generally, in the construction of the wire checker). We
only mention that one can construct a related zap [DN00], a related (public or designated-verifier) succinct
non-interactive argument of knowledge (SNARK, see [Mic94,DL08,GW11,BCCT12]) by using the techniques
of [BCCT12,GGPR12], and implement verifiable computation [GGP10]. In fact, applying our techniques to
verifiable computation is extremely natural: instead of gates, one can talk about small (but possibly much
larger than gates) computational units, and instead of wires, about the values transferred between the small
computational units. Since here one deals with much larger span programs than in the case of the Circuit-SAT
argument, it is especially beneficial that one can use standard (non-conscientious) span programs.

We leave it as an open question whether the non-cryptographic part of the new construction (splitting
the verification of a computation into small steps and then using high-distance linear error-correcting codes
codes to verify the consistency of individual steps) has some non-cryptographic applications.

2 Preliminaries: Span Programs

We assume that F is a finite field of size q � 2, where q is a prime. However, most of the results can be
generalized to arbitrary fields. By default, vectors like v denote row vectors. For a matrix V, let vi be its ith
row vector. For an m× d matrix V over F, let spanV := {

∑m
i=1 aivi : a ∈ Fm}. Let xι be formal variables.

We denote the positive literals xι by x1
ι and the negative literals x̄ι by x0

ι .
A span program [KW93] P = (t,V, %) over a field F consists of a non-zero target vector t ∈ Fd, an m× d

matrix V over F, and a labelling % : [m]→ {xι, x̄ι : ι ∈ [n0]} ∪ {⊥} of V’s rows by one of 2n literals or by ⊥.
Let Vu be the submatrix of V consisting of those rows whose labels are satisfied by the assignment u, that
is, by {xuιι : ι ∈ [n0]} ∪ {⊥}. The span program computes a function f , if for all u ∈ {0, 1}n0 : t ∈ spanVu if
and only if f(u) = 1.

We define %−1
u = {i ∈ [m] : %(i) ∈ {xuιι : ι ∈ [n0]} ∪ {⊥}} to be the set of rows whose labels are satisfied

by the assignment u. The size, sizeP , of the span program is m. The dimension sdimP is equal to d. We
say that the span program P has support suppP , if all vectors v ∈ V have altogether suppP non-zero
elements. Clearly, t can be replaced by an arbitrary non-zero vector; one obtains the corresponding new span
program (of the same size and dimension, but possibly different support) by applying a basis change matrix.
Since linear algebra can be implemented in log-space uniform-NC2 [BGP95,BW03], polynomial-sized span
programs can implement only languages in the complexity class NC2.

Let D(xι) := maxj∈{0,1} |%−1(xjι )|, for each ι ∈ [n0], be the maximum number of vectors that have the
same label (ι, j) with j ∈ {0, 1}. This parameter is needed later when we construct wire checkers.

Span programs were defined in [KW93], originally to help proving various lower bounds (see,
for example, [Gál01]). Later, they have been used to design quantum algorithms [RS08] (see
also [Rei11,Bel12b,Bel12a], or the survey [Amb10]), linear secret sharing schemes (as already shown
in [KW93], see for example [CF02]), and non-interactive zero knowledge (NIZK) arguments [GGPR12].
See [Juk12] for a general exposition of span programs.

One commonly constructs more complex span programs by using simple span programs and their com-
position rules, see, e.g., [Amb10]. Span programs for AND, OR, XOR, and equality of two variables x and y
are as follows:

SP (∧) :

 1 1
x 1 0
y 0 1

 , SP (∨) :

 1
x 1
y 1

 , SP (⊕) :


0 1

x 1 1
y 1 1
x̄ 0 −1
ȳ 0 −1

 , SP (=) :


0 1

x 1 1
y −1 0
x̄ −1 0
ȳ 1 1

 .
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Given span programs P0 = SP (f0) an P1 = SP (f1) for functions f0 and f1, it is well known how to
build span programs for SP (f0 ∧ f1) and SP (f0 ∨ f1). Both compositions assume that the target vector is
in a specific form — t = (1, . . . , 1) in the first case and t = (0, . . . , 0, 1) in the second case. Thus, in a circuit
that consists of both AND and OR gates, one has to implement a basis change to transform t to the correct
form.

Assume that the size mi and dimension di span program SP (fi) has the target vector ti = (1, . . . , 1),
with the jth row vector vij being labelled by xij . The span program SP (f0 ∧ f1) has size m0 + m1 and
dimension d0 +d1. In SP (f0∧f1), t is a concatenation of t0 and t1, the first d0 vectors are equal to (v0j ,0d0)
(and labelled by x0j), and the last d1 vectors are equal to (0d1 ,v1j) (and labelled by x1j). The following span
program for P = SP (f0 ∨ f1) has size m0 +m1 and dimension d0 + d1− 1. Write the vectors of Pi = SP (fi)
as v = (v−di , vdi), where vdi is their last coordinate. Let the target vector of Pi be (0di−1, 1). The target
vector of P is (0d0+d1−2, 1). For each vi from P0, we add the vector (vi,−d0 ,0, vid0) to P . For each vi from
P1, we include the vector (0,vi,−d1 , vid1).

3 Efficient Gate Checkers

A gate checker for a gate function f : {0, 1}n0 → {0, 1}n1 is a function cf : {0, 1}n0+n1 → {0, 1}, such that
cf (x,y) = 1 iff f(x) = y. We are mainly interested in unary and binary Boolean functions f .

The Boolean function NAND ∧̄ is defined as ∧̄(x, y) = x∧̄y = ¬(x∧y). The NAND-checker c∧̄ : {0, 1}3 →
{0, 1} outputs 1 iff z = x∧̄y. We now propose an efficient span program for c∧̄.

Lemma 1. Fig. 1 depicts a span program for c∧̄. It has size 6, dimension 3, and support 7.

Proof. We obtained SP (c∧̄) by using simple AND and OR compositions from the observation that
c∧̄(x, x̄, y, ȳ, z, z̄) = (x ∨ z) ∧ (y ∨ z) ∧ (x̄ ∨ ȳ ∨ z̄). One can use a simple case analysis to see that SP (c∧̄)
computes c∧̄:

– a1 = a2 = a3 = 0 (i.e., x = y = z = 0) does not give a solution,

– a1 = a2 = a6 = 0 (i.e., x = y = 0 and z = 1) gives a solution with a3 = 1, a4 ∈ Zq, and a5 = 1− a4,

– a1 = a5 = a3 = 0 (i.e., x = z = 0 and y = 1) does not give a solution,

– a1 = a5 = a6 = 0 (i.e., x = 0 and y = z = 1) gives a solution with a3 = 1, a2 = −2, a4 = 1,

– a4 = a2 = a3 = 0 (i.e., x = 1 and y = z = 0) does not give a solution,

– a4 = a2 = a6 = 0 (i.e., x = z = 1 and y = 0) gives a solution with a1 = −2, a3 = 1, a5 = 1,

– a4 = a5 = a3 = 0 (i.e., x = y = 1 and z = 0) gives a solution with a1 = 1, a2 = 1, a5 = 1,

– a4 = a5 = a6 = 0 (i.e., x = y = z = 1) does not give a solution.

The claim about the size, dimension, and support is straightforward. ut



t 1 1 1
x 1 0 0
y 0 1 0
z 1 1 0
x̄ 0 0 1
ȳ 0 0 1
z̄ 0 0 1


Fig. 1. SP (c∧̄)

As seen from the proof, given an accepting assignment (x, y, z), one can efficiently find
small values ai ∈ [−2, 1] such that

∑
aivi = t. However, a satisfying input to SP (c∧̄) does

not fix the values ai unequivocally. Namely, if (x, y, z) = (0, 0, 1) (that is, a1 = a2 = a6 =
0), then one can choose an arbitrary a4 and set a5 ← 1 − a4. Since one can set a4 = 0
(and a5 = 1), SP (c∧̄) is not conscientious.

Given SP (c∧̄), one can construct a size 6 and dimension 3 span program for the AND-
checker function c∧(x, y, z) := (x ∧ y) ⊕ z̄ by interchanging the rows labelled by z and z̄
in SP (c∧̄). Similarly, one can construct a size 6 and dimension 3 span program for the
OR-checker function c∨(x, y, z) := (x̄∧ ȳ)⊕ z by interchanging the rows labelled by x and
x̄, and the rows labelled by y and ȳ, in SP (c∧̄).

NOT-checker [x 6= y] = x⊕y is just the XOR function, and thus one can construct a size 4 and dimension
2 span program for the NOT-checker function. (See Sect. 2.)
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t 1 1 1
x 0 1 0
y1 0 0 1
y2 1 0 0
x̄ 1 0 0
ȳ1 0 1 0
ȳ2 0 0 1


Fig. 2. SP (cY)

We need a fork gate that computes y1 ← x, y2 ← x. That is, cY(x, y1, y2) = (x∧y1∧y2)∨
(x̄∧ȳ1∧ȳ2). We write cY in the CNF form, cY(x, y1, y2) = (x̄∨y2)∧(x∨ȳ1)∧(y1∨ȳ2). Since
every literal is mentioned only once in the CNF, we can use AND and OR compositions
to derive the span program on Fig. 2. Thus, cY has a span program of size 6, dimension
3, and support 6.

We also need a 1-to-t fork-checker which has 1 input x and t outputs yι, with yι = x.
The t-fork checker is then ctY(x,y) = (x∧ y1 ∧ · · · ∧ yt)∨ (x̄∧ ȳ1 ∧ · · · ∧ ȳt). It is easy to see
that ctY has a CNF ctY(x,y) = (x∨ ȳ1)∧ (y1∨ ȳ2)∧ · · · ∧ (yt−1∨ ȳt)∧ (yt∨ x̄). From this we
construct a span program exactly as in the case t = 2. The span program has size 2(t+ 1)
and dimension t+ 1. It has only one vector labelled with every xι/y or its negation, thus D(x) = D(yι) = 1
for all ι. To compute the support, we note that SP ∗(ctY) has two 1-entries in every column, and one in every

row. Thus, it has support supp(SP (ctY)) =
∑t+1
i=1 2 = 2(t+ 1) = 2t+ 2.

4 Aggregate Gate Checker

Given a circuit that consists only of NAND, AND, OR, XOR, and NOT gates, we combine the individual
gate checkers by using the span program AND composition rule from Sect. 2. In addition, to make the wire
checker of Sect. 6.1 (and thus also the final NIZK argument) more efficient, all gates of the circuit C need
to have a small fan-out. In [GGPR12], the authors designed a circuit of size 3 · |C| that implements the
functionality of the circuit C but only has fan-out 2 except for a specially introduced dummy input. The
GGPR aggregate gate checker has size 36 · |C| and dimension 27 · |C|. By using the techniques of [HKP84]
(that replace every high fan-out gate with an inverse binary tree of fork gates, and then gives a precise
estimation of the resulting circuit size), we prove a much more precise result. Differently from [GGPR12],
we also do not introduce dummy gates at every input, or the dummy input.

Let C be a circuit. For a gate i of C, let deg+(i) be its fan-out, and let deg−(i) be its fan-in.
Let deg(i) = deg−(i) + deg+(i). The aggregate gate checker function agc of a circuit C is a function

agc : {0, 1}
∑|C|
i=1 deg(i) → {0, 1}|C|. I If ci is the gate checker of the ith gate and dimxi = deg(i), then

agc(x1, . . . ,x|C|) = (c1(x1), . . . , c|C|(x|C|)).

Theorem 1. Let f : {0, 1}n0 → {0, 1} be a function implemented by a fan-in ≤ 2 circuit C with n = |C|
NAND, AND, OR, XOR, and NOT gates. There exists a fan-in ≤ 2 and fan-out ≤ t circuit Cbnd for f which
has the same n gates as C and up to (n− 2n0)/(t− 1) additional t-fork gates. Denote t∗ := 1/(t− 1). The
aggregate gate checker agc = agc(Cbnd) for f has a span program P with sizeP ≤ (8 + 4t∗)n− (10 + 8t∗)n0,
sdimP ≤ (4 + 2t∗)n − (5 + 4t∗)n0, and suppP ≤ (9 + 4t∗)n − (11 + 8t∗)n0. If t = 3, then sizeP ≤
10n− 14n0, sdimP ≤ 5n− 7n0, and suppP ≤ 11n− 15n0.

The proof of this theorem is given in App. B.
We emphasize that the optimal choice of t depends on the parameter that we are going to optimize.

The aggregate gate checker has optimal size, dimension and support when t is large (preferably even if the
fan-out bounding procedure of Thm. 1 is not applied at all). The support of the aggregate wire checker (see
Sect. 6.2) is minimized when t = 2. To somewhat balance the parameters, we concentrate on the case t = 3.

5 Quadratic Span Programs

A quadratic span program is an extension of span programs, motivated by what one can actually do by
using bilinear maps. We will first give a definition of quadratic span programs by using the language of linear
algebra. After that, in Sect. 8, we will provide a polynomial redefinition of quadratic span programs and
show that the result is equivalent to the definition given in [GGPR12].

Definition 1. A quadratic span program P = (tv, tw,V,W, %) over a field F consists of two (possibly all-
zero) target vectors tv, tw ∈ Fd, two m×d matrices V and W, and a common labelling % : [m]→ {xi, x̄i : i ∈
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[n0]} ∪ {⊥} of the rows of V and W. P accepts an input u ∈ {0, 1}n0 iff there exist two vectors a, b ∈ Fm,
with ai = 0 = bi for all i 6∈ %−1

u , such that (V · a− tv) ◦ (W · b− tw) = 0, where x ◦ y denotes the pointwise
(Hadamard) product of x and y. The quadratic span program computes a function f if for all u ∈ {0, 1}n0 :
f(u) = 1 iff P accepts u.

The size, sizeP , of the quadratic span program is m. The dimension sdimP is equal to d. The support
suppP of a quadratic span program P is equal to the sum of the supports (that is, the number of non-zero
elements) of all vectors vi and wi.

Clearly, (V · a − tv) ◦ (W · b − tw) = 0 is equivalent to the requirement that for all j ∈ [d],
(
∑m
i=1 aivij − tvj) (

∑m
i=1 biwij − twj) = 0. Since F is an integral domain, this is equivalent to the requirement

that for all j ∈ [d], either
∑m
i=1 aivij = tvj or

∑m
i=1 biwij = twj , which can be seen as an element-wise OR

of two span programs. This can be compared to the element-wise AND of two span programs that accepts
only if for all j ∈ [d], both

∑m
i=1 aivij = tvj and

∑m
i=1 biwij = twj . This AND composition accepts exactly

if two span programs accept simultaneously, that is,
∑
aivi = tv and

∑
biwi = tw. On the other hand, one

cannot implement an element-wise OR composition (quadratic span program) as a span program. Quadratic
span programs add an element-wise OR to an element-wise AND, and thus it is not surprising that they
increase the expressiveness of span programs.

Clearly, one can compose quadratic span programs by using the AND and OR composition rules of span
programs. One has to take care to apply the same transformation to both V and W simultaneously.

6 Wire Checker and Aggregate Wire Checker

6.1 Wire Checker

Gate checkers verify that every individual gate is followed correctly, that is, that its output wire obtains
a value which is consistent with its input wires. On top of that, one also requires intra-gate (wire) con-
sistency that ensures that adjacent gate checkers do not make double assignments to any of the wires.
Following [GGPR12], we construct a wire checker to verify such intra-gate consistency. We first construct
a wire checker for every single wire (that verifies that the variables involved in the span programs of the
vertices that are adjacent to this concrete wire do not get inconsistent assignments), and then aggregate
them by using AND composition of quadratic span programs.

We will need the following notation. Let G = (V,E) = G(C) be the hypergraph of the circuit C. A
hyperedge η connects the input gate of some wire to (potentially many) output gates of the same wire.
In C, an edge η (except input edges, that have t adjacent vertices) has t + 1 adjacent vertices, where t is
the fan-out of η’s designated input gate. Every vertex of G can only be the starting gate of one hyperedge
and the final gate of two hyperedges (since we only consider unary and binary gate operations). Clearly,
|E(G)| ≤ 2(|V (G)| − n0), where n0 is the number of inputs to the circuit, e.g., the number of the sources of
G. We denote the set of gates of C by V (C) and the set of wires of C by E(C).

Every wire η ∈ E(C) corresponds to a formal variable xη in a natural way. This variable obtains an
assignment, computed from the input assignment u. Let N(η) be the set of η’s adjacent gates. For every
i ∈ N(η), let Pi = (ti,Vi, %i) be the corresponding gate checker. For every i ∈ N(η), one of the input or
output variables of Pi (that we denote by xi:η) corresponds to xη. Recall that for a local variable y of a span
program Pi, D(y) = max(|%−1(y)|, |%−1(ȳ)|). We assume that |%−1(y)| = |%−1(y)|, by adding zero vectors to
the span programs if necessary. Let D(η) :=

∑
i∈N(η)D(xi:η).

We define the ηth wire checker between the rows of adjacent gates i ∈ N(η) that are labelled either by the
local variable xi:η or its negation x̄i:η, i.e., between the rows {i : ∃k ∈ N(η) s.t. %k(i) = xk:η ∨ %k(i) = x̄k:η},
where %k is defined as in the previous paragraph. Let ψ be the natural labelling of the wire checkers,
with ψ(i) = xjη iff %k(i) = xjk:η for some k ∈ N(η). After possible re-enumerating of rows, assume that
[Dcum + 1, Dcum + D(η)] are ψ-labelled by x̄η and [Dcum + D(η) + 1, Dcum + 2D(η)] are ψ-labelled by xη,

where Dcum = 2
∑η−1
η∗=1D(η∗).

We first give a definition of wire checkers for the case where there is only one wire η and thus only one
variable xη. In Sect. 6.2, we will give a definition and a construction for the aggregate case.
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For x = (x1, . . . , x2D), define x(1) := (x1, . . . , xD)> and x(2) := (xD+1, . . . , x2D)>. Fix a wire η, and
assume that D = D(η), ψ−1(x̄η) = [1, D] and ψ−1(xη) = [D+1, 2D]. Let m = 2D. Let Q = (tv, tw,V,W, ψ),
with two m × d matrices V and W, be a quadratic span program. Q is a wire checker, if for any tuples
a, b ∈ F2D, (V · a − tv) ◦ (W · b − tw) = 0 iff a and b indicate consistent bit assignments in the following
sense: either a(1) = 0 or b(1) = 0, and either a(2) = 0 or b(2) = 0.

We propose a new wire checker which is based on the properties of high-distance linear error-correcting
codes. (See App. A for background on coding theory.) To obtain optimal efficiency, we choose particular
codes (namely, systematic Reed-Solomon codes [RS60]). Let RSD be the D × D∗ generator matrix of the
[D∗ = 2D − 1, D,D]q systematic Reed-Solomon code.

Definition 2. Let RSD be the D×D∗ generator matrix of the [D∗ = 2D−1, D,D]q systematic Reed-Solomon

code. Let m = 2D and d = D∗. Define V =W =

(
RSD
RSD

)
. Let Qwc := (0,0,V,W, ψ).

We informally define the degree sdegP of a (quadratic) span program P as the degree of the interpolating
polynomial that obtains the value vij at point j. See Sect. 8 for a formal definition.

Theorem 2. Qwc is a wire checker of size 2D, degree D, dimension D∗ = 2D − 1, and support 4D2.

Proof. It is easy to see that if a and b indicate a consistent bit assignment, then the new wire checker
accepts. For example, if a(1) = b(2) = 0, then clearly

∑D
i=1 aivij = 0 for j ∈ [1, D∗] and

∑2D
i=D+1 biwij = 0

for j ∈ [1, D∗].
Now, assume that a and b indicate an inconsistent bit assignment, that is, a(k) 6= 0 and b(k) 6= 0

for either k = 1 or k = 2. W.l.o.g., assume that a(1) 6= 0 and b(1) 6= 0. Since RSD is the generator
matrix of the systematic Reed-Solomon code, the vector (a(1))> · RSD has at least d > D∗/2 non-zero

coefficients. Similarly, so does (b(1))> ·RSD. That means that both
∑D
i=1 aivij and

∑D
i=1 biwij are non-zero

for more than D∗/2 different values j ∈ [D∗]. Hence, there exists at least one coefficient j ∈ [D∗], such that

(
∑D
i=1 aivij)(

∑D
i=1 biwij) 6= 0. Thus, Qwc does not accept.

The claim about the size, the dimension, the degree, and the support is straightforward. ut

Intuitively, we use a Reed-Solomon code since it is a maximum distance separable (MDS) code and
thus minimizes the number of columns in RSD. It also naturally minimizes the degree of the wire checker.
Moreover, RSD has D2 non-zero elements. Clearly (and this is the reason we use a systematic code), D2 is
also the smallest support the generator matrix of an [n = 2D− 1, k = D, d = D]q code can have, since every
row of RSD is a codeword and thus must have at least d non-zero entries, and thus RSD must have at least
dD ≥ D2 non-zero entries, where the last inequality is due to the singleton bound [Rot06].

We note that a wire checker with V = W = RSD satisfies the even stronger security requirement that
either a = 0 or b = 0. One could hope to pair up literals corresponding to xη in the V part and literals
corresponding to x̄η in the W part. This is impossible in our application, since when we aggregate the wire
checkers, we have to use use vectors labelled with both negative and positive literals in the same part, V or
W, and we cannot pair up columns from V and W that have different indices.

For labelling ψ, we define the dual labelling ψdual, such that ψdual(i) = xjη iff ψ(i) = x1−j
η . Let W = Vdual

be the same matrix as V, except that it has rows from ψ−1(x̄η) and ψ−1(xη) switched, for every η. To
simplify the notation, we will not mention the dual labelling ψdual unless absolutely necessary, and we will
assume implicitly that W has been constructed as in the current paragraph.

Now, [GGPR12] constructed a weak wire checker that guarantees consistency when all individual gate
checkers are conscientious. The new wire checker is both more efficient and more secure.

6.2 Aggregate Wire Checker

Let P = (0,0,V,W, ψ), with two m × d matrices V and W = Vdual, be a quadratic span program. P is
an aggregate wire checker, if (V · a − tv) ◦ (W · b − tw) = 0 if and only if a and b indicate consistent bit
assignments in the following sense: for each η ∈ E(C),
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1 for i← 1 to m do vi ← 0; wi ← 0 ;
2 for all possible values of Dη of all different wire checkers do Precompute RSDη ;
3 for η ← 1 to |E(Cbnd)| do
4 Dcum ←

∑η−1
η∗=1Dη∗ ;

5 Let Mv
η be the submatrix of V indexed by rows ψ−1(x̄η)∪ψ−1(xη) and columns [2Dcum + 1, 2Dcum + 2Dη];

6 Let Mw
η be the same submatrix of W;

7 Set Mv
η ← (RS>Dη |RS

>
Dη ) and Mw

η ← (RS>Dη |RS
>
Dη );

8 end
Protocol 1: The new aggregate wire checker Qawc

1. either ai = 0 for all i ∈ ψ−1(x̄η) or bi = 0 for all i ∈ ψ−1(x̄η), and

2. either ai = 0 for all i ∈ ψ−1(xη) or bi = 0 for all i ∈ ψ−1(xη).

We construct an aggregate wire checker by AND-composing wire checkers for the individual wires. The
aggregate wire checker, see Prot. 1, first resets all vectors vi and wi to 0, and precomputes RSDη for all
possible values Dη (clearly, Dη ≤ t+ 1). After that, for every wire η, it sets the entries in rows, labelled by
either xη or x̄η, and columns corresponding to wire η, according to the ηth wire checker. The variables Dη

and Dcum are defined as in Sect. 6.1.

We recall from Sect. 6.1 that for the wire checker of some wire to work, it must be the case that the
vectors in V and W of this wire checker have different (but consistent) orderings. To keep notation simple,
we will not mention this in what follows.

Theorem 3. Let t ≥ 2. Assume that Cbnd is the circuit, obtained by the transformation described in Thm. 1.
For any η ∈ E(Cbnd), denote D∗η = 2Dη−1. We obtain an aggregate wire checker Qawc, see Prot. 1, by merging
wire checkers for the individual indices η ∈ E(Cbnd) as in Prot. 1 from the span program S that compute the
aggregate gate checker function agc for Cbnd.

Proof. Let m be the size of the aggregate wire checker (computed in Thm. 4). If a, b indicate consistent
assignments, then they indicate consistent assignments of the ηth bit for i restricted to ψ−1(x̄η) ∪ ψ−1(xη).
For every η ∈ E(Cbnd), the wire checker for wire η guarantees that (

∑m
i=1 aivij)(

∑m
i=1 biwij) = 0

for j ∈ [2
∑η−1
η∗=1Dη∗ + 1, 2

∑η
η∗=1Dη∗ ] iff the bit assignments of the ηth wire are consistent. Thus,

(
∑m
i=1 aivij)(

∑m
i=1 biwij) = 0 for j ∈ [1, sdimQawc] iff the bit assignments of all wires are consistent. ut

Theorem 4. Let t∗ := 1/(t − 1). Assume C implements some f : {0, 1}n0 → {0, 1}, and n = |C|. The
aggregate wire checker Qawc has sizeQawc ≤ (6+4t∗)n−(4+8t∗)n0−4, sdimQawc ≤ (6+4t∗)n−(4+8t∗)n0−4,
sdegQawc ≤ (3 + 2t∗)n − (2 + 4t∗)n0 − 2, suppQawc ≤ 4(t + 1)2((1 + t∗)n − 2t∗n0 − 1). If t = 3, then
sizeQawc ≤ 8n−8n0−4, sdimQawc ≤ 8n−8n0−4, sdegQawc ≤ 4n−4n0−2, and suppQawc ≤ 72n−72n0−36.

(The proof of this theorem is given in App. C.) Clearly, other parameters but support are minimized when
t is large. If the support is not important than one can dismiss the bounding fan-out step, and get size 2n,
dimension 2n and degree n.

Gennaro et alt [GGPR12] only defined a weak aggregate wire checker that guarantees the required “no
double assignments” property only when the individual gate checkers are conscientious. The new aggregate
wire checker does not have this restriction. The size of the GGPR weak aggregate wire checker is 24n and
the degree of it is 76n. Differently from [GGPR12], we gave the description of our aggregate wire checker by
using the non-polynomial interpretation of quadratic span program.

9



7 Circuit Checker

Next, we combine the aggregate gate and wire checkers to perform the verification of a Circuit-SAT instance.
We will give two different descriptions of the resulting circuit checker2, based on wire checkers.

Combined Circuit Checker. We construct the combined circuit checker for C as follows: let Pw =
(0,0,Vw,Ww, ψ), be an aggregate wire checker for Cbnd. Let Pg = (t,Vg, %) be an aggregate gate checker
for Cbnd. Here, % and ψ are related as in Sect. 6.2. Let m = sizePw = sizePg. Assume that the vectors
Vw = {vw1 , . . . ,vwm} and Vg = {vg1 , . . . ,vgm} (and similarly, Ww = {ww

1 , . . . ,w
w
m} and Vg) are ordered

consistently (see Sect. 6.2).

Definition 3. The combined circuit checker cΛ(C) for C consists of Pg and Pw. It accepts u (that is,
cΛ(C)(u) = 1) if there exist two vectors a and b, such that ai = bi = 0 for i 6∈ ψ−1

u , which make both Pg and
Pw simultaneously accept, in the sense that the following holds true:

1.
∑
i aiv

g
i = t,

2.
∑
i biv

g
i = t,

3. (
∑
i aiv

w
ij)(
∑
i biw

w
ij) = 0 for j ∈ [d].

We note that the instantiation of Pg used in conjunction with vector b differs from the instantiation used in
conjunction with vector a: as explained in Sect. 6.1, the two instantiations have a different ordering of the
vectors vgi . To ease on notation, we will not make it explicit.

Theorem 5. Assume that Pw is an aggregate wire checker. C(u) = 1 iff cΛ(C)(u) = 1.

Proof. First, assume C(u) = 1. By the construction of the aggregate gate checker, there exists a, with
ai = 0 for i 6∈ ψ−1

u , such that
∑m
i=1 aiv

g
i = t. Let b ← a, then also

∑
biv

g
i = t. Since a and b indicate bit

assignments of wires in the evaluation of C(u), the aggregate wire checker accepts.

Second, assume that there exist vectors a and b, such that cΛ(C) accepts with those vectors. Since Pw
accepts, there are no double assignments. That means, that for some (possibly non-unique) bit uη ∈ {0, 1}
and all i ∈ ψ−1(x

ūη
η ), ai = 0. Dually, bi = 0 for all i ∈ ψ−1(x

ūη
η ) (uη clearly has to be the same in both

cases). Since this holds for every wire, we get that there exists an assignment u of wire values, such that for
all i 6∈ ψ−1

u , ai = bi = 0. Moreover, C(u) = 1. ut

Pure circuit checker. The previous construction of cΛ(C) consists of two span programs and one quadratic
span program. Following the ideas of [GGPR12], one can represent everything as one (slightly larger)
quadratic span program. Namely, for dg = sdimPg, consider the quadratic span program

cΛ(C) :

(
V
W

)
=


t 1 0
Vg 0dg×dg Vw
1 t 0

0dg×dg Wg Ww

 . (1)

Here, V = (v0, . . . ,vm)>, W = (w0, . . . ,wm)>, and 1 = (1, . . . , 1). Clearly, (
∑
i aivij − v0j)(

∑
i biwij −

w0j) = 0 for j ∈ [1, 2 · sdimPg + sdimPw] iff the following three things hold:

– (
∑
aiv

g
ij − tj)(0− 1) = 0 for j ∈ [sdimPg] holds iff

∑
aiv

g
ij = tj for j ∈ [sdimPg] iff

∑
aiv

g
i = t,

– (0− 1)(
∑
biv

g
ij − tj) = 0 for j ∈ [sdimPg] holds iff

∑
biv

g
ij = tj for j ∈ [sdimPg] iff

∑
biv

g
i = t,

– (
∑
aiv

w
ij) · (

∑
biw

w
ij) = 0 for j ∈ [sdimPw].

2 This was called a canonical quadratic span program in [GGPR12]. However, the notion of canonical span programs
was already introduced in [KW93], and has a completely different definition. Therefore, we have changed the
terminology
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Thus, this quadratic span program accepts iff the combined circuit checker accepts. Thus, cΛ(C) is a circuit
checker for C. However, it also increases the dimension of the final quadratic span program.

Clearly, sdeg cΛ(C) ≤ 2 · sdimPg + sdegVw. Let n = |C|. From Thm. 1 and Thm. 4, sdeg cΛ(C) ≤
(11 + 6t∗)n− 12(1 + t∗)n0 − 2. This decreases when t increases, obtaining the value ≤ 11n− 12n0 − 2 when
one does not apply Thm. 1 at all, or 14n−18n0−2 when t = 3. Analogously, size cΛ(C) = sizePw+sizePg ≤
2(7 + 4t∗)n− 2(7 + 8t∗)n0 − 4. This decreases when t increases, obtaining the value ≤ 14n− 14n0 − 4 when
one does not apply Thm. 1 at all, or 18n− 22n0 − 4 when t = 3.

One can similarly compute the dimension and the support supp cΛ(C) = 2(suppPg + suppPw) = (50 +
8t(3 + t) + 40t∗)n − 2(5 + t(27 + 8t))t∗n0 − 8(1 + t)2 of the circuit checker. The support is upperbounded
by 214n − 158n0 − 128 when t = 3. We note that the degree of the circuit checker from [GGPR12] is 130n
and its size is 36n. Thus, even when t = 3, we have improved the efficiency of their construction more than
9 times degree-wise and 2 times size-wise.

8 Polynomial Span Programs and Quadratic Span Programs

One can build a linear-communication NIZK argument on top of the circuit checker by using well-known
techniques. However, since we are interested in succinct arguments, we need to be able to somehow compress
the witness vectors a and b. As in [GGPR12], we will do it by using polynomial interpolation.

For large prime q, let F = Zq. Instead of considering the target and row vectors as being members of the
vector space Fd, we reinterpret them as degree-d polynomials in F[X]. The map v → v(X) is implemented
via first choosing d arbitrary but different field elements (that are the same for all vectors v) rj ← F, and
then defining a degree-(≤ d) polynomial v(X) via polynomial interpolation to be such that v(rj) = vj for
all j ∈ [d]. (For our purpose, the choice of rj only influences efficiency. Namely, if rj are arbitrary, then
multipoint evaluation and polynomial interpolation can be performed in time O(d log2 d). However, if d is a
power of 2 and rj = ωjd, where ωd is the dth primitive root of unity, then both operations can be done in
time O(d log d) by using Fast Fourier Transform, see App. D.) Via this conversion, one maps all vectors vi
of the original span program to polynomials vi(X). The target vector t of the span program is mapped to a

polynomial v0(X), where v0(rj) = −tj for j ∈ [d]. Finally, one defines the polynomial z(X) =
∏d
j=1(x− rj).

Note that z(X) is the mapping of the all-zero vector 0 = (0, . . . , 0).
The requirement that t is in the span of the vectors that belong to %−1

u is equivalent to the requirement
that t =

∑
i∈%−1

u
aivi for some ai ∈ F. In the polynomial notation, the latter translates to the requirement

that z(X) divides v(X) := v0(X)+
∑
i∈%−1

u
aivi(X). (See Lem. 5 of [GGPR12].) This is since −t is the vector

of evaluations (at r1, . . . , rd) of v0(X), and vi is the vector of evaluations of vi(X). Thus,
∑
aivi − t = 0

holds iff v0(X) +
∑
aivi(X) evaluates to 0 at all rj , and hence is divisible by z(X).

Definition 4. A polynomial span program P over a field F consists of a target polynomial z(X) ∈ F[X],
a tuple V = (v0(X), v1(X), . . . , vm(X)) of polynomials from F[X], and a labelling % : [m] → {xi, x̄i : i ∈
[n]} ∪ {⊥} of the polynomials from V \ {v0}. Let Vu be a subset of V \ {v0} consisting of those polynomials
whose labels are satisfied by the assignment u, that is, by {xuιι : ι ∈ [n]}∪{⊥}. The span program P computes
a function f , if for all u ∈ {0, 1}n: there exists a ∈ Fm such that z(X) | (v0(X)+

∑
v∈Vu aiv(X)) (P accepts)

iff f(u) = 1.

Alternatively, P accepts u ∈ {0, 1}n iff there exists a vector a ∈ Fm, with ai = 0 for all i 6∈ %−1
u , such that

z(X) | v0(X) +
∑m
i=1 aivi(X). The size of the span program is m and the degree of P is deg z(X). We now

give exactly the same definition of quadratic span programs as it was given in [GGPR12].

Definition 5. A polynomial quadratic span program P over a field F consists of a target polynomial
z(X) ∈ F[X], two sets V = {v0(X), v1(X), . . . , vm(X)} and W = {w0(X), w1(X), . . . , wm(X)} of poly-
nomials from F[X], and a labelling % : [m] → {xι, x̄ι : ι ∈ [n]} ∪ {⊥}. P accepts an input u ∈ {0, 1}n
iff there exist two vectors a and b from Fm, with ai = 0 = bi for all i 6∈ %−1

u , such that z(X) |
(v0(X) +

∑m
i=1 aivi(X)) (w0(X) +

∑m
i=1 biwi(X)). P computes a Boolean function f : {0, 1}n → {0, 1} if

it accepts exactly those inputs u where f(u) = 1.
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1 for j ← 1 to d do rj ← F \ {r1, . . . , rj−1} ;
2 z(X)←

∏
j∈[d](X − j);

3 for i← 0 to m do
4 vi(X)← PI((r1, vi1), . . . , (rd, vi,d));
5 wi(X)← PI((r1, wi1), . . . , (rd, wi,d));

6 end
7 V ← (v0(X), . . . , vm(X));
8 W ← (w0(X), . . . , wm(X));
9 return cΛ(C) = (z(X),V,W, ψ);

Fig. 3. Polynomial circuit checker cpoly
Λ (C)

The size of the polynomial quadratic span program is
m and the degree of P is deg z(X).
Now, keeping in mind the reinterpretation of span pro-
grams, Def. 5 is clearly equivalent to Def. 1. (Also here,
W = Vdual, with the dual operation defined appropri-
ately.)

To get from the non-polynomial interpretation to
polynomial interpretation, one has to do the following.
Assume that the dimension of the quadratic span pro-
gram is d and that the size is m. Choose d different val-
ues rj , j ∈ [d]. For i ∈ [m], interpolate the polynomial
vi(X) (resp., wi(X)) from the values vi(rj) = vij (resp.,

wi(rj) = wij) for j ∈ [d]. Set z(X) :=
∏d
j=1(X − rj). The labelling ψ is left unchanged. It is clear that the

resulting polynomial quadratic span program (z(X),V,W, ψ) computes the same Boolean function as the
original quadratic span program.
Polynomial circuit checker. Fig. 3 describes a polynomial circuit checker cpoly

Λ (C) = (z(X),V,W, ψ),
with V = (v0, . . . , vm) and W = (w0, . . . , wm). It is directly constructed from the above pure circuit checker
cΛ(C). Here, PI denotes polynomial interpolation, and d = 2dg + dw.

Theorem 6. C(X) = 1 iff cpoly
Λ (C) outputs 1.

Proof. Follows from the general construction of polynomial quadratic span programs. ut

9 New NIZK Argument

In this section, we propose the new Circuit-SAT NIZK argument. We start with definitions.
Definitions. Let κ be the security parameter. We abbreviate probabilistic polynomial-time by PPT. Let
poly(κ) := κO(1) and negl(κ) := κ−ω(1).

Let R = {(C,w)} be an efficiently computable binary relation with |w| = poly(|C|). Here, C is a state-
ment, and w is a witness. Let L = {C : ∃w, (C,w) ∈ R} be an NP-language. Let n be the input length
n = |C|. For fixed n, we have a relation Rn and a language Ln. A non-interactive argument Π for R consists
of the following PPT algorithms: a common reference string (CRS) generator G, a prover P, and a verifier V.
For crs← G(1κ, n), P(crs;C,w) produces an argument π. The verifier V(crs;C, π) outputs either 1 (accept)
or 0 (reject). Π is perfectly complete, if ∀n = poly(κ),

Pr[crs← G(1κ, n), (C,w)← Rn : V(crs;C,P(crs;C,w)) = 1] = 1 .

Π is perfectly zero-knowledge, if there exists a PPT simulator S = (S1,S2), such that for all stateful non-
uniform PPT adversaries A and n = poly(κ) (with td being the simulation trapdoor),

Pr

[
crs← G(1κ, n), (C,w)← A(crs),

π ← P(crs;C,w) : (C,w) ∈ Rn ∧ A(π) = 1

]
= Pr

[
(crs; td)← S1(1κ, n), (C,w)← A(crs),

π ← S2(crs;C, td) : (C,w) ∈ Rn ∧ A(π) = 1

]
.

Π is adaptively computationally sound, if for all non-uniform PPT A and all n = poly(κ),

Pr[crs← G(1κ, n), (C, π)← A(crs) : C 6∈ L ∧ V(crs;C, π) = 1] = negl(κ) .

For algorithms A and EA, we write (y; z)← (A||EA)(x) if A on input x outputs y, and EA on the same input
(including the random tape of A) outputs z. A non-interactive argument is a non-interactive argument of
knowledge, if for any non-uniform PPT prover A there exists an extractor EA such that for n = poly(κ) and
any auxiliary information z ∈ {0, 1}κ,

Pr[crs← G(1κ, n), (C, π;w)← (A||EA)(crs; z) : V(crs;C, π) = 1 ∧ (C,w) 6∈ R] = negl(κ) .

12



Construction. Gennaro et alt [GGPR12] constructed a quadratic span program-based NIZK for Circuit-
SAT. Their NIZK argument is non-adaptive, i.e., it incorporates a function-specific CRS crs(C). As mentioned
in [GGPR12], their argument can be made adaptive by using universal circuits [Val76]. We will give a direct
construction through universal circuits [Val76]. That is, we assume that UCn is a universal circuit of size
Θ(n log n) that accepts an input (C,u) iff C is an n-gate circuit that accepts the input u. More precisely,
assuming that the original circuit has fan-out 2, Valiant’s universal circuit consists of 19n log n controlled
crossbar gates (omitting lower-order terms), and Θ(n) gates for the universal function from {0, 1}2 to {0, 1}.
To enable a better comparison with [GGPR12], we just assume that UCn can be implemented by using
Θ(n log n) unary or binary gates.

In the new Circuit-SAT NIZK argument, polynomials (e.g., vi(X)) are represented by encodings of these
polynomials evaluated at some secret point σ (e.g., by {[[vi(σ)]]}), where [[·]] is an additively homomorphic
encoding scheme for elements of F. That is, [[a]]·[[b]] = [[a+b]] and [[a]]x = [[xa]]. We assume that the encoding is
equal to the bilinear exponentiation, [[x]] = gx in a (symmetric) bilinear group. Thus, one can verify bilinear
relations between encodings by using a symmetric bilinear map ê(·, ·) [SOK00,Jou00,BF01]. For example,
ê(g = [[1]], [[αx]]) = ê([[α]], [[x]]). By taking some extra care, one can also use an asymmetric pairing.

Next, we will describe the three constituent algorithms of the new NIZK argument. Briefly, the prover
uses the circuit checker to create the necessary coefficients ai and bi. He encodes v(X) =

∑
aivi(X) and

w(X) =
∑
biwi(X) as [[v(σ)]] and [[w(σ)]]. He also encodes [[h(σ)]], where h(X)z(X) = v(X)w(X). He

then creates an argument π that convinces the verifier that h(X) satisfies this condition.. To achieve zero-
knowledge, the prover additionally masks the argument accordingly. The verifier verifies that the argument
is created correctly. She also verifies that h(X), v(X) and z(X) satisfy h(σ)z(σ) = v(σ)w(σ). We prove
in Thm. 8 that it follows from this and the PDH and PKE assumptions, h(X)z(X) = v(X)w(X) and
thus z(X) | v(X)w(X). Computational soundness follows due to the properties of the circuit checker. The
actual proof is significantly more complicated. Since the verifier will require less information than the prover,
we define the verifier’s CRS separately as vcrs. As in [GGPR12], the secret elements βv, βw and γ (and
corresponding public elements like [[βvz(σ)]] and πy) are required for us to be able to reduce the soundness
to the PKE and PDH assumptions. This part of the proof also uses multilinear universal hash functions.
CRS generation G(1κ, n):

1 Let UCn be the universal circuit for circuits of size |Cbnd|, where |C| = n;
2 Let Q := cΛ(UCn) = (z(X),V,W, ψ) be the pure polynomial circuit checker for UCn with
m = size cΛ(UCn), d = sdeg cΛ(UCn), V = (v0(X), . . . , vm(X)), and W = Vdual = (w0(X), . . . , wm(X));

3 α, σ, βv, βw, γ ← F;
4 (V0, V

∗
0 )← ([[v0(σ)]], [[αv0(σ)]]); (W0,W

∗
0 )← ([[w0(σ)]], [[αw0(σ)]]); (Z,Z∗)← ([[z(σ)]], [[αz(σ)]]);

5 crs← (Q,
(
[[σj ]], [[ασj ]]

)
j∈[0,d]

, V0, V
∗
0 ,W0,W

∗
0 , Z, Z

∗, ([[βvvi(σ)]], [[βwwi(σ)]])i∈[m] , [[βvz(σ)]], [[βwz(σ)]]);

6 vcrs← ([[1]], [[α]], V0,W0, Z, [[γ]], [[βvγ]], [[βwγ]]);
7 The trapdoor is (σ, α, βv, βw);

Prove P(crs;C,w):

1 P evaluates cΛ(UCn) on input (C,w) to obtain (i) a, b ∈ Fm, (ii) v(X) =
∑d
j=0 v̂jX

j ←
∑m
i=1 aivi(X),

(iii) w(X) =
∑d
j=0 ŵjX

j ←
∑m
i=1 biwi(X), and (iv) a polynomial h(X) such that for

v†(X) = v0(X) + v(X) and w†(X) = w0(X) + w(X), h(X) · z(X) = v†(X)w†(X);

2 (V, V ∗)←
∏d
j=0([[σj ]]v̂j , [[ασj ]]v̂j );

3 (W,W ∗)←
∏d
j=0([[σj ]]ŵj , [[ασj ]]ŵj );

4 (H,H∗)←
∏d
j=0([[σj ]]hj , [[ασj ]]hj );

5 rv, rw ← F;
6 (πv, π

∗
v)← (V, V ∗) · (Z,Z∗)rv ;

7 (πw, π
∗
w)← (W,W ∗) · (Z,Z∗)rw ;

8 (πh, π
∗
h)← (H,H∗) · (W0W,W

∗
0W

∗)rv (V0V, V
∗
0 V
∗)rw · (Z,Z∗)rvrw ;

9 πy ←
∏m
i=1

(
[[βvvi(σ)]]ai [[βwwi(σ)]]bi

)
· [[βvz(σ)]]rv [[βwz(σ)]]rw ;

10 P outputs π = (πv, π
∗
v , πw, π

∗
w, πh, π

∗
h, πy);
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Verify V(vcrs;C, π):

1 V confirms that the terms are in the support of validly encoded elements;
2 V confirms that the following equations hold:

1. ê(V0πv,W0πw) = ê(πh, Z);
2. ê(π∗v , [[α]]) = ê(πv, [[1]]);
3. ê(π∗w, [[α]]) = ê(πw, [[1]]);
4. ê(π∗h, [[α]]) = ê(πh, [[1]]);
5. ê(πy, [[γ]]) = ê(πv, [[βvγ]]) · ê(πw, [[βwγ]]);

Theorem 7. The NIZK argument of this section is complete and statistically zero-knowledge.

Proof. Completeness: the properties of the circuit checker guarantee that the prover can always construct
an argument for a satisfying input. Let v†(X) = v0(X) +

∑
aivi(X) and w†(X) = w(X) +

∑
biwi(X). Since

the rest is trivial, we will only prove that the first verification equation holds. The discrete logarithm of the
left hand side of this equation is equal to

(v†(σ)+rvz(σ)) · (w†(σ) + rwz(σ)) = v†(σ) · w†(σ) + v†(σ) · rwz(σ) + w†(σ) · rvz(σ) + rvrwz
2(σ) ,

while the discrete logarithm of the right hand side is equal to(
h(σ) + rvw

†(σ) + rwv
†(σ) + rvrwz(σ)

)
·z(σ) = h(σ)z(σ) + v†(σ) · rwz(σ) + w†(σ) · rvz(σ) + rvrwz

2(σ) ,

and thus the LHS and RHS are equal since h(σ)z(σ) = v†(σ)w†(σ).
Zero-knowledge: We construct the following simulator (S1, S2). S1 outputs crs and a trapdoor td ←

(σ, α, βv, βw, γ).
Consider the distribution of the real argument. Let (V, V ∗), (W,W ∗), (H,H∗), and Y be what is encoded

by the elements in π. Since σ is random, z(σ) is in F∗ with overwhelming probability 1 − sdeg cΛ(C)/|F|.
Since rv and rw are uniformly random, V = v(σ) + rvz(σ) and W = w(σ) + rwz(σ) are statistically close to
uniform. Once V and W are fixed, they determine all other elements V ∗ (2nd equation), W ∗ (3rd equation),
Y (5th equation), H (1st equation), and H∗ (4th equation) that are encoded in the proof.

Motivated by this discussion, we construct the simulator S2 which is depicted by Prot. 2. Clearly, πv and
πw encode statistically uniform values v(σ) + rvz(σ) and w(σ) + rwz(σ), while the rest of the argument is
fixed by these two values. The theorem follows. ut

1 S2 picks random degree-d polynomials v†(X), w†(X) such that z(X) divides v†(X)w†(X);

2 h(X)← v†(X)w†(X)/z(X);

3 v(σ)← v†(σ)− v0(σ), w(σ)← w†(σ)− w0(σ);
4 rv, rw ← F;
5 πv ← [[v(σ)]] · [[z(σ)]]rv , πw ← [[w(σ)]] · [[z(σ)]]rw ;

6 πh ← [[h(σ) + rvw
†(σ) + rwv

†(σ) + rvrwz(σ)]];
7 π∗v ← παv , π∗w ← παw, π∗h ← παh ;

8 return (πv, π
∗
v , πw, π

∗
w, πh, π

∗
h, (π

∗
v)βv · (π∗w)βw );

Protocol 2: The simulator S2(crs, C, td)

We base computational soundness and the argument of knowledge property on two assumptions, the
(d1, d2)-power Diffie-Hellman ((d1, d2)-PDH) assumption and the d-power knowledge of exponent (d-PKE)
assumption. Variants of these assumptions are well known, see [Gro10,Lip12,GGPR12], where their security
was proven in the generic group model.
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Let d1, d2 = poly(κ) with 0 < d1 < d2. The (d1, d2)-power Diffie-Hellman ((d1, d2)-PDH) assumption
holds for the encoding [[·]] if for all non-uniform PPT adversaries A

Pr
[
σ ← F∗, y ← A(

(
[[σj ]]

)
j∈[0,d2]\{d1}

) : y = [[σd1 ]]
]

= negl(κ) .

Gennaro et alt [GGPR12] use the (λ + 1, 2λ)-PDH assumption for some λ ≈ 2d, while we use the
(d + 1, 2d + 3)-PDH assumption for d. In both cases, d is the degree of the underlying circuit checker. The
corresponding security definition in [Gro10,Lip12] is somewhat weaker, since there the adversary was required
to return the secret key σ.

Let d = poly(κ). The d-power knowledge of exponent (d-PKE) assumption [Gro10] holds for the encoding
[[·]] if for any non-uniform PPT adversary A there exists a non-uniform PPT extractor EA, s.t. for any
auxiliary information z ∈ {0, 1}poly(κ) which is generated independently of α,

Pr


α, σ ← F, ([[c]], [[ĉ]]; a0, . . . , ad)← (A||EA)(

(
[[σj ]], [[ασj ]]

)
j∈[0,d]

; z) :

ĉ = αc ∧ c 6=
d∑
k=0

akσ
k

 = negl(κ) .

Theorem 8. Fix the circuit size n. Let the pure circuit checker cΛ(UCn) = (z(X),V,W, ψ) for UCn have
degree d. If the (d + 1, 2d + 3)-PDH and d-PKE assumptions hold, then the NIZK argument of this section
is an adaptively sound argument of knowledge.

We postpone the soundness proof to Sect. 10.
Efficiency. The new NIZK argument behaves efficiency-wise similarly to the (adaptive variant) of the Circuit-
SAT argument from [GGPR12] when we recall that using universal circuits results in a logarithmic increase of
most of the complexity parameters. Like the latter argument3, the new argument has CRS of size Θ(n log n),
prover’s computational complexity Θ(n log3 n), and constant communication complexity. The main difference
is that the new argument has significantly smaller constants. (As always, we assume that the complexity
measures are in appropriate units like the number of group elements in the case of the CRS and argument
length.)

Given a, b, (vi) and (wi), both v =
∑m
i=1 aivi and w =

∑m
i=1 biwi can be computed in

Θ(supp cΛ(UCn)) = Θ(|UCn|) time due to the sparsity of the vectors vi and wi. The only superlinear
(in |UCn| = Θ(d) = Θ(n log n)) part of the prover’s computation is the computation of the degree-d poly-
nomial h. As explained in [GGPR12], this can be done by using multipoint evaluation and polynomial
interpolation in time Θ(d log2 d).4

We note that under the mild assumption that d is a power of 2, h(x)← v(x)w(x)/z(x) can be computed
in time Θ(d log d) by using a polynomial multiplication followed by a polynomial division. This can be further
optimized by letting c(x) = b−1(x) mod xd, where b(x) = xdz(1/x) is the reversal of z(x), to be a part of the
CRS. Then the prover essentially has to execute only two multiplications, first to compute a(x) = v(x)w(x),
and then to compute h(x) = (arev(x)c(x))rev mod xd. (See App. D.)

The cryptographic part of the prover’s computation is dominated by 8 Θ(d)-wide multiexponentiations.
One can use Pippenger’s multiexponentiation algorithm [Pip80] to implement a d-wide multiexponentiation
in (2 + o(1)) d

log2 d
· logα + O(d) bilinear-group multiplications, where α is the largest exponent. We expect

that the cryptographic part will dominate the prover’s computation when d = Ω(2
√

log2 q), and in practice
even sooner.

3 We refer to [GGPR12] for a detailed analysis of the computational complexity issues that surround polynomial
interpolation.

4 Briefly, compute the values of v(X), w(X), v0(X), w0(X) and z(X) on another set of d distinct roots {r∗i }. Since
deg z(X) = d, we have that z(r∗i ) 6= 0. Interpolate h(X) from h(r∗i ) = (v0(r∗i ) + v(r∗i ))(w0(r∗i ) + w(r∗i ))/z(r∗i ).
This can be done in time Θ(d log d), when d is a power of 2 and r∗i = ωid, for the primitive dth root of unity ωd.
Otherwise, it takes Θ(d log2 d) steps.
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On the other hand, in the construction of [GGPR12], the verifier’s computational complexity is linear in
the statement length. Because of the use of universal circuits, in the adaptively sound case, the statement
length is linear in the circuit size n = |C|. In the new argument, the verifier’s computational complexity is
dominated by 11 invocations of the bilinear pairings. The main reason behind this difference is that in the
argument of [GGPR12], the verifier has to compute the coefficients ai for all i ∈ [n0]. In the new argument,
this is not necessary due to the use of “non-weak” wire checkers and the extraction technique of Lem. 2 that
does not require the gate checkers to be conscientious.
Further Optimizations. We can use the result of Bitansky et al. [BCCT13] that says that any SNARK
with preprocessing can be transformed into a SNARK with no preprocessing. A related result holds for NIZK
arguments. We refer to [GGPR12] for a description of a number of other optimizations that all apply also
to the new argument.

10 Proof of Theorem 8

Before the soundness proof we prove two technical lemmas. The first lemma basically says that the honest
verifier will be unconditionally convinced, if the prover sends her the actual vectors v =

∑
i∈[m] aivi and

w =
∑
i∈[m] biwi such that the (pure) circuit checker will accept. Moreover, one can extract the whole

witness from this proof. A similar lemma was proven in [GGPR12] only in the case all gate checkers are
conscientious. This allowed to extract the value of every wire uniquely. Our proof, that does not assume this
property, extracts the values recursively (and possibly non-deterministically).

Lemma 2. Let C be an n-gate circuit. Let cΛ(C) = (0,0,V,W, ψ), with V = (v0, . . . ,vm) and W =
(w0, . . . ,wm), be a pure circuit checker for the circuit C. Let π = (v,w) be such that

1. (v0 + v) ◦ (w0 +w) = 0,
2. v ∈ span{vi : i ∈ [m]}, and
3. w ∈ span{wi : i ∈ [m]}.

Then, π implies unconditionally that there exists a witness u ∈ {0, 1}n such that C(u) = 1. Such u can be
extracted from π.

Proof. Let a, b be such that v =
∑
i∈[m] aivi and w =

∑
i∈[m] biwi. We now show how to construct a

witness u such that C(u) = 1. The construction is bottom-up recursive on the circuit. We note that if the
three requirements hold than the the wire checker implies that no wire η gets a double assignment.

First, let η be one of the wires starting from some input gate ι. Since the output gate of η can have a
non-conscientious gate checker, η might have no assigned value. However, recall that the wire checker checks
the consistency of η with all other wires that start from ι. Since this wire checker accepts, all those wires have
been assigned either uη (for an unambiguous bit uη ∈ {0, 1}) or no value; no wire has got the assignment
ūη. If some output wire of ι got the assignment uη, we assign uη to all output wires of ι. Otherwise, we pick
some value uη ∈ {0, 1}, and assign this uη to all output wires of ι. Since the wire was originally unassigned,
the value of the output gate of unassigned wire η does not depend on the particular assignment, and thus
the given assignment is uη is consistent with the gate checkers of the output gates.

Consider now some internal gate ι. Assume that it has t0 incoming edges ηj that start from some gates
ιj . By recursive construction, the gate checkers of ιj have assigned an assignment to the wires ηj . (This is
true since every gate implements a function, and therefore the corresponding gate checker must only accept
for one possible value of the output wire. In the case this is the input wire, the assignment was done in
the previous paragraph.) However, since the gate checker for ι might not be conscientious, the gate checker
P = P (ι) of ι might not have assigned any value to these wires (that is, the corresponding coefficients ai
and bi are zero). In this case, given the values of all other wires that have assignments, the output of ι does
not depend on the values of the unassigned input wires. We then can assign arbitrary values to the unset
coefficients ai and bi, and in particular we can assign values that are consistent with the output values of all
ιj . This in particular also assigns unequivocal values uηj to all wires ηj .

The total witness is defined as the concatenation of uη for all wires. ut
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Clearly, this lemma can be restated in the language of polynomial circuit checker. For a set P of
polynomials, let spanP be their span (that is, the set of F-linear combinations). In particular, v is
in the span of vectors vi, v =

∑
aivi, iff the corresponding interpolated polynomial v(X) is in the

span of polynomials vi(X), that is, v(X) =
∑
aivi(X). Thus, in Lem. 2, the corresponding require-

ments will be (i) z(X) | (v0(X) + v(X)) · (w0(X) + w(X)), (ii) v(X) ∈ span{vi(X) : i ∈ [m]}, and
(iii) w(X) ∈ span{wi(X) : i ∈ [m]}.

For the next lemma and the main theorem (Thm. 8) we need the standard multilinear universal hash
function family [GMS74,CW79,WC81] ML : Fd+3 × Fd+2 → F, where for k = (k0, . . . , kd+1) and x =

(x0, . . . , xd+1), ML(k∗,k)(x) =
∑d+1
i=0 kixi + k∗.

Lemma 3. Let m and d be two positive integers. For ML : Fd+3 × Fd+2 → F defined as above, define
ML−k (x) := ML(0,k)(x) − ML(0,k)(0) =

∑d+1
i=0 kixi = k · x. Let P = (v1, . . . ,vm+1) ⊂ Fd+2 with vi =

(vi0, . . . , vi,d+1) be such that vi,d+1 = 0 for all i. Define

V(P) := {k ∈ Fd+1 : ML−k (v) = 0 for all v ∈ P} = {k ∈ Fd+1 : k · v = 0 for all v ∈ P} .

Then for any x1 ∈ Fd+2 \ spanP, x2 ∈ Fd+2 \ span(P ∪ {x1}), and any y1, y2 ∈ F,

Pr
k←V(P)

[
ML−k (x2) = y2|ML−k (x1) = y1

]
=

1

q
.

Proof. The key k is drawn completely random, except that it has to satisfy k · v = 0 for v ∈ P. The only
other thing which is known about k is the value k ·x1. Since x2 6∈ span(P ∪ {x1}), the inner product k ·x2

looks completely random. ut

We are now ready to prove the soundness of the new NIZK argument.

Proof (Of Thm. 8). Only within this proof, we will implicitly use the canonical isomorphism between poly-

nomials g(X) =
∑d+1
i=0 giX

i in F[X]≤d+1 and their coefficient vectors g = (g0, . . . , gd+1) from Fd+2. (In most
of the current paper, v(X) denotes the interpolated polynomial obtained from v(ri) = vi. This is not the
case in this proof.) For a polynomial g(X), let cf(g(X)) be the coefficient of Xd+1 in g(X).

Soundness: assume that there exists an adversary A that succeeds in breaking the soundness of the
argument from Sect. 9. We show how to construct an adversary B, which interacts with A and breaks the
(d+ 1, 2d+ 3)-PDH assumption.

Let UCn : {0, 1}n → {0, 1} be the universal circuit for circuits of size Cbnd, where |C| = n, which has a
polynomial circuit checker cΛ(UCn) of degree d. Suppose that B receives a (d+ 1, 2d+ 3)-PDH challenge

ch := ([[1]], [[σ]], . . . , [[σd]], [[σd+2]], . . . , [[σ2d+3]]) .

B computes UCn and associated parameters.
He generates a random α ← F. He generates βv, βw, and γ indirectly in terms of their representations

over the power basis {σj}, so that he can generate the CRS despite only knowing these values implicitly.
Let Pv := {vi(X) : i ∈ [m]} ∪ {z(X)}. To generate βv, B generates a random key for ML−,

Kv = (Kv0, . . . ,Kv,d+1)← V(Pv) .

Recall that ML−Kv
(f) = Kv·f =

∑d+1
i=0 Kvifi. If x is the coefficient vector of the polynomial x(X) ∈ F[X]≤d+1

and krev = (kd+1, . . . , k0) (the reversal of k = (k0, . . . , kd+1))) is the coefficient vector of the polynomial
krev(X) = Xd+1 · k(1/X), then clearly ML−krev (x) = cf(krev(X)x(X)).

Denoting σ∗ = (σd+1, σd, . . . , 1), ML−Kv
(σ∗) = Kv · σ∗ =

∑d+1
i=0 Kvi · σd+1−i. B implicitly sets

βv = βv(σ) := ML−Kv (σ∗) = Kv · σ∗ . (2)
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(Thus, βv depends on cΛ(UCn).) Note that B cannot create encoding of βv. We will deal with this issue later.
Now, for any polynomial g ∈ F[X]≤d+1,

cf(βvg(σ)) =cf((Kv · σ∗) · g(σ)) = cf(
d+1∑
i=0

Kviσ
d+1−i) · (

d+1∑
i=0

giσ
i)) =

d+1∑
i=0

Kvigi = Kv · g

=ML−Kv
(g) .

Clearly, deg βv(σ) ≤ d + 1. Assume p(X) ∈ Pv. Then, deg(βv · p(σ)) ≤ (d + 1) + d = 2d + 1. Since
Kv ∈ V(Pv), cf(βvp(σ)) = ML−Kv (p) = 0. Thus, B can, given ([[σi]])i∈[2d+1]\{d+1} ⊂ ch, generate encodings
[[βvp(σ)]] for p(X) ∈ Pv.

The generation of βw is analogous. Let Pw := {wi(X) : i ∈ [m]} ∪ {z(X)}. Set βw ← ML−Kw
(σ∗), where

Kw ← V(Pw). Given ([[σi]])i∈[2d+1]\{d+1} ⊂ ch, B generates encodings [[βwp(σ)]] for p(X) ∈ Pw. Clearly, βv
and βw generated in this way have appropriately uniform distribution.

The reason why vcrs contains [[γ]], [[βvγ]], and [[βwγ]] instead of just [[βv]] and [[βw]] is that with high
probability cf(Kv · σ∗) 6= 0, and thus βv = ML−Kv (σ∗(X)) likely has a non-zero coefficient for σd+1, making
it impossible for B to generate an encoding of it. To alleviate this problem, we let B to generate γ∗ uniformly
from F. He then implicitly sets [[γ]] ← γ∗[[σd+2]]. Clearly, γ has uniform distribution over F. Since d + 2 ∈
[2d+ 1] \ {d+ 1}, B can generate an encoding of γ from [[σd+2]] ∈ ch. Moreover B can generate encodings of
βvγ = ML−Kv (σ∗) · γ∗σd+2 and βwγ = ML−Kw(σ∗) · γ∗σd+2, since these two terms have a zero coefficient for

σd+1 and, due to deg σ∗ ≤ d+ 1 are of degree at most deg σ∗ + (d+ 2) ≤ (d+ 1) + (d+ 2) = 2d+ 3.
Since ([[σi]])i∈[d+1]\{d+1} ∈ ch, B can compute the rest of the crs and vcrs as in Sect. 9. B provides crs

and vcrs to A.
Assume that A(crs) generates an argument π of a false statement C that passes the verification. From

the verification equations and the fact that the image of the encoding is verifiable, the argument must have
the form π = ([[V ]], [[W ]], [[H]], [[αV ]], [[αW ]], [[αH]], πy = [[βvV + βwW ]]).

The CRS crs received by A is a valid input (c; z) of the d-PKE assumption: it consists of c =(
{[[σj ]], [[ασj ]]}j∈[0,d]

)
and z = (crs, vcrs) \ c, where the auxiliary information z is independent of α. By

using the extractor EA of the d-PKE assumption, since A(c; z) produces ([[V ]], [[αV ]]), B obtains a degree-d
polynomial v∗(X) (with v∗(X) = v(X) + rvz(X) if the prover is honest), such that V = v∗(σ). Similarly,
he obtains degree-d polynomials w∗(X) (with w∗(X) = w(X) + rwz(X) if the prover is honest) and h∗(X)
(with h∗(X) = h(X) + rv · (w0(X) +w(X)) + rw · (v0(X) + v(X)) + rvrwz(X) if the prover is honest). Since
π verifies, we have that

– (v0(σ) + v∗(σ)) · (w0(σ) + w∗(σ)) = h∗(σ) · z(σ), and
– the last term of the proof properly encodes βvv(σ) + βww(σ).

Since π is an argument for a false statement, Lem. 2 (more precisely, its polynomial reinterpretation) implies
that at least one of the following two cases must hold:

– Case 1: (v0(X) + v∗(X)) · (w0(X) + w∗(X)) 6= h∗(X) · z(X).
– Case 2: Either v∗(X) 6∈ span({vi(X) : i ∈ [m]} ∪ {z(X)}) or w∗(X) 6∈ span({wi(X) : i ∈ [m]} ∪ {z(X)}).

We recall that z(X) is a mapping of the all-zero vector (0, . . . , 0), and thus when applying Lem. 2, we can
omit mentioning z(X). We now show that in either case, B can solve the (d+ 1, 2d+ 3)-PDH problem.

Suppose that Case 1 holds. Then

f(X) := (v0(X) + v∗(X)) · (w0(X) + w∗(X))− h∗(X) · z(X)

is a non-zero polynomial of degree ≤ 2d having σ as a root. B uses an efficient polynomial factorization
algorithm to find ≤ 2d roots σ∗i of f(X) over F, and then finds by exhaustive search an index i such that
[[σ∗i ]] = [[σ]]. Given σ, he can also compute [[σd+1]]. Thus, he has broken the (d+ 1, 2d+ 3)-PDH assumption.5

5 We remark that [GGPR12] used a different proof technique here that did not require the use of polynomial
factorization, but resulted in the (λ + 1, 2λ)-PDH assumption for λ ≥ 2d − 1. We could use the same technique,
but we think that weakening the assumption is worth the extra step in reduction.
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Suppose that Case 2 holds. W.l.o.g., suppose that v∗(X) cannot be expressed as a linear combination of
Pv := {vi(X) : i ∈ [m]} ∪ {z(X)}. (We also note that z(X) is an interpolation of the all-zero vector. The
only information that EA has about Kv is

(i) that Kv ∈ V(Pv) and thus ML−Kv
(p) = 0 for p(X) ∈ Pv, and

(ii) the value ML−Kv
(σ∗) = βv.

By Lemma 3, since v∗(X) 6∈ spanPv, v∗(X) 6= σ∗(X), and Kv ∈ V(Pv), the value ML−Kv
(v∗) =

cf(βvv
∗(σ)) is uniformly random. Thus, the coefficient of σd+1 in βvv

∗(σ) + βww
∗(σ) is uniformly ran-

dom, regardless of the choice of w∗(X). With probability 1 − 1/F, this coefficient is non-zero. Assume
now that this is the case. If it is non-zero, due to Eq. (2) (and the choice of βw), πy encodes an element
y(σ) := βvv

∗(σ) +βww
∗(σ). Since deg βv ≤ d+ 1, deg y(σ) = deg βv +d ≤ (d+ 1) +d = 2d+ 1 ≤ 2d+ 3, and,

with probability 1− (d− 1)/q, y(σ) has a non-zero coefficient for σd+1. Since all coefficients of y are known

to B (for example, βvg(σ) = (
∑d+1
i=0 Kviσ

d+1−i) · (
∑d+1
i=0 giσ

i), and thus B can compute the coefficients of
βvv
∗(σ) from Kv and v∗), he can subtract off encodings of multiples of the other powers of σ (given in the

(d+ 1, 2d+ 3)-PDH instance) to obtain an encoding of a non-zero multiple of σd+1, from which B can obtain
an encoding of σd+1, solving the (d+ 1, 2d+ 3)-PDH problem.

Argument of knowledge: The argument of knowledge property follows from the extraction of the
polynomials v∗(X), w∗(X) and h∗(X), as described above, and Lemma 2. ut
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A Preliminaries: Coding Theory

Consider a finite field F of cardinality q. A linear code C of length n and rank k is a linear subspace with
dimension k of the vector space Fn. The vectors of C are called codewords. The size of a code is the number
of codewords, qk. The distance between two codewords is the Hamming distance between them. The distance
d of a linear code is the minimum distance between distinct codewords. A linear code of length n, dimension
k, and distance d is called an [n, k, d] code.

The code c may be represented as the span of a minimal set (basis) of codewords. The generating matrix
G of a linear code consists of the basis vectors. If G = (Ik|A), where Ik is the k × k identity matrix and A
is some k × (n − k) matrix, then G is said to be in the standard form. In this case, the code is said to be
systematic.

Let F be a finite field. Pick distinct elements {α1, . . . , αn} (also called evaluation points) from F and
choose n and k such that k ≤ n ≤ q. We define an encoding function for Reed-Solomon code RS : Fk →
Fn as follows. A message m = (m0, . . . ,mk−1) with mi ∈ F is mapped to a degree k − 1 polynomial,

m 7→ fm(X), where fm(X) =
∑k−1
i=0 miX

i. The encoding of m is the evaluation of fm at all the αi’s,
RS(m) = (fm(α1), . . . , fm(αn)). We call this image Reed-Solomon code or RS code. A common special case
is n = q − 1 with the set of evaluation points being F∗ := F \ {0}.

The singleton bound states that for any [n, k, d]q code, k ≤ n − d + 1. A code is a maximum distance
separable (MDS) code when it meets the singleton bound, that is, k = n−d+1. Every binary systematic MDS
code is either {0}, parity-check, repetition, or Fd (see [Rot06, Chapter 11]). The Reed-Solomon codes [RS60]
meet the singleton bound, that is, satisfy k = n− d+ 1 (but have the unfortunate property that q ≥ n; this
property is fine for our application).

B Proof of Thm. 1 (Parameters of Aggregate Gate Checker)

Proof. As in [HKP84], we reduce the fan-out of every gate i with deg+(i) > 2 by connecting the output wire
of i to an inverted binary tree of new deg+(i)− 2 fork gates.

Assume that the fan-in of all gates is bounded by t0, the fan-out is bounded by t, and that n0/n1 is the
number of inputs/outputs of the circuit; here t0 = t = 2 and n1 = 1. We use the technique of Hoover, Klawe
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and Pippenger [HKP84] to upper bound the number of added fork gates by∑
deg+(i)>t

(⌈
(deg+(i)− 1)t∗

⌉
− 1
)
≤

∑
deg+(i)>0

(
(deg+(i)− 1)t∗ − t∗

)
≤

∑
deg+(i)>0

(deg+(i)− 1)t∗ − t∗

=t∗ · (
∑

deg+(i)>0

deg+(i)−
∑

deg+(i)>0

1)− t∗

≤t∗ · (t0 · (n− n0)− (n− n1))− t∗

=(t0 − 1)t∗ · n+ (n1 − 1− t0 · n0)t∗ .

Thus, this operation adds

(t0 − 1)t∗ · n+ (n1 − 1− t0 · n0)t∗ = t∗ · n− 2t∗n0

gates to the circuit. (The last equality is true only when t0 = 2 and n1 = 1, but we assume that the circuit
has fan-in ≤ 2 anyway.) Thus, the total number of the gates in Cbnd will be (1 + t∗) · n− 2t∗n0.

Recall from Sect. 3 that SP (ctY) has size mctY
= 2t + 2 and dimension dctY = t + 1. The size of the span

program for the aggregate gate checker function for fbnd is thus at most m∗ · (n − n0) + mctY
· (n − 2n0)t∗,

where m∗ = 6 is an upper bound on the size of the span programs for the individual gates (NAND, AND,
OR, XOR, NOT, and fork), thus at most

6 · (n− n0) + 2(t+ 1) · (n− 2n0)t∗ = (8 + 4t∗) · n− (10 + 8t∗) · n0

by using SP (c∧̄) and SP (ctY) from Sect. 3. Analogously, the dimension of the span program is at most

3 · (n− n0) + (t+ 1) · (n− 2n0)t∗ = (4 + 2t∗) · n− (5 + 4t∗) · n0 .

Clearly, each vector in the span program for agc (aside from the target vector) has only a small constant
number of non-zero coefficients, since the vectors in the span program for agc are inherited from the small
span programs for the individual gates of Cbnd. More precisely, the number of non-zero entries of the aggregate
gate checker is

supp(SP (c∧̄)) · (n− n0) + supp(SP (ctY)) · (n− 2n0)t∗

=7 · (n− n0) + (2t+ 2) · (n− 2n0)t∗ = (9 + 4t∗) · n− (11 + 8t∗) · n0 .

ut

C Proof of Thm. 4 (Parameters of Aggregate Wire Checker)

Proof. Let |Cbnd| be the circuit after we have applied Thm. 1 to it. Let again t∗ = 1/(t − 1). First, note
that in the original circuit, for every gate i ∈ [n− 1], the wire checker corresponding to its output wire has
D(η) = deg+(i) + 1. If deg+(i) > t, Thm. 1 builds a t-ary inverse tree on top of the ith node. This tree adds⌈
(deg+(i)− 1)t∗

⌉
−1 new vertices. Let Γ (i) be the set of vertices induced by the original vertex i (including i

itself), then |Γ (i)| =
⌈
(deg+(i)− 1)t∗

⌉
. Every node of Γ (i) corresponds to one wire checker which is induced

by the vertex i in circuit Cbnd.
To compute size and dimension of the part of the aggregate wire checker of the gates induced by a

concrete gate i, we note that the corresponding D values have in total

1. deg+(i) + 1 original vectors (one per each wire labelled by xi and z in Fig. 4),
2. 2 ·

⌈
(deg+(i)− 1)t∗ − 1)

⌉
new vectors (one per each wire labelled by x or y),
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Fig. 4. Added inverted tree with deg+(i) = 12 and t = 3

all together
∑
j∈Γ (i)Dj ≤ (deg+(i) + 1) + 2 · (

⌈
(deg+(i)− 1)t∗

⌉
− 1) vectors. When we sum over all nodes of

the original circuit and over their induced nodes from all Γ (i)’s, we get

n−1∑
i=1

∑
j∈Γ (i)

Dj ≤
n−1∑
i=1

(deg+(i) + 1) + 2 ·
∑

deg+(i)>t

(⌈
(deg+(i)− 1)t∗

⌉
− 1
)
.

Now,
∑n−1
i=1 (deg+(i) + 1) =

∑n
i=n0+1 deg−(i) +n− 1 ≤ 2(n−n0) +n− 1 = 3n− 2n0− 1. On the other hand,

as in the proof of Thm. 1,

∑
deg+(i)>t

(⌈
(deg+(i)− 1)t∗

⌉
− 1
)
≤

(
n−1∑
i=1

(deg+(i)− 1)t∗ − t∗
)

= t∗ ·

(
n−1∑
i=1

deg+(i)−
n−1∑
i=1

1− 1

)
=t∗ · (2(n− n0)− (n− 1)− 1) = t∗n− 2t∗n0 .

Thus,
n−1∑
i=1

∑
j∈Γ (i)

Dj ≤ 3n− 2n0 − 1 + 2(t∗n− 2t∗n0) = (3 + 2t∗)n− 2(1 + 2t∗)n0 − 1 .

The size of the aggregate wire checker is upperbounded by

2

n−1∑
i=1

∑
j∈Γ (i)

Dj =(6 + 4t∗)n− (4 + 8t∗) · n0 − 4 .

This value is minimal for large t, and maximal when t is small. If t = 3, then sizeQawc ≤ 8n− 8n0 − 4.
Similarly,

sdimQawc =

n−1∑
i=1

∑
j∈Γ (i)

(2Dj − 1) ≤(6 + 4t∗)n− (4 + 8t∗) · n0 − 4 .

(Here, as in the case of degree we have omitted lower order terms.) This value is minimal when t is large. If
t = 3, then sdimQawc ≤ 8n− 8n0 − 4.

Degree:
n−1∑
i=1

∑
j∈Γ (i)

Dj ≤ (3 + 2t∗)n− (2 + 4t∗)n0 − 1 .
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This value is minimal when t is large. If t = 3, then sdegQawc ≤ 4n− 4n0 − 2.
We also need to compute the value

∑
j∈Γ (i)D

2
j . This value is maximized if all “large” D values are

concentrated in as few individual span programs as possible. That is,∑
j∈Γ (i)

D2
j ≤(t+ 1)2

⌈
(deg+(i)− 1)t∗

⌉
.

Thus,

n−1∑
i=1

∑
j∈Γ (i)

D2
j ≤(t+ 1)2

n−1∑
i=1

⌈
(deg+(i)− 1)t∗

⌉
.

But

n−1∑
i=1

⌈
(deg+(i)− 1)t∗

⌉
=(n− 1) +

n−1∑
i=1

(
⌈
(deg+(i)− 1)t∗

⌉
− 1)

≤(n− 1) + t∗n− 2t∗n0 = (1 + t∗)n− 2t∗n0 − 1 .

Thus, the support is upperbounded by

4
∑
i

∑
j∈Γ (i)

D2
j ≤4(t+ 1)2 ((1 + t∗)n− 2t∗n0 − 1) .

This value is minimized (if n is large) when t = 2, then the support is upperbounded by 72n−72n0−36. ut

D Preliminaries: Computer Algebra

The following results are more or less directly lifted from [GG03]. We say that a (commutative) ring R
supports the FFT if R has a primitive 2kth root of unity for any k ∈ N.

Fact 1 (Fast polynomial multiplication, Thm. 8.18 from [GG03]) Let R be a ring that supports the
FFT, and n = 2k for some k ∈ N. Let ω ∈ R be a primitive nth root of unity. Then convolution in
R[X]/(Xn − 1) and multiplication of polynomials f, g ∈ R[X] with deg(fg) < n canbe performed using
3n log n additions in R, 3

2n log n + n − 2 multiplications by powers of ω, n multiplications in R, and n
divisions by n, in total 9

2n log n + O(n) arithmetic operations. In particular, polynomials in R[X] of degree
less than n can be multiplied with 18n log n+O(n) operations in R.

Fact 2 (Fast polynomial multiplication in any ring, Thm. 8.23 from [GG03]) Over any commu-
tative ring R, polynomials of degree less than n can be multiplied using at most (18+72 log3 2)n log n log log n+
O(n log n) or 63.43 · n log n log log n+O(n log n) arithmetic operations in R.

In what follows, assume that polynomials in R[X] of degree less than n can be multiplied using at most
M(n) operations in R.

Fact 3 (Fast polynomial division with remainder, Thm. 9.6 from [GG03]) Let D be a ring (com-
mutative, with 1). Division with remainder of a polynomial a ∈ D[X] of degree n+m by a monic polynomial
b ∈ D[X] of degree n, where n ≥ m ∈ N can be done using 4M(m) +M(n) +O(n) ring operations.

We recall from [GG03], that one can do this in two steps. First, given some polynomial f , compute —
by using Newton iteration (see Thm. 9.4 of [GG03]) — the inverse Inv(f, `) of f modulo 2`. If ` = 2r is
a power of two, then this requires at most 3M(`) + ` = O(M(`)) arithmetic operations in D. Second, let
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frev(X) := Xdeg f · f(1/X) for any polynomial f(X). Given a and b for monic b, compute q, r such that
a = qb+ r and deg r < deg b, as follows:

1 if deg a < deg b then return (q, r) = (0, a) ;
2 m← deg a− deg b;
3 c(X)← Inv(brev(X),m+ 1);
4 q∗(X)← arev(X) · c(X) mod Xm+1;
5 q(X)← qrev(X);
6 r(X)← a(X)− b(X)q(X);
7 return (q, r);

Fact 4 (Fast multipoint evaluation, Cor. 10.8 from [GG03]) Evaluation of a polynomial in R[X] of
degree less than n at n points in R can be performed using at most ( 11

2 M(n) +O(n)) log n or O(M(n) log n)
operations in R.

Fact 5 (Fast interpolation, Cor. 10.12 from [GG03]) Polynomial interpolation over a (commutative)
ring R can be solved by using at most ( 13

2 M(n) +O(n)) log n or O(M(n) log n) operations in R.
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