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Abstract. In 2011, Lindell proposed an efficient commitment scheme, with a non-interactive opening al-
gorithm, in the Universal Composability (UC) framework. He recently acknowledged a bug in its security
analysis for the adaptive case. We analyze the proof of the original paper and propose a simple patch of the
scheme. More interestingly, we then modify it and present a more efficient commitment scheme secure in the
UC framework, with the same level of security as Lindell’s protocol: adaptive corruptions, with erasures. The
security is proven in the standard model (with a Common Reference String) under the classical Decisional
Diffie-Hellman assumption. Our proposal is the most efficient UC-secure commitment proposed to date (in
terms of computational workload and communication complexity).
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1 Introduction

Related Work. The Universal Composability (UC) framework introduced by Canetti [Can01] is a
popular security paradigm. It guarantees that a protocol proven secure in this framework remains secure
even if it is run concurrently with arbitrary —even insecure— protocols (whereas classical definitions only
guarantee its security in the stand-alone setting). The UC framework enables one to split the design of a
complex protocol into that of simpler sub-protocols.

Commitment schemes are one of the most important tools in cryptographic protocols. This is a two-
phase protocol between two parties, a committer and a receiver. In the first commit phase, the committer
gives the receiver an in silico analogue of a sealed envelope containing a value m. In the second opening
phase, the committer reveals m in such a way that the receiver can verify it. As in the sealed envelope
analogy, it is required that a committer cannot change the committed value (i.e., he should not be able
to open to a value different from the one he committed to), this is called the binding property. It is also
required that the receiver cannot learn anything about m before the opening phase, this is simply called
the hiding property.

The security definition for commitment schemes in the UC framework was presented by Canetti and
Fischlin [CF01]. A UC-secure commitment scheme achieves the binding and hiding properties under any
concurrent composition with arbitrary protocols and it was shown, in [CF01], that it cannot be securely
realized without additional assumptions. The common reference string (CRS) setting is the most widely
used assumption when considering commitment schemes. In this setting, all parties have access to public
information ideally drawn from some predefined distribution.

From a theoretical viewpoint, UC-secure commitments are an essential building block to construct
more complex UC-secure protocols such as zero-knowledge protocols [DN02] and two-party or multi-
party computations [CLOS02]. Moreover, a UC-secure commitment scheme provides equivocability (i.e.,
an algorithm that knows a secret related to the CRS can generate commitments that can be opened
correctly to any value) and extractability (i.e., another algorithm that knows a secret related to the
CRS can correctly extract the content of any valid commitment generated by anybody). Therefore, since
their introduction, UC-secure commitments have found numerous practical applications in the area of
Authenticated Key Exchange, either in Password Authenticated Key Exchange like [GL03, CHK+05,
ACP09], or the recent generalization to Language Authenticated Key Exchange [BBC+13].
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Several UC-secure commitment schemes in the CRS model have been proposed. Canetti and Fis-
chlin [CF01] and Canetti, Lindell, Ostrovsky, and Sahai [CLOS02] proposed inefficient non-interactive
schemes from general primitives. On the other hand, Damg̊ard and Nielsen [DN02], and Camenish and
Shoup [CS03] (among others) presented interactive constructions from several number-theoretic assump-
tions.

Lindell [Lin11a] has recently presented the first very efficient commitment schemes proven in the UC
framework. They can be viewed as combinations of Cramer-Shoup encryption schemes and Σ-protocols.
He presented two versions, one proven against static adversaries (static corruptions), while the other
can also handle adaptive corruptions. These two schemes have commitment lengths of only 4 and 6
group elements respectively, while their total communication complexity amount to 14 and 19 group
elements respectively. Their security relies on the classical Decisional Diffie-Hellman assumption in stan-
dard cryptographic groups. Fischlin, Libert and Manulis [FLM11] shortly after adapted the scheme secure
against static corruptions by removing the interaction in the Σ-protocol using non-interactive Groth-Sahai
proofs [GS08]. This transformation also makes the scheme secure against adaptive corruptions but at the
cost of relying on the Decisional Linear assumption in symmetric bilinear groups. It thus requires the use
of computationally expensive pairing computations for the receiver and can only be implemented over
groupes twice1 as large (rather than the ones that do not admit pairing computations).

Contributions of the paper. Recently, Lindell edited the ePrint version of his paper [Lin11b], to signal
a bug in the proof of the protocol design for adaptive corruptions. While there is no known detail on this
bug, we detail on this paper a possible inconsistency on the binding property of the scheme. In order to
avoid the above concern, we propose a simple patch to Lindell’s scheme making it secure against adaptive
corruptions.

However, our main contribution is on improving both Lindell’s commitment schemes [Lin11a]. As
mentioned above, the committer encrypts the value m (encoded as a group element) using the Cramer-
Shoup encryption scheme [CS98]. In the opening phase, he simply reveals the value m and uses a Σ
protocol to give an interactive proof that the message is indeed the one encrypted in the ciphertext.
In Lindell’s schemes, the challenge in the Σ protocol is sent to the committer using a “dual encryption
scheme”. Our improvement consists in noting that the receiver can in fact send this challenge directly
without having to send it encrypted before. With additional modifications of the schemes, we can present
two new protocols secure under the DDH assumption in the UC framework, against static and adaptive
corruptions. Both schemes requires a smaller bandwidth and less interactions than the original schemes:

– Static corruptions: the scheme requires the communication of 9 group elements and 3 scalars where Lin-
dell’s original proposal requires 10 group elements and 4 scalars. The commit phase is non-interactive
and the opening phase needs 3 rounds (instead of 5 in Lindell’s scheme).

– Active corruptions: the scheme requires the communication of 10 group elements and 4 scalars where
Lindell’s original proposal requires 12 group elements and 6 scalars. The commitment phase needs 3
rounds (instead of 5 in Lindell’s scheme) and the opening phase is non-interactive.

Implemented on suitable elliptic curves over 256-bit finite fields, our schemes provide a 128-bit security
level with a communication complexity reduced to only 3072 and 3584 bits respectively (see Table 1
for a detailed comparison). The computational workload of the new schemes has also slightly decreased
compared to Lindell’s original proposal and significantly better than Fischlin et al.’s scheme from [FLM11]
since the new schemes do not require any expensive pairing computation and can be implemented in much
smaller groups.
Outline of the Paper. We start by reviewing the standard definitions, in Section 2. We then present the
original Lindell’s commitment schemes in Section 3, followed by an explanation of a possible inconsistency
and a simple correction in Section 4.

1 It may be possible to adapt the scheme from [FLM11] to asymmetric bilinear groups using the instantiation of Groth-Sahai
proofs based on the Strong eXternal Diffie-Hellman assumption but our scheme will nevertheless remain more efficient.

2 These numbers can be reduced using batching techniques [BFI+10] but at the cost of additional exponentiations.
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Section 5 focuses on improving the original protocols. We will show how to reduce both the number of
rounds and the number of elements exchanged, in both schemes. We then provide complete security proofs
under the same computational assumption as for the original schemes, namely the DDH assumption.

2 Definitions

2.1 Commitments

A commitment scheme C is defined by 3 algorithms:

– Setup(1K), where K is the security parameter, generates the global parameters param of the scheme,
implicitly given as input to the other algorithms;

– Commit(m; r) produces a commitment c on the input message m ∈M, using the random coins r
$← R,

and also outputs the opening information w;
– Decommit(c,m;w) decommits the commitment c using the opening information w; it outputs the

message m, or ⊥ if the opening check fails.

Such a scheme should be both binding, which means that the decommit phase can successfully open to
one value only, and hiding, which means that the commit phase does not reveal any information about
m.

These two properties can be obtained in a perfect, statistical or computational way, according to the
power an adversary would need to break them. But essentially, a perfectly binding commitment scheme
guarantees the uniqueness of the opening phase. This is achieved by an encryption scheme, which on
the other hand provides the computational hiding property only, under the IND-CPA security. A perfectly
hiding commitment scheme guarantees the perfect secrecy of m.

Some additional properties are sometimes required. The first one ie extractability, for a perfectly binding
commitment scheme. The latter admits an indistinguishable Setup phase that also generates a trapdoor
allowing message extraction from the commitment. Again, an encryption scheme is an extractable commit-
ment, where the decryption key is the trapdoor that allows extraction. The second one is equivocability, for
a perfectly hiding commitment scheme. The latter admits an indistinguishable Setup phase that generates
a trapdoor allowing to open a commitment in any way.

2.2 Universal Composability Framework

The Universal Composability framework was introduced in [Can01]. The aim of the following is just to
give a brief overview to have some common conventions.

In the context of multi-party computation, one wants several users Pi with inputs xi to be able to
compute a specific function f(x1, . . . , xn) = (y1, . . . , yn) without leaking anything except yi to Pi. One

Scheme

Communication Round Computation

AdaptivityComplexity (in bits) Complexity Complexity

CommitDecommit Total CommitDecommit exp. pair.

[Lin11a, § 3] 1024 2560 3584 1 5 27 - 7

[Lin11a, § 4] 3072 1536 4608 5 1 36 - 3

[FLM11, § 3] 2560 8192 10752 1 1 41 692 3

[FLM11, § 4] 18944 1536 20480 1 1 88 1292 3

Fig. 6 1024 2048 3072 1 3 22 - 7

Fig. 7 2048 1536 3584 3 1 26 - 3

Table 1. Efficiency comparison of UC-secure commitment schemes (128-bit security)
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Fmcom with session identifier sid proceeds as follows, running with parties P1, . . . , Pn, a parameter 1K, and an adversary S:

– Commit phase: Upon receiving a message (Commit, sid, ssid, Pi, Pj , x) from Pi where x ∈ {0, 1}polylogk, record the tuple
(ssid, Pi, Pj , x) and send the message (receipt, sid, ssid, Pi, Pj) to Pj and S.

– Reveal phase: Upon receiving a message of the form (reveal, sid, ssid) from party Pi, if a tuple (ssid, Pi, Pj ,m) was
previously recorded, then send the message (reveal, sid, ssid, Pi, Pj , x) to Pj and S. Otherwise, ignore.

Fig. 1. Ideal Functionality Fmcom for Commitment

can think about Yao’s Millionaires’ problem [Yao82]. Instead of following the classical approach which
aims at listing exhaustively all the expected properties, Canetti did something else and tried to define
how a protocol should ideally work: what are the inputs, and what are the available outputs. For that, he
specified two worlds: the real world, where the protocol is run with some possible attacks, and the ideal
world where everything would go smoothly, and namely no damage can be done with the protocol. For a
good protocol instantiation, it should be impossible to distinguish, for an external player, the real world
from the ideal one.

In the ideal world there is indeed an incorruptible entity named the ideal functionality, to which
players can send their inputs privately, and then receive the corresponding outputs without any kind of
communication between the players. This way the functionality can be set to be correct, without revealing
anything except what is expected. It is thus perfectly secure. A protocol, in the real world with real players
and thus possibly malicious players, should create executions that look similar to the ones in the previous
world. This is to show that the communication between the players should not give more information
than the functionality’s description and its outputs.

As a consequence, the formal security proof is performed by showing that for any external entity, that
gives inputs to the honest players and gets the outputs but that also controls the adversary, the executions
in the two above worlds are indistinguishable. More concretely, in order to prove that a protocol P realizes
an ideal functionality F , we consider an environment Z which can choose inputs given to all the honest
players and receives back the outputs they get, but which also controls an adversary A. Its goal is
to distinguish in which case it is: either the real world with concrete interactions between the players
and the adversary, or the ideal world in which players simply forward everything to and from the ideal
functionality and the adversary interacts with a simulator S to attack the ideal functionality. We have to
build a simulator S that makes the two views indistinguishable to the environment: since the combination
of the adversary and the simulator cannot cause any damage against the ideal functionality, this shows
that the adversary cannot cause any damage either against the real protocol.

The main constraint is that the simulator cannot rewind the execution as often done in classical proofs,
since it interacts with an adversary under the control of the environment: there is no possible rewind in
the real word, it is thus impossible too in the ideal world.

The adversary A has access to the communication but nothing else, and namely not to the in-
puts/ouputs for the honest players. In case of corruption, it gets complete access to inputs and the
internal memory of the honest player, and then gets control of it.

2.3 Ideal Functionality for Commitments

A UC-secure commitment scheme provides all the properties previously given: it should be hiding and
binding, but also extractable and equivocable, and even non-malleable. The ideal functionality is presented
on Figure 1. It is borrowed from [Lin11a].

2.4 Useful Primitives

Hash Function Family. A hash function family H is a family of functions HK from {0, 1}∗ onto a
fix-length output, either {0, 1}k or Zp.
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Definition 1 (Universal One-Way [NY89]). A family is said to be universal one-way if for any
adversary A on a family H, it should be hard for it to conveniently pick a scalar x, such that it is able to
find a second-preimage for a random function HK ∈ H. More precisely, we denote

SuccuowH (A) = Pr[x← A(H),HK
$← H, y ← A(HK) : HK(x) = HK(y)]

SuccuowH (t) = maxA≤t{SuccuowH (A)}.

In some cases, we may rely on a stronger property when we cannot postpone the choice of the hash
function in our simulations:

Definition 2 (Collision-Resistant). A family is said to be collision-resistant if for any adversary A
on a random function HK

$← H, it is hard to find a collision. More precisely, we denote

SucccollH (A) = Pr[HK
$← H, (m0,m1)← A(HK) : HK(m0) = HK(m1)]

SucccollH (t) = maxA≤t{SucccollH (A)}.

Pedersen Commitment. The Pedersen commitment [Ped92] is an equivocable commitment:

– Setup(1K) generates a group G of order p, with two independent generators g and ζ;

– Commit(m; r), for a message m
$← Zp and random coins r

$← Zp, produces a commitment c =
Ped(m, r) = gmζr, while r is the opening information;

– Decommit(c,m; r) outputs m and r, which opens c into m, and allows the validity test c ?= gmζr.

This commitment is computationally binding under the discrete logarithm assumption: two different
openings (m, r) and (m′, r′) for a commitment c, lead to the discrete logarithm of ζ in basis g. On the
other hand, with this discrete logarithm value as additional information from the setup, one can equivocate
any dummy commitment, when the input and opening values are known.

Cramer-Shoup Encryption. The Cramer-Shoup encryption scheme [CS98] is an IND-CCA version of
the ElGamal encryption. By merging the Setup and KeyGen algorithm into a unique Setup algorithm, we
make it into an extractable commitment scheme CS, where dk is the extraction key, and r is the witness
for the opening.

– Setup(1K) generates a group G of order p.

– KeyGen(param) generates (g1, g2)
$← G2, dk = (x1, x2, y1, y2, z)

$← Z5
p, and sets c = gx1

1 g
x2
2 , d = gy11 g

y2
2 ,

and h = gz1 . It also chooses a Collision-Resistant hash function HK in a hash family H (or a Universal
One-Way Hash Function). The encryption key is ek = (g1, g2, c, d, h,HK).

– Encrypt(ek,M ; r), for a message M ∈ G and a random scalar r ∈ Zp, the ciphertext is C = CS(M ; r) =
(u = (gr1, g

r
2), e = M · hr, v = (cdω)r), where v is computed afterwards with ω = HK(u, e).

– Decrypt(dk, C): one first computes ω = HK(u, e) and checks whether ux1+ωy1
1 · ux2+ωy2

2
?= v or not. If

the equality holds, one computes M = e/(uz1) and outputs M . Otherwise, one outputs ⊥.

The IND-CCA security can be proven under the DDH assumption and the fact the hash function used
is a Universal One-Way Hash Function. This also leads to a non-malleable commitment scheme, that is
additionally extractable when the Setup outputs the decryption key dk.

3 Lindell’s Commitment Protocols

We now have all the tools to review the two original Lindell’s commitment schemes [Lin11a].
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We have a CRS, consisting of (p,G, g1, g2, c, d, h, h1, h2), where G is a group of order p with generators g1, g2; c, d, h ∈ G
are random elements in G and h1 = g1

ρ and h2 = g2
ρ for a random ρ ∈ Zp.

Intuitively, (p,G, g1, g2, c, d, h) is a Cramer-Shoup encryption key and (p,G, g1, g2, h1, h2) is the CRS of a dual-mode en-
cryption scheme.
Let G : {0, 1}n → G be an efficiently computable and invertible mapping of a binary string to the group.
The commit phase

Upon receiving a message (Commit, sid, ssid, Pi, Pj , x) where x ∈ {0, 1}n−log2(n) and sid, ssid ∈ {0, 1}log
2(n)/4, party Pi works

as follows:

1. Pi computes m = G(x, sid, ssid, Pi, Pj).

2. Pi picks r
$← Zp and computes C = CS(m; r), we will note ω the hash of the first three terms.

3. Pi sends (sid, ssid, C) to Pj .
4. Pj stores (sid, ssid, Pi, Pj , c) and outputs (receipt, sid, ssid, Pi, Pj).

Pj ignores any later commitment messages with the same (sid, ssid) from Pi.

The decommit phase
Upon receiving a message (reveal, sid, ssid, Pi, Pj), Pi works as follows:

1. Pi sends (sid, ssid, x) to Pj .
2. Pj computes m = G(x, sid, ssid, Pi, Pj)

3. (a) Pj picks R,S
$← Zp, a random challenge ε

$← {0, 1}n and sends c′ = (g1
Rg2

S , h1
rh2

SG(ε)) to Pi.

(b) Pi picks s
$← Zp and computes (α, β, γ, δ) = (g1

s, g2
s, hs, (cdω)s).

He then sends (sid, ssid, α, β, γ, δ) to Pj .
(c) Pj now opens c′ by sending (sid, ssid, R, S, ε) to Pi.
(d) Pi checks if this is consistent with c′ otherwise he aborts.

Pi now computes z = s+ εr and sends (sid, ssid, z) to Pj .
(e) Pj outputs (reveal, sid, ssid, Pi, Pj , x) if and only if

gz1 = αu1
ε, g2

z = βu2
ε, hz = γ(e/m)ε, (cdω)z = δvε

Fig. 2. Lindell’s Commitment Protocol, UC-Secure against Static Corruptions

3.1 Static Corruptions

The first variant, presented on Figure 2 only prevents static corruptions: the adversary can decide to run
the protocol on behalf of a player, with its inputs, from the beginning, but cannot corrupt anybody when
the execution has started.

3.2 Adaptive Corruptions

The second variant prevents adaptive corruptions. It is presented on Figure 3. The main difference from
the previous scheme is to move some proof from the decommit phase to the commit phase.

4 Discussion and Correction

4.1 Discussion

Adaptive Corruptions. Lindell has proven both schemes secure under the DDH assumption, the former
in details but a sketch of proof only for the latter. And actually, as noted by Lindell in the last version
of [Lin11b], the security against adaptive corruptions might eventually not be guaranteed.

He indeed proves that no adversary can choose a message x′ beforehand, and do a valid com-
mit/decommit sequence to x′ where the simulator extraction, at the end of the commit phase, would
output an x different from x′. However this is not enough as an adversary could still do a valid com-
mit/decommit sequence to x′ where the simulator extraction at the end of the commit phase would
output an x different from x′. The difference between the two experiments is how much the adversary
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We have a CRS, consisting of (p,G, g1, g2, c, d, h, h1, h2, ζ,HK), where G is a group of order p with generators g1, g2;
c, d, h ∈ G are random elements in G and h1 = g1

ρ and h2 = g2
ρ for a random ρ ∈ Zp; HK is randomly drawn from a

collision-resistant hash function family H.
Intuitively (p,G, g1, g2, c, d, h,HK) is a Cramer-Shoup encryption key, (p,G, g1, g2, h1, h2) is the CRS of a dual-mode en-
cryption scheme, and (p,G, g, ζ) = is the CRS of a Pedersen commitment scheme.
Let G : {0, 1}n → G be an efficiently computable and invertible mapping of a binary string to the group.
The commit phase

Upon receiving a message (Commit, sid, ssid, Pi, Pj , x) where x ∈ {0, 1}n−log2(n) and sid, ssid ∈ {0, 1}log
2(n)/4, party Pi works

as follows:

1. Pi computes m = G(x, sid, ssid, Pi, Pj).

2. Pi picks r
$← Zp and computes C = CS(m; r), we will note ω the hash of the first three terms.

3. Pi picks k1
$← Zp, computes c1p = Ped(HK(C); k1) and sends it to Pj .

4. Pj picks R,S
$← Zp, ε $← {0, 1}n and sends c′ = (g1

Rg2
S , h1

Rh2
SG(ε)) to Pi.

5. Pi picks s, k2
$← Zp and computes (α, β, γ, δ) = (g1

s, g2
s, hs, (cdω)s).

He then computes and sends c2p = Ped(HK(α, β, γ, δ); k2) to Pj .
6. Pj now opens c′ by sending (R,S, ε) to Pi.
7. Pi checks if this is consistent with c′ otherwise he aborts.
8. Pi now computes z = s+ εr, and erases r, s.

He also opens c1p by sending C, k1 to Pj .
9. Pj verifies the consistency of c1p.

If yes, he stores (sid, ssid, Pi, Pj , c, ε, c
2
p) and outputs (receipt, sid, ssid, Pi, Pj).

He ignores any later commitment messages with the same (sid, ssid) from Pi.

The decommit phase
Upon receiving a message (reveal, sid, ssid, Pi, Pj), Pi works as follows:

1. Pi sends (x, α, β, γ, δ, k2, z) to Pj .
2. Pj computes m = G(x, sid, ssid, Pi, Pj), and outputs (reveal, sid, ssid, Pi, Pj , x) if and only if c2p is consistent and:

gz1 = αu1
ε, g2

z = βu2
ε, hz = γ(e/m)ε, (cdω)z = δvε

Fig. 3. Lindell’s Commitment Protocol, UC-Secure against Adaptive Corruptions with Erasures

controls the value x′: in the former x′ has to be chosen beforehand, while in the latter x′ is any value
different from x.

We describe, on Figure 4, such a situation in which the adversary A plays as Pi, and makes the
simulator extract the value x, while in fact committing (or actually opening) to another value x′. For the
sake of clarity, we only mention the differences between this situation and the real protocol presented on
Figure 3.Any extraction done on C at the end of the commit phase would lead the simulator to believe to a
commit to x, however the valid decommit outputs x′. Note however that this attack does not succeed very
often since one needs, for a random ε, that G−1(MD1/ε) exists and can be parsed as (x′, sid, ssid, Pi, Pj).

Static Corruptions. We stress that this possible inconsistency comes from the move forward of the
proof in the commit phase, even before the message x is strongly committed. The first protocol does not
suffer from this issue.

4.2 A Simple Patch

In order to avoid the above concern, a simple patch consists in committing m = G(x, sid, ssid, Pi, Pj) in the
second Pedersen commitment c2p. This leads to the simple change in the protocol presented on Figure 5,
where x is now strongly committed before the proof, and then the previous issue does not occur anymore.

We do not give more details about this proof, since we will now focus on much more efficient protocols,
with the above modification, and additional ones.
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The commit phase

Upon receiving a message (Commit, sid, ssid, Pi, Pj , x) where x ∈ {0, 1}n−log2(n) and sid, ssid ∈ {0, 1}log
2(n)/4, A works as

follows:

5. A picks s, k2
$← Zp, D $← G and computes (α, β, γ, δ) = (g1

s, g2
s, hsD, (cdω)s).

A then computes and sends c2p = Ped(HK(α, β, γ, δ); k2) to Pj .

8. A checks if G−1(MD1/ε) exists and can be parsed as (x′, sid, ssid, Pi, Pj) for a random x′.
If so, A now computes z = s+ εr, and erases r, s.
It also opens c1p by sending C, k1 to Pj .

The decommit phase
Upon receiving a message (reveal, sid, ssid, Pi, Pj), A works as follows:

1. A sends (x′, α, β, γ, δ, k2, z) to Pj .
2. Pj computes m′ = G(sid, ssid, Pi, Pj , x), and outputs (reveal, sid, ssid, Pi, Pj , x

′) if and only if c2p is consistent and:

gz1 = αu1
ε, g2

z = βu2
ε, hz = hs(e′D1/ε)ε = γ(e/m′)ε, (cdω)z = δvε

Fig. 4. Inconsistent Extraction and Opening with the Protocol from Figure 3

5 Our Optimization of the Commitments Protocols

We kept the original notations, but as done in [BBC+13], we can note that C is actually a Cramer-Shoup
encryption of m, and (α, β, γ, δ) is a partial Cramer-Shoup encryption of 1 with the same ω as in the first
ciphertext: the double Cramer-Shoup encryption of (m,m′) was denoted by DCS(m,m′; r, s) = (C1, C2),
where

– C1 is a real Cramer-Shoup encryption C1 = CS(m; r) of m for a random r
$← Zp: C1 = (u1 =

(g1
r, g2

r), e1 = m · hr, v1 = (cdω)r), where v1 is computed afterwards with ω = HK(u1, e1);

– C2 is a partial Cramer-Shoup encryption C2 = PCS(m′;ω, s) of m′ for a random s
$← Zp with the

above ω value: C2 = (u2 = (g1
s, g2

s), e2 = m′ · hs, v2 = (cdω)s), where v2 is computed directly with
the above ω = HK(u1, e1).

In addition, when ω is fixed, we have an homomorphic property: if (C1, C2) = DCS(m,m′; r, s), with a
common ω, the component-wise product C1 × C2 = PCS(m×m′;ω, r + s). In particular, we can see the
last tuple (αuε1, βu

ε
2, γe

ε, δvε) as C2 × Cε
1 . It should thus be PCS(mε;ω, εr + s) = PCS(mε;ω, z), which is

the final check. We now use these new notations in the following.

5.1 Improvement of the Static Protocol

The improvement presented below consists in noting that the receiver can directly send the value ε in the
decommit phase, without having to send a commitment first. To allow this, we simply ask the sender to
send a Pedersen commitment of C2 = (α, β, γ, δ) prior to receiving ε. This reduces the number of flows of
the decommit phase (from 5 downto 3) and the number of elements sent by the receiver, (from 2 group
elements and 3 scalars down to only 1 scalar, the challenge), simply increasing the number of elements
sent by the sender by 1 group element and 1 scalar (the Pedersen commitment).

The commit phase

5. Pi picks s, k2
$← Zp and computes (α, β, γ, δ) = (g1

s, g2
s, hs, (cdω)s).

He then computes and sends c2p = Ped(m,HK(α, β, γ, δ); k2) to Pj .

Fig. 5. Simple Patch to the Protocol from Figure 3
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We have a CRS, consisting of (p,G, g, g1, g2, c, d, h, ζ,HK), where G is a group of order p with generators g, ζ, g1, g2;
c, d, h ∈ G are random elements in G; HK is randomly drawn from a collision-resistant hash function family H.
Intuitively (p,G, g1, g2, c, d, h,HK) is a Cramer-Shoup public key and (p,G, g, ζ) is a CRS for a Pedersen commitment.
Let G : {0, 1}n → G be an efficiently computable and invertible mapping of a binary string to the group, as before.
The commit phase

Upon receiving a message (Commit, sid, ssid, Pi, Pj , x) where x ∈ {0, 1}n−log2(n) and sid, ssid ∈ {0, 1}log
2(n)/4, party Pi works

as follows:

1. Pi computes m = G(x, sid, ssid, Pi, Pj).

2. Pi picks r, s
$← Zp and computes (C1, C2) = DCS(m, 1; r, s).

We note C2 = (α, β, γ, δ).
3. Pi sends (sid, ssid, C1) to Pj .
4. Pj stores (sid, ssid, Pi, Pj , C1) and outputs (receipt, sid, ssid, Pi, Pj).

He ignores any later commitment messages with the same (sid, ssid) from Pi.

The decommit phase
Upon receiving a message (reveal, sid, ssid, Pi, Pj), Pi works as follows:

1. Pi picks k2
$← Zp, computes c2p = Ped(HK(m,C2, sid, ssid, Pi, Pj); k2) and sends (sid, ssid, x, c2p) to Pj .

2. Pj computes m = G(x, sid, ssid, Pi, Pj), picks ε
$← Zp and sends it to Pi.

3. Pi now computes z = s+ εr and sends (sid, ssid, C2, k2, z) to Pj .
4. Pj outputs (reveal, sid, ssid, Pi, Pj , x) if and only if c2p is consistent and

gz1 = αu1
ε, g2

z = βu2
ε, hz = γ(e/m)ε, (cdω)z = δvε

Fig. 6. Our New Static UC-Secure Commitment Protocol

5.2 Sketch of Proof of the Static Protocol

For lack of space, we do not give here the full proof of the protocol. One may note that it is very similar
to the one given in [Lin11a]. The only change lies in the decommit phase, where we make the receiver
directly send his challenge value ε rather than encrypting it first. But this change is made possible by
the sender sending a Pedersen commitment c2p of C2 before having seen ε, as in the commit phase of the
adaptive version of our protocol.

The proof can thus be easily adapted from the one given for our adaptive protocol (see Section 5.4).
The only difference is that in the static version, the sender does not commit to his value C1, so that the
simulator cannot change its mind on the value it gave inside this ciphertext later on. But one can note that
in the proof of the adaptive protocol, this commitment c1p has to be equivocated only in case of adaptive
corruptions (if the latter occur before the adversary has sent ε). This yields to the same simulator as in
the adaptive case (see Section 5.5) with the following modifications, when Pi is honest only:
Commit stage: Exactly as in the adaptive case except there is no corruption to deal with.
Decommit stage: Upon receiving the information that the decommitment has been performed on x,
with (reveal, sid, ssid, Pi, Pj , x) from Fmcom, S first chooses a random z and computes the ciphertext C3 =
PCS(m;ω, z). It then chooses a random k2, a random C2, computes the associated Pedersen commitment c2p
and simulates the first flow of the decommit phase to Pj . Upon receiving ε from Pj , it then adapts
C2 = C3/C1

ε and uses the trapdoor for the Pedersen commitment to produce a new value k2 corresponding
to the new value C2. It then simulates the third flow of the decommit phase to Pj .

5.3 Improvement of the Adaptive Protocol

As for the static version of the protocol, the main improvement presented in the figure 7 below consists
in noting that the receiver can directly send the value ε, without having to send an encryption before. To
allow this, we simply ask the sender to send his two Pedersen commitments prior to receiving ε.

This reduces, in the commit phase, the number of rounds (from 5 downto 3) and the number of
elements sent by the receiver (from 2 group elements and 3 scalars down to only 1 scalar, the challenge).
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Contrary to the static version, there is no additional cost. This is illustrated in Figure 8, which sums
up the differences between Lindell’s protocol and ours, in the same setting: UC-security against adaptive
corruption with erasures.

In addition, in order to slightly increase the message space from n− log2(n) to n, we move the sensitive
prefix (sid, ssid, Pi, Pj) into the second Pedersen.

Eventually, in order to definitely exclude the security concerns presented in Section 4, we include the
value m to the second Pedersen to prevent the adversary from trying to open his commitment to another
value.

We have a CRS, consisting of (p,G, g, g1, g2, c, d, h, ζ,HK), where G is a group of order p with generators g, ζ, g1, g2;
c, d, h ∈ G are random elements in G; HK is randomly drawn from a collision-resistant hash function family H.
Intuitively (p,G, g1, g2, c, d, h,HK) is a Cramer-Shoup public key and (p,G, g, ζ) is a CRS for a Pedersen commitment.
Let G : {0, 1}n → G be an efficiently computable and invertible mapping of a binary string to the group, as before.
The commit phase
Upon receiving a message (Commit, sid, ssid, Pi, Pj , x), party Pi works as follows, where x ∈ {0, 1}n and sid, ssid ∈
{0, 1}log

2(n)/4:

1. Pi computes m = G(x).

2. Pi picks r, s
$← Zp and computes (C1, C2) = DCS(m, 1; r, s).

We note C2 = (α, β, γ, δ).

3. Pi picks k1, k2
$← Zp.

He computes c1p = Ped(HK(C1); k1), c2p = Ped(HK(m,C2, sid, ssid, Pi, Pj); k2).
He sends (c1p, c

2
p) to Pj .

4. Pj picks ε
$← Zp and sends it to Pi.

5. Pi now computes z = s+ εr, and erases r, s.
He also opens c1p by sending (C1, k1) to Pj .

6. Pj verifies the consistency of c1p.
If yes, he stores (sid, ssid, Pi, Pj , C1, ε, c

2
p) and outputs (receipt, sid, ssid, Pi, Pj).

He ignores any later commitment messages with the same (sid, ssid) from Pi.

The decommit phase
Upon receiving a message (reveal, sid, ssid, Pi, Pj), Pi works as follows:

1. Pi sends (x,C2, k2, z) to Pj .
2. Pj computes m = G(x), and outputs (reveal, sid, ssid, Pi, Pj , x) if and only if c2p is consistent and:

gz1 = αu1
ε, g2

z = βu2
ε, hz = γ(e/m)ε, (cdω)z = δvε

Fig. 7. Our New UC-Secure Commitment Protocol Adaptive with Erasures

5.4 Security Proof

We now provide a full proof, with a sequence of games, that the above protocol emulates the ideal
functionality against adaptive corruptions with erasures. This sequence starts from the real game, where
the adversary interacts with real players, and ends with the ideal game, where we have built a simulator
that makes the interface between the ideal functionality and the adversary.

As already explained, we denote by C3 = C2C1
ε, the tuple involved in the last check. It should be a

partial encryption of m under randomness z = s + εr: C3 = PCS(m;ω, z) where ω is the hash value of
the first three terms of C1.

Game G0: This is the real game, in which every flow from the honest players is generated correctly
by the simulator which knows the input x sent by the environment to the sender. There is no use of the
ideal functionality for the moment.

Game G1: In this game, we focus on the simulation of an honest receiver interacting with a corrupted
sender. Executions with an honest sender are still simulated as before, using the input x. The simulator
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will generate the CRS in such a way it knows the Cramer-Shoup decryption key, but ζ is a discrete
logarithm challenge.

Upon receiving the values (c1p, c
2
p) from the adversary, the simulator simply chooses a challenge ε at

random and sends it to the adversary, as Pj would do with Pi. After receiving the values (C1, k1), the
simulator checks the consistency of the Pedersen commitment c1p and aborts in case of failure. It then
uses the Cramer-Shoup decryption key to recover the value m′ sent by the adversary, and computes
x′ = G−1(m′). In case of invalid ciphertext, one sets x′ = ⊥ (an element not in the domain of G). It stores
(sid, ssid, Pi, Pj , C1, ε, c

2
p) and (x′, sid, Pi, Pj) (this will correspond later to the Commit query to the ideal

functionality, in the ideal game). Upon receiving the values (x,C2, k2, z), the simulator does as Pj would
do in checking the commitment c2p and that C3 = PCS(mε;ω, z), but accepts x′ as the opening for the
commitment.

The only difference with the previous game is that Pi will accept x′, as decrypted from C1 = CS(m′ =
G(x′); r), for the decommitment instead of the value x output at the decommitment time, which leads to
m = G(x) that matches with C3 = PCS(mε;ω, z), but that is also contained in c2p together with C2. We
will show that under the binding property of the Pedersen commitment, one necessarily has x′ = x, and
thus there is no difference.

Let us assume that x′ 6= x in at least one of such executions: for the first one, we rewind the adversary
up to the step 4., and send a new random challenge ε′. Then the adversary should send the same C1,
otherwise one extracts the discrete logarithm of ζ in basis g or a collision for HK , and the same pair
(m,C2) in the decommit phase for the same reason, but possibly a different z′. Then, the final checks
guarantee that C3 = PCS(mε;ω, z) in the first execution and C ′3 = PCS(mε′ ;ω, z′) in the second execution.
From the homomorphic property: C2 encrypts (m/m′)ε in the first execution, but (m/m′)ε

′
in the second

execution, which are thus equal. Since ε′ 6= ε, this implies that m′ = m. For the same reason, one can
note that if C1 is not a valid ciphertext, C3 cannot be valid either (for the fixed ω). We stress that the
rewind here is just for the proof of indistinguishability of the two games, but not in the simulation.

In case of corruption of the receiver, one can note that he has no secret.

Game G2: In this game, we start modifying the simulation of an honest sender, still knowing his input
x. For the honest verifier against a corrupted sender, we still have to know the Cramer-Shoup decryption
key to run the same simulation as in the previous game. But we now need to know the discrete logarithm
for equivocating the Pedersen commitment.

This game is almost the same as the previous one excepted the way the double Cramer-Shoup cipher-
text is generated: (C1, C2) = DCS(m,n; r, s), for a random n instead of 1. The rest of the commit phase
is unchanged.

At the decommit phase, S chooses random coins z and computes C3 = PCS(m;ω, z), and then “repairs”
C2 = C3/C1

ε, and k2 for being able to open c2p to this new value.

Thanks to the homomorphic property, the repaired C2 is indeed a correct ciphertext of 1, and the
equivocation of the Pedersen commitment guarantees a correct opening. This game is thus perfectly
indistinguishable from the previous one.

In case a corruption of Pi occurs before the decommit phase, the simulator anticipates the equivocation
of c2p.

Game G3: One can note that in the previous game, r is not used anymore to compute z. One could
thus ignore it, unless Pi gets corrupted before ε has been sent, since we should be able to give it. But in
such a case, one can compute again C1 knowing r and equivocate c1p.

We thus alter again the way the double Cramer-Shoup ciphertext is generated: (C1, C2) = DCS(m′, n; r, s),
for random m′ and n. Everything remains unchanged.

The unique change is thus the ciphertext C1 that encrypts a random m′ instead of m. One can run the
IND-CCA security game, in an hybrid way, to show this game is indistinguishable from the previous one.
To this aim, one has to show that the random coins r are not needed to be known, and that the challenge
ciphertexts are never asked for decryption (where the decryption key here is replaced by an access to the
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decryption oracle, hence the IND-CCA security game). The former point has been discussed above. For
the latter, we have shown that the value actually encrypted in C1 by the corrupted sender is the value
sent at the decommit phase, which would even break the one-wayness of the encryption. Hence, if such a
replay happens, one knows that the decommit phase will fail.

In case of corruption of Pi before receiving ε, Pedersen commitments only have been sent, and they
can thus be equivocated with correct values. In case of corruption of Pi after having received ε, one does
has before, anticipating the equivocation of c2p.

Game G4: This is the ideal game, in which the simulator works as described below: when Pi is
corrupted, one uses the decryption of C1 to send the Commit query to the ideal functionality, when Pi is
honest one can wait for the reveal information to conclude the simulation of the real flows.

5.5 Description of the Simulator

Setup. The simulator generates the parameters, knowing the Cramer-Shoup decryption key and the
Pedersen equivocation trapdoor.

When Pi is honest.

Commit stage: Upon receiving the information that a commitment has been performed, with (receipt,
sid, ssid, Pi, Pj) from Fmcom, S computes (C1, C2) = DCS(m′, n; r, s), for random m′ and n but then follows
as Pi would do. If Pj is honest too, one just has to send a random ε.

In case of corruption of Pi before receiving ε, one can equivocate c1p, otherwise one equivocates c2p, as
explained below.

Decommit stage: Upon receiving the information that the decommitment has been performed on x, with
(reveal, sid, ssid, Pi, Pj , x) from Fmcom, S exploits the equivocability of the Pedersen commitment: it first
chooses a random z and computes the ciphertext C3 = PCS(m = G(x);ω, z). It then adapts C2 = C3/C1

ε

and uses the trapdoor for the Pedersen commitment to produce a new value k2 corresponding to the new
value C2. It then simulates the decommit phase to Pj .

When Pi is corrupted and Pj is honest.

Commit stage: Upon receiving (C1, k1) from the adversary, S decrypts the Cramer-Shoup ciphertext C1

and extracts x from G. If the decryption is invalid, then S sends (Commit, sid, ssid, Pi, Pj ,⊥) to Fmcom.
Otherwise, S sends (Commit, sid, ssid, Pi, Pj , x).

Decommit stage: S acts as a regular honest user Pj from the incoming message of A on behalf of Pi.
In case of validity, send the query (reveal, sid, ssid).
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[BBC+13] Fabrice Ben Hamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien Vergnaud. Efficient uc-
secure authenticated key-exchange for algebraic languages. In Kaoru Kurosawa, editor, Proceedings of PKC 2013,
Lecture Notes in Computer Science. Springer, 2013. Full version available from the web page of the authors or
from http://eprint.iacr.org/2012/284.

[BFI+10] Olivier Blazy, Georg Fuchsbauer, Malika Izabachène, Amandine Jambert, Hervé Sibert, and Damien Vergnaud.
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